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The psychosis-like effects of Δ9-THC are associated with 
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Abstract

Background—Drugs that induce psychosis may do so by increasing the level of task-irrelevant 

random neural activity or neural noise. Increased levels of neural noise have been demonstrated in 

psychotic disorders. We tested the hypothesis that neural noise could also be involved in the 

psychotomimetic effects of delta-9-tetrahydrocannabinol (Δ9-THC), the principal active 

constituent of cannabis.

Methods—Neural noise was indexed by measuring the level of randomness in the 

electroencephalogram during the pre-stimulus baseline period of an oddball task using Lempel-Ziv 

Complexity (LZC), a non-linear measure of signal randomness. The acute, dose-related effects of 

Δ9-THC on LZC and signal power were studied in humans (n=24) who completed three test days 

during which they received intravenous Δ9-THC (placebo, 0.015 and 0.03 mg/kg) in a double-

blind, randomized, cross-over, and counterbalanced design.

Results—Δ9-THC increased neural noise in a dose-related manner. Furthermore, there was a 

strong positive relationship between neural noise and the psychosis-like positive and 

disorganization symptoms induced by Δ9-THC, which was independent of total signal power. 
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Instead, there was no relationship between noise and negative-like symptoms. In addition, Δ9-THC 

reduced total signal power during both active drug conditions compared to placebo but no 

relationship was detected between signal power and psychosis-like symptoms.

Conclusions—At doses that produced psychosis-like effects, Δ9-THC increased neural noise in 

humans in a dose-dependent manner. Furthermore, increases in neural noise were related with 

increases in Δ9-THC-induced psychosis-like symptoms but not negative-like symptoms. These 

findings suggest that increases in neural noise may contribute to the psychotomimetic effects of 

Δ9-THC.

Keywords

electroencephalogram; neural noise; psychosis; cannabinoids; nonlinear analysis; 
tetrahydrocannabinol

INTRODUCTION

Complex mental processes such as perception, language, emotion, and memory rely on the 

integrity of long-range functional networks formed by ensembles of brain areas (nodes) 

processing information in a coordinated manner (1, 2). Alterations in these networks and 

their information processing capabilities may contribute to the emergence of some core 

symptoms of psychosis such as hallucinations, delusions, and thought disorganization. 

Consistent with this view, converging lines of evidence from structural (diffusion tensor 

imaging: DTI) and functional (functional magnetic resonance imaging: fMRI, 

electroencephalogram: EEG, and magnetoencephalogram: MEG) studies have shown 

abnormal neural connectivity in schizophrenia, which has been related to the presence and 

intensity of psychotic symptoms (3–9).

Concepts used to characterize the functioning of ‘real-world’ complex networks (e.g., the 

Internet) may provide valuable insights into the abnormalities underlying some psychotic 

symptoms. A network can be characterized as a set of interconnected nodes that exchange 

and process information in a coordinated manner. Information is transmitted from one node 

to another through a medium (e.g., a cable) as part of a signal (e.g., an electromagnetic 

wave), which is composed by information and random noise. The latter is a sum of random 

activity and interference caused by other signals travelling through the same medium. 

According to information theory, the upper limit of the total amount of undistorted (error-

free) information per unit of time that can be carried by a signal is limited by: 1) the 

bandwidth (in Hz), 2) the total power, and 3) the amount of random activity or noise of the 

signal (10–13). Thus, keeping the bandwidth and the total power of a signal constant, the 

higher the level of noise, the lower the amount of information that can be carried by the 

signal without distortion. Increased noise may, therefore, disrupt the coordinated activity 

between nodes, resulting in the disruption of information processing.

There is growing evidence from EEG, MEG, and neuroimaging studies suggesting increased 

randomness/noise in the brain activity of schizophrenia patients (14–19). A number of 

studies have shown increased inter-trial (random) variability in the latency and amplitude of 

evoked responses measured in the EEG of schizophrenia patients (14, 16–18, 20). 
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Furthermore, measures developed to characterize the uncertainty (entropy) or randomness of 

signals have revealed increased levels of randomness in the EEG and MEG of schizophrenia 

patients (21–23), which are higher during periods of exacerbation of psychosis (22). While 

there may be limitations to the existing EEG and MEG literature, recent fMRI data provide 

further support to the hypothesis that noise is increased in schizophrenia (19).

