
An Automatic Performance Model-based Scheduling
Tool for Coupled Climate System Models

Abstract

The prediction of the climate system is highly depended on the efficient integra-

tion of observations and simulations of the Earth. This is regarded as a canonical

example of the cyber-physical system. The climate system model, the simulation

engine in this cyber-physical system, is one of most challenging applications in

scientific computing. It utilizes the multi-physics simulation that couples multi-

ple components, conducts decadal to millennium simulations, and has long been

an important application on supercomputers. However, current climate system

models suffer from the inefficient task scheduling methods resulting in an in-

tolerable simulation time. Take the Community Earth System Model (CESM),

the most widely used climate system model, as an example, one major reason

that CESM suffers from bad performances is the huge overhead to rationally

distribute processes among the coupled heterogeneous components. According

to the report of NCAR, every percent improvement in CESM performance frees

up to the equivalent of $250,000 in computing resources in their scientific ex-

periments. To address such challenge, our paper firstly constructs a lightweight

and accurate performance model for effectively capturing and predicting the

heterogeneous time-to-solution performance of end-to-end CESM components

with a given simulation configuration. Then, based on the performance model,

we further propose an efficient scheduling strategy based on rectangular packing

method to determine the best process layout among different components, and

the process numbers assigned to each component. Our evaluations show that we

can achieve 58% average run time reductions on CESM comparing to the widely

used sequential process layout for a scale of 144 to 480 cores on typical CPU

Preprint submitted to Journal of LATEX Templates August 21, 2019

clusters. And we can save 4 million CPU hours when we conduct one standard

scientific experiment (a 2870-year simulation), which equals to save $40,089 with

a charge of $0.01 per CPU hour. Meanwhile, 26% extra performance improve-

ments could also be gained in our methods comparing to the heuristic branch

and bound algorithm with the guidance of the known curve-fitting performance

model.

Keywords: performance model, time-to-solution, scheduling, Cyber-Physical

System, automatic tool

1. Introduction

Scenes of flooding and storms show us just how much weather and climate

can affect our lives. Understanding and predicting how the weather and climate

will change over the next century is of vital importance for both our economy

and society [1]. The climate system model is regarded as the most critical5

and complicated component in the observation-simulation integration system

nowadays [2–6]. The physical procedures, such as fluid-dynamical, physical, and

biological procedures, and software components are deeply intertwined and each

component can be performed on different spatial and temporal scales, exhibiting

multiple and distinct behavioral modalities [7, 8]. Therefore, the coupled climate10

system model is taken as one of biggest and complicated cyber-physical system

(CPS) [9].

As the coupled climate model has been developing rapidly in recent

years [10, 11], the problem of ineffective using of modern computing platforms

has been revealed. It is because each component is developed independently15

as stand-alone parallel models following diversified development roadmaps and

heterogeneous time-to-solution performance characteristics. In recent decades,

we can see quite a lot of work on accelerating climate simulation speed, such as

the efforts on GRAPES [12], CAM-SE [13], AGCM [14], GFDL [15], POP [16],

CICE [17] and CESM [18]. Even though with the efforts above, every percent20

of the climate simulations’ improvement in time-to-solution performance frees

2

up to the equivalent of $250,000 in computing resources according to the report

of NCAR [10]. One major reason for such issue is due to the huge overhead to

rationally distribute processes among the coupled heterogeneous components.

Thus an efficient scheduling method, which aims at improving the time-to-25

solution performance by optimizing the process layouts among components, is

extremely important for reducing both time and money costs. Scheduling prob-

lems have been around for decades and there are some valuable research efforts

that have been made, such as multiprocessor scheduling [19], graph scheduling

problem [20] and SPMD (single-problem-multi-data) program process schedul-30

ing [21–23]. However, the scheduling issue in current climate models becomes

more and more challenging with the growing of the resolution scales and coupled

physics procedures [10]. First of all, the huge solution space (3.60E+13 when

using 500 processes) caused by various combinations of process layout among

components and process numbers in each component makes it impossible to35

exhaustively search for the optimal process distributions. Besides, components

differ greatly in implementation, numerical algorithms and load characteristics,

which brings difficulties to schedule processes based on the performance model-

ing. At last, it challenges lightweight profiling because of the expensive cost of

coupled climate models.40

Researchers have already conducted some work to overcome these challenges.

One of the most significant work is that Kim et al. suggest changing the num-

ber of processes during execution between the components through a synthetic

CCSM benchmark on the Malleable Model Coupling Toolkit with the support

of CHARM++ and Adaptive MPI [24, 25]. Despite these efforts, it takes 1445

million CPU hours to conduct a scientific experiment (2870-year simulation)

using the 1 degree coupled climate models [10].

Our paper targets at proposing an integrated scheduling mechanism in cli-

mate models to reduce the simulation time by optimizing the process layout

among components, and determining the best process number assigned to each50

component. We take the Community Earth System Model (CESM) [26], one of

the state-of-the-art and widely used coupled system models with a large code

3

base for more than one million and five hundred thousand LOCs, as an example.

Because the heterogeneity of CESM components can cover most of the charac-

teristics of the coupled climate system models around the world. Our method55

and experience achieved from our CESM study can benefit other climate sys-

tem models and even other kinds of MPMD applications by making following

contributions.

• A lightweight and accurate performance model . We propose a high-

level analytic performance model based on the generalized algorithm anal-60

ysis with domain knowledge. Such performance model is easier to be

ported to other climate models compared to the detailed analytic perfor-

mance model [16] while maintaining a satisfactory model accuracy. Fur-

ther study shows that short-term simulations can represent the timing of

long-term simulations effectively. Our performance model error of CESM65

is 13.2%, which can achieve close to 20% improvement compared to the

curve fitting method [27] on Tianhe-1A.

• An efficient scheduling strategy . We design a two-phase scheduling

strategy based on rectangular packing method to solve a mixed integer

nonlinear programming (MINLP) problem [28]. Our method reduced the70

scheduling time complexity in one order of magnitude compared to the

heuristic branch and bound strategy [18]. For a scale of 144 to 480 cores on

typical CPU clusters, our approach can reduce the run time of simulation

by 58% on arithmetic average, compared to the widely used sequential

process layout. And we can save 4 million CPU hours when we conduct one75

standard scientific experiment (a 2870-year simulation), which equals to

save $40,089 with a charge of $0.01 per CPU hour. When compared to the

heuristic branch and bound algorithm [18] according to the known curve-

fitting performance model, our approach achieves 26% extra performance

improvement.80

• An optimization tool that is easy-to-use . An automatic scheduling

tool has been designed, implemented and verified in this work, which is

4

integrated into CESM script system. The user community can capture the

computation time, communication time and message size of critical kernels

of each process effectively and efficiently. They can build the performance85

model, look for the best process configuration and submit jobs tuned with

the process configuration automatically.

2. Performance Analysis of CESM

In a real-world climate simulation, different components of the earth system

have to be coupled to represent the interactions among global spheres and must90

run simultaneously as an MPMD system. The currently released CESM1.2

couples the Community Atmosphere Model Version 5 (ATM) [29], the Parallel

Ocean Program Version 2 (OCN) [30], the Community Land Model Version

4 (CLM) [31], the Los Alamos sea ice model Version 4 (ICE) [32], and the

river transport model (RTM) [33] by the coupler (CPL) [34]. They are all95

mature parallel models, in which we can utilize various computing resources

supporting both distributed memory and shared memory. However, any two of

the components do not communicate directly. They exchange their data through

the coupler (CPL) [34], as Fig. 1 shows.

