
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Interplay between structural dynamics and optoelectronic properties in lead halide 
perovskites

Permalink
https://escholarship.org/uc/item/87m3580m

Author
Park, Yoonjae

Publication Date
2023
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/87m3580m
https://escholarship.org
http://www.cdlib.org/


Interplay between structural dynamics and optoelectronic properties in lead halide
perovskites

by

Yoonjae Park

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Chemistry

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Associate Professor David T. Limmer, Chair
Professor Eran Rabani

Professor Je↵rey B. Neaton

Spring 2023



Interplay between structural dynamics and optoelectronic properties in lead halide
perovskites

Copyright 2023
by

Yoonjae Park



1

Abstract

Interplay between structural dynamics and optoelectronic properties in lead halide
perovskites

by

Yoonjae Park

Doctor of Philosophy in Chemistry

University of California, Berkeley

Associate Professor David T. Limmer, Chair

Lead halide perovskites are the subject of great interest owing to the unique photophysical
properties of perovskites where elucidating the nature of those properties highly relies on the
understanding the photophysics of semiconducting materials. Upon photoexcitation, excited
electrons and holes are generated, where bound electron-hole pair is called an exciton, what
decides the optoelectronic properties depends on how charges carriers are relaxed back to
their ground state. Given that the charges carriers can be coupled to lattice vibrations, called
phonons, while relaxing, taking a closer look at how the structural fluctuations produced by
the lattice a↵ects the behavior of charge carriers is crucial to elucidate the microscopic origin
of the properties of semiconducting materials. However, including the dynamical e↵ects of
phonons is in general di�cult. Although the study on how phonons a↵ect the properties
of free charges has a long history, there still remains active open area for studying how
excitonic properties are altered by the interaction with phonons. Especially for perovskites,
the complex structure and anharmonic nature makes theoretical study even more challenging.

Herein, in this thesis, we explore the properties of lead halide perovskites in various dimen-
sions by using an atomistic molecular dynamics simulations, allowing us to capture all orders
of anharmonicity. For the system of layered perovskites with bulky organic molecules, it is
showed that how the anharmonicity of organic molecules a↵ects the vibrational relaxation
dynamics following photoexcitation. And for a system of single chain perovskite nanowire,
we are able to analyze the structural dynamics. In terms of studying excitonic properties in
bulk perovskites, with this explicit anharmonic perovskite lattice, we describe quantum par-
ticles with path integral framework and we have developed a Gaussian field theory to describe
the e↵ective interactions between electrons and holes as mediated by the perovskite lattice
using path integral molecular dynamics, illustrating the method of use to study exceptional
excitonic properties of perovskites. Lastly, we end this by briefly introducing the application
of this framework for studying the multiparticle excitations in perovskite nanocrystals.
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Chapter 1

Introduction

Lead halide perovskites are a class of materials that exhibit unique optoelectronic properties
owing to their anharmonic lattices and predominately ionic bonding. Upon photoexcita-
tion, the key to understanding the photophysics of semiconducting materials is to study the
dynamics of charge carriers while they are relaxing back to the ground state, interacting
with their surrounding lattice. The interplay between charge carriers and the lattice has
been a significant research subject in solid state physics. However, due to the complexity of
materials, theoretical description of the material properties of perovskites still remains as a
challenge. In this thesis, we have studied how the structural fluctuations of the lattice a↵ect
the optoelectronic properties of perovskites by developing and applying the theory of path
integral approach combined with atomistic molecular dynamic simulations.

Chapter 1 discusses the structure and optoelectronic properties of lead halide perovskite
of interest from bulk three-dimensional lead halide perovskites to low-dimensional perovskites
such as layered perovskite quantum well (2D), single perovskite nanowire (1D), and per-
ovskite nanocrystal (0D), with the brief summary of path integral framework. As the study
on these material properties requires the understanding of the behavior of charge carriers,
Chapter 2 describes the way to study excitonic properties such as e↵ective mass, exciton
binding energy, and electron-hole recombination rate within path integral framework using
model semiconductors. In Chapter 3, we apply the method to elucidate the exceptionally
long charge carrier lifetime in MAPbI3 perovskite. Subsequently, since the origin of these
properties are attributed to the structural fluctuation, given that layered perovskite has an
additional source for anharmonic lattice fluctuation from organic spacer molecules, Chapter
4 has the discussion on how the interaction between organic spacer molecules a↵ects the
lifetime of phonons through phonon dephasing phenomena. Finally in Chapter 5, we con-
clude this thesis by including preliminary results on the study of multiexcitation (biexcitonic
behavior) in perovskite nanocrystals.
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Figure 1.1: The structure of lead halide perovskite

1.1 Lead halide perovskite

Perovskite structure is referred to the structure whose chemical formula has the form of
ABX3 and lead halide perovskite is the case where B is lead ion, X is halide ion, and A
is a cation with +1 charge whose size is small enough to fit in the octahedral structure
as shown in Fig. 1.1. Lead halide perovskites are soft, polar, and ionic semiconductors
where atoms are chargely balanced by each other, which are considered as promising ma-
terials for optoelectronic devices due to their unique properties [206, 185, 102]. On top of
the solution-based method of producing perovskite materials with high reproducibility, the
optical absorption wavelength can be controlled by changing or mixing the composition of
halide ions [218, 185]. Especially, their high power conversion e�ciency reaching over 20%
make these materials ideal for photovoltaic devices, which is attributed to the long lifetime
and di↵usion length of charge carriers even with moderate mobility, exceptionally low rate
of charge recombination, and low rate of carrier scattering [148, 203, 180]. For more than a
decade, there have been large amount of experimental and theoretical studies on elucidating
the origin of the properties of lead halide perovskites [227, 26, 21, 88, 128], yet due to the
anharmonic nature and complex structure of perovskites, unified description is still missing.

1.2 Optoelectronic properties of lead halide

perovskite

Understanding the nature of material properties mentioned above requires the detailed de-
scription of the behavior of charge carriers in the lattice, i.e. the study on how charge
carriers are relaxed within or between electronic bands after photoexcitation. As schemati-
cally shown in Fig. 1.2(a), in the ground state, the valence band is fully filled by electrons
with empty conduction band, separated by the band gap energy. In the excited state, once
the material absorts light, an electron is excited to the conduction band, leaving a positively
charged quasiparticle, called a hole, behind, followed by the relaxation of charge carriers to
the band edge while interacting with their surrounding lattice (shown in Fig. 1.2 (b)) where
the bounded electron-hole pair is called an exciton. Exciton binding energy denoted as Eb
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Figure 1.2: Schematics of (a) ground state band structure with valence band (VB) and
conduction band (CB) whose energies are separated by the band gap energy Eg, (b) excitonic
state having bounded electron-hole pair, exciton, with Eb as an exciton binding energy, (c)
electron-hole recombination, and (d) charge separation.

indicates the strength of interaction between electron and hole where a small exciton binding
energy implies that it’s relatively easy to generate free charge carriers.

Once charge carriers are generated, there is a competition between two phenomena,
electron-hole recombination (shown in Fig. 1.2(c)) and charge separation (shown in Fig.
1.2(d)). For the application on such as photovoltaic devices and solar cells, the high ratio of
charge separation is required, implying low rate of charge recombination and long lifetime
of charge carriers, whereas for light-emitting devices such as lasers, high ratio of radiative
charge recombination is needed [38, 77, 20, 86]. Therefore, understanding the photophysics
and excitonic properties allows us to design the application of semiconducting materials.

Among the material properties mentioned in section 1.1, the optoelectronic properties
which are mainly discussed in this thesis are exciton binding energy and electron-hole recom-
bination rate motivated by the fact that lead halide perovskites have small exciton binding
energy [26, 203] and exceptionally low rate of electron-hole recombination, implying the long
lifetime of charge carriers [148, 203, 180], which is ideal for photovoltaic devices.

1.3 Anharmonic structural fluctuation

Excitonic properties discussed above are highly a↵ected by the structural fluctuation of the
lattice. From the traditional perspective on the e↵ect from the lattice, starting from the
static lattice as schematically shown in Fig. 1.3(a), atoms can vibrate at finite temperature,
generating dipoles (Fig. 1.3(b)). In semiconducting materials, an excess charge (either an
electron in the conduction band or a hole in the valence band) can be coupled to the dipoles
generated by the lattice and induce the distortion of the lattice as shown in Fig. 1.3(d)
where a charge with induced polarization is called a polaron.

For a classic semiconductors, atoms in the crystalline material vibrate around their local
minima and displacements are small as schematically shown in Fig. 1.4(a, top). In this case,
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Figure 1.3: Schematics on the traditional perspective on the e↵ect of the lattice of (a)
static lattice, (b) lattice with dipoles due to the vibrations, (c) an excess charge carrier with
dipoles from the lattice, and (d) an excess charge with polarization from the lattice, forming
a polaron.

the lattice vibrations can be well described within harmonic approximation as the collection
of phonons, harmonic modes representing the nuclear motions of the lattice. Whereas in
perovskites, they have double well potential energy surface, depicted Fig. 1.4 (a, bottom),
which is strongly anharmonic [210, 88]. Additionally, bending and tilting motions between
neighboring PbX3 octahedra or motions of A-site cations increase the disorderness in these
materials (Fig. 1.4 (b-d)) [43, 10, 16, 210]. Especially, for the study of excitonic properties in
perovskites, due to the opposite charges of electron and hole, electron and hole form polarons
with induced polarization fields being opposite as schematically described in Fig. 1.4 (e) where
green arrows are dipoles of A-site cation [26]. Therefore, to explain and predict the properties
of lead halide perovskites, it is essential to capture these anharmonic structural fluctuation.

In perovskites, these properties have been thought to arise from the large polaron for-
mation where the Coulomb interaction between charges and polarization from the lattice is
relatively weak and charges are delocalized over few unit cells. And it has been proposed that
the small exciton binding energy and low rate of electron-hole recombination are attributed
to the dynamical screening from the fluctuating lattice [227, 26, 21]. If the lattice vibra-
tions can be well described by harmonic phonons, then the classic theoretical framework for
studying a charge interacting with phonons from the lattice can be used, known as Fröhlich
polaron model where a charge is linearly coupled to longitudinal optical phonons [129, 57,
39]. However, in perovskites, the vibrational modes largely deviate from harmonic phonons,
whose anharmonicity makes elucidating the origin of excitonic properties di�cult.

Historically, the e↵ects of phonons on a free charge has been largely studied [103, 79,
50, 56, 6, 127]. However, in terms of the study on the excitonic properties, little is known
about the e↵ects of phonons. With the static lattice, the approach of taking account of the
interaction between electron and hole has been an active area of research on semiconducting
materials [56, 66] nonethelesss, including the dynamical e↵ects from the fluctuating lattice
on excitonic properties is extremely challenging and still remains as an open research area.
In other words, to study the excitonic properties of perovskites where the unit cell is complex
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Figure 1.4: Schematics on (a) the potential energy surface as a function of structural displace-
ment from the equilibrium position for classic semiconductor (top) and lead halide perovskite
(bottom), (b) distortion between neighboring octahedra adapted from Ref. [43], (c) rota-
tional motion adapted from Ref. [10], and (d) motion of A-site cation with methylammonium
(MA) as an example, (e) electron and hole polarons with opposite induced polarization field
with green arrows as dipoles from A-site cation, adapted from Ref. [26].

and charges are di↵usive at finite temperature and delocalized forming an large polaron, for
a length scale and time scale of interest, describing all the details quantum mechanically is
infeasible. Therefore, the simulation method considered in this thesis to study the lattice
e↵ects on excitonic properties of perovskites is to treat the lattice classically with atomistic
molecular dynamics simulation combined with quantum mechanical description of the charge
carriers (electron and hole) with the method of path integral molecular dynamics, which is
described in Chapter 2.

1.4 Low dimensional lead halide perovskites

As the last topic of this section, the discussion on the low dimensional lead halide perovskites
are presented. Depending on the dimension and the size, as the dimension of lead halide
perovskite decreases, the quantum confinement e↵ect increases, resulting in unique optical
properties di↵erent from the properties of bulk counterpart such as strong photolumines-
cence, wider optical bandgap, e�cient charge carrier transport, high stability, etc. Below,
from two dimensional to zero dimensional lead halide perovskites, the structure and optical
feature of interest are introduced.
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1.4.1 Layered perovskite quantum wells (2D)

As discussed above, lead halide perovskites have possessed desired optoelectonic properties
for a broad range of applications. However, for the practical purposes, they have an intrinsic
unstability in moisture environment, which prevents these materials from being commercial-
ized. Two-dimensional perovskites have emerged as an alternative which still has the similar
properties but with enhanced moisture resistance [78, 80, 8]. Compared to 3D perovskites
(Fig. 1.1), 2D perovskites can be formed by using larger cation which is large enough not to fit
in octahedral cages. With bigger cations, PbX�

3 inorganic layers are separated, forming two
kinds of layer, the layer with inorganic framework and the layer with organic molecules, often
called organic spacers, schematically shown in Fig. 1.5 (b). The inorganic framework consists
of the units with ABX3 octahedral structure as described in section 1.1 and for the organic
layer, molecules containing hydrophobic part such as hydrocarbons are usually used, which
is responsible for the higher stability against the moisture environment. Layered perovskites
are referred to the family of these perovskites with layers. Among layered perovskites, if the
organic spacer has overall +1 charge, the resultant structure has adjacent inorganic layers
shifted by the half of lattice spacing whose structure is called Ruddlesden-Popper phase [27,
179].

In terms of optoelectronic properties of these materials, on top of the flexibility coming
from the compositional variance as the 3D counterpart, the thickness of the inorganic frame-
work and the types of organic spacer can a↵ect the optical properties as well. Shown in
Fig. 1.5 (b) is the schematics of layer perovskites with various number of inorganic layers up
to bulk perovskites [224]. With a few number of layers, quantum and dielectric confinement
e↵ects emerge. As pictorially described in Fig. 1.5 (a), since the band gap of inorganic frame-
work and the energy di↵erence between the highest occupied molecular orbital (HOMO) and
the lowest unoccupied molecular orbital (LUMO) are di↵erent, they form a quantum well
structure where inorganic layer acts as a well and organic layer as a barrier in this case.
Additionally, since inorganic layers are much polar medium with high dielectric constant
compared to the layers with organic spacers, charge carriers tend to reside in the inorganic
layers due to the mismatch in dielectric constant, whose phenomena is known as dielectric
confinement. These confinement e↵ects have been thought to be responsible for the large
exciton binding energy of layered perovskites.

Once exciton is generated, the relaxation of charge carriers takes place through the in-
teraction between charges and the lattice vibration, so-called exciton-phonon coupling. So,
excitonic properties can be altered by the structure and interaction within organic spacer
molecules as well. In other words, since exciton interaction is mediated by phonons pro-
duced by the surrounding lattice, the relaxation of phonons known as phonon dephasing can
be an important factor to decide excitonic properties of semiconducting materials. Accord-
ingly, as emphasized in section 1.3, on top of the anharmonic lattice fluctuation of inorganic
framework, since phonons lose their coherency through anharmonic interaction, anharmonic-
ity from organic molecules should be considered to explain excitonic properties in layered
perovskites. For example, if the organic cation consists of linear hydrocarbons such as buty-
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Figure 1.5: Schematics of (a) quantum well structure and (b) layered perovskites with various
number of inorganic layers n from n = 1 to n = 1 indicating the bulk perovskite where
repeated diamond represents the unit with ABX3 octahedral structure and green arrow
represents organic spacers, adapted from Ref. [224].

lammonium, then the interaction between organic molecules are relatively weak with more
disorderness compared to the case with aromatic cation such as phenethylammonium which
exhibits ⇡ � ⇡ stacking. Even only the motivation of studying the behavior of phonons
to understand the optical properties of layered perovskites is addressed in this section, the
detailed analysis with experimental observations will be presented in Chapter 4.

1.4.2 Atomically thin halide perovskite nanowire (1D)

Beside the 3D and 2D counterparts, perovskite nanowires which are considered as one-
dimensional perovskites have been suggested to be an ideal candidate for the application on
photonic devices such as photodetectors, lasers, light-emitting diodes. Owing to their inher-
ent anisotropic structure and large surface ratio, they have better charge carrier transport,
lateral conductivity, and light propagation etc. Even though the application of perovskite
nanowires necessitates the profound understanding of the structure and dynamics of these
materials, due to their intrinsic instability, real-time investigation of the structure dynamics
of halide perovskite nanowire is challenging. Below, the study on the structural dynamics
of halide perovskite nanowires in atomically thin carbon materials is introduced, showing
experimental method, observation, and theoretical calculations, which is largely borrowed
from the work, J. Am. Chem. Soc. 145, 8, 4800-4807 (2023).

Understanding and visualizing dynamical processes in halide perovskite on the rele-
vant timescales is essential for fundamental knowledge and technological applications of
this emerging optoelectronic material [127, 130, 181, 63, 20]. It has been shown that in
halide perovskites, lattice fluctuations due to large ionic framework and stereochemically
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active electron lone pairs could contribute to the intriguing electronic properties, such as
dynamical dielectric screening [135, 144, 101, 59]. On a longer timescale, structural transfor-
mations such as ionic transport and phase transitions have led into new applications beyond
conventional optoelectronics [13, 178, 167, 41]. Although the high ion di↵usivity and rich
phase diagrams of halide perovskite are manifestation of the vitality of the halide perovskite
chemistry, these structural features also overshadow the commercialization of perovskite-
based devices that demand long term stability. Whereas the importance of the dynamical
characteristics of halide perovskite has been well appreciated, an atomic-level investigation
a↵ording temporal information is still missing.

In recent years, in situ transmission electron microscopy (TEM), equipped with a high-
speed electron camera, has been recognized as a powerful tool to capture real-time dynamics
at a single-particle level [222, 154]. With the sub-angstrom resolution imaging capability, in
situ TEM could resolve local, irreversible structural dynamics that are usually beyond the
reach of conventional laser spectroscopy, though the latter has a much better time resolution
[216, 97]. However, one of the most critical limitations of using the high-speed electron cam-
era to visualize fast chemical processes is its high electron dose rate [104, 153], which is well
above the tolerance level of biological, organic molecules and some inorganic materials, such
as halide perovskite [213, 217, 44, 156]. Moreover, to investigate nanoscale chemical pro-
cesses or local inhomogeneity in a material, it is necessary to thin the material to the length
scale of interest, which inevitably makes beam damage more pronounced [12]. Therefore,
atomic resolution imaging using in situ TEM is typically limited to beam-tolerant materials,
such as carbon allotropes [169, 95] or metallic nanoparticles [58, 89, 85], or reveals only
slower dynamics [207]. Because of the demanding dose condition, there have been few in
situ TEM studies on halide perovskite with high temporal and spatial resolution [37, 155].

