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ABSTRACT

Transition state calculations and molecular dynamics
approaches to rate coefficient calculations are discussed in this
paper. Various inputs required for each type of calculation are
also described. The reader is referred to a number of detailed
reviews that explicitly describe how one performs various types
of rate coefficient calculations. Hopefully, areas of difficulty
and common misconception that frequently occur with respect to
each approach or elements of the approach are clarified. The
focus of the paper is to provide a list of essential ingredients,
a description of approximations, limitations, and recent progress
in the area.
II. INTRODUCTION

The intent of this paper is to convey to the reader the
elements of different approaches to rate coefficieﬁt calcula-
tions. Rate coefficient calculations range from rough back of the
envelope estimates to highly sophisticated quantum mechanical
calculations, and they include a variety of approaches that are
classified as being either statistical or dynamical in nature.
The intent of this paper is not to providé a review of this vast
subject because extensive reviews covering speciality portions of
the subject already exist. For more detailed reviews the reader
is directed toward a number of references which contain
descriptions of individual calculation methodologies. The focus
here is to provide a list of the essential ingredients, a
description of the approximations, limitations, and recent

progress in the area.
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II. POTENTIAL ENERGY SURFACES

Potential energy surfaces (PES) have been discussed in the
previous chapter by Page and Lengsfield (1989). Here, we will
briefly mention some details of potential energy systems that are
important in rate coefficient calculations. Two books that
describe the important features of potential energy surfaces are
by Simomrs (1983) and by Murrell et al. (1984).

In general, a potential energy surface is a function of 3N-5
or 3N-6 internal co-ordinates. Most surfaces are calculated by
invoking the Born-Oppenheimer (BO) approximation, and this im-
plies that the wavefunction is a product of an electronic wave-
function and a nuclear wavefunction (the vibration/rotation
wavefunction). Within the Born-Oppenheimer approximation, the
electronic energy) which depends on the location of the nuclei,
provides the potential energy surface on which the nuclei move.
Within the clamped nuclei (BO) approximation where the electronic
energy is computed parametrically as a function of fixed nuclear
positions, wavefunctions that include spin/orbit interactions are
frequently referred to as the adiabatic basis. However the term
adiabatic is also used to refer to the wavefunctions which are
eigenfunctions of the electronic Hamiltonian for the clamped
nuclei which exclude the spin/orbit terms. This is the less
correct but more commonly used definition of adiabatic and the
.one that is used in most PES calculations. Reactions on such
surfaces are called adiabatic reactions because the electronic

state of the system throughout the course of reaction is associ-
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faces are usually called diébatic surfaces.

The information that one needs about a potential energy
surface depends upon the type of rate coefficient calculation
being pursued. In full dynamiés calculations, be they quantum,
semi-classical, or quasi-classical, the potential energy surface
must be represented by a global function spanning the entire
configuration space of nuclear motion. Frequently, a few ab
initio points are cﬁlcuiaﬁed and an interpolation procedure is
used to span the space. An excellent discussion of various
criteria that a successful interpolating function must satisfy is
given by Wright and Grey (1978). Connor (1979), in his review of
reactive molecular collisions, discusses these criteria and
previous research concerned with fitting. Another approach to
obtaining a global PES is to approximate the overlap, coulomb and
exchange integrals required for the surface caiculation. This
approach was pursued by Porter and Karplus (1964) for H5 and by
Silver and Brown (1980) for H4. 1In both approaches, integral
parametrization was based upon ab initio results.

In reaction path treatments, the potential energy must be
known in analytical form along the reaction path. There are
accurate and efficient techniques for the ab initio quantum
mechanical calculation of the gradient of the PES with respect to
the nuclear coordinates. These are used most frequently té
determine the saddle point, and the same techniques can be used
to follow the path of steepest decent from the saddle point to

reactants and products. If mass weighted Cartesian coordinates
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are used, this defines, according to Fukui et al. (1975), the
reaction path and the distance along it is the mass weighted
reaction coordinate. Miller et al. (1980) describe the
construction of a classical Hamiltonian for a general molecular
system based upon the reaction path and a harmonic‘apéroximation
to the PES about the reaction path.