Typical coupled climate system models [35] contain the atmosphere compo-100

nent (ATM), the ocean component (OCN), the sea ice component (ICE), and

the land component (LND). The atmosphere component is characterized by

two phases, namely the dynamics and the physics. The two phases are executed

in turn during each simulation time-step. The dynamics expresses the evolu-

tionary equations for the atmospheric flow, which contains both computation105

and the update-halo communication. The finite-volume dynamical core (FV)

is one of the most widely used atmosphere grids in the CESM. The resolution

(GLOBAL X x GLOBAL Y , also referred as horizontal grid) is decomposed

into two-dimensional blocks using a Cartesian decomposition [27] as shown in

Fig. 2. The third dimension (depth) extends into the page. A column is referred110

to as a horizontal grid with its third dimension. The size of a block is defined

5

ATM

Foreach (day){

call atm_run_mct()

Foreach (hour){

call MPI_barrier()

call send_cpl()

call MPI_barrier()

call recv_cpl()

}

}

OCN

Foreach (day){

call ocn_run_mct()

call MPI_barrier()

call send_cpl()

call MPI_barrier()

call recv_cpl()

}

LND

Foreach (day){

call lnd_run_mct()

Foreach (hour){

call MPI_barrier()

call send_cpl()

call MPI_barrier()

call recv_cpl()

}

}

ICE

Foreach (day){

call ice_run_mct()

Foreach (hour){

call MPI_barrier()

call send_cpl()

call MPI_barrier()

call recv_cpl()

}

}

CPL

Foreach (day){

Foreach (hour){

call MPI_barrier()

call recv_atm()

call seq_map_map()

call send_atm()

call MPI_barrier()

call recv_lnd()

call seq_map_map()

call send_lnd()

call MPI_barrier()

call recv_ice()

call seq_map_map()

call send_ice()

}

call MPI_barrier()

call recv_ocn()

call seq_map_map()

call send_ocn()

}

Figure 1: An example of inter-communications among components. The arrows indicate

the inter-communication pattern in CESM. For example, the ATM and OCN exchange inter-

facial flux and state data via CPL; the CPL has grid information for both ATM and OCN

and carries out intergrid interpolation of state and flux data, and then sends the new data

back to the ATM and OCN.

by the input parameters BLOCK X and BLOCK Y , and presents Block(i, j)

along with its four neighbouring blocks in the two horizontal dimensions. Each

block is assigned to a process, and it has a halo of ghost cells that permit tasks

to proceed independently with minimal communication and synchronization,115

called update-halo. In each step, all processes have to exchange the values of

physical variables by ghost cells. The main cost of physics is calculation in each

independent column. Each column may be assigned with different amounts of

workloads depending on the actual terrain.

Each time-step of the ocean component is divided into two phases, namely,120

baroclinic and barotropic. The baroclinic solver is computationally intensive.

It utilizes an explicit time integration method for the three-dimensional fluid

equations. This solver is a typical stencil-like program. The preconditioned

6

BLOCK_X

B
LO

C
K
_
Y

G
h
o
st

Ghost

BLOCK(i, j) BLOCK(i+1, j)BLOCK(i-1, j)

BLOCK(i, j-1)

BLOCK(i, j+1)

GLOBAL_X

G
LO

B
A
L_
Y

GLOBAL_X
G
LO

B
A
L_
Y

Figure 2: A block in the two-dimensional Cartesian data decomposition of FV dynamic core

in ATM component.

conjugate gradient solver for the barotropic phase mainly consists of a two-

dimensional nine-point stencil operator. This solver contains a lot of update-125

halo operations (similar to the ATM component) and collective communications.

The collective communication is implemented using MPI Allreduce.

The ice component acts as a barrier between the polar atmosphere and the

ocean to hinder flux exchange, such as heat and greenhouse gas. Update-halo is

a critical part with significant irregularity, and its computational cost is mainly130

manifested where sea ice exists. This part suffers load imbalance owing to that

the sea ice changes both spatially and temporally during a climate simulation.

The land component is a single-column model with a nested sub-grid hierar-

chy. Its grids are composed of multiple land-units, each with multiple snow/soil

with multiple plant types. The columns are grouped into blocks of nearly equal135

computational cost, and these blocks are subsequently assigned to MPI pro-

cesses.

The grid partitions and high-level kernels are common senses in the climate

models [36, 37]. Our performance model based on these high-level kernels can

benefit other climate models easily.140

7

3. Model-based Process Scheduling Optimization

Our model-based process-scheduling optimization tool uses two steps to im-

prove time-to-solution performance, namely, predicting the runtime of the cou-

pled climate system models, and determining the best process configuration.

A lightweight performance model is built to predict runtime of each com-145

ponent on a given machine. The inputs of the performance model are the

resolution, total process number, and the domain decomposition scheme (refers

to the problem of determining the number of processes in x and y directions).

The domain decomposition can be obtained in the CESM script system. The

output is the estimated runtime of each component of the given number of pro-150

cesses. We then look for the best process configuration with the guidance of the

performance model output.

3.1. Predicting the Runtime

As Fig. 3 shows that the ATM, OCN, ICE and LND components account

for 95% of the total runtime. Therefore, we focus on detailed modeling of155

the OCN and ATM components and use a holistic modeling method for the

LND and ICE components. The LND component takes a relatively short time.

The ICE component has a serious load imbalance issue, and the kernels are

inconspicuous. In the holistic modeling of the LND and ICE components, we

estimate the computation and communication time. Their sum is the total160

runtime of the component because BSP programming [38] is a common method

in climate models.

The computational model is built according to the horizontal grid number.

We associate the number of grids of each process to the computation runtime,

which has the advantages of estimating the other cases with different resolutions.165

The forecast for the computation time is shown is Eq. 1:

T comp(P) = a ∗ (GLOBAL X ∗GLOBAL Y) ∗ P i ∗ (log2(P))j + b (1)

8

12 48 64 96 128 192

Ti
m
e
pe

rc
en

ta
ge

Number of processes

the ATM component

the OCN componen

the ICE component

the LND component

the CPL

Time percentage of each CESM component

land

atmosphere

ocean

ice

coupler

100%

80%

60%

40%

20%

0%

Figure 3: Time percentage of each component in a 30-day CESM sequential run using different

number of processes on TH HPCA (cf. Tabel 1). A sequential run is that the components

share the same process pool.

In Eq. 1, GLOBAL X and GLOBAL Y are the total number of grids in x

direction and y direction, P is the number of processes, a and b are the model

parameters, i and j are in range of [-2,2] to determine the complexity of desired

fitting functions [39].170

The communication model is divided into two parts, namely, the point-to-

point (p2p) communication model and the collective communication model. We

focus on modeling the update-halo communication (multi-p2p communications)

in strong scaling. A large amount of update-halo communication leads to large

overhead and presents a great challenge if we try to model individual sent and175

received messages. According to HOCKEY model [40], the p2p communication

time can be modelled as Eq. 2. Variable S total is total communication volume,

which can be calculated according to the resolution and domain decomposition

(cf. Section 2), as Eq. 3 shows. Model parameters a and b are taken as the

transferring speed and the network latency.180

T halo(S total) = a ∗ S total + b (2)

The total halo size S total equals to Eq. 3. P X and P Y are the numbers

of processes in x and y directions, and iter is the iteration times that is fixed for

9

a given resolution. The variables P X, P Y , iter, GLOBAL X, GLOBAL Y

and ghost can be found in the configuration files (as Fig. 2 shows in Section.

2).185

S total = iter ∗ ghost ∗ (dGLOBAL X

P X
e+ dGLOBAL X

P X
e)

∗ dGLOBAL X

P X
e ∗ dGLOBAL X

P X
e
(3)

The collective communication pattern in CESM is MPI Allreduce. Eq. 4

shows the running time for a binomial tree MPI Allreduce.