To address this problem, in this work, a system that comprises single-unit-cell thick halide
perovskite nanowires encapsulated in carbon nanotube, suspended on graphene TEM grids,
is developed. The perovskite nanostructures synthesized with this method are remarkably
stable under various conditions (humidity, heating, and electron flux), which therefore pro-
vides the means to directly observe structural dynamics of a soft semiconductor lattice within
an in situ TEM. In terms of structural dynamics, due to the strong geometrical confinement,
the atomically thin 1D perovskite nanowires exhibit local and correlative features that are
overlooked by conventional characterizations techniques. Even though the experimental and
simulation details are not discussed in this thesis, the experimental observation with theo-
retical validation is presented in the order of static structural aspect, transient structural
dynamics, and simulational analysis.

For the static structural characterization, conventional TEM and scanning transmission
electron microscopy (STEM) characterization techniques were used to identify the structure
and phase of 1D perovskite nanowires. Interestingly, contrary to the bulk CsPbI3, whose
thermodynamically stable phase at room temperature is an edge-shared, non-perovskite
�-phase [183], at an atomically thin 1D geometry, the stable phase is the corner-shared
perovskite phase. From both annular dark-field STEM (ADF-STEM) and bright-field TEM
images, two typical orientations of the perovskite lattice are found. Compared with an ideal



CHAPTER 1. INTRODUCTION 9

Figure 1.6: Typical ADF-STEM images of 1D perovskite nanowires in di↵erent crystal-
lographic orientations, (a) viewed along [100], (b) viewed along [110]m, and (c) a peculiar
observation that within a single nanowire two segments display two di↵erent crystallographic
orientations. (d) Representative atomic-resolution TEM image of a segment of the nanowire.
(e) Time-series of TEM images of a single unit cell in the nanowire. (f) Real time trajec-
tories of cesium, lead, and iodine atoms within the 5-second timeframe (time interval is 53
millisecond). Figures are from Ref. [62].

cubic perovskite lattice, these two orientations resemble the atom arrangement viewed from
[100] and [110] directions, shown in Fig. 1.6(a) and (b). Even though the periodic structure
of the nanowires resembles the perovskite lattice, structural distortion is obvious. Instead of
having a cubic unit cell, the unit cell of the nanowires has a contracted cesium framework
and an expanded iodine framework by roughly 10% and 15%, respectively, compared to an
ideal cubic perovskite structure.

Besides the two typical crystallographic zone axes observed in di↵erent wires as men-
tioned above, some interesting but unexpected features also emerged during the acquisition.
Nanowires whose di↵erent segments display two orientations simultaneously are captured and
even the orientation of a nanowire changes from [100] to [110] as shown in Fig. 1.6 (c). As
typically STEM takes seconds for the electron beam to scan across the sample, the observed
nanowire twisting might be either due to the intrinsic torsional instability of 1D octahedral
structure [138] or because the nanowires were rotating during the acquisition time window,
implying that the 1D perovskite nanowires inside carbon nanotubes are not trivial structures
categorized as ordinary low-dimensional perovskite. Moreover, the dynamical details of the
1D perovskite are likely overlooked by slow acquisition methods, such as STEM. The atoms
or even the segments of nanowires undergo constant motion, leaving blurred or even missing
contrast in the acquired images. The di�culties by employing techniques with slow probes
to target at atomic resolution necessitate the re-evaluation of the structural understanding
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Figure 1.7: (a) Contrast line scan along the center of the nanowire segment. (b) Trajectories
of atoms overlaid to show the twisting e↵ect. Scale bars: 5Å. Figures are from Ref. [62].

of atomically thin perovskite and a proper technique to capture the intriguing dynamics.
To achieve the real-time observation of transient structural dynamics, transmission elec-

tron microscopes are used and owing to the stability of the encapsulated nanowires, a wide
range of electron dose rate can be applied to achieve both atomic resolution and a high
frame rate, while the sample integrity is maintained. The atomic sample thinness provides
the means to use the phase contrast mode to unambiguously resolve atomic structures with
time resolution unreachable by STEM as shown in Fig. 1.6 (d). Taking advantage of the time
resolution and reliable contrast interpretation, an atom tracing algorithm was performed to
track the time trace of every atom column in the nanowire segments. The coordinates of
atom columns and the atom species were determined for every frame in our time series ac-
quisition, and thereafter, the dynamical behaviors of the perovskite nanowires are recovered.
For the local dynamics, how the individual perovskite frameworks distort and vibrate around
their equilibrium positions is analyzed and described in Fig. 1.6 (e). From the trajectories of
cesium and iodine atoms, it is observed that the cesium atoms are relatively stable, and the
fluctuation of their coordinates is isotropic; however, spatial distributions of iodine atoms
are more anisotropic compared with cesium atoms (Fig. 1.6 (f)). The bridging iodine atoms
in the center line of the nanowire are more mobile than the terminating iodine atoms at the
edges of the nanowire. Owing to the di↵erent coordination environments of the iodine atoms,
iodine framework turns out to be more distorted compared with the framework composed
of cesium atoms.

Besides the local dynamics, nanowire rotations in situ are also captured. As discussed
earlier, when using STEM, the orientation of the nanowires could change during scanning.
With the fast electron camera and atom tracing algorithm, the nanowire rotation with a
better time resolution can be analyzed. For a nanowire segment, shown in Fig. 1.7 (a) the
contrast line scan of the center line which is shifted by half of the unit cell length. When
the nanowire is oriented along [100], the brightest atom contrast is attributed to the I-Pb-I
column, while when viewed along [110], the brightest atom contrast is attributed to the Cs-
I-Cs column. Because of the rotation from [100] to [110], the terminating halide will move
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Figure 1.8: Molecular dynamics siulation of the 1D perovskite nanowires confined in sin-
gle walled carbon nanotubes. (a) Snapshot of simulation on perovskite nanowire in carbon
nanotubes where red, orange, and blue atoms represent Pb2+, I�, and Cs+. (b) Probability
distribution of the distance between center lead atom and cesium (blue symbols), bridg-
ing iodides (orange symbols), and terminating (brown symbols) iodides in a unit cell. (c)
Representative time series of angles ⇥ between neighboring RPb�I vectors. (d) Time auto-
correlation function of RPb�I for bridging (orange symbols) and terminating (brown symbols)
iodides. (e) Probability density of atoms projected onto the plane along the nanowire for
iodides (red) and cesium atoms (blue) within a unit cell where darker color indicates higher
density.

closer to the center of the unit cell, while the cesium atoms on the corner of the unit cell will
move away from the centerline of the nanowire. The trajectories of the atom contrast in a
single unit cell are tracked and Fig. 1.7 (b) shows the trajectories overlaid to demonstrate the
real-time observation of the nanowire rotation. The direct observation of nanowire rotation
points to the intrinsic octahedral instability of perovskite [6], especially when octahedral
coordination constraints are relieved in lower dimensionalities.

To support the analysis on the underlying structure and dynamics of perovskite nanowires
in carbon nanotubes, we performed molecular dynamics simulations of a simple empirical
model [141]. We find that carbon nanotubes with a diameter of 1.39 nm stabilizes the
octahedral structure of the one-dimensional chain. The stoichiometry of the perovskite
nanowire studies was Cs3PbI5, where a Cs+ vacancy is introduced for charge neutrality. A
characteristic snapshot of the simulation is shown in Fig. 1.8 (a). Analogous to the inferences
from the TEM images, the simulations illustrate highly anisotropic fluctuations of the atoms
along the nanowire. This is quantified by evaluating the distributions of distances between
a central lead atom and the neighboring cesium, bridging, and terminating iodides (Fig. 1.8
(b)). In agreement with the experiment, the fluctuations away from equilibrium distance for
cesium atoms and terminating iodides are relatively symmetric whereas the distribution of



CHAPTER 1. INTRODUCTION 12

bridging iodides has a tail due to the stretching motions of Pb-I, consistent with that in Fig.
1.6 (f). Motivated by the rotations of nanowire captured experimentally, we also analyzed the
angle, ⇥, between a Pb-I unit vector RPb�I in a unit cell and another Pb-I unit vector in an
adjacent unit cellR0

Pb�I
using the relation of cos(⇥) =RPb�I ·R

0

Pb�I
. Figure 1.8 (c) shows the

representative time series of these angles, which shows that the unit cell routinely rotates by
roughly 90� and the rotation occurs in the timescale of few ns, much slower than the expected
vibrational timescale for atoms. To characterize the timescale of rotations, we computed time
auto-correlation function C(t) of RPb�I, defined as C(t) = hRPb�I(t) ·R0

Pb�I
(0)i. Figure 1.8

(d) illustrates C(t) for both types of iodides where the correlation related to bridging iodides
does not decay due to the fixed Pb-I-Pb orientation whereas the correlation associated with
terminating iodides slowly decays, indicating that the source of the loss of correlation is
from rotations of individual unit cells. Such rotations are thermally accessible in part due
to the distortions around the Cs+ vacancies. Static evidence of rotations is clear from the
probability density of atoms in a unit cell using coordinates projected onto the plane along
the nanowire. Shown in Fig. 1.8 (e) is the probability density of iodides and cesium atoms
where x and y axis represent the direction along and perpendicular to the nanowire. The
broad density of cesium atoms implies the rotation of unit cell and the contraction in cesium
framework observed in the experiments can be attributed to slightly shorter Cs-Cs distance
near the edges.

The comprehensive spatiotemporal description of 1D perovskite nanowires has directly
revealed the unprecedented dynamical structure of halide perovskite. Due to the geometri-
cal confinement of nanotubes, the 1D perovskite nanowires have maintained their structural
integrity under the high-dose acquisition conditions, permitting reliable real-time observa-
tion of the structural dynamics. The resilience of the structural fluctuations protected by
ultrathin carbon materials against the impinging electron flux suggests a new route for quan-
titative studies of the structural transformation (such as phase transition or ion di↵usion)
of low dimensional systems which are otherwise susceptible to e-beam damage.

1.4.3 Lead halide perovskite nanocrystal (0D)

Lastly, considered as zero-dimensional perovskite, perovskite nanocrystals are the subject of
great interest due to the unique photophysical properties of perovskites combined with the
controllable properties, whose remarkable optical and electronic properties make themselves
ideal for diverse applications [96, 143, 163]. To study the optical properties of materials
with large quantum confinement e↵ect where energy levels are more discrete and optical
band gap is wider, understanding the excitonic fine structure (FS) is important to assess
their suitability as quantum light sources. Below has the discussion on how size-dependent
lattice structure a↵ects the exciton fine structure of perovskite nanocrystals, which is largely
borrowed from the preprint, arXiv:2303.00707v1 (2023).

As just introduced, elucidating an exciton fine structure is an essential step in the appli-
cation of nanocrystals including quantum dots. However, unlike the systems with negligible
spin-orbit coupling where the electron and hole spins are decoupled from the spatial degrees
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of freedom, for materials like perovskites with significant spin-orbit coupling, the spatial and
spin degress of freedom are not separable. Further, it is known that the excited state prop-
erties of the perovskites are sensitive to the lattice structure, as the charge-lattice coupling
in these materials is significant [135, 134, 119, 161], implying the need of fully atomistic
theory to model the exciton fine structure of perovskite NCs which accounts for the lattice
distortion for a range of NC size. The mentioned work includes the detailed discussion on
how the Rashba e↵ect resulting from spin-orbit coupling and inversion symmetry breaking,
NC shape anisotropy, and lattice distortion a↵ect the splittings in exciton fine structure and
optical properties but in this thesis, it is mainly focused on how important including the
lattice distortion is to explain the splittings in exciton fine structure under various NC shape
anisotropy.

To fully understand the roles of the Rashba e↵ect and lattice symmetry, we must con-
sider the relaxed structure of perovskite NCs, especially including the lead halide framework
that contributes strongly to the valence and conduction band states. To do this, we use a
previously developed atomistic force field [15] to find the lowest energy configuration for a
series of CsPbI3 perovskite NCs shown in Figure 1.9(a). The bulk properties of this model
have been extensively validated [147, 109]. As the measurements of the exctionic FS occur
at cryogenic temperatures, these single minimized structures accurately represent the atomic
configuration of the NCs, and the e↵ects of lattice dynamics are not taken into account. The
relaxed structures can be compared to the bulk cubic and orthorhombic structures on the
basis of the average Pb-I-Pb bond angles. These are shown in Figure 1.9 (b) and reveal that
these relaxed structures lie somewhere between the cubic and orthorhombic structures. The
cubic structures have no octahedral rotation and therefore all bond angles are 180 degrees.
For the orthorhombic structures, the significant octahedral rotation leads to an average bond
angle of 154 degrees. The smallest relaxed structures take more cubic forms, but the larger
ones approach the orthorhombic configuration which is the stable bulk structure.

To quantify the extent to which the NC relaxation breaks crystal symmetries, we define
a lattice anisotropy parameter. It is defined by taking the average of the Pb-Pb distances
along each of the principal axes, and then finding the di↵erence between the direction with
the lowest average and the direction with the highest average. We plot this parameter
against NC size in Figure 1.9 (c). For the cubic structures, this is always zero, and for
the orthorhombic structures, the elongated z-axis gives a small constant anisotropy. The
small relaxed structures are highly symmetric so this anisotropy is near zero, but as the
size increases beyond 2 nm in size, octahedral rotations begin to emerge, which are not
uniform throughout the NC size. Significant deviation from the cubic crystal structure is
not unexpected, as although cubic phase QDs have been stabilized at room temperature
and somewhat below [219], the cryogenic temperatures at which the FS measurements take
place should favor the orthorhombic structure. The size-dependent e↵ect has been observed
experimentally [219], and is driven by a competition between surface energy and bulk phase
stability which had been previously explored using a continuum model [209]. The predicted
phase crossover around 2.7 nm aligns well with the region of highest lattice anisotropy. This
lends confidence to our ability to produce an atomistic description of complex structural
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Figure 1.9: (a) Relaxed structure of 1.9nm, 3.1nm, 4.4nm, and 5.7nm CsPbI3 NC cubes.
Cs atoms are shown in teal, I atoms in purple and Pb are shown as grey coordination
octahedra. (b) The average Pb-I-Pb bond angle and (c) The extent of lattice anisotropy
induced by the relaxation for cubic (blue squares), orthorhombic (green diamonds) and
relaxed (black circles) structures. (d) The standard deviation of the bright excitonic states
for the cubic (top), orthorhombic (middle) and relaxed (bottom) crystal structures. The
sizes of the symbols represent the sizes of the NCs along the x and y directions. The largest
symbols correspond to N = 6 and the smallest to N = 4.

behavior at the nanoscale. This size dependent e↵ect has not previously been considered
in the context of the exciton FS, and will play a crucial role in understanding the size
dependence of the FS splittings.

Obtaining the exciton FS from these relaxed NC configurations requires an electronic
structure method that is responsive to the atomistic detail of the material, although the
computational details including the details on the pseudopotential method used in this work
and the success of this method are not included in this thesis. In the perovskite materials
of interest, due to the fact that the conduction band is composed mainly of Pb-6p orbitals
which are strongly split by spin-orbit coupling and the valence band has s-type symmetry
which is not split by spin-orbit coupling, the resultant exciton structure has three bright
states above a dark ground state where bright states each have dipoles polarized along one
of the principal axes. For cubic structure, bright states are perfectly degenerate and any
deviation from the cubic structure will result in splitting among these bright states. In this
work, it is shown that the relaxation has little to no impact on the splitting between dark
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and bright states whereas it has a significant impact on the splitting among the bright states.
Shown in Fig.1.9 (d) is the standard deviation of the bright states for cubic (top), or-

thorhombic (middle) and relaxed (bottom) crystal structures as a function of aspect ratio,
indicating the e↵ect of NC shape anisotropy on the excitonic fine structure splittings which
is also observed experimentally [186]. Aspect ratio is defined as Z/N where N = 4, 5, 6 and
Z = 3, . . . , 8 in a series of NCs consisting of N ⇥ N ⇥ Z lead-halide octahedra. For the
NCs with cubic crystal structures, the bright-bright splitting is zero for cube-shaped crystals
where the aspect ratio is 1, and either adding or removing layers from such a NCs causes a
finite splitting. The NCs with an orthorhombic crystal structure show a significant degree
of bright-bright splitting at all aspect ratios, consistent with e↵ective mass theories [72].
The relaxed structures show a unique behaviour with significant bright-bright splittings at
aspect ratios less than 1, but a small and nearly constant splitting for aspect ratios larger
than 1. This behaviour may result from surface relaxation e↵ects that become more dom-
inant for plate-like geometries. As single NC measurements remain extremely challenging,
understanding the exact impacts of NC shape anisotropy is still an experimental challenge.

In conclusion, the exciton FS for lead-halide perovskite NCs is calculated using a fully
atomistic theory to obtain relaxed NC crystal structures and the electronic states of these
relaxed NCs. The structural relaxation reveals the NC size dependent structural transition
which is previously predicted in atomistic detail. This atomistic theory would be able to dis-
cern the causes and nature of a Rashba e↵ect and shows the impact of NC shape anisotropy
and size-dependent structural transition. In other words, in this section, the lattice e↵ect
on one of static optoelectronic properties, exciton fine structure, is addressed, and the ef-
fect of fluctuating lattice on one of optical properties of perovskite nanocrystals, biexciton
interaction, will be briefly presented in Chapter 5.
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Chapter 2

Systematic study of lattice e↵ect on

excitonic properties

In this chapter, we employ quasiparticle path integral molecular dynamics to study how the
excitonic properties of model semiconductors are altered by electron-phonon coupling. We
describe ways within a path integral representation of the system to evaluate the renormal-
ized mass, binding energy, and radiative recombination rate of excitons in the presence of a
fluctuating lattice. To illustrate this approach, we consider Fröhlich-type electron-phonon in-
teractions and employ an imaginary time influence functional to incorporate phonon-induced
e↵ects nonperturbatively. The e↵ective mass and binding energies are compared with pertur-
bative and variational approaches, which provide qualitatively consistent trends. We evaluate
electron-hole recombination rates as mediated through both trap-assisted and bimolecular
processes, developing a consistent statistical mechanical approach valid in the reaction lim-
ited regime. These calculations demonstrate how phonons screen electron-hole interactions,
generically reducing exciton binding energies and increasing their radiative lifetimes. This
chapter is based on previously published work, J. Chem. Phys. 157, 104116 (2022).