A number of drugs including ketamine, delta-9-tetrahydrocannabinol (Δ9-THC), psilocybin, 

and amphetamine have been used in the laboratory to study psychotic states and to 

understand the contributions of neurotransmitter systems to the pathophysiology of 

psychosis. The acute administration of Δ9-THC, the primary psychoactive constituent in 

cannabis, and other agonists of brain cannabinoid receptors (CB1R) have been shown to 

induce transient psychosis-like effects and psychophysiological abnormalities in healthy 

controls that share some similarities to those observed in schizophrenia (reviewed in 24, 25, 

26). Furthermore, Δ9-THC has been shown to increase psychotic symptoms transiently in 

stable schizophrenia patients (27). Studies in rats have shown that CB1R agonists acutely 

reduce the spectral power of local field potential (LFP) oscillations in a number of frequency 

bands within the hippocampus and entorhinal cortex (28, 29). Importantly, this effect was 

not a consequence of a reduction in the individual neurons’ activity but was related to an 

increase in the randomness/noise (decrease in the synchronization) of the neurons’ activity 

(28, 29). Considering that, as mentioned above, neural noise may be involved in the 

pathophysiology and phenomenology of schizophrenia, these findings raise the intriguing 

possibility that neural noise could also be involved in the acute psychotomimetic effects of 

Δ9-THC and other CB1R agonists. To our knowledge, no studies in humans have tested this 

hypothesis.

Lempel-Ziv Complexity (LZC) is a non-linear measure first developed to characterize the 

level of randomness (30) or noise of signals. It is a measure of the minimum number of 

different terms (e.g., ‘words’) necessary to fully reconstruct a signal (e.g., ‘sentence’) 

without losing information. Applying this to EEG, LZC measures the minimum number of 

distinct patterns of activity that are necessary to characterize the behavior of a signal (see 

supplementary figure S1). The higher the randomness of a signal (e.g., the volume of the 

background babble of a crowded room), the larger is the minimum number of different terms 

(‘word fragments’) necessary to reconstruct the signal and, hence, the higher is LZC. For 

infinite random signals, which lack regular recurrent terms (e.g., white noise), the 

normalized value of LZC approaches 1, while for infinite regular (periodic) signals it 

approaches 0 (31, 32). LZC has been increasingly theoretically and empirically validated in 

the study of electrophysiological signals (reviewed in 21, 33, 34–38).

Traditional measures of neural noise used to study the EEG and MEG of schizophrenia 

patients (14–18, 39), have characterized noise as brain responses that are not time-locked to 

the stimuli in the context of time-locked paradigms (e.g. ERP). In this sense, neural noise 

refers to the random variation of the brain’s response across the different trials of a task 

(i.e., inter-trial variability). Thus, this conceptualization of noise provides information about 

the capacity of the brain to produce consistent patterns of activity in response to repeated 

presentations of a stimulus. In contrast to these measures, LZC provides direct information 

about the level of randomness of EEG signals (30), which makes it especially suited for 
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detecting cannabinoid-induced changes in the randomness (noise) of the brain’s electrical 

activity (28, 29).

Until recently, brain activity during the baseline or pre-stimulation period received little 

attention. However, evidence from both animal and humans suggests that this period plays a 

key role in the brain’s response to tasks. The characteristics (e.g., phase, randomness) of pre-

stimulation brain activity are known to modulate the electrical and behavioral responses to 

tasks (40, 41). More importantly, evidence for an interaction between aberrant (increased) 

baseline brain activity and a reduction of task-related post-stimulus activity measured by 

both EEG (14) and fMRI (42), has been observed in schizophrenia patients. Furthermore, 

schizophrenia patients show increased baseline activity, especially in the gamma (γ)-band, 

and an inverse relationship between pre- and post-stimulation γ activity (43). These findings 

suggest that at least part of the task-related abnormalities observed in schizophrenia may be 

associated to the presence of aberrant brain activity during the pre-stimulation period.

This study was part of a larger project that aimed to assess the dose-related effects of Δ9-

THC on several electrophysiological indices of information processing relevant to 

schizophrenia (e.g., P300 (44), oscillations, and neural noise) and to determine the 

relationship between the electrophysiological and behavioral effects of Δ9-THC. Δ9-THC 

was hypothesized to increase neural noise (LZC) during the pre-stimulation period of an 

oddball task, and psychosis-like effects. Furthermore, we hypothesized that there would be a 

positive relationship between neural noise and the psychosis-like effects induced by Δ9-

THC, and that this relationship would be independent of changes in signal power.