T allreduce(P) = a ∗ log2(P) + b (4)

3.2. Process Scheduling

Process scheduling in our work aims to determine the best number of pro-

cesses assigned to each component, and the process layout across components,190

as shown in Fig. 4. The input is the estimated runtime of each component using

the given number of processes. The output is the best process configuration.

We design a two-phase (process layout generation and process scheduling

searching) process scheduling strategy based on the rectangular packing (RP)

method [41] to further improve the searching efficiency and scalability. Thus195

the problem is how to pack the rectangles together into a container and the

container size should be minimum. However, traditional RP can only deal with

rectangles with fixed length and width. In our situation, the length differs, and

the width varies with the change in length.

The solution space in process scheduling is up to (m!)2 ∗pm, where m repre-200

sents the active component numbers, p is the total number of processes. Because

one has to consider the process layout across the components (m!)2 and the num-

ber of processes assigned to each component pm at the same time. As we can

see, when the parallelism reaches 500 cores with four tuning components, the

solution space can be as large as 3.60E+13. Traditional methods usually cannot205

10

Figure 4: A general example of our process scheduling strategy based on the rectangle packing

method.

solve this kind of onlinear multi-modal functions optimization (NMFO) problem

[42] efficiently and effectively. One previous work uses the mixed integer non-

linear programming (MINLP) problem to search the process configuration [18].

MINLP has to give constraints of each process layout to complete the searching

procedure. Besides, whether MINLP can get the collective optimal solution is210

sensitive to the initial value.

3.2.1. Process Layout Generation

We decouple the process layout and the number of processes of each compo-

nent in the process layout generation part. The process layout generation part

can be performed offline once the number of components is determined. We215

first enumerate all possible layouts and then remove the reduplicative layouts.

Generally, we classify the reduplicative layouts into two categories. The first

category comprises the layouts with the same relative positions. In Fig. 5, the

numbers indicate the relative positions among the rectangles by serialization.

The three figures are considered three process layouts across components in220

the traditional method. However, the relative positions of the three rectangles

are the same. Our strategy regards them as one process layout. The second

category of reduplicative layouts includes the layouts that are symmetrical to

one another, as shown in Fig. 6. The time complexity of process layout gen-

eration is O(m!), where m is the component number (m = 4 in this paper).225

11

1 2 3 1 2 3 1 2 3

Figure 5: An example of the first kind of reduplicative layouts. Such kind of layouts have

the same relative positions. Each rectangle is considered as a component. The X direction

represents the number of processes and the y direction represents the time cost of the compo-

nent. Three figures are considered as three process layouts across components in traditional

method. The numbers on the figure indicate the relative positions among the rectangles. The

relative positions of the three figures are the same. Our strategy takes them as one process

layout.

1 2 3 4 5

6

7

1 42 3 5

6

7

Figure 6: An example of the second kind of reduplicative layouts. Such kind of layouts are

symmetrical to one another. Each rectangle is considered as a component. The X direction

represents the number of processes and the y direction represents the time cost of the com-

ponent. The numbers indicate the relative positions among the rectangles. Position NO.2 of

the left figure and position No.4 are diagonal symmetry. So we take these two as one layout.

While the traditional method is O(mm) because it does not consider reducing

the reduplicative layouts.

3.2.2. Process-scheduling Searching

In the process-scheduling searching part, we search for the best solution in

the range of the total number of processes among the process layouts. Given230

the inherent serial parts and communication overhead, the component runtime

will not decrease once it reaches a certain threshold of process number (sweet-

spots). The computing resource needs not be further increased. Therefore, we

can eliminate all situations that are out of the threshold. The threshold can be

12

known through the output of the performance model.235

We cache the optimal sub-layout information to avoid duplication of search-

ing. When more than two components exist, we define a rectangle group (such

as Fig. 5 and Fig. 6) that contains at least two components as a sub-layout.

Such a group may be repeated in different process layouts. We determine the

optimal solution for different numbers of processes through multiple times of240

Fibonacci searching [43], and cache the optimal results for this group, and reuse

the results when we find the same group again. As Fig. 5 is shown, the two

rectangles above can be considered as the sub-layout of the three rectangles.

We cache the best process configuration (total run time, total process number,

the number of processes of each rectangular, and the position of each rectangu-245

lar) using different numbers of processes. That information can be used when

searching for the best process configuration of three or more rectangles during

later searching.

Finding sweet-spots and caching the sub-layout information can help us save

up to 30% online searching time.As mentioned before, we assume that the run-250

time of a component is a convex function on the distribution of the process

number; in other words, the runtime function has only one minimum point.

The number of processes, that is larger than the number of processes at the

minimum point, are being pruned.

The time complexity of each Fibonacci searching is O(logp). So the time255

complexity of process scheduling searching is O(logmp). In summary, the time

complexity of our process scheduling strategy is O(m!logmp). The process layout

generation can be performed offline and we can use the bitwise store to save the

disk space.

4. Implementation260

A process configuration system is designed, implemented, and verified in

this work. We integrate our system into the CESM script. As Fig.7 shows, the

system consists of four modules, namely, Performance Model Builder, Process

13

Figure 7: Implementation of the process configuration system.

Scheduling, Process Configuration, and Time Parser. The Performance Model

Builder Module (corresponding to Section 3.1) estimates the computation and265

communication performances using the effective performance data providing by

the Time Parser Module. The computation and communication performance

models are then generated and their outputs are fed into the Process Schedul-

ing Module. The Process Scheduling (corresponding to Section 3.2) is used to

find a solution to improve the CESM performance. The Process Configuration270

Module is used to rearrange the processes configuration according to the Process

Scheduling Module.

Our profiling tool is integrated into Time Parser Module. We mark each

MPI operation by a unique ID (e.g. MPI SEND ID is 15). We use PRO-

FILE START (ID) and PROFILE STOP (ID, message size) to collect the time275

cost and communication size of each MPI command. All profiling data are writ-

ten into the file at MPI Finalize in order to reduce the profiling overhead. We

capture the CESM profile information by instrumenting PROFILE INIT() and

PROFILE FINISH() into the main programs of each kernel of CESM files to

14

control the profile scope.280

Once the new case is created, the build script will add the common environ-

ment definition of the profiling tool to the Macros and Makefile. It will be

automatically propagated to each component setup and build scripts. The user

community can choose to use either the existing offline model to rearrange the

process configuration, or build a new performance model online.285

The Process Configuration Module includes a post-verification step. The

module will parse the timing files of each run of the CESM and check the devi-

ation between the time of model run and the predicted time of our performance

model. If the deviation reaches a user-defined threshold, then our tools will

restart the performance model building phase. We use this method to follow290

the change of the given computing environment.

5. Performance Evaluation

We conduct our experiments on three parallel platforms as is shown in Ta-

ble 1. As a petascale supercomputer, Tianhe-1A features a massively parallel

processor (MPP) architecture of hybrid CPU-GPU computing. A proprietary295

high-speed interconnection network, the TH-net, is designed and implemented

to enhance the communication capabilities of the system. The topology of the

TH-net is an optoelectronic hybrid, hierarchical fat tree. The MPI implementa-

tion on the Tianhe-1A is customized to achieve high-bandwidth and low latency

data transfers. TH HPCA is a dedicated-use cluster that only has 16 compute300

nodes for a total of 192 cores. HP cluster is also a dedicated-use cluster with

1024 nodes. The networks of TH HPCA and HP Cluster are both InfiniBand

QDR.

We use control run simulation (named B1850) with the resolution of f19 g16

(ATM and LND: 144 x 96 horizontal grid; OCN and ICE: 384 x 320 x 78) as our305

test case. B1850 represents all active components for pre-industrial simulation,

and is used to place the climate model into a stable state before any historical

experiments and projection experiments. The test case is scientifically validated

15

Table 1: Parallel platforms used in the evaluation.