Finally, in conventional transition state theory, where the
saddle point is used as thé transition state dividing surface,
the barrier height geometry of the saddle point configuration and
the vibrational frequencies of the transition state are required.
In generalized transition state theory, there must be enough PES
data to define and characterize the transition state.

Although not specifically concerned with potential energy
surfaces, Benson's book (1976) entitled "Thermochemical Kinetics"
is a veritable treasure house of information relating molecular
structure characteristics to reactivity. The book provides an
impressive discussion of semi-empirical methods for estimating
Arrhenius parameters for a number of different types of
reactions. It also gives additivity rules for estimating
thermochemical properties. In this author's opinion, this book is
an absolute requirement for every combustion modeler's shelf.

ITI. TRANSITION STATE THEORY
A. Theoretical Considerations

Transition state theory (TST) has been available for the
calculation of rate coefficients for over fifty years and has
been used extensively during this period. It is the theoretical

approach most commonly used by combustion modelers to calculate
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rate coefficients. Transition state theory has been the object of
renewed theoretical iﬁterest since the early seventies. There are
a number of texts thatidescribe TST, and'these are Gladstone
(1941), Laidler (1969), and Erying, Lin and Lin (1980); Erying,
Walter, and Kimball (1944); Johnston (1966); Bunker (1968):
Weston and Schwartz (1972); Nikitin (1974):; Smith (1980); and
Levine and Bernstein (1987). Pechukas (1976 and 1981) has written
two excellent reviews that describe characteristics of transition
state theory and research in the area. More specialized reviews
concerned with the theory have been written by Truhlar et al.
(1985) and Truhlar and Garrett (1984). The first of these is
especially useful in providing detailed information about
methodology for actual rate coefficient determinations. Laidler
and King (1983) have prepared a historicai review of the
theoretical developments of TST.

Transition state theory is paradoxical in that it is simple
in construction and subtle in its consequences. To paraphrase
some of the excellent material of Pechukas, TST is a statistical
theory, and the statistics in this theory involve counting the
number of ways a system can pass through a transition state.
Although statistical concepts are employed to avoid the computa-
tional intensity of dynamical treatments, the essence of TST is
founded in dynamical concepts. The idea of a transition state
invokes dynamical considerations, specifically dynamical insta-
bility, in passing through the transition state, one has react-

ants on one side of the transition state and products on the
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other.

There are two major assumptions which characterize transi-
tion state theory. First, a local equilibrium exists bet&één
reactants and»species that originate as reactants and become
transition state species. Second, any species passing through the
transition state does so only once. The first of these is called
the local equilibrium approximation and the second is the no-
recrossing assumption. Within the framework of classical mechan-
ics, the net rate of reaction in the forward direction is given
by the flux of trajectories from the reactant phase space passing
through the transition state dividing surface to the product
phase space. The transition state is truly a point of no return,
and implicit in the theory is the idea that once the system
passes through the transition state from the reactant side of the
PES it is by definition in product space forever more. The exact-
ness of transition state theory at an energy E (microcanonical
TST) can be verified by following all trajectories that leave the
transition state, and if there is no recrossing, the theory is
exact. Canonical TST is exact if and only if no trajectory of any
energy crosses the transition state moré than once, a signifi-
cantly more stringent requirement. The rate coefficients from
classical transition state theory are verified with a dynamical
criterion, and they must be compared with rate coefficients
calculated entirely classically, without quasiclassical quantiza-
tion of initial states using standard trajectory calculations.
When one speaks about TST being exact, it implies exact agreement

between it and an exact classical trajectory calculation of the
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rate coefficient.
For the reaction A + B =-=> C + D, the expression for the

forward rate coefficient k¢ is

k _ kBT Q.' (1)
7 h QaQp

where kg is the Boltzmann éonstant, h is Planck's constant and T
is temperature in Kelvins. The partition function for molecule A

per unit volume is given by

Q_—\ — h"s-\‘!\fdrAe(—HA/kBT) (2 )