2.1 Introduction

The application and design of photovoltaic devices rely on understanding the photophysics of
semiconducting materials. Recent studies into novel low dimensional and hybrid perovskite
semiconductors have highlighted the need to incorporate e↵ects of a fluctuating lattice on
the stationary behavior of excitons, moving away from the traditional perspectives in which
screening is presumed to be largely determined by electronic degrees of freedom.[195, 190,
125, 110, 161, 188, 189] While the study of electron-phonon coupling for free charges has a
long history, including foundational studies on polarons,[57, 103, 79, 50, 56, 6, 127, 39] there
is comparatively little known concerning the e↵ects of electron-phonon coupling on excitonic
properties. Motivated by observations that suggest polaronic e↵ects play an important role
in renormalizing exciton mobilities,[119] binding energies, recombination rates [203, 180]
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and photoluminescence yields [28] , we aim to fill this knowledge gap. In this work, we
explore the e↵ects of phonons on the excitonic properties of traditional and hybrid perovskite
materials using a path integral approach. Working within a Fröhlich model Hamiltonian,[57]
we evaluate numerically exactly the role of phonons, finding that they generally reduce
exciton binding energies and increase radiative lifetimes.

The static properties of excitons determine the power conversion e�ciencies of photo-
voltaics, the quantum yields for light emission and more. Predicting these properties from
molecular models is an area of active development.[66] Most widely used approaches build
upon ground state density functional theory, employing corrections from many-body physics
including the GW approximation and Bethe-Salpeter equations.[75, 3, 152] These and related
approaches[202] have been successful for a wide range of semiconducting materials [53, 114]
However, these theories traditionally ignore dynamical e↵ects from phonons, as including
them within this framework beyond is challenging. While historically, analytical approaches
based on model Hamiltonians have been developed,[70, 142, 1] recent e↵orts have focused
on numerical methods to describe the e↵ects of phonons approximately.[54, 173, 172, 162]
While these approaches leverage powerful ab initio many body theories, they have been lim-
ited in the strength of the electron phonon coupling that can be considered and the time
and lengthscales approachable.

Here, we present a path integral approach for describing electron and hole quasiparti-
cles interacting with phonons. Analogous quasiparticle path integral approaches have been
utilized to describe photoinduced phase separation [13, 109, 14] , charge trapping [150, 24]
, and charge recombination [135] , as well as confinement e↵ects.[171] We can derive an
imaginary time influence functional, allowing us to incorporate dynamical and quantum me-
chanical e↵ects of phonons within a harmonic approximation. To sample the resultant theory,
we apply path integral molecular dynamics (MD) and study how electron-phonon coupling
renormalizes the band mass, exciton binding energy, and electron-hole recombination rate
for Fröhlich-type interactions between electron and hole quasiparticles and phonons. In the
followings, we first introduce the general overview of path integral framework and elaborate
theoretical details of path integral approach applied to exciton with phonons, and present
how to calculate each property within this framework followed by the discussion on the
e↵ects of phonons.

2.2 Path integral molecular dynamics

In quantum mechanics, the fundamental interest is to study how the system evolves with
time. The usual approach is by solving di↵erential wave equation, called the Schrödinger
equation, which is about the time evolution of the wave function which encodes the informa-
tion of the system. One of other ways to tackle this question is to answer the question of how
likely the state evolves from one state a to the other state b after time t by computing the
probability amplitude. The idea of path integral approach is to sum over all possible paths
which satisfy the condition of starting at a and ending at b after time t, mostly formulated
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by Richard Feynman [51, 52, 193].
The mathematical formulation of path integral approach can start from writing the prob-

ability amplitude using canonical density matrix ⇢̂, which is related to the quantum mechan-
ical propagator e�iĤt/h̄ in imaginary time t = i�h̄ through Wick rotation. The probability
amplitude for a single particle with the Hamiltonian Ĥ = K̂+V̂ in the position representation
for convenience is given by,

⇢̂(xa, xb; �) = hxb|e
��Ĥ

|xai = hxb|e
��(K̂+V̂)

|xai (2.1)

where K̂ = p̂
2
/2m and V̂ are kinetic and potential energy operators and � = 1/kBT with the

Boltzmann constant kB, temperature T , and the mass of a quantum particle m. Since these
two operators do not commute, the approximation called symmetric Trotter factorization
should be made as follow

e
��(K̂+V̂)

⇡ e
��

V̂
2 e

��K̂
e
��

V̂
2 (2.2)

where the corresponding error scales by �
3, implying that this formalism becomes more

accurate in the high temperature limit. At low temperature, the corresponding error can
be compensated by splitting the Hamiltonian, i.e. e

��Ĥ =
⇣
e
��Ĥ

⌘
n

with n as the number

of discretization. Then the overall error of this approximation goes by �3
/n

2 given the fact
that the error from each piece scales by (�/n)3 and there are n same pieces where path
integral framework becomes exact in the limit of large number of discretization, i.e. n ! 1.
The analytic expression of the density matrix can be simplified by inserting the resolution
of identity in the position representation into every neighboring terms as follows

⇢̂(xa, xb; �) = lim
n!1

Z
dxn�1 . . .

Z
dx2

Z
dx1 hxb|⌦̂|xn�1i . . . hx2|⌦̂|x1ihx1|⌦̂|xai (2.3)

where ⌦̂ refers to the right hand side of Eqn. 2.2 with Hamiltonian divided by the number
of discretization. Assuming that the potential energy operator depends only on the position,
the each matrix element becomes

hxi+1|⌦̂|xii = hxi+1|e
��

V̂
2n e

��K̂/n
e
��

V̂
2n |xii = e

��
V(xi+1)
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2n (2.4)
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2n
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dp e
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2
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�

mn
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2

(2.7)

where the resolution of identity in the momentum representation is inserted in the second
line and the relation of 2⇡h̄hx|pi = e

ipx/h̄ is used in the third line. Combining the analytic
expression for all the matrix elements, the amplitude becomes

⇢̂(xa, xb; �) = lim
n!1

 
mn

2⇡�h̄2

!
n/2 Z

dxn�1 . . .

Z
dx1 e

�S[{xi}]/h̄ (2.8)
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Figure 2.1: Possible paths of a particle from x to x
0 for a case of (a) x 6= x

0 and (b) x = x
0.

where the descritized path action S[{xi}] is defined as

S[{xi}] =
n�1X

i=0

mn

2�h̄
(xi+1 � xi)

2 +
�h̄

2n
(V(xi) + V(xi+1)) (2.9)

with xa = x0 and xb = xn and possible paths are schematically shown in Fig. 2.1(a).
Accordingly, the corresponding partition function Q is given by

Q(�) = Tr
⇣
e
��Ĥ

⌘
=
Z

dx ⇢̂(x, x; �) =
Z

D[x] e�S[{xi}]/h̄ (2.10)

with the compact notation for the integration over all variables written below

Z
D[x] = lim

n!1

 
mn

2⇡�h̄2

!
n/2 Z

dxn . . .

Z
dx1 (2.11)

where x is replaced by xn for the completeness. In this case, since only diagonal elements
of the density matrix are used, the resultant path forms a closed path as described in Fig.
2.1(b). Two things to note are, first, in the continuum limit, by defining d⌧ = �h̄/n, the
path action shown in Eqn. 2.11 turns into

S[x(⌧)] =
Z

d⌧
mẋ(⌧)2

2
+ V(x(⌧)) (2.12)

whose stationary path, i.e. �S = 0, is referred to the classical path. Second, we can define
the e↵ective classical Hamiltonian Hcl = S[{xi}]/�h̄ which encodes the same statistical
ensembles as a quantum particle represented by the quantum mechanical partition function
defined in Eqn. 2.11, explicitly written as,

Hcl =
n�1X

i=0

mn

2�2h̄
2
(xi+1 � xi)

2 +
1

n
V(xi) (2.13)
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Figure 2.2: Schematic of the Feynman quantum-classical isomorphism showing that there is
an equilibrium mapping from a quantum mechanical particle to a set of classical particles in
an extended space.

where the corresponding system looks like a ring polymer whose beads are coupled harmoni-
cally with the specific spring constants and each bead feels the fraction of the potential. This
mapping from a quantum mechanical particle to the set of classical particles is called the
Feynman quantum-classical isomorphism, schematically shown in Fig. 2.2. The first term in
the right hand side of Eqn. 2.13 is for the quantum kinetic energy and from the spring con-
stant, we can expect that at low temperature or with small mass, the beads are delocalized
due to the small spring constant whereas at high temperature or with large mass, sti↵ spring
constant makes the ring polymer like a dot, consistent with the classical limit. To perform
molecular dynamic simulation of a quantum particle, fictitious momenta for the beads can
be inserted using the following identity

 
m

0
n

2⇡�h̄2

! 1

2

=
1

2⇡h̄

Z
dp e

��
p2

2m0n (2.14)

wherem0 is called an fictitious mass which doesn’t a↵ect the static thermodynamic properties
of a ring polymer. A simulation method based on the e↵ective Hamiltonian defined by Eqn.
2.13 with fictitious momenta is called path integral molecular dynamics (PIMD) [25, 22].

The path integral formalism for a single quantum particle discussed above can be gen-
eralized for the multiple quantum particles. If there are more than two indistinguishable
quantum particles, exchange correlation should be taken into account, which is known as a
quantum mechanical e↵ect that only occurs between the same particles. Since the energy
and probability density of particles remain the same but the sign of the wave function can
change on the permutation of two identical particles, all particles can be divided into two
classes where bosons and fermions are referred to particles whose wave functions are sym-
metric and antisymmetric under particle interchange, respectively. Path integral is known as
a non-perturbative method for studying correlated quantum particles without the knowledge
of wave functions at finite temperature.

With two indistinguishable particles, which is the simplest example, the partition function
is defined as the integral of the diagonal element of the corresponding density matrix element
over all possible position space.

Q
0 =

Z
dx hx|e

��Ĥ
0
|xi (2.15)
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Figure 2.3: Pictorial description of two di↵erent paths in the system of two indistinguishable
particles.

where the notation 0 represents the quantity relevant to two particle system and even though
it is not explicitly defined, H0 is the Hamiltonian which includes kinetic energy terms for
two particles and potential energy term with only position dependence as discussed above.
Due to the symmetry condition, the position state of the system can be expanded as follows

|xi =
1
p
2
(|x1x2i± |x2x1i) (2.16)

for bosons(+) or fermions(�) where the factor of
p
2 in the denominator is for normalization

and particles are labeled as 1 and 2. Plugging the above Eqn. 2.16 into Eqn. 2.17, the partition
function

Q
0 =

Z
dx1

Z
dx2 hx1x2|e

��Ĥ
0
|x1x2i± hx1x2|e

��Ĥ
0
|x2x1i (2.17)

has two terms. Pictorially described in Fig. 2.3, in the first term, each particle forms a
separate closed path whereas in the second term, the endpoints are flipped, tying two paths,
which is called as an exchange term, purely quantum mechanical e↵ects arising from the
symmetry. For the analytic expression, following the same procedure shown above, the
partition function with the corresponding path action S

0 can be compactly written as

Q
0 =

Z
D[x1]

Z
D[x2] e

�S
0
[{x1i,x2i}]/h̄

h
perm(Ã) or det(Ã)

i
(2.18)

for bosons or fermions. The notation perm and det stands for permanant and determinant
with matrix Ã given by

Ãij = Aij/Aii , Aij = exp

"

�
mn

2�2h̄
2
(xn

i
� x

1

j
)2
#

(2.19)

where the subscript is the particle index and the superscript is the index for the bead within
each particle [22, 151, 123, 124]. For bosonic system, since all the terms are positive, the
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numerical calculations are somewhat tractable whereas for fermionic systems, due to the
subtraction between largely fluctuating exponential terms as expected from the definition of
determinant, the convergence of numerical calculations are challenging, known as fermion
sign problem. Even though the system of two indistinguishable quantum particles is taken
as an example, this path integral formalism can be generalized to the system with many
particles. In this thesis, even with multiple number of particles, only distinguishable particles
are considered.

2.3 Theory

We consider a system composed of an electron and hole interacting with a field of phonons,
whose e↵ective Hamiltonian consists of three parts,

Ĥ = Ĥeh + Ĥph + Ĥint (2.20)

a part due to the electronic degrees of freedom, Ĥeh, a part from the lattice, Ĥph, and their
interaction, Ĥint. The electronic part includes the kinetic energies of an electron and a hole
and a Coulomb interaction

Ĥeh =
p̂
2

e

2me

+
p̂
2

h

2mh

�
e
2

4⇡"r|x̂e � x̂h|
(2.21)

where p̂ and x̂ are momentum and position operators of a quantum particle, "r is the
dielectric constant in units of the vacuum permittivity "0, and the subscript e and h indicate
electron and hole. The masses me and mh are taken as their corresponding band masses
using an e↵ective mass approximation. This simplification can be relaxed by parameterizing
more elaborate kinetic energy functions with position dependent masses.[171]

The lattice is described by a collection of harmonic modes

Ĥph =
1

2

X

k

(p̂2

k + !
2

kq̂
2

k) (2.22)

where p̂k and q̂k are the mass weighted momentum and coordinate of a phonon at wave
vector k. Without loss of generality, we will take the frequency of the oscillators to be
constant !k = !, and equal to the longitudinal optical mode. While previous work has
illustrated the importance of including additional modes or their wave-vector dependence in
specific materials,[162, 135] we neglect these e↵ects here in order to benchmark the approach
to a simplified model. Even though we have focused on a simplified model whereby the
electron and hole are coupled to a single optical phonon through a linear Fröhlich coupling,
the influence functional formalism employed can be generalized for generalizations for more
complex lattice models where multiple dispersive modes are relevant. For many modes, the
classical Hamiltonian entering into the path action can be written as
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Hph =
1

2�h̄

Z
�h̄

⌧=0

X

k

(q̇2

k,⌧ + !
2

kq
2

k,⌧ ) (2.23)

where qk,⌧ is the classical displacement of the k mode at imaginary time ⌧ , and !k is its
corresponding frequency. For a generalized linear coupling between the charge density and
the lattice of the form

Hint =
1

�h̄

Z
�h̄

⌧=0

X

k

qk,⌧
Ce,ke

ik·xe,⌧ � Ch,ke
ik·xh,⌧

k
(2.24)

where Ce/h,k are generalized coupling coe�cients, the phonons can still be integrated out.
This yields an e↵ective potential between the electron and hole of the form

H
ij

e↵,⌧
= �

�ij

2�h̄

X

k

Z
�h̄

⌧ 0=0

Ci,kC
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j,k

e
�ik·|xi,⌧�xj,⌧ 0 |

k2
�k(⌧ � ⌧

0) (2.25)

where �k(⌧ � ⌧
0) = hqk(0)qk(⌧ � ⌧

0)i is the imaginary time correlation function of mode qk.
In Fourier space, the correlation function is given by

�k(!) =
1

!2 + !
2

k

(2.26)

a sum of poles. In the classical limit, �h̄!k ! 0, this influence functional returns a Coulomb
potential screened by a wavevector dependent dielectric susceptibility.[135]

We adopt a Fröhlich-type interaction [129, 57] between the charges and the phonons,
where a charged particle interacts linearly with the polarization field produced by a lattice
vibration,

Ĥint =
X

k

q̂k
Cee

ik·x̂e � Che
ik·x̂h

k
(2.27)

where q̂k corresponds to the polar displacement field that the charge can be coupled to along
the k direction. The strength of the coupling is set by a material specific constant

Ci = �ih̄!

✓
4⇡↵i
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◆ 1

2

 
h̄

2mi!

! 1

4
✓
2!

h̄

◆ 1

2

(2.28)

where i indicates either electron or hole, V is the volume of the system, h̄ is Plank’s con-
stant divided by 2⇡ and ↵ is a dimensionless Fröhlich coupling constant [129]. To study this
system we employ a path integral formalism [51, 52] which allows us to describe the corre-
lated behavior of the electron, hole, and phonons quantum mechanically and on an equal
footing.[25] The partition function of the system can be written as

Z =
Z

D[xe,xh,qk] e
�S[xe,xh,qk] (2.29)
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where the path action S is defined as

S =
1

h̄

Z
�h̄

⌧=0

Heh,⌧ +Hph,⌧ +Hint,⌧ (2.30)

with the imaginary time variable ⌧ , and ��1 = kBT . The Hamiltonian indexed by ⌧ repre-
sents the classical counterpart of Eqs. 2.21-2.27 at given ⌧ where p̂ and x̂ are replaced by p⌧

and x⌧ for each quasiparticle.
Considering that the phonons act as a Gaussian field coupled linearly to the charge

density, the phonon variables {qk} can be integrated out [135, 51], yielding

Z = Zph

Z
D[xe,xh] exp

"

�
1

h̄

Z
�h̄

⌧=0

Heh,⌧ +He↵,⌧

#

(2.31)

with Zph the partition function of phonons without the charge. The resulting e↵ective
Hamiltonian at a given ⌧ can be written as a sum of four pieces

He↵,⌧ =
X

i,j2{e,h}

H
ij

e↵,⌧
(2.32)

with

H
ij

e↵,⌧
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↵ij!
2
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�h̄

⌧ 0=0
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|xi,⌧ � xj,⌧ 0 |
(2.33)

where ↵ij =
p
↵i↵j, mij =

p
mimj, and �ij is +1/�1 for the same/opposite charges. We have

used the inverse Fourier representation of k�2 with the equation for Ci/j given in Eq. 2.28.
In order to use these results computationally, we discretized the imaginary time interval into
n slices. In this discrete formulation, the e↵ective Hamiltonian H = Heh +He↵ becomes

Heh =
X

i,t

min

2�2h̄
2
(xi,t � xi,t+1)

2
�
X

t

e
2

4⇡"rn|xe,t � xh,t|
(2.34)

where we denote the last sum HC and

He↵ =
X

i,j

H
ij

e↵
= �

X

i,j

X
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�ij
↵ij�h̄

5/2
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2
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8mij!

e
�

�h̄!
n |t�s|

|xi,t � xj,s|
(2.35)

where i, j 2 {e, h} and t, s 2 [1, n]. The number of timeslices, or beads, is a convergence
parameter that needs to be taken large for accuracy.[76]

In the path integral framework, Eq. 3.8 implies that electron and hole quasiparticles are
represented as classical ring polymers[22] consisting of n identical beads, where adjacent
beads are harmonically coupled and beads with the same index from electron and hole
are interacting through a fraction of Coulomb potential. Additionally from Eq. 2.35, the
e↵ective energy induced by phonons depends on the positions of two di↵erent imaginary
times, represented as the interaction between beads, and the sti↵ness of phonons sets the
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Figure 2.4: Illustration of imaginary time paths without (top) and with (bottom) phonon
e↵ects where black dotted lines represent a bare Coulomb attraction, red and blue dotted
lines describe the induced attractive self-interaction for the electron and hole, respectively,
and the green dotted lines represent the e↵ective screened interaction due to the dynamic
phonons.

decaying imaginary timescale. In this way, we employ an imaginary time influence functional
formalism which is shown schematically shown in Fig. 2.4. Two e↵ects from the phonons
are clear from this picture. First, individual charges are localized by the phonons due to the
induced attractive self-interaction. Second, the electron-hole interaction is weakened due to
the induced repulsion, which is a reflection of phonon screening. The implications of these
two e↵ects are explored below.