Tianhe-1A TH HPCA HP cluster

CPU 2× Intel Xeon X5670

(6 cores)

2× Intel Xeon X5650

(6 cores)

2× Intel Xeon X5550

(4 cores)

Frequence 2.93GHz 2.67GHz 2.67GHz

Complier icc 11.1 icc 11.0.069 icc 11.0.069

MPI MPICH2 Version

1.4.1p1

Intel MPI Version 3.2 Intel MPI Version 3.2

File System Lustre NFS Lustre

Network TH-net (Fat-tree) InfiniBand QDR

(Fat-tree)

InfiniBand DDR

(Fat-tree)

Node Number 7168 16 128

according to the CESM website [44]. The case is also the control run experiment

of the IPCC AR5 experiments[45]. We do not consider I/O in current method310

because of the large disturbance of I/O.

In this paper, we performance modeling the B1850 f19 g16 on TH HPCA,

and compare the performance model error with the simple curve-fitting model

[27]. We test the performance improvement of B1850 f19 g16 on Tianhe-1A and

HP cluster.315

We profile the case B1850 f19 g16 at two parallelisms (12 and 96 processes)

to determine the model parameters. The performance model is verified in two

aspects, namely, profiling overhead and model accuracy. In Section 5.1, we

discuss the profiling overhead and the reason for using a 3-day simulation to

predict the CESM runtime. In Section 5.2, we show the performance results of320

case B1850 f19 g16.

5.1. Profiling Overhead

Fig. 8 shows the time variance of each model hour of the ATM, LND, and ICE

components at different model days in a half model year simulation, which is the

arithmetic average of the three measurements on Tianhe-1A. The large variance325

is due to the imbalance computation load from a diurnal cycle. The time cost

is large during the noon for the three components because of the increasing

computation of radiation. At the end of each day, the components usually have

16

0 5 10 15 20

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Time Cost of Each Model Hour on Model Date 10101

Model Hour

T
im

e
 C

o
s
t(

s
)

ATM

ICE

LND

0 5 10 15 20

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Time Cost of Each Model Hour on Model Date 10301

Model Hour

T
im

e
 C

o
s
t(

s
)

ATM

ICE

LND

0 5 10 15 20

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Time Cost of Each Model Hour on Model Date 10501

Model Hour

T
im

e
 C

o
s
t(

s
)

ATM

ICE

LND

Figure 8: Time cost of each model hour on model date 10101, 10301 and 10501. For example,

‘10301’ means that the first day (‘01’) of the third month (‘03’) of the first year (‘1’) in the

model.

Table 2: Time cost of the process scheduling strategy.

of cores 144 192 256 512 1024 2048 3.12M

Our strategy(s) 0.07 0.08 0.09 0.16 0.26 0.70 52.90

Branch and bound(s) 0.09 0.20 0.37 1.95 12.81 33.28 >3600

a global communication to exchange the value of the tracers, so the runtime

becomes larger. Model date 10101 is the first day of the simulation when each330

component. The time consumption of every model hour in one day fluctuates

greatly, and the characteristics of model hours in different days are not the

same. In this situation, we use the model day to profile the CESM. The entire

model remains stable after the third day. We conduct a three-day simulation

and pick up the last two days to gather the performance data. In addition, we335

conduct a 500-year experiment on TH HPCA. The 500-year experiment takes

45.7 days, and the predicted time using our performance model is 42.8 days.

The difference implies a 6.26% prediction error, which is satisfied for practical

use.

The process scheduling time is shown in Table 2. We search for the result340

using four components, and compare our strategy to Branch and Bound [23]

method. When the process number reaches 3.12e6 (equals to the total process

number of Tianhe-1A), the Branch and Bound method fails to find a solution

within an acceptable time. In contrast, the time of our strategy is within one

17

Table 3: The performance model on TH HPCA.

kernel computation model communication model

ATM
physics T comp(P) = 0.07∗(144∗96)/P +

21.07

dynamic T comp(P) = 0.09∗(144∗96)/P +

14.68

T halo(S total) = 0.000006 ∗

S total − 21.7

S total = nsteps ∗ 2 ∗ 26 ∗ (P Y ∗

144 + P X ∗ 96 − P X ∗ P Y)

OCN
baroclinic T comp(P) = 0.02 ∗ (384 ∗

320)/P + 18.97

T halo(S total) = 0.0000025 ∗

S total − 0.68

S total = nsteps∗2∗2∗60∗(P Y ∗

384 + P X ∗ 320 − P X ∗ P Y)

barotropic T comp(P) = 0.01 ∗ (384 ∗

320)/P + 0.14

T coll(P) = 26.48∗log2(P)−93.88

ICE T comp(P) = 0.01 ∗ (384 ∗

320)/P − 4.96

T comm = (0.16 ∗ P − 2.83)/P

LND T comp(P) = −0.01 ∗ (144 ∗

96)/P + 69.27

T comm = (0.12 ∗ P − 0.31)/P

minute which can be ignored compared with the simulation time.345

5.2. Accuracy of the Performance Model

The performance model of case B1850 f19 g16 on TH HPCA is shown in

Table 3. Take physics in ATM component and baroclinic in OCN component

as an example, the computation model parameter a = 0.07 of the physics is

larger than the one of baroclinic (a = 0.02). This result is influenced by the350

computation amount, which relates to the resolution in the performance model.

The horizontal resolution of the OCN component is 384 x 320 horizontal grid,

and that of physics in the ATM component is 144 x 96, which makes the actual

time of baroclinic scales faster than that of the physics as Fig. 9 shows. Fig. 10

illustrates that the update-halo of the dynamic in the ATM component and that355

of the baroclinic in the OCN component share the similar runtime performance

of strong scaling. The parameter values of the baroclinic are smaller than those

of the dynamic. This result is due to that the update-halo happens among the

blocks covered by the sea, and those who are covered by land are ignored, which

18

0 100 200 300 400 500 600
15

20

25

30

35

40

45

Number of Processes

T
im

e
(s

)
Computation Time of Physics

0 100 200 300 400 500 600
10

20

30

40

50

60

70

80

Number of Processes

T
im

e
(s

)

Computation Time of Baroclinic

Figure 9: Computation time of physics and baroclinic. The blue lines are the predicted

runtime of performance model. The red stars are the real time cost using different number of

processes.

0 100 200 300 400 500 600
0

20

40

60

80

100

120

140

Number of Processes

T
im

e
(s

)

Communication Time of Dynamic

0 100 200 300 400 500 600
0

1

2

3

4

5

6

7

8

9

10

Number of Processes

T
im

e
(s

)

Communication Time of Baroclinic

Figure 10: Update-halo time of dynamic and baroclinic. The blue lines are the predicted

runtime of performance model. The red stars are the real time cost using different number of

processes.

19

4 6 8 10 12 14 16
0

1

2

3

4

5

Total message size (MB)

T
im

e
 (

s
)

Update halo performance of the OCN component

Figure 11: Performance of update-halo in baroclinic of the OCN component for 3-day run on

TH HPCA.

in turn makes the total message size and communication time small.360

In Table 3, P X and P Y are the numbers of processes in x and y directions,

respectively. The total message size equals to the amount of communication in

one update-halo step multiplied by the number of steps (nsteps). Fig. 11 shows

the communication time is nearly linearly scaling with the communication size.