METHODS AND MATERIALS

A complete description of subjects, regulatory approvals, and general study procedures is 

included in the supplement (see text and table S1). In brief, in this 3 test-day randomized, 

double-blind, placebo-controlled, cross-over study, subjects received Δ9-THC (vehicle 

(ethanol), 0.015mg/kg, or 0.03mg/kg) over 10 min by IV route. The sample included 

subjects with and without recent cannabis exposure (within the last 30 days), and excluded 

cannabis naïve and cannabis dependent subjects.

EEG paradigm and data acquisition—A detailed account of the EEG paradigm and 

data acquisition procedure is provided in the supplement. Briefly, 22-electrode EEG data 

were recorded (sampling rate 1000Hz) while subjects performed an auditory oddball task 

described elsewhere (44).

General EEG preprocessing—A detailed description of the EEG preprocessing is 

provided in the supplement. Briefly, EEG data were band-pass filtered (0.5–100Hz; 

bandwidth=99.5Hz), and power line, muscle, eye movement, and blink artifacts were 

removed using multi-tapering (45), blind source separation (46), and adaptive filtering 

techniques (47), respectively. The data were segmented in 1150ms epochs time-locked to 

stimulus onset with a 250ms pre-stimulus segment. To minimize the confounding effect that 

muscle activity could have on measuring neural noise, only midline electrodes were used for 
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statistical analyses, given that they tend to be less contaminated by muscle activity than the 

rest (48).

EEG measures

Lempel-Ziv complexity—A detailed description of the calculation of LZC is provided in 

the supplement. For each subject and electrode, LZC was calculated on the pre-stimulation 

segment (−250 to −1ms) of each trial and then averaged across trials. Finally, a single LZC 

value was calculated for each subject by averaging LZC across electrodes.

Signal power—For each subject, the signal power of each electrode was obtained by 

calculating the root-mean-square power (average of the squared amplitudes) of each trial’s 

pre-stimulation interval (−250 to −1ms) and then averaging across trials. Finally, for each 

subject, a single signal power measure was obtained by averaging across electrodes.

Behavioral measures

The positive, disorganization and negative symptom subscales from a 5-factor model of the 

Positive and Negative Syndrome Scale (PANSS) (49) were used to measure psychosis- and 

negative-like symptoms. This model was selected for its stability and for not excluding 

items from the final solution (50). By characterizing positive and disorganization symptoms, 

this 5-factor model was hypothesized to more completely capture the range of psychosis-like 

effects induced by Δ9-THC than the usual 3-factor model of the PANSS.

Statistical analysis

Data were examined descriptively using means, standard deviations and distribution plots. In 

addition, each outcome was assessed for normality using the Kolmogorov-Smirnov test in 

each drug condition separately. Unless specified, statistical analyses were conducted using 

SPSS 21 (IBM Corporation, Armonk, NY, USA).

Effect of drug condition on EEG measures—The effect of drug condition (placebo, 

0.015mg/kg, and 0.03mg/kg) on EEG measures was assessed using generalized estimating 

equations (GEEs) (51, 52) with an unstructured working correlation matrix. GEE modeling 

is a robust method that corrects for correlated samples, handles missing data, and has been 

shown to be more powerful than typical repeated measures analysis of variance for small/

medium-size samples (51–53). Independent GEE models were fitted for LZC with and 

without signal power as a covariate and p-values were adjusted for 2 comparisons with the 

Holm-Bonferroni (HB) method. Pairwise comparisons (3 per model) were conducted and p-

values were HB-adjusted for 6 comparisons. In addition, independent GEE models were 

fitted for signal power with and without LZC as a covariate and p-values were HB-adjusted 

for 2 comparisons; pairwise comparisons were performed and p-values were HB-adjusted.