2.4 Simulation details

To study the utility and e�ciency of this approach, we consider models motivated by CdS
and MAPbI3, whose material properties are in di↵erent regimes of band mass and electron-
phonon coupling strength. CdS is a traditional II-IV semiconductor where the material
specific Fröhlich coupling constant ↵ is small, 1.3, and the band mass of the hole is much
heavier than the mass of electron. For MAPbI3, a lead-halide perovskite, the electron and
hole have nearly the same band mass and the coupling strength is intermediate ↵ = 2.87.
For the purpose of this paper, since we aim to use the path integral method to study the
general e↵ects of electron-phonon coupling, we will ignore the anharmonic corrections from
the lattice which can be important in determining the optoelectronic properties of these
materials [188, 203, 180, 28, 135]. Parameters used in simulations are summarized in Table
2.1.

For both materials, we use MD simulations to sample the e↵ective actions with fictious
masses for the beads kept at 1 amu, and we study the renormalization of the e↵ective mass,
exciton binding energy, and recombination rate due to electron-phonon coupling. For the
e↵ective mass calculations, Hee

e↵
defined in Eq. 2.35 is used as the system Hamiltonian and
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Parameter (unit) CdS MAPbI3

electron band mass me (m0) 0.19 [19] 0.20 [29]

hole band mass mh (m0) 0.80 [19] 0.20 [29]

optical frequency ! (THz) 9.14 [32] 7.53 [166]

dielectric constant "r ("0) 5.7 [19] 6.1 [29]

band gap Egap (eV) 2.58 [19] 1.64 [146]

Fröhlich constant ↵e (-) 1.3 2.87

Table 2.1: Simulation parameters for CdS and MAPbI3 where m0 is a bare mass of electron,
"0 is the vacuum permmitivity, and the Fröhlich constant for a hole can be calculated by

↵h = ↵e

q
mh/me.

for the other two properties, we run simulations of an electron-hole pair described as two
ring polymers where one has a unit negative charge for an electron and the other has a unit
positive charge for a hole with the Hamiltonian H = Heh+He↵ given in Eq. 3.8 and Eq. 2.35.

To avoid the divergence in the 1/|x| term between attractive beads, a pseudopotential
is used where 1/|x| is replaced by (r2

c
+ x

2)�1/2 and rc is chosen to reproduce the band gap
of each material [164]. Simulations are run in an ensemble with constant volume, particle
number and temperature using a Langevin thermostat where the total momentum averages
to zero with integration time step 1.0 fs and at room temperature unless explicitly specified,
using the LAMMPS[141] package. For the following sections, we present a way to compute
each property within the path integral framework followed by the discussion on the e↵ects
from phonons where ↵ serves as a control parameter for the interaction strength between
charges and phonons.

2.5 E↵ective mass

To validate the path integral framework, we first study the e↵ective mass, for which signif-
icant previous analysis has been undertaken.[52, 93] Since the presence of a charge induces
a distortion to the lattice, motion of the charge requires moving the corresponding distor-
tion field, renormalizes the mass of the charge, making it heavier. Within the path integral
framework, since the e↵ective mass is a momentum-dependent quantity, an inverse e↵ective
mass can be computed with an open-chain ring polymer in the low temperature limit as [92,
93]

1

m⇤
= lim

�!1

h(�r)2i

3�h̄2
(2.36)
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Figure 2.5: Inverse e↵ective mass with phonons m
⇤

↵
relative to the band mass m

⇤

0
as a

function of coupling strength ↵. Red/blue symbols represent the results for an electron/hole
quasiparticles with di↵erent number of beads n. Black solid line and circles are the results
predicted from first order perturbation theory and Feynman’s variational approach [115].
Inset figure is simulation snapshot for the schematic of �r where red and blue represent the
first and the last beads.

where h..i denotes ensemble average and �r is the distance between the first and the last
beads, schematically shown in Fig. 2.5 inset.

For simplicity, a Feynman unit system where kB = h̄ = ! = m = 1 is used in this
calculation. Given that Eq. 2.36 is valid at low temperature, we tune the temperature and
pseudopotential parameters and set kBT/h̄! = 0.02 and rc = 0.0707 which are low and small
enough for the convergence of our results. Figure. 2.5 describes the inverse e↵ective mass of
electron and hole quasiparticles of CdS at di↵erent ↵ where each point is the value averaged
over 20 ensembles from simulations performed in constant volume, particle number, and
temperature. We find that the lighter mass and the stronger coupling require larger number
of beads to converge. The results from path integral approach are consistent with the value
predicted from first order perturbation theory for small ↵ [39],

m
⇤

0

m⇤
↵

= 1�
↵

6
(2.37)

shown in Fig. 2.5. The calculations are consistent with Feynman’s variational approach[115]
which is known as the most accurate solution across ↵, demonstrating the validity of this
framework and the n required for convergence at various ↵.
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2.6 Exciton binding energy

Within the path integral framework, we capture the full correlation energy between the
electron and hole quasiparticles, allowing us to compute accurate exciton binding energies.
Here we show how electron-phonon coupling alters the binding energy. We compute the
exciton binding energy from the average energy of exciton [160]

hEi = �
@

@�
ln
Z
D[xe,xh] e

��H (2.38)

resulting in two pieces, the average kinetic energy hEiK and the average potential energy
hEiP. For the kinetic energy, since the relevant terms produced by Eq. 2.38 diverge as
n ! 1, we use a virial estimator [76], which is known as an e�cient way to estimate the
kinetic energy in path integral simulations to avoid the large fluctuations from the subtraction
of two diverging terms. Using the derivative of potential energy, the average kinetic energy
can be written as

hEiK = 3kBT +
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(2.39)
and the average potential energy becomes

hEiP = hHCi+
X

i,j2{e,h}

2hHij

e↵
i � hH

ij

e↵
i
0 (2.40)

where hHij

e↵
i
0 is defined as hHij

e↵
i given by Eq. 2.35 with an additional factor of �h̄!|t� s|/n

inside the summations with respect to t and s.
The exciton binding energy is the energy threshold for an optical absorption between

conduction and valence bands and thus traditionally reported in the low temperature limit.
To evaluate it, we compute the average energy di↵erence between the exciton and separately
the electron and hole, at di↵erent temperatures and extrapolate to zero temperature, EB =
limT!0hEiex � hEie � hEih. The subscript ex denotes an average with both electron and
hole, while e/h refers to calculations of the self energies of the electron/hole where the of
quasiparticles interacts only with surrounding phonons.

Figures 3.3 (a) and (b) show the average energy di↵erence at di↵erent temperatures for
CdS and MAPbI3. In both cases, we consider ↵ = 0 and compare to ↵ > 0, and find that
n = 200 is large enough to converge the result. The extrapolated exciton binding energies are
summarized in Table 2.2. We find that exciton energy becomes lower at high temperature,
reflective of the higher population of phonons to stabilize the free charges. Also, as the
electron-phonon interaction becomes stronger, the exciton binding energy becomes smaller,
implying that the phonons screen the e↵ective electron-hole interaction.

For the results without phonons, ↵ = 0, we compare our path integral simulations with
binding energies from the Wannier-Mott exciton [212] which is equivalent to our system.[9]
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Figure 2.6: Average energy di↵erence computed from path integral simulations at di↵erent
temperatures and coupling strength ↵ for (a) CdS and (b) MAPbI3 with 200 beads. Solid
lines are linearly fitted lines.

The exciton binding energy is computable exactly and given by E
H

B
= µe

4
/2(4⇡"r)2h̄

2 with
µ = memh/(me+mh) as the reduced mass of exciton. Calculated hydrogenic binding energies
are 64.3 meV and 36.6 meV for CdS and MAPbI3, consistent within a few meV with our
values in both materials, showing the robustness of the calculation with the path integral
framework. In the presence of electron-phonon interaction with nonzero value of ↵, we
compare the binding energies from the corresponding coupling strength, ↵ = 1.3 for CdS, and
↵ = 2.87 for MAPbI3, with the prediction from perturbation theory and Pollmann-Buttner
theory [142]. For CdS we interpolated the results in Table 2.2. The approximated di↵erences
in binding energies from the first order perturbation theory, �E

F

B
= EB,↵=0 � EB,↵ 6=0 ⇡

�2↵h̄!, are 15.7 meV and 28.5 meV for CdS and MAPbI3, which are higher than our
results, 14.4 meV for CdS and 14.8 meV for MAPbI3. Pollmann-Buttner theory results from
a canonical transformation of the original Hamiltonian, which in the weak electron-phonon
coupling limit provides an e↵ective potential between the electron and hole. In order to
compare our exciton binding energies,[142] we parameterize an e↵ective potential of the
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CdS ↵ 0.0 0.53 1.5 3.0

EB (meV) 70.8 65.0 54.3 37.4

MAPbI3 ↵ 0.0 2.87 - -

EB (meV) 40.6 25.8 - -

Table 2.2: Calculated exciton binding energy EB for CdS and MAPbI3 under di↵erent cou-
pling strength.

form, whose detailed derivation is described in Chapter 3,

Ve↵(r) = �
e
2

4⇡"sr
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e
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4⇡"⇤�mr

⇣
mhe

�r/Rh �mee
r/Re

⌘
(2.41)

where �m = mh � me, 1/"⇤ = 1/"r � 1/"s, Re/h =
q
h̄/2me/h! with a static dielectric

constant "s, which is taken to be 8.9 and 24.1 for CdS and MAPbI3. We solve the time
independent Schrodinger equation using this potential in the relative coordinate system for
the electron and hole, reh. This takes the form

�
h̄
2

2µ
r

2
�n(reh) + Ve↵(reh)�n(reh) = En�n(reh) (2.42)

where En and �n(reh) are the associated eigenvalues and eigenvectors. Solving this equation
for the ground state with zero angular momentum simplifies this to putting the equation on
a real space grid on reh, which yields the exciton binding energies as 41.3 meV and 16.7 meV
for CdS and MAPbI3, lower than results from the path integral simulations. We suspect
the di↵erences are attributed to the neglect of charge density relaxation due to hybridization
with the phonons in perturbation theory and Pollmann-Buttner theory. This is likely a larger
e↵ect in MAPI3 because of the equal masses of the electron and hole renders phonon screening
at short distances a higher order process. Considering the fact that the anharmonicity from
the lattice is not taken into account, the path integral estimates of the binding energies are
in reasonable agreement with typical experimental values, of 28 meV[192] and 16 meV[77]
for CdS and MAPI3.

2.7 Electron-hole recombination rate

We now investigate the electron-hole recombination rate, which typically dominates the life-
time of charge carriers in bulk semiconducting materials.[66] It has been generally accepted
that charge carrier recombination can be divided into three di↵erent mechanisms [77, 203].
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Figure 2.7: Schematics of S0 and Sc where two separate paths (top) are combined at some
imaginary time i to form a combined radiating path (bottom).

The first is trap-assisted recombination where one charge carrier is trapped by a defect or
impurity and then recombination occurs from the trap state. The second is due to bimolec-
ular recombination where an electron in the conduction band is combined with a hole in
the valence band, which is a predominant radiative pathway for direct semiconductors under
standard operating conditions.[86] Finally, Auger recombination in which electron and hole
are recombined through an energy transfer to other charge carriers or phonons is yet a higher
order process. While Auger recombination can be important in nanocrystals, it is typically
negligible in bulk materials.[139, 140]

All the mechanisms described above contribute to the recombination process but depend-
ing on the concentration of charge carriers, the dominant pathway varies. At low density,
trap assisted recombination will dominate and at high density, Auger recombination will
matter. In this work, we assume that the contribution from Auger recombination is small
and consider the first and second order recombination processes. For a charge neutral system
the electron and hole concentrations are equal ⇢e = ⇢h, and the rate equation is given by

d⇢e

dt
= �km⇢e � kb⇢

2

e
= �ktot⇢e (2.43)

where km/b is the rate constant for trap-assisted/bimolecular recombination process with ktot

as the overall rate constant.
Independent of the mechanism, the radiative recombination rate of an electron-hole pair

within the path integral framework is given by [205]

kr =
e
2
p
"rE

2

gap

2⇡"0h̄
2
c3µ

Zc

Z0

(2.44)

originating from Fermi’s golden rule for spontaneous emission under our e↵ective mass ap-
proximation, where c is the speed of light and Egap is the band gap energy. Other parameters
for CdS and MAPbI3 are summarized in Table 2.1.
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The rate in Eq. 2.44 is proportional to a ratio of partition functions whose subscripts
0 and c indicate the standard thermal trace and the trace for a radiating path where two
separate imaginary time paths for quasiparticles are combined at a common imaginary time
schematically shown in Fig. 2.7. This ratio is identical to a thermally averaged overlap
integral between the electron and hole densities. The partition functions are related through

Zc = Z0

Z
D[xe,xh]

e
�S0

Z0

e
�Sc+S0 = Z0

D
e
�S
E

0
(2.45)

where �S is the change in path action. It is convenient for sampling purposes to rewrite
this average using a conditional probability representation,

P (�S) =
Z

dRP (�S|R)P (R) (2.46)

so that the ratio in the dilute limit can be written as
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where R is the vector between electron and hole ring polymers, represented by �F (R) =
� lnP (R) a free energy for changing their distance. The di↵erence in path actions is equal
to
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for going between the thermal and radiating paths. The first two terms correspond to S0,
and Sc is given by the last term, and the index of beads for the combined coordinates {xc}

is schematically described in Fig. 2.7. In the following, we present the details on simulations
and discussions on trap-assisted and bimolecular recombination rates, and combine these
two to estimate a total rate constant. In both, we assume that recombination is not limited
by di↵usion of the charge carriers, so that a local equilibrium distribution is established for
the relative positions of electrons and holes. For both, we will evaluate the rate at room
temperature T = 298K.

2.7.1 Trap assisted recombination rate

For trap-assisted recombination, we need to describe the trapping of a charge as well as the
subsequent recombination of electron and hole quasiparticles. To describe this process we
assume that the trapped charge achieves a steady state population, and the rate is given by
the likelihood of finding a trapped charge times the rate to recombine that trapped charge
with an incoming charge,

km = Ptrapkr (2.49)
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Figure 2.8: (a) Free energy as a function of the distance between a defect and electron from
1 ring polymer simulation for CdS (green) and MAPbI3 (orange). (b) Charge distribution
for an electron localized on a defect for CdS (green) and MAPbI3 (orange). Lines are guides
to the eye.

where Ptrap is the probability of an electron to be trapped. This approximation is valid in
the dilute limit, provided trapping is reversible. For both CdS and MAPbI3, we consider
the trapping of an electron with a positively charged point defect. The point defect is
described by a Coulomb potential acting between the defect and charge, determined by the
corresponding dielectric constant "r and rc which is set to recover the reported trapping
energy, 1.75 [199] (0.3 [121]) eV for CdS (MAPbI3).

In equilibrium, the probability of finding an electron trapped by an isotropic point defect
is given by

Ptrap = 4⇡⇢d
Z

R
⇤
d

0

dRd R
2

d
e
���Fd(Rd) (2.50)

where ⇢d is the density of defect sites in the lattice where it is possible to trap an electron,
R

⇤

d
is a cuto↵ distance for defining the trapped state, and Fd(Rd) is the potential of mean

force between the point defect and the electron, assuming both are dilute. To evaluate
Ptrap, we employ umbrella sampling[170] and Weighted Histogram Analysis Method [99, 68]
by adding a bias potential V (Rd) = 0.5ksp(Rd � Req)2 on the distance between the defect
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and the centroid of the electron ring polymer with ksp = 0.2 kcal/mol/Å
2

and {Req} =
{3Å, 6Å, . . . , 195Å}. This allows us to determine the potential of mean force,

�Fd(Rd) = � lnh�(Rd � |xd � x
c

e
|)i (2.51)

with Rd as the distance between the defect xd and the centroid of the electron ring polymer
x
c

e
.
The potential of mean force between an electron and the defect is shown in Fig. 2.8 (a).

For both CdS and MAPbI3, the potential is monotonic. The binding free energy of the
electron to the defect is much less than the bare potential energy of the pseudo-potential,
reflecting the charge delocalization. This delocalization is evident in Fig. 2.8 (b) which
describes the charge distribution of the electron as a function of the distance between a
point defect, rd�el = |xd�xe|. For a free electron at large distance, the electron has a spatial
extent defined by the radius of gyration of the imaginary time slices which is related to the
thermal wavelength � at given temperature and mass, Rg(�,m) = h̄

p
�/2

p
m. For CdS

and MAPbI3 these free particle sizes are both nearly 20 Å. Upon trapping to a defect, the
electrons of both CdS and MAPbI3 become slightly more localized, with characteristic sizes
of 15 Å and 17 Å respectively.