with NA set equal to.the number of atoms in A and Hp is the
Hamiltonian of the isolated molecule A, and the voiume element
dTp is such that A remains in a single electronic state. The
volume elements are restricted such that the pertinent
center-of-mass is confined to a unit volume. The partition
function Qg is defined in a similar manner. The partition func-
tion Q+ of the transition state per unit volume is a bit more
complicated because it is not associated with a stable entity but
rather that portion of phase space that the reactant system N =
Np + Np must pass through to become products. For conventional
transition state theory, the dividing surface is the saddle point
region. With the reaction coordinate and its conjugate momentum

separated out, Q=|=
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* —(3N- -H*/kgT
Q =] (3N l)fdre( /keT) (3)

is the integral over the remaining N-1 coordinates and N-1
conjugate momenta. The transition state has a fixed value of the
reaction coordinate and thus one less degree of freedom than the
reactants. Recall that the factors like h™3N2 are included in
the classical partition function to give an approximate counting
for quantum states. It is also assumed that all atoms are dis-
tinguishable.

If TST calculations are in error with respect to actual gas
phase measurements, it is due to errors in the PES, errors in the
theoretical formulation, or errors in the experiment. If
transition state theory is in error relative to an exact
classical dynamics calculation, it is because recrossing
trajectories, which increase with energy in excess of the
classical threshold, exist. This implies that classical TST
provides an upper bound to the true classical rate coefficient,
and this provides a variational criterion for TST, implying that
one should choose the dividihg transition state surface to
minimize the reactant flux through it. Note that the variational
criterion only exists with respect to the "true" classical rate
coefficient calculated solely with classical mechanics with no
quasi-classical considerations. In conventional TST, for a PES
having a saddle point, the phase space dividing surface is
chosen to be a function of only coordinates (momenta are

excluded) and is located so that it passes through the saddle
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point. The transition state is a plane determined by normal
coordinate analysis of small vibrations around the saddle point
with displacement along the reaction normal coordinate set equal
to zero. Any other dividing surface is by definition a general-
ized transition state. Variational transition state theory is the
name we apply to theory that uses the minimum flux (microcanoni-
cal) or maximum free energy of activation (canonical) criterion
for locating the dividing surface. The minimum free energy crite-
rion has been misinterpreted by Bunker and Pattengill (1968) to
imply a minimum density of states criterion, and this does not
yield the correct variational rate coefficient.

The best dividing surface for variational microcanonical TST
for collinear atom-diatom reactions was determined by Pechukas
(1976), Pollack and Pechukas (1978), and Sverdlik and Koeppel
(1978) . The dividing surface is a é;rve joining the two equipo-
tentials that bound the classically allowed region of the coordi-
nate plane. Candidate best dividing surfaces are curves traced
out by classical trajectories vibrating between the two equipo-
tentials. If there is only one such vibrational energy, then that
path is automatically the best dividing surface. If there is more
than one, the one with less flux associated with it is best.

When the potential expands in either direction away from the
saddle point, the best choice of the transition state dividing
surface is in the vicinity of the saddle point. What is the opti-
mum dividing surface for more complicated reactions in three

dimensions? Considerable research on variational TST for
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atom/molecule reactions in three dimensions and for some
molecule/molecule reactions has been pioneered by Truhlar and
Garrett. They provide considerable information regarding the
choice of dividing surface in the review articles by Garrett and
Truhlar (1984) and Truhlar, Isaacson, and Garrett (1985).

our discussion has been confined to a discussion of classi-
cal transition state theory to illustrate to the reader the
theoretical foundations of the theory, and the limits of applica-
bility, and to clear up possible misconceptions. The next
question to address is the "how to" issue--how does one calculate
rate coefficients using transition state theory? The most popular
approach is to perform a type of hybrid quantum calculation. In
the quantization of conventional transition étate theory we make
three assumptions. Firsf we assume that motion associated with
the reaction coordinate is separable. Accordingly to Johnston
(1966), this approximation is reasonable as long as the potential
energy surface near the saddlepoint is well-approximated by a
quadratic function over an area whose linear dimensions are much
larger than the de Broglie wavelength. Second, we assume that
the reaction coordinate motion can be treated classically and
that the energy levels associated with the remaining bound
degrees of freedom of the transition state and those of the
reactant are quantized. Third, we frequently assume that the rate
coefficient can be multiplied by a transmission coefficient to
correct for non-classical motion along the reaction coordinate.
Quantum mechanically there is the possibility of tunneling

through the saddle point barrier at energies below the classical
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threshold and the possibility of reflection at energies above
threshold.