To examine the relationship between LZC and signal power, the standardized regression 

coefficient was obtained for the longitudinal regression of LZC on signal power. The 

regression was done by fitting a GEE model with an unstructured working correlation matrix 

to the data of the three drug conditions transformed into composite z scores.
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Effect of drug condition on behavioral measures—PANSS factors’ scores exhibited 

floor effects and positive skewness in the placebo condition. Thus, a nonparametric method 

was used (54) and the resulting p-values were HB-adjusted for 3 comparisons (1 per PANSS 

factor). For this method, the data were ranked and fitted with a mixed effects model using 

dose as within-subject factor and an unstructured variance-covariance matrix; p-values were 

adjusted for ANOVA-type statistics. Pairwise comparisons (3 per measure) were performed 

and p-values were HB-adjusted for 9 comparisons. These analyses were performed with the 

nparLD package (55) for R 2.14.2 (56).

Relationship between EEG and behavioral measures—To characterize the 

relationship between Δ9-THC-induced changes in EEG measures (LZC and signal power) 

and PANSS factors, standardized regression coefficient (βs) were obtained for the 

longitudinal regression across both Δ9-THC-active conditions of each PANSS factor score 

on each EEG measure (controlling and not-controlling for the other EEG measure) with a 

significant main effect of drug (3 coefficients per EEG measure). The p-values of the 

regression coefficients were HB-adjusted for 9 comparisons (see supplement).

RESULTS

Demographic information is reported in table 1. Of the 56 subjects who were consented, 10 

failed the screening process, 8 never initiated, 8 dropped out prior to completing, and 30 

completed all 3 test days. Due to technical difficulties during EEG acquisition, 6 completers 

were excluded from the analyses; in addition, 1 subject from the 0.015mg/kg condition and 

1 from the 0.03mg/kg condition were excluded from analysis due to artifactual 

contamination in the preprocessed EEG data. Thus, a total of 24 subjects in the placebo 

condition and 23 in both the 0.015mg/kg and 0.03mg/kg conditions were included in the 

analyses. As reported elsewhere, 5 non-serious and no serious adverse events occurred on 

test days (44). For parsimony, statistics are reported either in the text or tables, but not both.

Effect of drug condition on EEG measures

Lempel-Ziv Complexity—There was a significant effect of drug condition on LZC (Wald 

χ2(2)=42.696, pAdj<0.001) that remained significant (Wald χ2 (2)=36.319, pAdj <0.001) after 

controlling for signal power. These findings persisted despite HB-adjustment for 2 

comparisons. The 6 HB-adjusted pairwise comparisons performed before and after 

controlling for signal power (3 comparisons each) revealed significantly higher LZC for the 

0.03mg/kg (both psAdj<0.001) and 0.015mg/kg (pAdj<0.001 and pAdj=0.002, respectively) 

doses compared to placebo, and for the 0.03mg/kg dose compared to the 0.015mg/kg dose 

(both psAdj<0.001) (figure 1 and table 2).

Signal power—There was a significant effect of drug condition on signal power (Wald 

χ2(2)=8.004, pAdj=0.036) which disappeared after controlling for LZC (Wald χ2(2)=2.236, 

pAdj>0.1). Three HB-adjusted pairwise comparisons performed on the data before 

controlling for LZC revealed significantly lower power for the 0.03mg/kg and 0.015mg/kg 

doses compared to placebo (both pAdj=0.029) but no difference between the 0.03mg/kg and 

0.015mg/kg doses (pAdj>0.1) (figure 2 and table 2).
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Relationship between LZC and signal power—The regression of LZC on signal 

power revealed a significant inverse relationship between both variables (β=−0.544, Wald χ2 

(1)=42.229, p<0.001).

Effect of drug condition on behavioral measures

The nonparametric analyses HB-adjusted for 3 comparisons revealed a significant effect of 

drug condition for the PANSS positive (ANOVA-type statistic (ATS)(1.864)=28.147, 

pAdj<0.001), disorganization (ATS(1.660)=26.555, pAdj<0.001), and negative 

(ATS(1.914)=12.608, pAdj<0.001) symptoms factors. The 9 HB -adjusted pairwise 

comparisons showed significantly higher scores for the 0.03mg/kg and 0.015mg/kg doses 

compared to placebo (all psAdj<0.001 excepting psAdj=0.031 for the 0.015mg/kg dose versus 

placebo comparison of the negative factor) and for the 0.03mg/kg dose compared to the 

0.015mg/kg dose (all psAdj<0.02) (table 2).