Given an equilibrium concentration of trapped electrons, the recombination rate is than
evaluated by computing the likelihood of finding a hole in the vicinity of the electron and then
measuring the conditional overlap in their densities, as described in Eq. 2.44. To evaluate
both, we run MD simulations with a hole ring polymer as well as an electron ring polymer
trapped into the point defect where Eq. 3.8 and 2.35 are used for two ring polymers. To
sample the trajectory e�ciently, we add the same harmonic potentials described above along
the distance between two centroids of ring polymers and additional harmonic potentials with
ksp = 0.5kcal/mol/Å

2

and Req = 0.0 on the distance between point defect and the centroid
of electron ring polymer to hold an electron near the defect. This potential is unweighted
analogously with WHAM to yield an unbiased distribution.

The resultant trap-assisted rate constants under di↵erent electron-phonon coupling streng
-ths with ⇢d = 1018cm�3 are summarized in Table 2.3. We find that the interaction with
phonons reduces the rate constant in both materials although values with finite coupling
strength in CdS are not significantly distinct. This reduction results from the smaller likeli-
hood of finding a hole in the vicinity of the electron, a manifestation of dynamical screening
from the phonons. This is explored more directly for bimolecular recombination below.

2.7.2 Bimolecular recombination rate

Bimolecular recombination is studied through the same method described above with MD
simulations of electron and hole ring polymers. The bimolecular recombination rate, kb⇢e =
kr, requires us to evaluate the potential of mean force for localizing the two charges and their
subsequent overlap density. The potential of mean force, F (Reh), between the centroids of
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CdS ↵ 0.0 0.53 1.5 3.0

km (µs�1) 0.93 0.37 0.36 0.44

kb⇢e (ns�1) 0.101 0.082 0.032 0.025

⌧tot (ns) 9.79 12.2 31.3 39.6

MAPbI3 ↵ 0.0 2.87 - -

km (µs�1) 0.115 0.058 - -

kb⇢e (ns�1) 0.067 0.022 - -

⌧tot (ns) 15.0 45.6 - -

Table 2.3: Calculated trap-assisted rate km and bimolecular recombination rate constant kb
with the defect density ⇢d = 1018cm�3 and the carrier density ⇢e = 1017cm�3, and carrier
lifetime ⌧tot from ktot for CdS and MAPbI3 under di↵erent coupling strength. The mean
statistical errorbar in these estimates is 10%.

electron x
c

e
and hole x

c

h
ring polymers,

�F (Reh) = � lnh�(Reh � |x
c

e
� x

c

h
|)i (2.52)

is computable from umbrella sampling using the same procedure as that for the Rd. The
resulting function is shown in Fig. 2.9 for both CdS and MAPbI3 as functions of electron-
phonon coupling, ↵. The monotonic free energies display systematic destablization of the
electron-hole pair with increasing ↵, consistent with the reduction in exciton binding energies.
Similarly, the minimum is more shallow for MAPbI3 than for CdS.

In addition to the decreased likelihood of finding electron and hole pairs together, with
increasing ↵ the charge density distribution is broadened. Shown in Fig. 2.10 are the proba-
bility distributions of the distance between electron and hole beads, reh = |xe � xh|, at each
strength of interaction with phonons. In both materials, the stronger the phonon interaction
is, the larger the average bead-bead distance becomes, implying that phonons make an ef-
fective electron-hole interaction weaker through screening. The comparison between results
from path integral simulation with the probability distribution predicted from Wannier-Mott
exciton using hydrogen model shown in purple lines in Fig. 2.10 implies the importance of
capturing the fluctuations of quasiparticles at room temperature.

The ratio of path partition functions Zc/Z0 for the bimolecular rate constant can be
computed and extrapolated to the large n limit in order to extract a converged overlap
element. The error from the path integral scales by the number of discretization factor as
n
�2, so the convergence of the radiative rate can be extrapolated by fitting the ratios of

partition functions at finite n as a function of n�2. Extrapolations for CdS and MAPbI3 are
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Figure 2.9: Potentials of mean force for the charge centers. Potentials of mean force for (a)
CdS and (b) MAPbI3 for a variety of electron-phonon coupling strength ↵. Error bars are
shown as shaded regions.

plotted in Fig. 3.5 (a) and (b) under di↵erent coupling strengths. Since the path integral
formalism becomes exact in the limit of large number beads, the rate constant is defined as
the value extrapolated to 1/n2

! 0 limit. The calculated bimolecular recombination rates
for both materials with typical charge density ⇢e = 1017cm�3 are summarized in Table 2.3
as a function of ↵. The rates are found for both materials to decrease significantly over the
range of electron-phonon coupling strength considered. MAPbI3 is found to have a longer
charge carrier lifetime than the CdS, which is due to enhanced screening of the former.

2.7.3 Total recombination rate

Combining trap-assisted and bimolecular rates, the total recombination rates defined in
Eq. 2.43 are summarized in Table 2.3 with a typical charge carrier density ⇢e = 1017cm�3 and
the defect density ⇢d = 1018cm�3 for both materials. We find that the radiative recombina-
tion is predominantly determined by bimolecular process. In both materials, electron-phonon
coupling generally decreases recombination rate, resulting in the increase in the lifetime of
charge carriers. The value obtained for CdS is in very good agreement with that observed
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Figure 2.10: Electron-hole charge density distributions. Charge density distributions for
(a) CdS and (b) MAPbI3 for a variety of electron-phonon coupling strength ↵ evaluated at
T =50 K, compared to the Wannier model. Error bars are shown as shaded regions.

from photoluminscence lifetime measurements on large spherical nanocrystals, 13 ns, but
underestimates the lifetime reported for MAPI3, 70-100 ns.[77] The latter disagreement can
be attributed to the neglect of anharmonic e↵ects accounted by the k-dependence of corre-
lation function in the optical mode which can been considered previously[135] and results in
an e↵ective electron-hole repulsion that has not been considered here.

2.8 Conclusions

In summary, we have shown how a path integral approach can be used to study excitonic
properties in the presence of dynamical phonons. We have presented ways to compute the
renormalization of the binding energy and recombination rate, and validated these results
in limiting regimes. While we have considered a simple model for an exciton in a polar
lattice as being coupled through a Fröhlich interaction with a single optical mode, the influ-
ence functional approach employed is general and can easily be extended to many modes,
arbitrary linear coupling forms, and in principle parameterized through ab initio methods.
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Figure 2.11: Relative path partition functions for the radiative rate calculation. Convergence
of the overlap for (a) CdS and (b) MAPbI3. The values of ↵ considered are {0, 0.53, 1.5, 3}
for CdS and {0, 2.87} for MAPbI3. Solid lines have the form a + b/n

2 where a and b are
positive constants.

Additionally, while we have considered phonon e↵ects on a single exciton in this work, this
can be applied to multiple excitons and further combined with confining potentials.



39

Chapter 3

Radiative lifetime of excitations in

lead halide perovskites

This chapter includes the discussion on how we use path integral molecular dynamics sim-
ulations and theory to elucidate the interactions between charge carriers, as mediated by a
lead halide perovskite lattice. We find that the charge-lattice coupling of MAPbI3 results in
a repulsive interaction between electrons and holes at intermediate distances. The e↵ective
interaction is understood using a Gaussian field theory, whereby the underlying soft, polar
lattice contributes a nonlocal screening between quasiparticles. Path integral calculations of
this nonlocal screening model are used to rationalize the small exciton binding energy and
low radiative recombination rate observed experimentally and are compared to traditional
Wannier-Mott and Fröhlich models, which fail to do so. These results clarify the origin of the
high power conversion e�ciencies in lead halide perovskites. Emergent repulsive electron-
hole interactions provide a design principle for optimizing soft, polar semiconductors. This
chapter is based on previously published work, Nano Lett. 2022, 22, 6, 2398-2404.

3.1 Introduction

Lead halide perovskites are a class of materials that have unique photophysical properties
resulting from their soft, polar lattices. They have vanishingly small exciton binding ener-
gies and despite modest mobilities, have large free carrier di↵usion lengths resulting from
exceptionally long carrier lifetimes.[148, 203, 180] These properties make lead halide per-
ovskites ideal materials for photovoltaic devices.[206, 185, 102] Many of their optoelectronic
properties have been thought to arise from electron-phonon coupling, as the largely ionic
bonding of the lead halides admit strong Coulomb interactions between free charges and
the lattice.[201] It has been conjectured that polaronic e↵ects in particular[227, 26, 21] act
to protect free charges from recombination and screen their interactions, reducing exciton
binding energies.[26] However, the significant anharmonicity of the perovskite lattice has
made uncovering the molecular origin of these properties di�cult.[88, 128, 16, 210]
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Here, we apply path integral molecular dynamics[25, 22] to study an atomistic model of
quasiparticles embedded in a MAPbI3 lattice, in order to understand how a fluctuating lattice
a↵ects its electronic properties. Much recent e↵ort has gone into understanding the e↵ects
of the lattice on the excitonic properties of perovskites computationally [29, 162, 221, 119]
and analytically.[122, 162] However, unlike traditional polar semiconductors where lattice
fluctuations can be described by a harmonic approximation, the tilting and rocking motions
of the inorganic octahedra[210] and nearly free motions of the A-site cations[128, 16] ren-
der the lattice highly anharmonic. This complicates the simplification to traditional model
Hamiltonians like the Fröhlich model or its generalizations.[119, 45] Attempts to include
lattice e↵ects into ab initio based approaches have been developed but these are di�cult to
extend to the time and length scales necessary to explain the nature of how photogenerated
electrons and holes bind, dissociate and recombine.[54] Using an explicit atomistic represen-
tation of the lattice surrounding the quasiparticles allows us to go beyond simplified models.
Employing path integral calculations allows us to consider finite temperature e↵ects directly
on di↵usive time and length scales. These simulations motivate a field theory to describe
the e↵ective electron-hole interactions that dictate the emergent optical properties of the
perovskites. With these simulations and theory, we are able to elucidate the origin of low
exciton binding energies and recombination rates as a consequence of a nonlocal screening
from the lattice.

3.2 E↵ective exciton interaction with explicit

MAPbI3 lattice

We consider a system of an electron-hole pair, interacting with a MAPbI3 perovskite in its
cubic phase employing a fully atomistic description of the lattice. The full system Hamil-
tonian, H, consists of electronic, lattice, and interaction pieces, H = Hel +Hl +Hint. The
highly dispersive bands of MAPbI3 allow us to make an e↵ective mass approximation, so
that the electronic Hamiltonian is defined as

Hel =
p̂
2

e

2me

+
p̂
2

h

2mh

�
e
2

4⇡"0"1|r̂e � r̂h|
(3.1)

where the subscripts e and h indicate electron and hole, p̂ and r̂ are the momentum and
position operators, me/m = mh/m = 0.2 are the band masses of the quasiparticles taken
from recent GW calculations in units of the bare electron mass m,[29] "0 is the vacuum
permittivity while "1 is the optical dielectric constant for charge e. For the lattice, we use
an atomistic model developed by Mattoni et al., that has been demonstrated to reproduce
the structural and dielectric properties of lead halide perovskites.[117, 116] Its Hamiltonian
is decomposable as

Hl =
NX

i=1

p̂
2

i

2mi

+ Ul(r̂
N) (3.2)
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where p̂i, r̂i andmi are the momentum, position, and mass of ith atom, N is the total number
of atoms in the lattice, and Ul(r̂N) is the pair-wise interaction potential between atoms
with configuration r̂

N = {r̂1, r̂2, . . . , r̂N}. The potential includes electrostatic and excluded
volume interactions. The charge-lattice interaction term is given by Hint = Ue,l(r̂e, r̂N) +
Uh,l(r̂h, r̂N) where Ue,l and Uh,l denote sums of pseudopotentials. Consistent with the largely
ionic nature of MAPbI3, we employ pseudopotentials of the form of short-ranged truncated
Coulomb potentials, with a cut-o↵ radii chosen as the ionic radii of each species.[136, 164,
98]

As the atoms are heavy and we are largely interested in room temperature behavior,
we adopt a classical description of the MAPbI3 lattice. We discuss below corrections to
this classical approximation in the harmonic lattice limit. For the two light quasiparticles
however, we employ a path integral description to account for quantum mechanical e↵ects
important even at room temperature. Such a quasiparticle path integral approach has been
employed previously to study lattice e↵ects in the lead halides and trapping in other semi-
conductors.[13, 14, 109, 150] The partition function, Z, for the composite system can be
written as

Z =
Z

D[re, rh, r
N ] e�S[re,rh,rN ]/h̄ (3.3)

with the action S[re, rh, rN ] = Sel+Sl+Sint. The corresponding imaginary time path action
for the electronic part becomes

Sel =
Z

⌧

meṙ
2

e,⌧

2
+

mhṙ
2

h,⌧

2
�

e
2

4⇡"0"1|re,⌧ � rh,⌧ |
(3.4)

where the imaginary time ⌧ is defined over the interval 0 to �h̄, ��1 = kBT , T is tempera-
ture, kB is Boltzmann’s constant, and h̄ is Planck’s constant. The velocity and position of
electron/hole are denoted ṙe/h,⌧ and re/h,⌧ . Under the assumption of a classical lattice, the
contributions to the path action from MAPbI3 and its interaction with the quasiparticles
become Sl = �h̄Hl and

Sint =
Z

⌧

Ue,l(re,⌧ , r
N) + Uh,l(rh,⌧ , r

N) (3.5)

an integral over the pseudopotentials. By discretizing the path action into a finite number
of imaginary time slices, the classical counterpart of each quantum particle becomes a ring
polymer consisting of beads connected by harmonic springs.[69]

We perform molecular dynamics (MD) simulations of two ring polymers with 1000 beads
representing the electron and hole and an MAPbI3 lattice with 40⇥15⇥15 unit cells at 300K.
The large system size is necessary in order to ensure that self-interaction errors between the
quasiparticles are minimized. This atomistic description allows us to capture all orders
of interaction between the quasiparticles and the MAPbI3 lattice, free of low temperature
harmonic approximations. For the atomistic model of MAPbI3 lattice, we adopt empirical
force field from Ref [117]. Interactions between inorganic atoms (Pb, I) are described by
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i j Aij (kcal/mol) ⇢ij (Å) cij (kcal/mol/Å
6

)

Pb Pb 70359906.629702 0.131258 0.0000

Pb I 103496.133010 0.321737 0.0000

Pb C/N 32690390.937995 0.150947 0.0000

I I 24274.905590 0.482217 696.949542

I C/N 112936.714213 0.342426 0.0000

Table 3.1: Parameters for Buckingham potential (Eq. 3.6).

Buckingham-Coulomb (BC) potential

UBC =
X

i,j

Aije
�rij/⇢ij �

cij

rij
+

qiqj

4⇡"0rij
(3.6)

where rij is the distance between i and j atoms, "0 is the vacuum electric permittivity, qi is
the charge of atom i, and Aij, cij, and ⇢ij are parameters for BC potential. Other pairwise
interactions are described by the sum of BC potential and Lennard-Jones (LJ) potential

ULJ =
X

i,j

4"ij
h⇣�ij

rij

⌘
12

�

⇣�ij
rij

⌘
6
i

(3.7)

with LJ parameter "ij and �ij. Types and parameters for pairwise interactions can be found
in Table 3.1 and Table 3.2. For electron and hole ring polymers, we used a quasiparticle
path integral approach whose Hamiltonian obtained by discretizing the path action is given
by

HRP =
nX

j=1

men

2�2h̄
2
(re,j+1 � re,j)

2 +
nX

j=1

mhn

2�2h̄
2
(rh,j+1 � rh,j)

2
�

nX

j=1

e
2

4⇡"0n|re,j � rh,j|
(3.8)

where re/h,j is the position of the j
th bead in electron/hole ring polymer, n = 1000 is the

number of beads used in each ring polymer, � = (kBT )�1 is an inverse temperature, and
me/m0 = mh/m0 = 0.2[29] are the band masses of electron and hole with the bare electron
mass m0. Pseudopotentials are given by truncated Coulomb potentials where r�1 is replaced
by (↵C + r

2)�1/2. The parameter ↵C for electron-lattice, hole-lattice, and electron-hole
interactions are chosen to recover the corresponding ionization energy, electron a�nity, and
the band gap of MAPbI3 perovskite, summarized in Table 3.3 [157, 165].

Simulations are run in NVT ensemble with Langevin thermostat to control the temper-
ature to 300K using timestep 0.5fs. In the free energy calculations using Umbrella sam-
pling[170], we used 86 windows where the harmonic potentials V (R) = 0.5ksp(R�Req)2 are
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i j "ij (kcal/mol) �ij (Å)

Pb Hn 0.0140 2.26454

Pb H 0.0140 2.70999

I Hn 0.0574 2.750

I H 0.0574 3.100

C C 0.1094 3.39970

C N 0.1364 3.32480

C Hn 0.0414 2.23440

C H 0.0414 2.67980

N N 0.1700 3.250

N Hn 0.0517 2.15950

N H 0.0517 1.0690

Hn Hn 0.0157 1.06910

Hn H 0.0157 1.51450

H H 0.0157 1.960

Table 3.2: Parameters for Lennard-Jones potential (Eq. 3.7). The hydrogen atoms in
ammonium NH+

3 group are indicated by Hn.

↵C Pb I be bh

be 3.67 0.005 - 2.072

bh 0.005 22.152 2.072 -

Table 3.3: Pseudopotential parameter ↵C where be(h) indicates the bead in the electron(hole)
ring polymer.
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added to the distance between two centroids of ring polymers R with the spring constant
ksp ranging from 0.15 to 0.4 kcal/mol/Å

2

. Prior to adding the ring polymers to the lattice,
they are equilibrated for 500ps in NVT ensemble with Langevin thermostat at each window
as is done in the staging algorithm[177]. We combine the equilibrated configuration of ring
polymers with the lattice, run 200ps for equilibration purpose, and store trajectories in every
50fs for 700ps.