When the hybrid quantum approach is used, transition state
theory no longer provides as upper bound to the true quantal
equilibrium raté coefficient for a given potential energy sur-
face. There is no variational principle associated with a rate
coefficient calculated in éhis manner. This is also not a true
quantum mechanical approach because the fundamental assumption of
'TST violates the uncertainty principle by requiring that one
simultaneously must specify the position and momentum along the
reaction coordinate.

There are a number of approximations that are similar for
both hybrid conventionél and generalized transition state theo-
ries. Rule number one is to always know what the zero of energy
is for the reactant partition state functions and for the transi-
tion state partition functions. Be internally consistent. If
there is mofe that one reactant, a relative translational parti-
tion function per unit volume, QTA'B, must be included. This, for

three-dimensional motion, is

QA g(T) = (27ukpT /h2)3/? o

where u is the reduced mass, and is not a function of the reac-
tion coordinate and hence is the same for conventional and gener-
alized transition states. The same is true for electronic parti-

tion functions, but one must remember that the electronic energy

RCRV416B.89



RATE COEFFICIENT CALCULATIONS FOR COMBUSTION MODELING - Page 12

is measured relative to the zero of energy, which for the transi-
tion state is the transition state energy. The expression for the

electronic partition function for species A is

Q;\(T) —_ ZdA’ae(-‘A.o/kBT) (5)
a

where the degeneracy (multiplicity) is dp,o and the energy of the
state Ep g4 is measured relative to the ground electronic state,
which is the zero of energy. It is also important to include the
electronic partition function for atoms.

The saddle point geometry and frequencies must be determined
to evaluate rotational and vibrational partition functions in
conventional transition state theory. The imaginary frequency
associated with the reaction coordinate motion is required to
correct reaction coordinate motion for non-classical effects,
which frequently are not large for temperatures of interest in
combustion studies. Truhlar et al. have given excellent
descriptions of techniques for locating generalized transition
states. Once transition states are defined, the moments of
inertia and vibrational frequencies must be evaluated for the
specific value of the reaction coordinate. Then the rotational
partition function for non-linear molecules A (assuming

temperature to be in the range appropriate for combustion) is

Q} = (24 (2kpT/F) (1lplc) (6)
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where I, Ig, and I¢c are the equilibrium moments of inertia
associated with the principal axis of rotation. This formula
holds for spherical top (Ip=Ig=Ig) or symmetric top molecules
(when Ip<Ip=Ic or Ip=Ip<I¢)- The rotational partition function.

for a linear molecule is

1 . ’
Qf = —(2kpT/F)1 (7)

The éymmetry number, a, must be included with the rotational
partition functions and this corrects for repeated counting of
indistinguishable configurations in the classical phase integral.
The vibrational partition function for a molecule with m normal

modes 1is

Q}\ - H ef—hci'm/".'}:a'r)(II_G—hCDm/kgT)
m (8)

The zero of energy is assumed to be located at the bottom of the
potentiél well where the internuclear separation is the equilib-
rium value, Uy is the vibrational frequency in cm~! for the mth
oscillator, and ¢ is the velocity of light. Anharmonic effects
become important and neglecting them results in rate coefficients
that are too large. In particular, for stretching modes, anhar-

monic effects are especially important for tight transition

states at low temperatures. For bends, anharmonicity becomes
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important at higher temperatures. Anharmonic effécts can be
accounted for using the Pitzer-Gwinn (1942) techniques (PGT). The
PGT is based upon the idea that the ratio of anharmonic vibra-
3tional partition function to the harmonic value is given cor-
rectly at the low and high temperature limits and assuming that
the ratio is correct at all temperatures.