Relationship between EEG and behavioral measures

The regressions of the PANSS factor scores on LZC revealed significant HB-corrected (9 

comparisons) coefficients for the positive symptoms factor before (β=0.442, Wald 

χ2(1)=9.114, pAdj=0.015) (supplementary figure S2A) and after (β=0.685, Wald 

χ2(1)=39.419, pAdj<0.001) (figure 3A) controlling for signal power; and for the 

disorganization symptoms factor before (β =0.646, Wald χ2(1)=15.819, pAdj<0.001) 

(supplementary figure S2B) and after (β=0.754, Wald χ2(1)=25.861, pAdj<0.001) (figure 3B) 

controlling for signal power. No significant coefficients were found for the regression of the 

negative symptoms factor on LZC (all psAdj>0.1). In contrast to LZC, no coefficient reached 

significance for signal power after HB-correction (pAdj>0.1).

Exploratory analysis to determine whether recent (30 day) cannabis exposure influenced the 

effects of Δ9-THC on LZC revealed no significant effects of cannabis exposure (see 

supplement). Finally, plasma levels of Δ9-THC and its metabolite Δ9-THC-COOH were 

sampled periodically (see supplement), showing a dose-dependent increase as reported 

previously (44).

DISCUSSION

To our knowledge, this is the first study to demonstrate an increase in neural noise, defined 

as the randomness of EEG signals, induced by a psychotomimetic drug in humans. More 

specifically, this study showed for the first time that Δ9-THC increased neural noise indexed 

by LZC in a dose-related manner. As expected (reviewed in 24, 25, 26), Δ9-THC increased 

positive, disorganization and negative symptoms. Furthermore, there was a strong positive 

relationship between neural noise and the psychosis-like effects induced by Δ9-THC, which 

was independent of the changes in total signal power. In contrast, there was no relationship 

between noise and negative-like symptoms. This suggests a specific relationship between 

neural noise and Δ9-THC induced psychosis-like effects, raising the intriguing possibility 

that neural noise may be involved in other forms of psychosis as well. In addition, Δ9-THC 

reduced total signal power during both active drug conditions compared to placebo but this 

effect disappeared after controlling for LZC. No relationship was detected between signal 
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power and psychosis-like symptoms. Finally, an inverse relationship between LZC and 

signal power was observed.

Noise and signal power

As described above, LZC is a nonlinear measure of the randomness (noise) of time series 

(30). While Δ9-THC increased noise in a dose-dependent manner, the signal did not become 

completely random, a state which would be associated with an LZC value of 1. Note that the 

LZC value associated with a perfectly regular (periodic) or predictable signal would 

approach 0 (31, 32). What the associated LZC value is for optimal brain function remains 

unknown, and is likely an intermediate value between 0 and 1.

Animal studies have revealed that cannabinoids acutely reduce the spectral power of LFP 

oscillations by increasing the randomness (reducing the synchronization) of the activity of 

populations of neurons rather than reducing the activity of individual neurons (28, 29). The 

increased randomness would reduce the neurons’ capacity to form temporally coordinated 

ensembles, leading to a reduction of LFP spectral power (28). Consistent with these 

findings, our results showed that Δ9-THC reduced signal power and increased randomness, 

and that there was an inverse relationship between signal power and randomness.

Relationship between noise, connectivity and behavior

As discussed in the introduction, keeping the bandwidth and total power of a signal constant, 

the higher the level of random noise, the lower the amount of information that can be carried 

by a signal without distortion. Considering that our findings were independent of total signal 

power and that the bandwidth of the signals was kept constant (99.5Hz) across conditions by 

filtering, we speculate that our findings could reflect a negative relationship between the 

amount of error-free information capable of being carried by the brain signals and the 

psychosis-like effect induced by Δ9-THC. Furthermore, we hypothesize this may affect the 

capacity of different brain areas (nodes) to process information coordinately. This would of 

course apply only to the brain sources captured by the midline electrodes used in our 

analyses. However, if the activity captured by these electrodes is representative of the 

activity within larger brain areas, then one might speculate that the results of this study may 

be informative about brain function in general. If so, these results would be aligned with 

some theoretical models proposing an aberrant connectivity (dysconnection) between brain 

areas as the underlying mechanism of psychotic symptoms in schizophrenia (57–59). 

Furthermore, we speculate that LZC will be inversely correlated to electrophysiological 

indices of connectivity such as Phase lag index (60) and Inter-electrode coherence (61).