Simulations with isolated electron and hole ring polymers are performed under each type
of e↵ective screening. For a static screening, the discretized Hamiltonian is given by Eq.3.8
with Coulomb interaction screened by dielectric constant "r = 6.1 [84]. For the dynamic
screening, Hamiltonian consists of two pieces, Hdyn = HRP +He↵ . The second term is given
by Eq. 15 with the factor of discretization n,

He↵ = �
X

i,j2{e,h}

�ij

↵�h̄
2
!
2

n2

vuut h̄

8mij!

nX

t=1

nX

s=1

e
�

�h̄!
n |t�s|

|ri,t � rj,s|
(3.9)

where re/h,j represents the position of the j
th bead in electron/hole ring polymer, �ij = 1 if

i = j and �ij = �1 if i 6= j, ↵ = 1.72 [166] is Fröhlich coupling constant and ! = 40cm�1[166]
is optical frequency of MAPbI3 perovskite with meh = µ. For the nonlocal screening, the
last term in Eq.3.8 is replaced by the e↵ective exciton interaction from empirical force field
calculation shown in Fig.1c (black symbols), divided by the e↵ective dielectric constant "r to
account for the lack of explicit polarizability in the force field. Simulations are run in NVT
ensemble and Langevin thermostat with pseudopotential. For Umbrella sampling parame-
ters, 65 windows are used with the spring constant ksp = 0.2kcal/mol/Å

2

and equilibrium
distance Req starts from 3Å and is increased by 3Å at each window. In the first window, ring
polymers are first equilibrated for 1ns with 1fs timestep and then trajectories are stored in ev-
ery 500ps for 10ns. The last configuration of the previous window is taken to be the starting
point of the next window. Simulations are performed using the LAMMPS package[141].

To analyze the emergent exciton interaction resulting from the collective motions in
MAPbI3, we compute the free energy between electron and hole using Umbrella sampling
with the Weighted Histogram Analysis Method[99]. We compute the reversible work to move
two charge centers relative to each other

�F (R) = � lnh� (R� |r
c

e
� r

c

h
|)i (3.10)

where R is the distance between the electron and hole centroid r
c

e/h
, �(x) is Dirac’s delta func-

tion, and h..i represents an ensemble average. Simulation snapshots are shown in Figs. 3.1a
and 3.1b, where spatially delocalized charges extend with a radius of gyration between 1.5 -
3 nm. Figure 3.1c shows F (R), which is nonmonotonic. The free energy exhibits a minima
at R = 0 reflecting the binding of the electron-hole pair into an exciton, a plateau at large
R, and a barrier at intermediate R ⇡ 8 nm. The binding energy is large due to the neglect of
polarizability in this description of the lattice. Considering the bare Coulomb potential is a
monotonic function, the repulsive interaction found in Fig. 3.1c at intermediate electron-hole
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Figure 3.1: Quasiparticle path integral molecular dynamics simulations. Representative
snapshots of the simulation of electron(red) and hole(blue) with the MAPbI3 lattice where
electron and hole are (a) close to and (b) far from each other. Zoomed in structure in
(a) represents the MAPbI3 lattice where gray, yellow, and blue atoms represent Pb2+, I�,
and MA+, respectively. (c) Free energy between electron and hole as a function of the
distance between quasiparticle centroids from molecular dynamics simulation (black circles)
and an e↵ective exciton interaction from Eq.3.24 (red solid line) with parameters as "⇤ = 5,
ls = 2.47nm, and lc = 1.26nm.

distances must arise from the lattice. An e↵ective electron-hole repulsion has been specu-
lated in lead halide perovskites previously,[47, 112, 36] but had defied direct observation or
theoretical validation.
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3.3 Theory for e↵ective electron-hole interaction with

field theory

In order to understand the emergent lattice e↵ects on the electron-hole interaction and
surprising intermediate repulsion, we assume that the fluctuations of the lattice are well
described by a Gaussian field. Such Gaussian field theories underpin a number of standard
e↵ective interactions including dielectric continuum theory and the Casimir e↵ect.[176, 33,
106] A Gaussian approximation in this context is analogous to quasi-harmonic approach
[18] where it is assumed that while the lattice is anharmonic, it responds linearly.[23, 149]
We consider approximating the lattice by an e↵ective polar displacement field, uk,⌧ , that
is expected to be correlated with local bending and rocking motions of the octahedra.[49]
Within the Gaussian field approximation, the path action for the lattice becomes

Sl ⇡
1

2

Z

⌧

Z

⌧ 0

Z

k
uk,⌧�

�1

k,⌧�⌧ 0u�k,⌧ 0 (3.11)

where �k,⌧�⌧ 0 = huk,⌧u�k,⌧ 0i is the susceptibility at wave vector k and imaginary time dis-
placement ⌧ � ⌧

0. The susceptibility is determined by a phonon dispersion relationship only
in the limit of zero temperature, and generally reflects the correlations within the e↵ective
polar displacement field.[168] Consistent with the Coulombic pseudopotentials used in the
MD simulations, we take the coupling between the charges and the lattice to be linear

Sint ⇡

Z

⌧

Z

k
uk,⌧ �

e
ik·re,⌧ � e

ik·rh,⌧

k
(3.12)

and described by a Fröhlich-like interaction,[129] where � is a Fröhlich coupling constant
defined as

� = �ih̄!
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(3.13)

with dimensionless coupling constant ↵[129].
The lattice variables can be integrated out, leaving a Gaussian approximation to the

partition function, ZG,

ZG =
Z

D[re, rh,uk] e
�Sall[re,rh,uk]/h̄ = Zl

Z
D[re, rh] e

�Sel/h̄ e
�Se↵ [re,rh]/h̄ (3.14)

where Zl is the partition function for a displacement field without couplings to the charges. In
terms of the derivation of e↵ective path action, Se↵ , starting from the Gaussian approximated
path action given by Sl + Sint from Eq.3.11 and Eq.3.12, its Fourier transform becomes

Sl + Sint =
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Using the fact that the Gaussian integral of the form of e�x
2
/2�

2
+ax with respect to x produces

the term of e�
2
|a|

2
/2 gives the e↵ective path action defined in Eq.3.14 as
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where inverse Fourier representation of �k,! is used in the third line. In the compact form,
the e↵ective path action becomes

Se↵ = �
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i,j
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⌧ 0

Z

k
�ij�k,⌧,⌧ 0

|�|
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e
ik·|ri,⌧�rj,⌧ 0 | (3.19)

where i, j 2 {e, h} and �ij takes the value of �ij = 1 if i = j and �ij = �1 if i 6= j.
The susceptibility �k,⌧ is proportional to a dielectric function evaluated in the absence of

the quasiparticles. Di↵erent functional forms of its imaginary time and wavevector depen-
dence imply di↵erent ways in which the lattice can screen the quasiparticles. In the classical
limit[65], taking �k,⌧ = �k�(⌧) removes the ⌧ dependence in the e↵ective path action and
Eqs. 3.4, 3.19, and 3.21, imply an e↵ective interaction between the electron and hole,

V̂e↵(k) = �
1

k2

"
e
2

"0"1
� �k|�|

2

#

(3.20)

which is a sum of the bare interaction, here screened by "1 = 4.5,[166] and the contribution
from the lattice proportional to �k. In the zero wavevector limit this is a constant, and
if taken as �k|�|

2 = e
2
/"0(1/"1 � 1/"r) we recover the Wannier-Mott model of a exciton.

With an e↵ective dielectric constant "r = 6.1,[29] this local, static screening is manifestly
insu�cient to produce the repulsive interaction observed from the free energy calculations.
Rather an explicit k dependence to �k is required.

Using explicit MD simulations of the bulk classical MAPbI3 lattice, we find �k is well
approximated by

�k ⇡
�0

1� l2
s
k2 + l2

s
l2
c
k4

(3.21)

characterized by three positive real parameters, �0, ls, and lc. This functional form includes
a single resonant peak and is assumed isotropic on length scales greater than the lattice
spacing. The resonant peak results from the negative second order coe�cient and manifests
the double well potential of the optical mode[162]. Using Eq.3.20 and 3.21, performing
inverse Fourier transform with residue theorem gives
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Figure 3.2: Susceptibility �(r) from explicit MD simulation (black solid line) and from
Eq.3.25 (red dotted line). Gray dotted line is the guideline for 0.

where parameters, � and � are defined as follows.
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Since � � �, the relation, a sin ✓ � b cos ✓ =
p
a2 + b2 sin[✓ � arctan[b/a]], simplifies the

e↵ective electron-hole interaction, resulting in the e↵ective potential as.
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where r is the distance between two charges with ��1
⇡

p
2`c, ��1

⇡ 2`c/
q
1� `s/2`c, and

✓ = arctan[2�/�]. We also compare �(r) in real space where an analytic expression can be
derived from the inverse Fourier transform using residue theorem with � and � defined in
Eq.3.23.

�(r) =
�0

4⇡r

(�2 + �
2)2

4��
e
�r� sin[r�] (3.25)

Fig.3.2 shows �(r) from MD simulation (black solid line) and from Eq.3.25 (red dotted line)
where the reasonable agreement shows the validity of the functional form of �k given by
Eq.12.

This form given by Eq.3.24 is plotted in Fig. 3.1c and provides an excellent fit at large r
to the free energy from the MD simulation. We refer to this e↵ective electron-hole interaction
arising from spatially dependent screening from the MAPbI3 lattice as nonlocal screening.[94]
The theory clarifies that the non-monotonic interaction potential results from deformations
generated within the lattice due to the charges. At specific characteristic distances these
deformations are su�ciently unfavorable that the electron and hole are e↵ectively repelled
from each other.
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This e↵ective interaction in Eq. 3.24 is distinct from what has been considered previously
by Pollmann and Buttner,[142] and by Gerlach and F. Luczak[65] in which coupling to a
single dispersionless optical phonon results in a excitonic polaron that screens the bare
Coulomb potential. In their approximation, the polar displacement field is treated quantum
mechanically by including a ⌧ dependence of the susceptibility. In Pollmann and Buttner’s
work, this is taken as the bare susceptibility,

�k,⌧ =
1

2!
e
�!|⌧ | (3.26)

where the phonon mode is characterized by a single longitudinal optical frequency !. Plug-
ging Eq. 3.26 into Eq. 3.19, we obtain the e↵ective path action
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2
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⌧ 0

e
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(3.27)

where we have written |�|
2 in the traditional Fröhlich form, introducing ↵ as the dimension-

less coupling constant. Pollmann and Buttner further approximate this dynamic screening
approach in order to obtain a closed form e↵ective potential. Their potential is an expo-
nentially screened Coulomb potential in the classical limit with a screening length given by
the polaron radus [142] (see Chapter 3.6 for details). While for certain parameters it is
possible that the Pollmann-Buttner potential is repulsive,[47] employing known values for
↵ = 1.72 and ! = 40cm�1 for MAPbI3,[166] the resultant e↵ective potential is monotonic
and inconsistent with our MD result. Analogous approaches including sums of two or three
dispersionless phonons similarly fail to describe a repulsive interaction. Treating the suscep-
tibility variationally, Gerlach and F. Luczak[65] provided a more flexible description of the
lattice, but the lack of a wavevector-dependence to � still prohibits an intermediate length
scale repulsion.

3.4 Implications of di↵erent lattice screenings from

explicit path integral simulations

To investigate the implication of a nonlocal screening on the observable properties of MAPbI3,
we simulated an electron and hole pair using our quasiparticle path integral approach under
(i) static, (ii) dynamic, and (iii) nonlocal screenings. In each case, we employed known ex-
perimental parameters for the dielectric constants, optical frequencies, and e↵ective masses
and thus expect our results to be quantitatively accurate. To our knowledge the k-dependent
dielectric susceptibility has not been reported for MAPbI3, so we parameterized the non-
local screening interaction using our MD results. For each case, we extract the exciton
binding energies and bimolecular recombination rates as both have been di�cult to reconcile
theoretically.[77]
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Figure 3.3: The di↵erence in free energy �F as a function of temperature under static
screening (circles), dynamic screening (diamonds), nonlocal screening (triangles), and non-
local screening combined with polaronic e↵ect (squares). Solid lines are corresponding fitted
lines.

The exciton binding energy, �EB is definable within our path integral framework as

�EB = lim
T!0

min
R

�F (R) (3.28)

and to evaluate it we computed the free energy �F (R) = F (R) � F (1) at a variety of
temperatures ranging from 200K to 400K and extrapolate its value to 0K, as shown in
Fig. 3.3. Representative free energies at T = 300K are shown in Fig. 3.4a. As anticipated
from the theory, we find that both dynamic and nonlocal screening reduce the e↵ective
attraction between electron and hole but only the nonlocal screening results in a barrier to
recombination.

The extrapolated binding energies are summarized in Table 3.4. Within the static
screening approach, the exciton is hydrogenic, and the binding energy is given by �E

s

B
=

µe
4
/2(4⇡✏0✏r)2h̄

2 where µ is a reduced mass of the electron and hole. The large decrease in
binding energy under dynamic screening reflects the polaronic e↵ect. Since the experimen-
tally derived value of ↵ is relatively small,[166] we find the change to the binding energy
is well approximated by first order perturbation theory, yielding the known Fröhlich result,
�E

d

B
= �E

s

B
� 2↵h̄!.[39] This reduction in the binding energy is consistent with recent

Bethe-Salpeter calculations with perturbative electron-phonon interactions,[54] but higher
than experimental estimates.[61] The reduction in the binding energy from the nonlocal
screening is 12 meV, which is close to a prediction assuming hydrogenic 1s orbits, 17 meV.

In the low temperature limit, the classical lattice approximation employed to construct
the nonlocal screening model is no longer valid. In this limit, quantization of the phonons
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Figure 3.4: Implications of di↵erent screening models from explicit path integral simulations
with electron and hole quasiparticles. (a) Free energy as a function of the distance between
quasiparticle centroids at 300K under static (blue), dynamic (green), and nonlocal (red)
screening models. (b) Radial probability distribution for electron and hole, with the same
color scheme as in (a).

Screenings Static Dynamic Nonlocal

�EB (meV) 50.4 36.9 38.1

⌧r (ns) 13.5 35.5 78.1

Table 3.4: Exciton binding energy �EB, and carrier lifetime ⌧r estimated using di↵erent
screening models.
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can lead to hybridization and polaron formation. To estimate the quantum mechanical e↵ect
of phonons in this model, we have adopted a hybrid approach where we have added a single
optical phonon as done in the dynamical approximation, to the e↵ective potential description
deduced form the classical lattice simulations. The dynamical mode is treated analogously
as Eq. 3.27, while the e↵ective potential is assumed to be constant at low temperatures and
reflective of dynamic disorder. Treating both of these e↵ects yields a binding energy of 20.8
meV in very good agreement with experiment.[61, 34]

The bimolecular recombination rate, kr is defined as the rate of change of the concentra-
tion of free charges,

d⇢e

dt
= �kr⇢e⇢h (3.29)

through the reaction e
�+h

+
! h̄⌫, where ⇢e/h is the concentration of free electrons/holes. At

typical working excitation densities for MAPbI3 based photovoltaics, radiative recombination
is the limiting factor determining the charge carrier lifetime.[77] We can evaluate kr using
Fermi’s golden rule for spontaneous emission, with an e↵ective mass approximation.[212, 71,
158, 55] Within our quasiparticle path integral framework, the bimolecular recombination
rate can be derived from Fermi’s golden rule under e↵ective mass approximation and is given
by a constant times a ratio of path partition functions,[205, 212, 71, 158, 55]

kr =
e
2
p
"1E

2

gap

2⇡"0h̄
2
c3µ

Zc

Z
(3.30)

where e is the charge of an electron, "0 is vacuum electric permittivity, "1 is the dielectric
constant related to the index of refraction, h̄ is Planck’s constant, c is the speed of light,
µ is the reduced mass of electron and hole, and Egap = 1.64eV is the band gap energy for
MAPbI3 perovskite. In this framework, Z indicates the path for two separate (electron and
hole) quasiparticles and the subscript c on Zc stands for combined path integral in which
the two separate imaginary time paths are placed together to form a single, radiating path
by linking same imaginary time slices. Zc can be rewritten in terms of Z and the di↵erence
in path action �S = S � Sc,
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Z
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Z
e
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where S and Sc are the path actions of two separate and combined paths. The change in
path action �S is give by
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where rc is a combined path integral where the two paths are shown in Figs. 3.5b and c.
With the conditional probability representation, the ratio of partition functions becomes
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Figure 3.5: (a) Ratio of partition function with various number of beads. Dotted lines are
linear fittings under each type of screening. Schematic picture of (b) two separate paths S
and (c) combined path Sc.

where he�S
iR indicates the value of he�S

i given R and P (R) can be computed from the free
energy. Plugging Eq.3.33 into Eq.3.30 results in the following equation for the ratio of path
partition functions,

Zc

Z
= 4⇡

Z
dRR

2
D
e
�S
E

R
e
���F (R) (3.34)

where we replace P (R) by an exponential term with the di↵erence in free energy. Shown in
Fig.3.5a is the ratio of partition function with various number of beads. Since the error of
Trotter factorization in path integral approach scales by n

�2, we compute the carrier lifetime
using the value extrapolated to n ! 1.

The change in action is a reporter on the overlap between the electron and hole wave-
functions. The electron and hole radial probability distribution is described in Fig. 3.4b,
illustrating that the nonlocal screening e↵ect increases the average distance between elec-
tron and hole. This is distinct from the e↵ect of the dynamic screening, which consistent
with the small value of ↵, leaves the electronic distribution largely unaltered from the simple
Wannier, static screening model. The decrease in electron hole overlap results in a nearly
order of magnitude decrease in kr using the nonlocal screening theory relative to the static
screening theory. For the nonlocal screening theory, we find kr = 1.3 ⇥ 10�10cm3

/s, in
excellent agreement with photoluminescence lifetime measurements.[77]

Assuming the only loss mechanism is due to bimolecular recombination, the lifetime of an
electron hole pair is computable from ⌧r = 1/kr⇢e. Summarized in Table 1 for ⇢e = 1017/cm3

are lifetime estimates using the di↵erent screening models. Both standard polaronic e↵ects
incorporated into the dynamic screening model as well as the nonlocal screening model
increase the lifetimes of free charge carriers, however the contribution of a nonlocal screening
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obtained from the MAPbI3 lattice is much more significant.