.~

B. Symmetry in Rate Coefficient Calculations

Symmetry in rate coefficient calculations must be properly
accounted for. Althbugh this section is concerned with TST
calculations, the symmetry corrections described here are
relevant to dynamics calculations as well. The literature is
wrought with controversy over this subject, and many of the
standard texts in chemical kinetics are in error. Two papers
describe symmetry corrections correctly, and these are by Pollack
and Pechukas (1978) and Coulson (1978), and they should be read
because they clarify the misconceptions and capture the essence
of the problem. Briefly, nuclear spin degeneracy can be ignored
because nuclei are the same in the transition state as in the
reactants and product and the degeneracies cancel. Symmetry
numbers should be used rather than reaction path degeneracies or
statistical factors. Rotational partition functions should be
divided by molecular symmetry numbers to account for the effect
of quantum statistics. Symmetry numbers should appear in
classical and quantum partition functions. Symmetry numbers also

should be used for the rotational partition functions of the
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transitiog state. Pechukas (1976 and 1981) and Metiu et al.
(1974) provide an excellent discussion of reaction path symmetry
which should be used as input when transition state properties
are deduced semi-empirically. For conventional transition state
theory, the symmetry of the transition state is limited to the
joint symmetries of the reactant and product unless they are
physically indistinguishable or symmetry related, i.e., optical
isomers. For the exceptional cases noted, the transition state

may have additional symmetries.

C. Tunneling Corrections

Frequently transition state calculations include a tunneling
correction which is a quantum mechanical correction to reaction
coordinate motion. Thé tunnel effect is the name given to the to
describe the entire quantum mechanical barrier crossing problem
which includes barrier penetration or transmission for energies
less than the barrier height and barrier reflection corrections
for energies which are greater. Tunneling is usually important
for light atoms and molecules at low temperatures, and for
combustion applications may be important for reactions involving
H atoms.

Johnston (1966) very carefully gives some general criteria
for assessing the nature of quantum effects on reaction
coordinate motion. He suggests that one perform a normal
coordinate analysis along the reaction coordinate to obtain the

mass m* and then compute the Boltzmann average de Broglie
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wavelength as

s 2 * 1/2
A* = (h*/2mm kBr)/ (9)

If the potential is flat over distances large compared to A* then
the reaction coordinate motion is considered classical. If it is
flat over a distance small compared with A*, then the reaction
coordinate motion is non-separable and very difficult to treat.
If the potential energy surface near the saddlepoint is well
approximated as a quadratic function 6ver an area whose linear
dimensibns are comparable, then the motion is separable but not
classical and requires a tunneling correction.

There are many approaches to treating tunneling. An
especially fine description is given in the review paper by
Truhlar et al. (1985). Here we will mention the more commonly
used approaches. The imaginary frequency associated with reaction
co-ordinate motion must be determined for all these corrections.

The simplest and most common method of approximating

tunneling is the semiclassical Wigner (1932) approximation

(2
-

I
} (10)

*

v
kT

; 1 |
W

= 14—
& 24{

This tunneling correction is the transmission coefficient

obtained by Boltzmann averaging the semi-classical barrier pene-
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tration probabilities. The symbol w+ is the iméginary frequency
associated with reaction coordinate motion. For this approxima-
tion to be valid, tunneling contributions must come entirely from
the saddle point region implying that transverse vibrations do
not vary appreciably and the potential along the reaction path is
well approximated by an inverted parabola. Wigner corrections are
most likely to be valid when the correction is small and less
than 2.

Other commonly used tunneling corrections are based upon
assumptions of barrier shapes in the saddle point region. Two
very common barriers which are worth noting are parabolic and
Eckart barriers. The assumption of a fixed shape barrier some-
times leads to large errors in the tunneling correction. There is
an excellent discussion of Eckart and Parabolic barriers in
Chapter 2 of Johnston' book and in the paper by Truhlar and
Kuppermann (1971). For those interested in using an Eckart-type

correction, Eq. (2.22) in Johnston's book is in error. The 212

should be replaced by ame,

D. Complex Reactions

Statistical theory for complex reactions is less secure, in
its dynamical foundations, than the transition state theory of
direct reactions. Many important combustion reactions have
multiple transition states, and the dynamics in the region
between the outermost transition states are very often complex