Mechanism of Noise

While it is beyond the scope of this study to determine the mechanism by which Δ9-THC 

increased noise, it is tempting to speculate on some explanations. In the cerebral cortex and 

hippocampus, CB1Rs are located on the axon terminals of cholecystokinin (CCK)-

expressing GABAergic interneurons (62). While parvalbumin (PV)-expressing GABAergic 

interneurons seem to have the main role in the generation of regular oscillatory activity 

(non-random recurrent patterns), it has been proposed that CCK cells enhance the signal-to-

noise ratio of neural oscillations (like a ‘noise filter’) through a CB1R-mediated mechanism 
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(63–65). Thus, it may be the case that the observation that Δ9-THC increased LZC resulted 

from a disruption of this “noise filter” mechanism by the non-physiologic activation of 

CB1Rs by Δ9-THC. While the manner in which this abnormality would affect neural 

computations is far from being clear, it is interesting to note that increased levels of LZC 

and similar measures have been reported in schizophrenia and have been related to periods 

of symptomatic exacerbation (21–23).

LZC complements traditional measures of brain activity

Event-related potentials (ERPs) are one of the EEG measures most widely used in current 

studies of psychoses. ERPs provide valuable information about the consistency and strength 

of the brain’s time-locked response to different presentations of a stimulus. Using this 

approach we showed that Δ9-THC reduced the amplitude of the P300 (44). LZC 

complements these measures by capturing a different aspect (randomness) of the neural 

dysfunction underlying Δ9-THC-induced psychosis-like symptoms. Interestingly, 

exploratory analyses revealed medium-sized (β −0.4) negative relationships between LZC 

and the amplitudes of P3a and P3b. Of note, while P3a or P3b amplitudes were not related to 

symptoms measured either by the 3 (44) or 5-factor (current) solution of the PANSS, LZC 

was (see supplement). Furthermore, we explored the relationship between baseline power 

(an index of brain activity not evoked by a task) in the traditional frequency bands and 

psychosis-like symptoms. Similar to Spencer’s study on schizophrenia patients (43), we 

found no relationship between baseline power and psychosis-like symptoms in any 

frequency band (see supplement). Taken together, these findings suggest that LZC may be 

more sensitive to the pathophysiology underlying positive symptoms than some traditional 

EEG measures. Thus, LZC may be able to provide information about the pathophysiology of 

positive symptoms that has been overlooked by studies using these measures.

Strengths and Limitations

Unlike other measures of noise (e.g., inter-trial variability, increased task-unrelated activity) 

(14–18, 39, 43), LZC provides direct information about the level of randomness of the EEG 

signals (30), which makes it more suitable for quantifying the noise of brain activity. The 

obvious differences between these measures limit any direct comparisons between the 

results of this study and those previously obtained in schizophrenia.

In contrast to previous evoked-response studies (14–18, 39), in this study data captured 

immediately prior to the onset of the stimulation period were analyzed. Despite the fact that 

the pre-stimulation period doesn’t capture evoked activity, it is not true resting state activity 

due to the anticipation elicited by recurring events (i.e., auditory click trains) and the 

expectation associated with task-related stimuli (i.e., P3b). Thus, whether our findings apply 

to resting state activity or to activity associated with expectancy during the pre-stimulation, 

will need to be determined in future studies.

In this study, continuous EEG data were transformed into binary symbolic sequences using 

the threshold-crossing approach (see Methods), prior to calculating LZC. While this 

approach is associated with some loss of information (66, 67) about the fine-grained 

dynamics of the system generating the signals (e.g., the brain), it is capable of providing an 
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accurate representation of the macroscopic-level dynamics of the system (67). Furthermore, 

a consequence of using the median as the threshold is that low-range frequencies are 

preferentially represented in the resulting binary data (see supplement). Even though the 

median-crossing approach is widely used, alternate approaches (e.g. 68) that better represent 

the entire frequency spectrum should be explored. The loss of some information 

notwithstanding, LZC based on this approach has been informative about the brain in health 

and disease (34, 35, 37, 38).