The performance model is listed in Table 3.365

The interpolation and extrapolation model errors on TH HPCA are shown in

Fig. 12. The ICE component has a relatively large error up to 26%, but the error

of curve-fitting model is even larger. The error of the ICE component comes

from the serious load imbalance. The ice component has to balance the time cost

of radiation computation from Arctic and Antarctic, as well as the horizontal370

transport tracer halo and elastic-viscous-plastic sub-cycling halo [46]. The halo

cost dependents on the distribution of the ice block, and as the computation

time falls, the update-halo time rises. Such an imbalance causes a significant

challenge to performance modeling. Nonetheless, the ICE component reaches

its peak performance at 168 processes. We then ignore all of the predicted375

ICE component results with process number larger than 168. Currently we are

further investigating this issue in advance.

20

64 108 256 480

80%

60%

40%

20%

0

20%

40%

60%

Model Error of Our Performance Model
on Sampling Points of 12 and 96 Processes

M
o

d
e

l
E

rr
o

r

Process Number

ATM

OCN

LND

ICE

CESM

64 108 256 480
80%

60%

40%

20%

0%

20%

40%

60%

Model Error of Curve Fitting Model
on Sampling Points of 12 ,48, 96 and 144 Processes

M
o

d
e

l
E

rr
o

r

Process Number

ATM

OCN

LND

ICE

CESM

Figure 12: Performance model error of our model and the curve-fitting model.

Fig. 12 shows the curve-fitting [27] model error. Worley et al. use Am-

dahl’s law to build the performance model for each component. The model is

T component = a/P + b ∗ P c + d, where P is the number of compute nodes.380

The entire CESM error of the curve-fitting model can be as high as 20% and the

component error is up to 56% at 480 processes. Such coarse-grained curve-fitting

modeling lacks insight into the communication roadmap and characteristics of

each kernel. Moreover, the higher order terms of the curve-fitting performance

model according to the Amdahl’s law are redundant, which in turn increases the385

profiling times but cannot improve the model precision. Our performance model

uses 12 and 96 processes as the profiling points, and the curve-fitting model uses

12, 48, 96, and 144 processes as the profiling points. Our model error is 30%

smaller, and we further reduce the profiling points from 4 to 2 during the model

construction.390

Table 4 shows our model error of each component using different profiling

number of processes on TH HPCA. The model errors may become larger when

performing extrapolation of the performance model. When we use profiling

points of 48 and 192 processes to build the performance model, the model error

of the ATM component with 12 processes increases to 15.37%. The model error395

21

Table 4: Performance model error of B1850 f19 g16 using different profiling points.

Profiling

points

#of

cores

ATM OCN LND ICE CESM

12, 48 2.15% 5.37% 5.17% 5.17% 2.91%

192 96 1.01% 7.44% -0.3% 3.83% 3.78%

48, 12 13.29% -8.0% -10% 8.62% -1.2%

96 192 -3.2% 1.90% 2.77% -3.3% -1.1%

48, 12 15.37% -10% -8.0% -10% -3.2%

192 96 2.91% 2.17% -5.1% 1.11% 2.03%

96, 12 8.17% -14% -3.5% -16% -7.9%

192 48 1.30% -7.6% 2.78% -3.9% -3.8%

of the ICE component increases to 16.33%, and the model error of the OCN

component increases to 14.65% using profiling points of 96 and 192 processes

to extrapolate the solution time with 12 processes. According to Table 4, the

model errors are less than nearly 15% with different profiling points, which prove

the effectiveness of our performance model.400

In summary, our model error lies in two aspects. The first aspect is decom-

position. The data decomposition in a CESM run is set to AUTO. Various

decomposition can lead to performance fluctuation, including the update-halo

performance and even the computation load of each process. The second aspect

is the system effect [47], which refers to the influence of the system and other405

applications, including the memory and network contention.

5.3. Performance Improvement

With the guidance of our performance model, the runtime performance is

improved by up to 58.49% on Tianhe-1A, and 57.98% on HP cluster (Fig. 13

and Fig. 14). We can save 4 million CPU hours when we conduct one 2870-410

year simulation, which equals to save $40,089 with a charge of $0.01 per CPU

hour. We compare the CESM default process configuration and the curve-

fitting model on Tianhe-1A using our process scheduling strategy. Our model

has 26.15% performance improvement compared with the curve-fitting model

on Tianhe-1A, and 23.47% on HP cluster.415

The performance model accuracy can greatly affect the tuning results. The

22

0.00%

15.00%

30.00%

45.00%

60.00%

75.00%

0.00

5.00

10.00

15.00

20.00

25.00

144 256 360 480

P
e

rf
o

rm
an

ce
 I

m
p

ro
ve

m
e

n
t

ya
D

n
oitat

u
p

m
o

C r
e

p sra
eY

d
etal

u
miS

Number of Processes

vs. our model

vs. simple curve-fi ng

model

Default sequen!al layout

Simple curve-fi ng model

Our model

ATM:60

O
C

N
:8

4
processes

ATM:76

O
C

N
:6

8

processes

!me

ATM:100

O
C

N
:1

5
6

processes

!me

ATM:130

O
C

N
:1

2
6

processes

!me

LN
D

:3
6

IC
E

:4
0

LN
D

:2
4

IC
E

:3
6

LN
D

:3
6

IC
E

:6
4

LN
D

:7
8

IC
E

:5
2

!me
ATM:130

O
C

N
:1

5
6

processes

LN
D

:6
0

IC
E

:1
4

4

!me

ATM:168

O
C

N
:1

9
2

processes

!me

LND:168

ICE:168

ATM:324

O
C

N
:1

5
6

processes

!me

ATM:240

O
C

N
:2

4
0

processes

!me

LN
D

:1
4

4

IC
E

:9
6

LN
D

:1
6

2

IC
E

:1
6

2

Figure 13: Performance improvement of B1850 f19 g16 on Tianhe-1A. Simulated year per

computation day is a performance indicator of the coupled climate models, the higher, the

better. The process number of each component and the process layout across component are

marked on the figure. The layout is different from others on 360 processes. It is because the

process number allocated to the ICE and LND components are 168 which reaches their peak

performance according to the performance model. We have 58% performance improvements

using 480 cores, which can help to save $40,089 for one 2870-year scientific experiment with

a charge of $0.01 per CPU hour.

DLB[24, 48] method has 33.8% performance improvement on CCSM benchmark.

On the contrary, our process scheduling strategy ensures to search optimal so-

lution within the feasible solutions for process layout and number of processes.

The DLB method can only search for the best number of process of each compo-420

nent under the condition of a given total process number and the same process

layout across components.

23

0.00%

15.00%

30.00%

45.00%

60.00%

75.00%

0.00

5.00

10.00

15.00

20.00

25.00

144 256 360 480

Performance Improvement of B1850_f19g16 on HP cluster

②
②

Number of Processes

ya
D

n
oi ta t

u
p

m
o

C r
e

p sr a
eY

d
et al

u
m iS

P
e

rf
o

rm
an

ce
 Im

p
ro

ve
m

e
n

t

Default sequen al layout

Simple curve-fi!ng model

Our model

vs. our model

vs. simple curve-fi!ng model

ATM:72

O
C

N
:7

2

processes

ATM:80

O
C

N
:6

4

processes

ATM:112

O
C

N
:1

4
4

processes

 me

ATM:128

O
C

N
:1

2
8

processes

 me
LN

D
:2

4

IC
E

:5
6

LN
D

:2
4

IC
E

:4
8

LN
D

:3
4

IC
E

:6
4

LN
D

:3
2

IC
E

:9
0

ATM:168

O
C

N
:1

9
2

processes

LN
D

:5
4

IC
E

:6
8

 me

ATM:168

O
C

N
:1

9
2

processes

 me

LND:168

ICE:168

ATM:356

O
C

N
:1

2
4

processes

 me

ATM:264

O
C

N
:2

1
6

processes

 me

LN
D

:9
6

IC
E

:1
6

8

LN
D

:1
5

6

IC
E

:1
0

0

 me

 me

Figure 14: Performance improvement of B1850 f19 g16 on HP cluster. The process number

of each component and the process layout across component are marked on the figure.