rather than direct. In complex reactions, the variational
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principle aésociated with classical transition state theory may
fail. Assuming that potential wells are deep enough for at least
one bound state, reactions along pathways with multiple
transition states result in complex formation at some fixed
energy. Formation of the complex is a bimolecular reaction and
its dissociation is a unimolecular one. There is much confusion
in the literature about comp{ex reactions, and much of it
concerns the boundedness 6f the calculated rate coefficient.
Pollack et al. (1980), Pollack and Child (1980), and Pechukas and
Pollack (1977) have investigated the bounds associated with rate
coefficients of complex reactions in detail, and are careful in
discussing the constraints on the reactive system that must occur
for the rate coefficient to be bounded.

The importance of éomplex reactions to combustion is
illustrated by a set of rate coefficient calculations by Miller
and colleagues, Miller et al. (1986), Miller and Melius (1986 and
1988) . The BAC-MP4 method of Melius and Binkley (1984 and 1985)
is used to calculate transition state geometries, vibrational
frequencies, and enthalpies for each of the molecular species.
Rate coefficients were calculated using a hierarchy of
statistical approximations: canonical theory, canonical theory
with a Wigner tunneling correction, microcanonical theory,
microcanonical theory with angular momentum conservation, and
microcanonical theory with angular momentum conservation with one
dimensional tunneling. The tunneling correction for the
microcanonical rate coefficients was determined as recomménded by

Miller (1979), whereby a quantum mechanical flux through the
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aiyiding surface was approximated. Three assumptions were invoked
to calculate the rate coefficients: the RRKM or strong coupling
assumption, the transition state theory assumption of no-crossing
of the final transition state leading to products, and steady
staterapproximations for all complexes. Rate coefficients and
branching ratios were calculated for the product channels of the

reactions O + HCN, OH + HCN, and OH + CyH,.

IV. MOLECULAR DYNAMICS

Schrodinger's equation is the only rigorous and valid
approach for treating dynamics and reactivity on the atomic
scale. Three dimensional exact quantum mechanical calculations of
reactivity have been performed to study reactivity and energy
exchange in H + H, and its isotopic analogs, and these
calculations are described by Walker and Light (1980), and Conner
(1979). Currently, there is substantial research activity ( see
for example, Pack and Parker (1989), Pack et al. (1987), Zhang
and Miller (1987), and Zhang et al. (1988)) devoted to improving
quantum mechanical calculations on the H + H, system, and one
can expect exact calculations to be performed on the F + H,
system in the near future. The developments in the field of
molecular quantum dynamics are occurring at an exciting pace and
they will provide some intriguing results which should stimulate
further progress in PES construction and in state-to-state
experiments measuring reaction attributes.

Quantum mechanical calculations are not practical for

RCRV416B.89P



RATE COEFFICIENT CALCULATIONS FOR COMBUSTION MODELING - Page 20

determining thermal rate coefficients for combustion
applications due to the higher energies associated with
combustion and the concomitantly large number of coupled opened
and closed channels that must be included in the wavefunction
expansion. Moreover, quantum effects: tunneling, interference
phenomena, and resonances are not likely to be important for most
reactions ;t temperatures in excess of 1000 K. For predicting
ignition characteristics at temperatures lower than 1000 K,
quantum effects,'although small, may be important. The effects of
combustion (i.e., higher energies and higher masses) tend to

decrease the de Broglie wavelength
=1 (11)
p

of the reactive system, where p is the momentum. As A decreases
to a size smaller than the distance over which the potential
changes significantly, the system can be treated classically.
Furthermore, the amount of averaging necessary to compute a
thermal rate coefficient from state-to-state ones is a smoothing
process which washes out much of the quantum behavior while
retaining the features produced by a classical calculation.
Quantum mechanics are necessary for the calculation of transition
probabilities for reactions where the energy is close to but less
than the barrier height (for so-called classically forbidden

processes) and for describing interference phenomena.
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A very popular and often quite accurate approach to treating
reactions between an atom and a molecule and between two

molecules is classical mechanics. Hamilton's equations

o _ - od __ -
op i 5q ~ Pi (12)