3.5 Conclusion

By comparing these di↵erent simplified models that account for charge-lattice interactions,
we find that the ability of the MAPbI3 lattice to nonlocally screen quasiparticles is su�cient
to explain the particularly low exciton binding energy and recombination rate. Only this
screening kernel in our unified Gaussian field theory formalism can suppress the electron-hole
overlap enough to explain the anomalously long free carrier lifetime with weak lattice coupling
strength. The particular nonlocal screening adopted here was deduced directly from explicit
atomistic molecular dynamics simulations using a quasiparticle path integral framework.
This framework is uniquely able to study the thermodynamics of this quasiparticle-lattice
system at finite temperature.

The adoption of a spatially dependent screening is consistent with a growing literature
pointing to the importance of dynamic disorder in lead halide perovskites.[105, 161, 147]
As it is the wave-vector dependent dielectric susceptibility of the bulk ground state lattice
that enters into the theory presented above, experimental measurements of such properties
could a↵ord a means of assessing potential materials with similarly long radiative lifetimes.
Further, the barrier to bringing electrons and holes together we have discovered here un-
doubtedly has implications apart from o↵ering an explanation of the particular high power
conversion e�ciencies of MAPbI3. For example, this repulsion may help explain observa-
tions of anti-binding of biexcitons.[112, 36] The identification of a repulsive electron-hole
interaction generated from the soft, polar modes of the perovskite lattice o↵ers a key new
design principle for photovoltaic materials. Searching for other systems that admit this type
of interaction represents a promising new direction for materials discovery.

3.6 Pollmann Büttner theory revisited

In the last section of this chapter, the details on the Pollmann-Büttner potential, an analytic
expression for an e↵ective electron-hole interaction in the polarizable medium, is presented.
The derivation shown here is based on Ref. [142, 100, 83, 82, 103, 9, 129].

For the system of interest, the Hamiltonian consists of exciton, electron-hole pair, inter-
acting with phonons through Fröhlich interaction as
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(3.35)

where the subscript e/h indicates electron/hole,m is the band mass of each quantum particle,
p and r are the momentum and position operators, a+k and ak are phonon creation and
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annihilation operators at wave vector k, ! is a longitudinal-optical phonon frequency, h̄ is
Planck’s constant, "1 is an optical dielectric constant for charge e, and Vk represents the
Fourier component of coupling strength between a charge and phonons defined as

Vk = �
i

k

 
2⇡e2h̄!

V "⇤

! 1

2

(3.36)

with 1/"⇤ = 1/"1 � 1/"s and the static dielectric constant "s. Since the center of mass of
an exciton doesn’t a↵ect the interaction between electron and hole in the isotroic system,
by defining the center-of-mass coordinate R = (mere +mhrh)/(me +mh) and coordinate for
the relative motion r = re � rh, the above Hamiltonian becomes
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(3.37)

where P and p are the momentum for center-of-mass and relative motions, M = me +mh

is the total mass of an exciton, µ�1 = m
�1

e
+ m

�1

h
is the reduced mass of an exciton, and

⇢k(r) = e
is2kr � e

�is1kr with s1 = me/M and s2 = mh/M .
Considering that we are only interested in the relative motion of an exciton, taking a

unitary transformation allows us to remove center-of-mass coordinate, which will be shown
in two steps. The first step is to take a unitary transformation with U1 operator

U1(R) = exp
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k akk ·R

#

(3.38)

using a special result of the Baker-Campbell-Hausdor↵ formula
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where the commutator is defined as [A,B] = AB � BA and the term with i
ht order in ⌃

is called as ith order commutator in this section. Now, we will see how the transformation
of U�1

1 H
0
U1 makes changes in operators, P, ak, and a

+

k , respectively. First, the operator P
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whose derivation is shown below
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where the first equality is held due to the fact that P only acts on R and [R,P] = ih̄ is
used in the second line. Since the result of the above commutator doesn’t include P and any
operator commutes with itself, the higher order terms vanish. Next, for the operator ak, 1st

order commutator becomes
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where the second line is held due to the fact that ak only acts on phonon states, [ak, aq] = 0
makes the third line, and [ak, a+q ] = �kq is used in the last line. And 2nd order commutator
becomes
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Subsequently, since jth order commutator produces the term of ak(�ikR)j, the transforma-
tion adds an additional exponential factor as follows.

U
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Similarly, the operator a+k under the transformation becomes
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Using Eqn.3.40, 3.44, and 3.45, since the transformation with operator U1 doesn’t change
terms with p and r, the Hamiltonian can be written as
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where the coordinate R is removed. The second step can be done by defining the new
Hamiltonian H̃ = e

�iQR
U

�1

1 H
0
U1e

iQR with h̄Q as the total momentum of the system. Since
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the total momentum is conserved and doesn’t a↵ect the Hamiltonian, P can be replaced by
h̄Q, making Eq.3.46 as
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where center-of-mass coordinates are eliminated and the relative motion of the exciton is
coupled to phonons through Vk⇢k term.

The ground state energy of the system can be computed from

E = h'ex|h |H̃| i|'exi (3.48)

where |'exi and | i are states for exciton and phonons. In terms of phonons in Eq.3.47, since
the coupling is linear in ak and a

+

k , the total number of phonons is not conserved, implying
that a reasonable eigenstate is a coherent state which can be generated from phonon vacuum
state |0i as follows

| i = U2(Fk)|0i , U2(Fk(r)) = exp

"
X

k

F
⇤

k(r)ak � Fk(r)a
+

k

#

(3.49)

where U2(Fk) is a unitary displacement operator with the displacement amplitude Fk at each
k. Plugging U2 into Eq.3.48, the ground state energy becomes

E = h'ex|h0|U
�1

2
H̃U2|0i|'exi (3.50)

Using Eqn.3.39, we will check how the operators ak, a
+

k , and p are changed under the
unitary transformation with U2 operator. First, phonon creation operator is shifted by the
displacement amplitude Fk as shown below
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where [ak, aq] = 0 and [ak, a+q ] = �kq are used in the second line. Similarly, phonon annihi-
lation operator becomes
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with [a+k , a
+

q ] = 0 used in the second line. Next, for the operator p,
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where the fact that p doesn’t a↵ect phonon operator and p = �ih̄@/@r are used in the
second line, [p, ak] = 0 and [p, a+k ] = 0 are used in the third line, Eq.3.51 and 3.52 are used
in fourth line, producing two terms, one with ak and a

+

k operators and the other without
phonon operators, shown in the fifth line. The term without phonon operators is defined
as µj(r) which describes the displacement current density due to the transformation from
non-displaced to displaced system where the additional current density is generated by the
term with phonon operators defined as �2µJ if there are excited phonons. Using Eqn.3.51,
3.52, and 3.53, the modified Hamiltonian for the system becomes H = U

�1

2 H̃U2 =
P

4

i=0
Hi

where the subscript indicates the order of phonon operators. Even though the step-by-step
derivation for H is not included in this thesis, the resultant Hamiltonian from 0th to 4th order
is shown in Eq.3.54�3.58.
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with
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for simplification. Using the above derivation, since we are interested in the ground state
energy, Eq.3.48 becomes

E = h'ex|h0|H|0i|'exi = h'ex|H0|'exi (3.60)

So far, we haven’t specified the functional form of Fk. Even if we want to get Fk variationally
by taking the derivative of H0 with respect to F

⇤

k as below
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with �j/�F ⇤

k = h̄rFk/iµ used in the second line,
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we need to solve the di↵erential equation shown in the right hand side of Eq.3.62, which is
challenging. Therefore, for the rest of this section, the ansatz of Fk and the discussion on
the resultant e↵ective potential will be presented.

Considering that the phonon vacuum state is used, it has been tried to make several
approximations to get the simpler analytic expression for Fk. First approximation is to
neglect all the derivatives of Fk, which is known as the displacement amplitude due to the
center-of-mass motion. This is analogous to the system with one charge interacting with
phonons, which turns out to be too much simplication for the system with two charges. The
second trial is to neglect higher-order terms in Fk, which is the same as the result from
second-order perturbation theory. Since it is highly likely that Fk is proportional to the
coupling strength between charges and phonons, this is known to work only in the regime of
weak coupling and still be complicated. The last trial for the approximation is to neglect both
higher-order terms and state-dependent first derivative term, which produces the potential
called Haken’s potential. This works well if the exciton radius is large and the coupling
strength is weak, providing the upper bound for the ground state energy. However, as the
coupling strength gets increased, the exciton radius tends to decrease and the strength of
polarization around each charge increases where Haken’s potential starts to break down.
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For Pollmann-Büttner potential, instead of making approximations, the following ansatz
is used

Fk(r) = �
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⇣
f
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k e
�is2k·r � f

2

k e
is1k·r

⌘
(3.63)

where �k = Vk/h̄! and f
i

k with i 2 {1, 2} are variables which can be found variationally. In
this way, the contribution from all the non-linear terms can be included and this can be used
for systems with strong coupling as well. By plugging the above ansatz of Fk into Eq.3.54,
taking the derivative of Eq.3.60 with respect to f

⇤1

k generates the di↵erential equation in
terms of f 1

k and f
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k as shown below
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where pi and ⌘i are defined as

pi = p+ sih̄Q , ⌘i = µj(r)� sih̄
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with R
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i
= h̄/2mi! for i 2 {1, 2}. To write Eq.3.64 compactly, the terms of K, G, and L are

defined accordingly with given 'ex
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where G is considered as the mass renormalization term and Eq.3.67 is from the derivative of
Eq.3.60 with respect to f

⇤2

k . Solving coupled di↵erential equations, Eq.3.67 and 3.67, gives
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Given that we have found the functional formula for both f
i

k
variables, the only thing left is

to define 'ex. Since we are considering the ground state energy of an exciton, consisting of
one negative charge and one positive charge, the reasonable choice for 'ex is the hydrogenic
wave function

'ex(r) =
1

q
⇡a3

ex

e
�r/aex (3.69)

where aex is considered as the e↵ective exciton radius. Using the 1s hydrogenic orbital given
in Eq.3.69, terms can be simplified as follows
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which makes Eq.3.68 as
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From the above equation, we can consider two types of limits. If the exciton radius is large
enough, i.e. aex/Ri ! 1, G becomes zero and (1+R

2

i
k
2) in the numerator can be cancelled

where Haken’s potential can be recovered. On the other hand, if the exciton radius is small,
i.e. aex/Ri ! 0, G becomes 1, making f
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k vanish.

lim
aex/Ri!1

f
i

k =
1

(1 +R
2

i
k2)

, lim
aex/Ri!0

f
i

k = 0 (3.72)

Finally, using Eq.3.54, 3.60, 3.63, and 3.69, the ground state energy can be written as
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where �i is defined with the terms which don’t depend on r, known as self-energy,
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and Ve↵ includes all the terms with r dependence
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called as the e↵ective potential of an exciton.
To check the validity of Eq.3.74 and 3.75, we will again take large and small exciton limits,

respectively. First, for the self-energy term, if the exciton radius (electron-hole distance) is
large, the value of �↵ih̄!, which is the value for a free polaron, can be obtained, shown
below by plugging Eq.3.72 into Eq.3.74
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where the Fröhlich coupling strength written in terms of dimensionless Fröhlich coupling
constant ↵
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whose compact version is given in Eq.3.36 is used in the third line and the transformation
from Cartesian to spherical coordinates with Jacobian k

2 sin ✓ makes the fourth line. On the
other hand, in the limit of small exciton radius, since f
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k vanishes, the self-energy vanishes
as well
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indicating the cancellation of electron and hole polarization clouds.
Lastly, for an e↵ective exciton potential, in the large exciton limit, plugging Eq.3.72 and

3.77 into Eq.3.75 produces
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where 1/"⇤ = 1/"1 � 1/"s and coordinates are changed from Cartesian to spherical in the
second line. Using the formula below,

Z
⇡

0

d✓ sin ✓ cos[kr cos ✓] =
2 sin[kr]

kr
(3.80)

the e↵ective potential becomes
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where eikr = sin[kr]+i cos[kr] and the fact that integrand is even, i.e. symmetric with respect
to k = 0, are used in the second line, the residue theorem with poles k = 0, ±i/R1, ±i/R2
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is used in the third line, and �m = m2 � m1 in the last line. Throughout the derivation,
generally the subscript 1 and 2 represents e (electron) and h (hole), respectively. Eq.3.81
is known as Pollmann-Büttner potential, where on top of screened Coulomb interaction,
the electron-hole interaction is additionally screened by phonons whose screening strength
is related to the polaron radius of quantum particles. For the small exciton limit, since the
last term in Eq.3.75 approaches to zero, the e↵ective potential becomes screened Coulomb
potential

lim
aex/Ri!0

Ve↵(r) = �
e
2

"1r
(3.82)

implying that if electron and hole are close enough, interaction becomes strong and phonons
are not coupled to exciton.
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Chapter 4

Vibrational relaxation dynamics in

layered perovskite

Organic-inorganic layered perovskites, Ruddlesden-Popper perovskites, are two-dimensional
quantum wells with layers of lead-halide octahedra stacked between organic ligand barriers.
The combination of their dielectric confinement and ionic sublattice results in excitonic ex-
citations with substantial binding energies that are strongly coupled to the surrounding soft,
polar lattice. However, the ligand environment in layered perovskites can significantly alter
their optical properties due to the complex dynamic disorder of the soft perovskite lattice.
Here, we infer dynamic disorder through phonon dephasing lifetimes initiated by resonant
impulsive stimulated Raman photoexcitation followed by transient absorption probing for
a variety of ligand substitutions. We demonstrate that vibrational relaxation in layered
perovskite formed from flexible alkyl-amines as organic barriers is fast and relatively inde-
pendent of the lattice temperature. Relaxation in layered perovskites spaced by aromatic
amines is slower, though still fast relative to bulk inorganic lead bromide lattices, with a
rate that is temperature dependent. Using molecular dynamics simulations, we explain the
fast rates of relaxation by quantifying the large anharmonic coupling of the optical modes
with the ligand layers and rationalize the temperature independence due to their amorphous
packing. This work provides a molecular and time-domain depiction of the relaxation of
nascent optical excitations and opens opportunities to understand how they couple to the
complex layered perovskite lattice, elucidating design principles for optoelectronic devices.
This chapter is based on the work previously published in Proc. Natl. Acad. Sci. 118, 25,
e2104425118 (2021).

4.1 Introduction

Organic-inorganic hybrid layered perovskite quantum wells have optoelectronic properties
that can be adapted to enable a diverse set of applications including solar cells, light-emitting
diodes, semiconductor lasers, and photodetectors [102, 226, 187, 60, 126, 159]. The struc-
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tural stability and degree of quantum confinement can be tuned by varying the inorganic
semiconductor, organic barrier compositions and stoichiometry independently, making them
more viable for many device applications than their bulk counterparts [40, 214, 179, 27,
30]. The photoluminescence quantum e�ciency of layered perovskites in particular can be
altered by varying the molecular configuration of the organic ligands, and as a result, various
compositions have been used for both light absorbing and light emitting applications [64,
67, 184]. The local distortions of the inorganic octahedra in layered perovskites create a
complex energetic landscape for charges that activate additional scattering mechanisms, and
determine emergent optoelectronic properties such as exciton and carrier transport, and light
emission [119]. However, the precise nature of electron lattice interactions in these materials
remains to be understood. Femtosecond lasers have made it possible to impulsively generate
and detect coherent phonons in semiconductor nanostructures with time-resolved pump and
probe measurements. Time resolved photocarrier dynamics in quantum wells and semicon-
ductor superlattices can provide detailed insight into the relevant interaction mechanisms
between coherent phonons and coherently prepared electronic wave packets.

Here we employ ultrafast pump-probe transient absorption spectroscopy on 2D layered
perovskites to investigate the direct dynamic interplay of optically generated excitons in
the perovskite layer with their surrounding organic sublattice. Our observations show a
phonon dephasing process with a strong dependence on the organic barrier. In conjunction
with molecular dynamics simulations, we find that the composition of organic ligands and
inorganic quantum well thickness can substantially change the dephasing rate of optical
phonons and their temperature dependence, due to varying degrees of anharmonicity in
the lattice and dynamic structural disorder. This molecular and time domain insight into
optical relaxation sheds light on the emergent electron-lattice interactions in these materials
and enables their design for optoelectronic devices.

4.2 Experimentally observed phonon dynamics

We studied thin films and single crystals of A2PbX4 (A=R-NH3) that can be synthesized by
mixing precursors at desired stoichiometric ratios, followed by spontaneous self-assembly of
the quantum well structure, illustrated in Fig. 4.1 (a). This class of materials is known to
exhibit moderate quantum confinement e↵ects, resulting in narrow-band emission combined
with exceptionally large oscillator strength (7x10�2 cm�1) [118]. Optical phonons are ex-
pected to be the most strongly coupled modes to electronic excitations in these materials as
such phonons will modulate charge transport and Coulomb screening [191, 166, 201]. Such
motions can in principle be investigated using Raman scattering by examining the lineshapes
which informs the lifetime, enabling the elucidation of the roles of confinement, extended
interfaces, and disorder on the modes [49]. However, these are often di�cult to disentangle
in complex systems that have inherently coupled broadening mechanisms.

By employing a narrow optical excitation and following the excitation in the time domain
from the associated transient modulation of the reflectivity, we can decouple the e↵ects from
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Figure 4.1: Impulsive generation of coherent phonon oscillations in (PEA)2PbBr4. (a)
Schematic illustration of the hybrid quantum-well structure. (b) Time-resolved di↵erential
transmission (dT) spectrum from (PEA)2PbBr4. (c) Extracted coherent phonon oscilla-
tions from time-resolved di↵erential transmission spectrum measured with di↵erent pump
intensity at 80K. Probe energy of 3.0 eV. (d) Fourier transform spectrum of the coherent
oscillation measured at room temperature (red solid lines) and 80 K (blue dashed lines).
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homogeneous and inhomogeneous broadening in the Raman scattering lineshape. Femtosec-
ond optical excitation allows for an impulsive coherent electronic excitation that generates
coherent phonons as it relaxes, as it is shorter than the inverse of the phonon period [120].
Since the generation and subsequent relaxation processes are strongly a↵ected by the cou-
pling of phonon modes to the photoexcited states, the real-time observation of coherent
phonons can o↵er crucial insight into to the dynamic electron-phonon coupling.