6. Related Work

6.1. Process Scheduling

There are two common process scheduling methods: dynamic process425

scheduling (DPS) and static process scheduling (SPS). DPS is applied in the

D.Kim et al.’s work [25, 48]. D.Kim et al. change the process number during

execution both within and between the components through a synthetic CCSM

benchmark on the Malleable Model Coupling Toolkit [24] with the support of

CHARM++ and Adaptive MPI. They build and adjust the performance model430

by using the measurement data continuously collected from previous iterations

during the each model simulation day by tracing the operations in CPL of

CCSM benchmark. Predictions from the performance model are used to guide

process scheduling decisions. They re-allocate the process every model day in a

range of 20 to 25 processes until the algorithm is convergence, as such a method435

can be converged at a local optimal value in solving such complex multi-modal

24

function optimization problems. Although such a DPS technique needs lim-

ited prior knowledge about the performance characteristics, it requires that the

real coupled climate models have the ability to dynamically re-allocate com-

putational resources at runtime, which is not supported in the current climate440

models. Moreover, their DPS strategy can be easily trapped at a local optimal

value in solving such complex multi-modal function optimization problems. In

general, DPS usually has a strong reliance on the software environment. It can

easily leave the burden of providing accurate load information on when and how

to re-balance the application. Various process scheduling strategies and algo-445

rithms have been proposed to support DPS. Centralized strategies, which col-

lect the information onto one process, and decision algorithms run sequentially.

Such methods may show good performance in a small parallelism, but when it

comes to thousands of processes, it raises the performance bottleneck because

of the memory capacity of the single process. Hierarchical strategies [21, 22]450

are proposed. They generate a group of processes and collect information at

the root of them. A higher level of the hierarchy receives the aggregate infor-

mation, and although reducing the memory cost of profiling, it suffers excessive

data collection at the lower level of the hierarchy. Soon-Heum Ko and Felipe

Bertrand employ the dynamic process scheduling on the multi-physics coupled455

components[49, 50].

SPS is a common approach to improve the performance of the large-scale

scientific computing applications. A heuristic static process scheduling algo-

rithm is applied to the Fragment Molecular Orbital (FMO) Method [23] along

with a curve-fitting based performance model. Alexeev et al. [23] use branch460

and bound algorithm to look for a suitable process number for the application.

The authors used the Branch and Bound (BB) method to determine the best

process number with one component. Such a method shows great performance

on FMO since it is a one-dimensional optimization problem. It is not suitable

for CESM. Because there are four important components in CESM that must465

be considered into load balancing, which results in a three-dimensional opti-

mization problem. The solution space of our load balance problem is up to

25

1013, and the overhead of the BB method is beyond the limitation. What’s

more, the higher order terms of the curve-fitting performance model according

to the Amdahl’s law[23, 51] are redundant, which increases the profiling times470

but cannot improve the model precision. The model error is 30% larger than

ours.

6.2. Performance Modeling

In general, there are three methods of performance modeling: simulation

modeling, empirical performance modeling, and analytic performance modeling.475

Simulation modeling [52, 53] uses the simulator to reconstruct the behavior of

the application, which usually takes an excessive amount of time. An empirical

performance model [54] is established by observing the macro performance of

an application on specific machines. An analytical performance model[55, 56]

usually counts the number of basic operations, including float-point operations,480

memory accesses, etc. Such models have to be designed carefully to trade off

the model parameters versus the required accuracy[57]. A great deal of work

has been done using semi-analytical modeling[57–59]. This approach models

the performance of kernels empirically and composes them analytically as the

whole performance model.485

Considering the complexity of CESM, lots of work has been done on per-

formance modeling. Alexeev et al. [23] use the curve-fitting method to predict

the performance. Although their performance model has low overhead, the

model accuracy cannot be satisfied due to the lack of considering the kernel

characteristics and the hardware and software interaction, the error of their490

performance model can achieve even up to 56%, which leads to a 26% perfor-

mance decrease when using the model for CESM tuning. Kerbyson et al. [60]

built a fine-grained sample-based performance model for the POP component

in the fat-tree InfiniBand network. They modeled the performance of kernels

of POP by analyzing the algorithm and using the mathematical expressions for495

predicting performance metrics. This work has inspired us in how to build a

lightweight and accurate performance model.

26

7. Conclusion

We are at a critical juncture in the evolution of high-performance comput-

ing, from tera-scale to peta-scale, even to exa-scale, with an increasing amount500

of parallelism. The era of increasing the concurrency among components is

coming with the approach of combing multiple MPI programs to simulate one

complex scenario becoming more and more common. We demonstrate a promis-

ing approach that can significantly reduce the computation time of complex

multi-model simulation with a smart process scheduler.505

We design and implement a model-based process scheduler for the CESM –

a coupled climate system model. We believe our work and experience provide

an important base for automatic process scheduling among multi-model physi-

cal simulations. We use a rectangular packing method to schedule the process

layouts among components, which lowers the complexity of the problem from510

O((mp)m) to O(m!logmp), where m is the number of components, and p is the

number of processes. For a scale of 144 cores to 480 cores on typical CPU clus-

ters, our approach runs for less than one minute and can reduce the run time

of simulation by 58% on arithmetic average and save $40,089 with a charge of

$0.01 per CPU hour, compared with the widely used sequential process layout.515

Compared with the heuristic branch and bound searching algorithm accord-

ing to the known curve-fitting performance model, our approach achieves 26%

additional performance benefits.

With this advanced scheduler in hand, we will reduce the performance vari-

ance across clusters obviously and take the best utilization of different paral-520

lel computers, thus brings us a better simulation system, which can improve

the computing efficiency of observation-simulation integration system enabling

faster climate knowledge discovery and prediction.

Considering that memory/network contention may lead to decreased perfor-

mance, we will concentrate on taking them in our future work to improve our525

performance model and scheduling strategy.

27

References

[1] Why climate important, https://www.ncas.ac.uk/en/why-is-climate-

important.

[2] T. C. Peterson, D. R. Easterling, T. R. Karl, P. Groisman, N. Nicholls,530

N. Plummer, S. Torok, I. Auer, R. Boehm, D. Gullett, et al., Homogeneity

adjustments of in situ atmospheric climate data: a review, International

Journal of Climatology 18 (13) (1998) 1493–1517.

[3] J. W. Hurrell, M. M. Holland, P. R. Gent, S. Ghan, J. E. Kay, P. J. Kush-

ner, J.-F. Lamarque, W. G. Large, D. Lawrence, K. Lindsay, et al., The535

community earth system model: a framework for collaborative research,

Bulletin of the American Meteorological Society 94 (9) (2013) 1339–1360.

[4] Z. Deng, W. Han, L. Wang, R. Ranjan, A. Y. Zomaya, W. Jie, An efficient

online direction-preserving compression approach for trajectory streaming

data, Future Generation Computer Systems 68 (2017) 150–162.540

[5] Y. Ma, H. Wu, L. Wang, B. Huang, R. Ranjan, A. Zomaya, W. Jie, Re-

mote sensing big data computing: Challenges and opportunities, Future

Generation Computer Systems 51 (2015) 47–60.

[6] A. Barbu, A. Segers, M. Schaap, A. Heemink, P. Builtjes, A multi-

component data assimilation experiment directed to sulphur dioxide and545

sulphate over europe, Atmospheric Environment 43 (9) (2009) 1622–1631.