Conclusions

At doses that produced increases in psychosis-like effects, Δ9-THC increased neural noise 

(LZC) measured in the EEG of humans in a dose-dependent manner. Furthermore, increases 

in neural noise were positively related with Δ9-THC-induced psychosis-like, but not 

negative-like, effects. These findings suggest that neural noise may contribute to the 

psychotomimetic effects of Δ9-THC. Further replication of these findings is warranted as are 

studies into the mechanisms underlying the increases in neural noise (e.g., studying the 

intracortical correlates of these surface recordings in animals). It would be interesting to 

determine whether these findings are exclusive to Δ9-THC or whether other drugs known to 

produce psychosis-like effects (e.g., ketamine [NMDA receptor antagonist] and psilocybin 

[5-HT2a agonist]) increase LZC and whether the drug-induced increases in LZC correlate 

with psychosis-like effects. While LZC is increased during decompensation (22), to our 

knowledge, whether LZC is correlated with psychotic symptoms in schizophrenia patients 

has not been studied. If confirmed, LZC may have significant utility as a novel biomarker 

for the functional deficits underlying psychotic symptoms. Finally, while admittedly 

speculative, if psychotic symptoms are a result of brain dysconnectivity related to an 

abnormal increase of neural noise, interventions directed towards reducing noise may have 

therapeutic potential.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Lempel-Ziv complexity per drug condition
The graph shows the mean and standard error bars of Lempel-Ziv complexity (raw values, 

not corrected for signal power) per drug condition. Significant differences (p<0.001) 

between conditions are indicated with **.
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Figure 2. Baseline signal power per drug condition
The graph shows the mean and standard error bars of baseline signal power (raw values, not 

corrected for LZC) per drug condition. Significant differences (p<0.05) between conditions 

are indicated with *.
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Figure 3. Δ9-THC-induced positive and disorganization symptoms versus Lempel-Ziv 
complexity corrected for signal power
The figure shows the regression lines and standardized coefficients of the regressions of 

positive (A) and disorganization (B) symptoms factors of the PANSS on Lempel-Ziv 

complexity (LZC) corrected for signal power. PANSS scores and LZC values are presented 

in z scores.
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Table 1

Sample demographics

General Characteristics

No. Male (Female) 17 (7)

Age [Mean (SD)] 26.208 (8.108)

Handedness 1 left handed

Years of Education [Mean (SD)] 15.167 (2.014)

Estimated IQ [Mean (SD)] 115.750 (4.416)

Cannabis Exposure

Age of First Cannabis Use 17.000 (2.523)

Days Since Last Use/Last exposure [Mean (SD), Range] 445.688 (846.645), 1–3650

Total Years of Use [Mean (SD), Range] 7.094 (4.486), 1–15

Frequency of Cannabis Use Within Past 30 Days No. of Subjects

 0 days 12

 1–3 days 4

 4–8 days 3

 9–15 days 3

 16–29 days 2

Lifetime Cannabis Use (Total No. of Exposures) No. of Subjects

 1–10 4

 11–50 8

 51–200 3

 201–500 3

 501–1000 3

 >1000 3

Cannabis Exposure During Heaviest Use (No. of Exposures) No. of Subjects

 <1 to 1 per year 6

 1 per 3–6 months 4

 1–3 per month 3

 1–2 per week 2

 3–6 per week 5

 7 per week 4

Other Drug Exposure

Daily Cigarette Smokers (# of subjects) 2

Average No. of Alcoholic Drinks Per Week [Mean (SD)] 6.01 (6.06)

Previous Recreational Exposure to Illicit Drugs Other Than Cannabis No. of Subjects

 None 11

 Hallucinogens 12

 Stimulants 10

 Opiates 3
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General Characteristics

 Inhalants 2

(None of the subjects met criteria for abuse or dependence of the above illicit substances)
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Table 2

Δ9-THC effects on electroencephalographic and behavioral measures

Measure Placebo
Mean (SD)

0.015 mg/kg
Mean (SD)

0.03 mg/kg
Mean (SD)

Lempel-Ziv complexity 0.395 (0.021) 0.408 (0.023) 0.420 (0.025)

Total signal power 64.391 (32.448) 55.088 (23.082) 54.507 (21.643)

PANSS Positive factor 6.833 (2.334) 9.435 (2.936) 11.217 (2.999)

PANSS Disorganization factor 11.667 (2.353) 14.304 (3.183) 16.739 (4.223)

PANSS Negative factor 7.208 (2.395) 8.870 (3.348) 11.826 (4.579)
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