must be solved where pr,é} is the system Hamiltonian and gq; and
bl are the i-th coordinate and momentum and the dot indicates the
time derivative. For a given PES and selected values of p; and qj
at some initial time, the classical laws of motion completely
define the subsequent dynamical behavior of a system and the
classical path or trajectory of the collision can be calculated
by numerically integrating the 6N-6 differential equations
(Hamilton's equations) where N is the number of atoms in the
system. The calculation is called quasi-classical if the molecule
_is initially given energy which corresponds to a quantum
mechanical eigenenergy. Classical trajectory calculations are
useful because they yield reaction cross sections, angular
distributions, product energy and angular momentum distributions,
final energy and angular momentum distributions in unreactive
reactants, and they also provide insight into the character of
the reactions. ‘
There are also semi-classical approaches to studying
reactive collisions. Semiclassical treatments use real and
complex valued solutions of Hamilton's equations to construct an

asymptotic solution of Schrodinger's equation. Semiclassical

RCRV416B.89P



RATE COEFFICIENT CALCULATIONS FOR COMBUSTION MODELING - Page 22

approaches will not be discussed further.

The classic paper in the field of quasiclassical dynamics is
due to Karplus et al. (1965) and it describes their calculations
on the H + Hj reaction. There are two excellent reviews that
describe how to perform a quasiclassical calculation of a rate
coefficient. The first of these is written by Truhlar and
Muckerman (1979) and is concerned with all aspects of
quasiclassical calculations for the system A + BC. The second is
by Porter and Raff (1976) and it co&ers the calculation of
reaction attributes by the quasiclassical method for A + B, A +
BC, AB + CD, and A + BCD collisions, and is particularly good in
describing the selection of initial conditions. Reviews have also
been written by Conner (1979) and by Walker and Light (1980) and
these are especially useful because they survey work which uses
dynamical approaches to studies of reactivity and energy trans-
fer. The books by Bernstein (1979) and Levine and Bernstein
(1987), and the two volumes edited by Miller (1976) are highly
recommended as sources describing fhe molecular dynamics approach
to rate coefficient calculations.

There are three parts to a molecular dynamics calculation
and these are 1) specification of the initial conditions, 2)
integration of Hamilton's equations, and 3)determination of the
molecular properties at the end of the collision when the
collision partners are no longer interacting. to average over an
ensemble of trajectories, N trajectories, each belonging to the
same "state," must be computed. The initial values of the non-

consequential (i.e., those not crucial to defining the "state." )
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coordinates and momenta are selected according to their
distribution in phase spacé:at random. the phase space or
ensemble average is usuallf\écéomplished by Ménte Carlo
Techniques. The number of trajectories required for convergence
of the ensemble average depends on the precision required in the
calculation of the variable of interest. Important work on
improving sampling to render more rapid convergence has been
performed by Faist et al. (1978) and Muckerman and Faist (1979).
Specification of initial conditions is relatively straight-
forward for A + B, A + BC, and AB + CD, and is more complicated
for A + BCD. The Porter and Raff paper gives an excellent discus-
sion of this. There are, however, a number of things to be care-
ful of and these will be described. In the quasiclassical approx-
imation, the molecule is initially given energy corresponding to
a quantum mechanical eigenenergy. It is important to separate out
the rotational and vibrational contributions to the energy. For
diétonic collisions, one frequently uses a rigid rotator Morse
oscillator model for the diatom and equates the energy of this
to a spectroscopically derived value of the energy for a given
value of v, the vibrational quantum number and J, the rotational
quantum number. The turning points, R+ and R-, are solved for,
and these and the angular momentum J are used to describe the
initial state of the molecule. However, in order to separate
rotational and vibrational motion and to determine the amount of
energy in each degree of freedom, one must average over the

vibrational period using the following equation
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JpeJ
€rot = min{\’D(r) + — ; }— Vp(re) \(13)