[7] E. Burakowski, S. Ollinger, G. Bonan, C. Wake, J. Dibb, D. Hollinger, Eval-

uating the climate effects of reforestation in new england using a weather

research and forecasting (wrf) model multiphysics ensemble, Journal of

Climate 29 (14) (2016) 5141–5156.550

[8] D. E. Keyes, L. C. McInnes, C. Woodward, W. Gropp, E. Myra, M. Pernice,

J. Bell, J. Brown, A. Clo, J. Connors, et al., Multiphysics simulations: Chal-

lenges and opportunities, The International Journal of High Performance

Computing Applications 27 (1) (2013) 4–83.

28

[9] R. Baheti, H. Gill, Cyber-physical systems, The impact of control technol-555

ogy 12 (2011) 161–166.

[10] R. A.Gerber, H. J.Wasserman, Large scale computing and storage require-

ments for biological and environ-mental science: Target 2017, Tech. rep.,

DOE Office of Sciennce, Office of Biological and Environmental Research,

Office of Advanced Scientific Computing Research, and National Energy560

Research Scientific Computing Center (2012).

[11] P. Bauer, A. Thorpe, G. Brunet, The quiet revolution of numerical weather

prediction, Nature 525 (7567) (2015) 47.

[12] Z. Wang, X. Xu, N. Xiong, L. T. Yang, W. Zhao, Gpu acceleration for

grapes meteorological model, in: High Performance Computing and Com-565

munications (HPCC), 2011 IEEE 13th International Conference on, IEEE,

2011, pp. 365–372.

[13] I. Carpenter, R. Archibald, K. J. Evans, J. Larkin, P. Micikevicius, M. Nor-

man, J. Rosinski, J. Schwarzmeier, M. A. Taylor, Progress towards accel-

erating homme on hybrid multi-core systems, The International Journal of570

High Performance Computing Applications 27 (3) (2013) 335–347.

[14] Y. Wang, J. Jiang, H. Zhang, X. Dong, L. Wang, R. Ranjan, A. Y. Zomaya,

A scalable parallel algorithm for atmospheric general circulation models on

a multi-core cluster, Future Generation Computer Systems 72 (2017) 1–10.

[15] V. Balaji, R. Benson, B. Wyman, I. Held, Coarse-grained component con-575

currency in earth system modeling: parallelizing atmospheric radiative

transfer in the gfdl am3 model using the flexible modeling system coupling

framework, Geoscientific Model Development 9 (10) (2016) 3605.

[16] B. van Werkhoven, J. Maassen, M. Kliphuis, H. Dijkstra, S. Brunnabend,

M. Van Meersbergen, F. Seinstra, H. Bal, A distributed computing ap-580

proach to improve the performance of the parallel ocean program (v2. 1),

Geoscientific Model Development 7 (1) (2014) 267–281.

29

[17] P. Balaprakash, Y. Alexeev, S. A. Mickelson, S. Leyffer, R. Jacob, A. Craig,

Machine-learning-based load balancing for community ice code component

in cesm, in: International Conference on High Performance Computing for585

Computational Science, Springer, 2014, pp. 79–91.

[18] D. Nan, X. Wei, J. Xu, X. Haoyu, S. Zhenya, Cesmtuner: An auto-tuning

framework for the community earth system model, in: High Performance

Computing and Communications (HPCC), 2014 IEEE Intl Conf on, IEEE,

2014, pp. 282–289.590

[19] J. C. Liou, M. A. Palis, A comparison of general approaches to multipro-

cessor scheduling, in: Parallel Processing Symposium, 1997. Proceedings.,

International, 1997, pp. 152–156.

[20] C. Wu, R. Tobar, K. Vinsen, A. Wicenec, D. Pallot, B. Lao, R. Wang,

T. An, M. Boulton, I. Cooper, Daliuge: A graph execution framework for595

harnessing the astronomical data deluge, Astronomy & Computing 20.

[21] J. Lifflander, S. Krishnamoorthy, L. V. Kale, Work stealing and persistence-

based load balancers for iterative overdecomposed applications, in: Pro-

ceedings of the 21st international symposium on High-Performance Parallel

and Distributed Computing, ACM, 2012, pp. 137–148.600

[22] G. Zheng, A. Bhatel, E. Meneses, L. V. Kal, Periodic hierarchical load

balancing for large supercomputers, International Journal of High Perfor-

mance Computing Applications 25 (4) (2011) 371–385.

[23] Y. Alexeev, A. Mahajan, S. Leyffer, G. Fletcher, D. G. Fedorov, Heuristic

static load-balancing algorithm applied to the fragment molecular orbital605

method, in: High Performance Computing, Networking, Storage and Anal-

ysis (SC), 2012 International Conference for, IEEE, 2012, pp. 1–13.

[24] D. Kim, J. W. Larson, K. Chiu, Malleable model coupling with prediction,

in: Cluster, Cloud and Grid Computing (CCGrid), 2012 12th IEEE/ACM

International Symposium on, IEEE, 2012, pp. 360–367.610

30

[25] D. Kim, J. W. Larson, K. Chiu, Automatic performance prediction for load-

balancing coupled models, in: Cluster, Cloud and Grid Computing (CC-

Grid), 2013 13th IEEE/ACM International Symposium on, IEEE, 2013,

pp. 410–417.

[26] S. Vadlamani, Current efforts for performance analysis and enhancements615

of cesm, Tech. rep., National Center for Atmospheric Research (2014).

URL http://www.vecpar.org/posters/vecpar2014_submission_49.

pdf

[27] P. H. Worley, A. P. Craig, J. M. Dennis, A. Mirin, M. Taylor, M. Verten-

stein, et al., Performance of the community earth system model, Tech. rep.620

(2011).

[28] I. Quesada, I. E. Grossmann, An lp/nlp based branch and bound algorithm

for convex minlp optimization problems, Computers & chemical engi-

neering 16 (10) (1992) 937–947.

[29] R. Smith, P. Gent, Reference manual for the parallel ocean pro-625

gram (pop), ocean component of the community climate system model

(ccsm2. 0 and 3.0), Tech. rep., Technical Report LA-UR-02-2484, Los

Alamos National Laboratory, Los Alamos, NM, http://www. ccsm. ucar.

edu/models/ccsm3.0/pop (2002).

[30] R. B. Neale, C. Chen, A. Gettelman, P. Lauritzen, S. Park, D. Williamson,630

A. Conley, R. Garcia, D. Kinnison, J. Lamarque, et al., Description of

the ncar community atmosphere model (cam 5.0), NCAR Tech. Note

NCAR/TN-486+ STR.

[31] K. W. Oleson, D. M. Lawrence, B. Gordon, M. G. Flanner, E. Kluzek,

J. Peter, S. Levis, S. C. Swenson, E. Thornton, J. Feddema, et al., Technical635

description of version 4.0 of the community land model (clm).

[32] E. Hunke, W. Lipscomb, Cice: the los alamos sea ice model, documentation

and software user’s manual, version 4.1.

31

http://www.vecpar.org/posters/vecpar2014_submission_49.pdf
http://www.vecpar.org/posters/vecpar2014_submission_49.pdf
http://www.vecpar.org/posters/vecpar2014_submission_49.pdf
http://www.vecpar.org/posters/vecpar2014_submission_49.pdf
http://www.vecpar.org/posters/vecpar2014_submission_49.pdf
http://www.vecpar.org/posters/vecpar2014_submission_49.pdf

[33] C. S. E. Group, Cesm user’s guide (cesm1.2 release series user’s guide),

Tech. rep., the National Science Foundation, the Department of Energy,640

the National Aeronautics and Space Administration, and the University

Corporation for Atmospheric Research National Center for Atmospheric

Research, http://www.cesm.ucar.edu/models/cesm1.2 (2013).

[34] A. P. Craig, M. Vertenstein, R. Jacob, A new flexible coupler for earth

system modeling developed for ccsm4 and cesm1, International Journal of645

High Performance Computing Applications 26 (1) (2012) 31–42.

[35] P. R. Gent, G. Danabasoglu, L. J. Donner, M. M. Holland, E. C. Hunke,

S. R. Jayne, D. M. Lawrence, R. B. Neale, P. J. Rasch, M. Vertenstein,

et al., The community climate system model version 4, Journal of Climate

24 (19) (2011) 4973–4991.650

[36] W. Yuqing, W. Hui, et al., Improvements in climate simulation with modi-

fications to the tiedtke convective parameterization in the grid-point atmo-

spheric model of iap lasg (gamil), Advances in Atmospheric Sciences 24 (2)

(2007) 323–335.

[37] S. A. Klein, X. Jiang, J. Boyle, S. Malyshev, S. Xie, Diagnosis of the655

summertime warm and dry bias over the us southern great plains in the gfdl

climate model using a weather forecasting approach, Geophysical research

letters 33 (18).

[38] M. Goudreau, K. Lang, S. Rao, T. Suel, T. Tsantilas, Towards efficiency

and portability: Programming with the bsp model, in: Proceedings of the660

eighth annual ACM symposium on Parallel algorithms and architectures,

ACM, 1996, pp. 1–12.

[39] A. Calotoiu, D. Beckingsale, C. W. Earl, T. Hoefler, I. Karlin, M. Schulz,

F. Wolf, Fast multi-parameter performance modeling.

[40] C.-Y. Chou, H.-Y. Chang, S.-T. Wang, K.-C. Huang, C.-Y. Shen, An im-665

32

proved model for predicting hpl performance, in: International Conference

on Grid and Pervasive Computing, Springer, 2007, pp. 158–168.

[41] Y.-L. Wu, W. Huang, S.-c. Lau, C. Wong, G. H. Young, An effective quasi-

human based heuristic for solving the rectangle packing problem, European

Journal of Operational Research 141 (2) (2002) 341–358.670

[42] K. Deb, Multi-objective genetic algorithms: Problem difficulties and con-

struction of test problems, Evolutionary computation 7 (3) (1999) 205–230.

[43] M. Zhou, G. Bao, K. Pahlavan, Measurement of motion detection of wireless

capsule endoscope inside large intestine, in: Engineering in Medicine and

Biology Society (EMBC), 2014 36th Annual International Conference on,675

IEEE, 2014, pp. 5591–5594.

[44] W. C. Porter, Community earth system model: Implementation, validation,

and applications.

[45] A. IPCC, Intergovernmental panel on climate change (2007).

[46] A. P. Craig, S. A. Mickelson, E. C. Hunke, D. A. Bailey, Improved parallel680

performance of the cice model in cesm1, International Journal of High

Performance Computing Applications 29 (2) (2015) 154–165.

[47] A. Bhatele, K. Mohror, S. H. Langer, K. E. Isaacs, There goes the neigh-

borhood: Performance degradation due to nearby jobs, in: Proceedings of

the International Conference on High Performance Computing, Network-685

ing, Storage and Analysis, SC ’13, ACM, New York, NY, USA, 2013, pp.

41:1–41:12. doi:10.1145/2503210.2503247.

URL http://doi.acm.org/10.1145/2503210.2503247

[48] D. Kim, J. W. Larson, K. Chiu, Malleable model coupling with prediction,

in: Cluster, Cloud and Grid Computing (CCGrid), 2012 12th IEEE/ACM690

International Symposium on, IEEE, 2012, pp. 360–367.

33

http://doi.acm.org/10.1145/2503210.2503247
http://doi.acm.org/10.1145/2503210.2503247
http://doi.acm.org/10.1145/2503210.2503247
http://dx.doi.org/10.1145/2503210.2503247
http://doi.acm.org/10.1145/2503210.2503247

[49] F. Bertrand, R. Bramley, D. E. Bernholdt, J. A. Kohl, A. Sussman, J. W.

Larson, K. B. Damevski, Data redistribution and remote method invocation

for coupled components, Journal of Parallel and Distributed Computing

66 (7) (2006) 931–946.695

[50] S.-H. Ko, N. Kim, J. Kim, A. Thota, S. Jha, Efficient runtime environment

for coupled multi-physics simulations: Dynamic resource allocation and

load-balancing, in: Cluster, Cloud and Grid Computing (CCGrid), 2010

10th IEEE/ACM International Conference on, IEEE, 2010, pp. 349–358.

[51] J. M. Dennis, M. Vertenstein, P. H. Worley, A. A. Mirin, A. P. Craig, R. Ja-700

cob, S. Mickelson, Computational performance of ultra-high-resolution ca-

pability in the community earth system model, International Journal of

High Performance Computing Applications 26 (1) (2012) 5–16.

[52] W. Zhang, X. Ji, Y. Lu, H. Wang, H. Chen, P. C. Yew, Prophet: A parallel

instruction-oriented many-core simulator, IEEE Transactions on Parallel &705

Distributed Systems PP (99) (2017) 1–1.

[53] W. Zhang, X. Ji, B. Song, S. Yu, H. Chen, T. Li, P. C. Yew, W. Zhao, Var-

catcher: A framework for tackling performance variability of parallel work-

loads on multi-core, IEEE Transactions on Parallel & Distributed Systems

28 (4) (2017) 1215–1228.710

[54] B. J. Barnes, B. Rountree, D. K. Lowenthal, J. Reeves, B. De Supinski,

M. Schulz, A regression-based approach to scalability prediction, in: Pro-

ceedings of the 22nd annual international conference on Supercomputing,

ACM, 2008, pp. 368–377.

[55] A. Agarwal, J. Hennessy, M. Horowitz, An analytical cache model, ACM715

Transactions on Computer Systems (TOCS) 7 (2) (1989) 184–215.

[56] Y. Lu, X. Wang, W. Zhang, H. Chen, L. Peng, W. Zhao, Performance

analysis of multimedia retrieval workloads running on multicores, IEEE

Transactions on Parallel & Distributed Systems 27 (11) (2016) 3323–3337.

34

[57] T. Hoefler, W. Gropp, W. Kramer, M. Snir, Performance modeling for720

systematic performance tuning, in: State of the Practice Reports, ACM,

2011, p. 6.

[58] G. Bauer, S. Gottlieb, T. Hoefler, Performance modeling and comparative

analysis of the milc lattice qcd application su3 rmd, in: Cluster, Cloud and

Grid Computing (CCGrid), 2012 12th IEEE/ACM International Sympo-725

sium on, IEEE, 2012, pp. 652–659.

[59] D. J. Kerbyson, H. J. Alme, A. Hoisie, F. Petrini, H. J. Wasserman, M. Git-

tings, Predictive performance and scalability modeling of a large-scale ap-

plication, in: Proceedings of the 2001 ACM/IEEE conference on Super-

computing, ACM, 2001, pp. 37–37.730

[60] D. J. Kerbyson, P. W. Jones, A performance model of the parallel ocean

program, International Journal of High Performance Computing Applica-

tions 19 (3) (2005) 261–276.

35

	Introduction
	Performance Analysis of CESM
	Model-based Process Scheduling Optimization
	Predicting the Runtime
	Process Scheduling
	Process Layout Generation
	Process-scheduling Searching

	Implementation
	Performance Evaluation
	Profiling Overhead
	Accuracy of the Performance Model
	Performance Improvement

	Related Work
	Process Scheduling
	Performance Modeling

	Conclusion