AN

where €,.,+ is the average rotational energy, Vp(r) is the diatom-
ic potential energy (usually a Morse potential), r is the inter-
nuclear separation. The subscript e denotes the equilibrium
separation. The vibrational energy is obtained from the total
molecular energy, which is tﬁe quantum mechanical eigenenergy,
minus the calculated avefage rotational energy. When the molecule
is a triatomic or greater, the situation is more complex because
the Coriolis interaction couples the vibrational and rotational
degrees of freedom. Sometimes it is not necessary to know the
individual contributions. In their studies of the unimolecular
dissociation of HO,, Miller and Brown (1982) and Brown and Miller
(1984) analyzed various techniques of orthant sampling used to
determine initial values for molecular coordinates and momenta
when total molecular energy and angular momenta are specified.
For studies with triatomics, the most efficient co-ordinate
system for investigating collisions is the space-fixed frame.
However, when a more rigorous separation between rotational and
vibratiohal motion is sought, the individual contributions to the
energy cannot be separated using the space-fixed frame because of
the Coriolis interaction. Suzukawa et al. (1979) given a good
description of how one separates vibrational and rotational
motion in triatomics. Energy and angular momentum are deposited
in the molecule, and a transformation to a body-fixed frame

satisfying the Eckart condition is performed. The Eckart condi-
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tions define a convenient molecule-fixed axis system in which the
rotation-vibration interaction of the molecule become equal to

zero when the molecule is in its equilibrium condition.

V. SBENSITIVITY ANALYSIS

An important question to answer in rate coefficient
calculations is: How sensitive is the calculated rate coefficient
to the potential energy surface? The answer, of course, depends
on the method used to calculate the rate coefficient, the
particular identity of the reactants, and the initial states of
the reactants. Frequently, answers to this questiPn have been
sought by attempting to systematically vary features of the
potential energy surface and determining the concomitant effect
on the rate coefficient. There are endless variations (many of
which are non-unique) that can be attempted and it is quite
difficult to organize the results of such an analysis ‘in a very
systematic manner. Isotopic substitution has also been used to
gain insight into how different general parts of the PES affect
observables. This is useful because the PES is the same for all
the isotopes, but for each of them the dynamics probes different
regions of the potential.

A more syétematié approach to the problem of determining how
structure in the PES maps itself into the observables associated
with a reacting system is provided by functional sensitivity
analysis. The combustion community is familiar with sensitivity

analysis through its use in the detailed modeling of species and
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temperature profiles in flames and from modeling of temporal
species profiles.in well stirred reactors. this approach has been
pioneered by Rabitz (1985) and his colleagues. In these
applications, parametric sensitivity analysis frequently has
been employed since the rate and transport coefficients are
usually thought of as discreet parameters. In rate coefficient
calculations, the PES is actually a function of 3N-5 6r 3N-6
coordinates despite the fact that it may be parametrized in
numerical calculations. The PES is treated as a function and
functional sensitivity analysis can be used to determine how the
observables associated with the reacting system depend on
features of the PES. In using functional sensitivity analysis,
one calculates the gradient of an observable with respect to a
perturbation to the potential at a particular point in
configuration space. The sensitivity function directly indicateé
how a perturbation in the potential will be translated into a
change in the observable..The application of functional
sensitivity analysis to classical dynamics of molecular systems
was initiated by Judson and Rabitz (1987). Functional sensitivity
dnalysis has been used to treat inelastic collisions in the H, +
H, system and its isotopic analogs by Judson et al. (1989).

'~ Judson and Rabitz (1989) also used functional sensitivity
analysis to investigate reactivity in the collinear F + H,
system. In both these calculations, classical mechanics has been
used to treat the dynamics. Both these calculations have shown
that the physics governing collisions in these problems are

complex and that there is a highly structured relationship
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between details in the potential energy system and the
observables. The highly structured nature of the sensitivities
implies that there are localized regions of the potential which
are especially important to the dynamics. These localized regions
are those very regions where a high density of ab initio points
should be calculéted and where minimal error should be introduced
by fitting procedures. Although studies of this type are still in
the nascent stage, sensitivity analysis provides a set of
powerful tools to analyze models for their physical content and
mathematical behavior. It provides a means in all its
applications to probe the interrelationship between input (PES)
and output (observables associated with the reacting system)
functions. The development and application of functional
sensitivity analysis to studies of reactive scattering will
provide exciting new kinds of information regarding the

mechanisms of reactivity on the microscopic level.
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