To detect the coherent phonons, we use a standard pump–probe configuration in which
the observed di↵erential transmission (dT) is modulated due to changes in the complex
dielectric function from electron-phonon coupling. Thus, the dephasing time can be charac-
terized by the decay of the dT modulation amplitude. Using time-resolved measurements, it
has been possible to monitor the dephasing of coherent optical phonons near q = 0 in polar
semiconductors such as GaP [17], GaAs [197], ZnSe [17], InP [198]. In Figs. 4.1 (b) and (c),
we show the dT dynamics in the thin films following resonant excitation with a sub-50-fs
visible pulse (3.26 eV). The vibrational coherence map can be resolved due to the spectrally
dispersed probe-wavelength and collected as a function of pump-probe delay time and probe
wavelength. We observed pronounced oscillations resulting from optical phonons on top of
an exponentially decaying background. The background signal is related to rapid electronic
excited state relaxation. In bulk perovskites such as CsPbX3, a coherent phonon induced
oscillation is less visible due to the decrease in both phonon mode amplitude and dephasing
rate at room temperature [132]. As shown in Fig. 4.1 (d) for a 2D (PEA)2PbBr4, oscilla-
tions are observed and suggest two di↵erent phonon modes with frequencies calculated by
fast Fourier transform of 0.85 THz (28.3 cm�1) and 1.57 THz (52.4 cm�1). We also measured
the photo-excited phonon dynamics at several pump wavelengths spanning non-resonant and
resonant excitations (3.5- 2.9 eV). We observed oscillatory response in all cases (see Fig. S6
in Ref.[147]), indicative of a strong coupling of optical excitation to the lattice.

We considered one ligand derived from an alkyl group, n-butylamine (BTA), and one from
an aromatic group, phenylethylamine (PEA). The packing geometry of the organic barriers
leads to a structural deformation of inorganic octahedra (Fig. S2 in Ref.[147]) that strongly
a↵ects the energy, lifetime, and localization of the band-edge exciton, and as a result, a↵ects
changes to the electrical transport properties of these materials [182, 81]. By changing the
organic barriers from an alkyl chain to an aromatic ligand, the resulting structural distor-
tions and ordering of octahedra have greatly a↵ected device performance in light emitting
diodes and photovoltaic device applications [48, 31, 211]. In our experiments, we observed
a clear trend in photoluminescence e�ciency, where the perovskites with aromatic organic
groups typically show high photoluminescent yield of up to 50 % at room temperature while
those made of alkyl groups show much lower yields. The stable phase of (PEA)2PbBr4
is a lattice with a triclinic space group (P1), and the PEA organic barriers stack in a T-
shape arrangement via strong ⇡-⇡ interaction, forming relatively rigid crystal geometry. The
(BTA)2PbBr4 perovskites, on the other hand, form a lattice with a Pbca space group, with
the alkyl-group organic cations generating a weak quantum well-to-well stacking interaction
indicated by the relatively broad di↵raction peaks (Fig. S2 in Ref.[147]). Fig. 4.2 (a) re-
ports the ultrafast resonant impulsive Raman probed at 3.0 eV for both (PEA)2PbBr4 and
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(BTA)2PbBr4, where the oscillation spectra have been obtained after subtraction of an expo-
nential decay of carriers. This oscillation observed is reproducible for di↵erent positions on
the sample. Upon photoexcitation, we observe qualitatively di↵erent dynamics depending
on the organic barriers. For (PEA)2PbBr4, we find persistent oscillations over 5 ps, while for
(BTA)2PbBr4, oscillations dephase rapidly and any mode assignment becomes ill-defined.
The corresponding extracted ultrafast phonon-dephasing rate was significantly diminished
in the perovskites with the alkyl group, relative to the aromatic group. These measurements
were repeated at di↵erent temperatures, spanning 80 K to 300 K. Additionally, we also var-
ied alkyl chain lengths, and the shape of aromatic groups and measured their corresponding
phonon dephasing dynamics (Fig. S7 in Ref.[147]).

The observed spectral oscillations with time delay, induced by optical phonons, are used
to measure the phonon dephasing time. This is extracted and plotted as a function of
temperature in Fig. 4.2 (b). In (PEA)2PbBr4, we found a temperature-dependent phonon
dephasing rate, indicative of the anharmonicity of optical phonon coupled to the electronic
states. The coherent phonon population in (PEA)2PbBr4 perovskites decays within 4-5
ps at room temperature, while the dephasing time can be extended up to 10 ps at 80
K. This increase of the phonon relaxation rate with temperature is anticipated by the in-
creased phonon-scattering enabled by anharmonic e↵ects in the potential energy [7, 200]. In
(BTA)2PbBr4, with alkyl chain group, the dephasing rate was around 4 times faster than in
the case of the aromatic ligand. Furthermore, the dephasing rate in the alkyl ligand exhibited
no significant temperature dependence. In bulk crystalline semiconductors, a temperature
independent phonon linewidth is usually explained as consequence of an elastic scattering of
coherent phonons by a perturbing potential of lattice defects [73]. However, as we discuss
below, in this (BTA)2PbBr4, a high degree of dynamic rather than static disorder results in
a suppressed temperature dependence. Given a common inorganic framework, the di↵erent
temperature dependence observed for the di↵erent cations indicates that the organic ligands
play an important role in determining the lifetime of the modes most strongly coupled to
the photogenerated excitons.

To gain initial insight into the optical phonons and their structural disorder, we further
performed non-resonant Raman scattering measurements with all perovskites we mentioned
previously. The low-frequency (10-100 cm�1) Raman scattering is expected to convey vibra-
tional information regarding the inorganic octahedra, and thus is uniquely suited to measure
the distortion induced modulated structures. We observed in Fig. 4.2 (c), three strong sym-
metric vibrational scattering features below 100 cm�1 in (PEA)2PbBr4, which previously
have been assigned to various vibrational modes of PbBr6 octahedral frameworks. In par-
ticular, the strongest vibrational scattering at 55 cm�1 is well matched with optical phonon
oscillation frequency that we observed from time-resolved optical measurements.

Surprisingly, we found a significant broadening and spectral shift of inorganic phonon
modes in perovskites with alkyl group (BTA)2PbBr4, shown in Fig. 4.2 (d), which is charac-
teristically associated with inhomogeneous distortion in the octahedral lattice. The Raman
signal at 40 cm�1 is a sum of two broadened symmetric Lorentzian subpeaks of Pb-Br coor-
dination, which means the Pb-Br bond lengths in (BTA)2PbBr4 are distorted significantly
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Figure 4.2: Structural information of hybrid perovskite quantum wells with di↵erent organic
ammonium cation as barriers and the corresponding phonon-lattice dynamics. (a) Resonant
impulsive Raman spectra by pump-probe measurement with quantum wells packed with dif-
ferent organic spacers at room temperature. TA is plotted at the probe energy of 3.0 eV. (b)
Lattice temperature dependent dephasing rate of coherent optical phonon dynamics. Non-
Resonant Raman spectra (fitted with Lorentzian) of (c) (PEA)2PbBr4 perovskite quantum
well and (d) (BTA)2PbBr4 perovskite quantum well.
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Figure 4.3: Simulation of vibrational dynamics. (a, b) Snapshots of simulations on
(BTA)2PbBr4 (a) and (PEA)2PbBr4 (b) perovskites. (c) Dephasing rate of the lowest optical
mode in (BTA)2PbBr4 (blue circles) and (PEA)2PbBr4 (purple squares). (d) Contributions
from each atom type to the vibrational mode as a function of vibrational mode frequencies in
each layered perovskite. (e) Fluctuations of angles between vertical axis and nitrogen-carbon
dipole vector (schematically defined in Fig. 4.5) at each temperature. (f) Normalized spatial
correlations between the nitrogen-carbon dipole vector (black arrows) as a function of the
lateral distance between vectors. Dotted lines in (c) and (e) are guides to the eye.

in comparison to the (PEA)2PbBr4. The Raman result implies that the variable orientation
of the di↵erent organic cations is largely responsible for the inorganic lattice distortion.

4.3 Atomistic perspective on the vibrational

dynamics using molecular dynamics simulations

To obtain an atomistic perspective on the vibrational relaxation dynamics of (BTA)2PbBr4
and (PEA)2PbBr4, we performed molecular dynamics simulations. To simulate each per-
ovskite, we employed an empirical model with fixed point charges whose reduced compu-
tational cost enables the study of extended system sizes over the long times required to
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average over the slow fluctuations of the ligands [74, 117]. Detailed description on the sim-
ulation method can be found in Ref. [147]. While simple, the model reasonably reproduces
experimental values of the lattice constants and mechanical properties of these and related
materials (see Ref. [147]). Snapshots of the simulations with the di↵erent organic cations are
shown in Fig. 4.3 (a) and 4.3 (b).

To study the dynamics of vibrational relaxation, we extract the phonon modes by com-
puting the lattice Green’s function and solving the associated eigenvalue equation from the
dynamical matrix. We employ the fluctuation dissipation theorem to compute the dynam-
ical matrix from the displacement correlations from a simulation at 50 K, and extract the
e↵ective vibrational frequencies and phonon modes (Eq. 4.3) at that temperature [90, 42].
Assuming that the atoms are vibrating around their equilibrium positions, the total potential
energy U can be expressed in terms of lattice displacement u as

U = U0 +
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where �ij = (@2U/@ui@uj)0, U0 is the minimum value of potential energy, the subscript 0
indicates that the derivatives are calculated at the equilibrium positions, and index i and
j go over all atoms and dimensions. In the harmonic approximation, where terms higher
than second order are assumed to be negligible, the total potential energy at equilibrium is
written as the third term in the Eq. 4.1. From the fluctuation-dissipation theorem, the force
constant between atoms i and j, �ij, is related to the inverse of the second moment of lattice
displacement huiuji, defined as Green’s function Gij by a factor of kBT , i.e. Gij = huiuji and
�ij = kBT (G�1)ij. Ensemble average is denoted as h. . .i. In our simulations, the Green’s
functions are measured every 10 fs and 20 fs for layered and bulk perovskites, respectively
and acoustic sum rule is applied with 100 iterations [90].

In periodic system, such as ionic crystals, it is convenient to describe vibrations in terms
of wave vectors where modes with di↵erent wave vectors are not coupled to each other. Our
calculations are performed at the gamma point and from the force constant matrix, the
dynamical matrix, Dij(q) can be defined as

Dij(q) =
1

p
mimj

�ij(q) (4.2)

where the frequencies of vibrational modes at each wave vector are computable through the
solution of the eigenvalue equation

!
2(q) · e = D(q) · e (4.3)

where ! is the vibrational frequency and e is corresponding phonon mode. The simulated
values of the optical frequencies are !=7.22 THz for BTA and !=4.41 THz for PEA per-
ovskites. Details on the lattice dynamics and phonon measurements are described in [90,
91, 42]. In this framework, at each wave vector, each eigenvalue !2

�
has a corresponding
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Figure 4.4: Dot products between ~e� with the lowest frequency at 50K and ~e� at other
temperatures, showing the correlation between modes at di↵erent temperatures. Dotted
lines are used to connect neighboring symbols.

eigenvector ~e� which has the information on the direction of the vibrational mode �. Since
eigenvectors are normalized,

nX
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X
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e
2

↵j
= 1 (4.4)

where n represents the number of atoms in the unit cell, values in ~e� act as the probability
amplitude in the mode �. e

2

↵j
can be considered as the contribution of atom j to the

vibrational mode � with the frequency !� in the direction ↵. In Figure 4.3 (d), Lorentzian
distributions centered at !� with the width ⌘, L(!,!�, ⌘), are summed over all the vibrational
modes,
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to obtain the participation ratio. Since the area under the curve for atom j is proportional
to the value of

P
↵=x,y,z = e

2

↵j
, at each frequency, the value for atom j has the information on

how much the contribution of atom j to the vibrational mode with that frequency is. In this
calculation, ⌘=1.511 and ⌘=1.478 are used in (BTA)2PbBr4 and (PEA)2PbBr4 perovskites,
respectively.

In terms of the atom contribution to each vibrational mode, it is expected that optical
phonons with lower energy are attributed to the bending and rocking motions of PbX3

inorganic framework [49, 131, 35]. While we confirm that they participate in these modes,
in our calculations we found that the organic cations also contribute significantly to the low-
frequency modes in the layered perovskites. The participation ratio for each atom type as
a function of frequency is shown in Fig. 4.3 (d), where for both PEA and BTA perovskites
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the organic ligand atoms contribute up to 40 % to the longitudinal and transverse optical
modes. Similar strong coupling between the inorganic octahedra and organic A-site cation
has been observed with Raman scattering [208].

In Figure 4.4, a dot product between ~e� with the lowest nonzero frequency at 50K and
~e� at other temperatures is plotted. This indicates how similar the vibrational modes at
higher temperatures are with the modes at 50K. The value ranges from 1 (parallel) to 0
(orthogonal). For (PEA)2PbBr4 and CsPbBr3 perovskites, the values from dot product are
close to 1 across the whole range of temperatures, meaning that the modes are not changed
upon increasing temperature. However, for (BTA)2PbBr4 perovskite, the direction of the
lowest vibrational mode is changed significantly as the temperature is increased, indicating
that it has much larger anharmonicity compared to other perovskites.

For the lowest frequency optical mode in each layered perovskite, we computed the de-
phasing rate over a range of temperatures from 50 K to 300 K. The excited vibrational
states are relaxed by interacting with other degrees of freedoms. If the interaction is weak,
the vibrational relaxation rate (dephasing rate) can be computed from Fermi’s Golden Rule:

�i!f =
1

h̄
2

Z
1

0

dt e
i!t

hV̂ (t)V̂ (0)i (4.6)

where V̂ is the quantum mechanical operator of the coupling between states. If V̂ is expanded
perturbatively in terms of vibrational modes of the system up to the first order, then, assum-
ing that modes are harmonic and upward and downward transitions are balanced by each
other, in the classical limit, the Fermi’s golden rule rate for vibrational relaxation, ��, can
be computed by the Fourier transform of the force-force correlation function of the optical
mode [46, 133, 174],
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1
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dt cos(!�t)hF�(0)F�(t)i (4.7)

where F� is the force on the �’th mode due to the anharmonic coupling to the surround-
ing lattice and !� its corresponding frequency. The average h..i is taken over an isobaric,
isothermal ensemble with 1 atm of pressure and varying temperature.

We take a semiclassical approximation, where the quantum mechanical force correlation
function in the integral in Eq. 4.7 is replaced by the classical counterpart multiplied by the
quantum correction factor, ⇣. In the first order perturbative approach, exact expression for
⇣ is

⇣ =
h̄!

2kBT

1

tanh (�h̄!/2)
(4.8)

which at its largest at 50K is 1.1 for BTA and 1.04 for PEA and is thus negligible contribution
to the rate even at the lowest temperature considered. In our calculations using Eq. 4.7, for
each mode �, !� and ~e� from the diagonalization of dynamical matrix are used and forces
acting on vibrational mode �, F�, is obtained from the forces in the real space as follow:

F�(t) =
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Figure 4.5: Probability distribution of angles between vertical lines (black arrows) and NC
vector (colored arrows) in (BTA)2PbBr4 (blue line) and (PEA)2PbBr4 (purple line) per-
ovskites. Inserted figures are partial snapshots from simulations to describe NC vectors.

where n is the number of atoms in a unit cell. Details on Eq. 4.9 which connects the positions
in real space and vibrational modes are discussed in Ref [42]. The classical treatment of the
nuclei is justified by the fact that the energy for the optical phonon is much less than the
thermal energy, h̄!� ⌧ kBT , where h̄, kB, and T are Planck’s constant, Boltzmann’s constant
and the temperature respectively [174]. In agreement with experiment, Fig. 4.3 (c) shows
the dephasing rates in (BTA)2PbBr4 are higher than the rates for (PEA)2PbBr4 across the
range of temperatures studied. Further consistent with the experiment, we find a strong
dependence of the dephasing rate with the PEA cation, while the dephasing rate with the
BTA cation is insensitive to the temperature.

We find that the fast phonon dephasing rates in both (PEA)2PbBr4 and (BTA)2PbBr4
are a consequence of significant anharmonic coupling of the optical mode to the ligand barri-
ers that increase phonon scattering. We have characterized the anharmonicity both directly
through structural measures and indirectly through the dependence of the modes on tem-
perature and volume. To quantify anharmonicity structurally within the perovskites, we
analyzed the angle distribution of each organic cation. In Fig. 4.5, black arrows indicate
the axis perpendicular to the inorganic octahedra plane, ẑ, and colored arrows represent
the vector from the nitrogen N to the last carbon C in each organic cation, RNC. We find
that the probability distribution of angles between ẑ and vector RNC, for (BTA)2PbBr4 per-
ovskite is much broader than the one from (PEA)2PbBr4, indicating that organic cations in
BTA perovskites are less ordered compared to the organic cations in PEA perovskites. We
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Figure 4.6: Frequency of the lowest nonzero phonon mode normalized with the lowest nonzero
frequency at 50K as a function of temperature. Dotted lines represent linearly fitted lines in
each perovskite.

measured the width of the distribution by calculating the standard deviation. Fig. 4.3 (e)
shows the mean squared fluctuations of the angle, h�⇥2

i , between the axis perpendicular to
the inorganic octahedra plane, ẑ, and the nitrogen-carbon unit vector, RNC, as a function of
each temperature, such that cos(⇥) = RNC · ẑ. If the local potential of the ligand orienta-
tion were harmonic, according to the fluctuation-dissipation theorem, the fluctuations would
increase linearly as the temperature is increased. For both the PEA and BTA cations, we
find a nonlinear temperature dependence, with a more significant departure from linearity
in BTA relative to PEA. The corresponding distribution shown in Fig. 4.5 is significantly
non-Gaussian for BTA, while only marginally so for PEA at 300 K. Both have optical fre-
quencies that show a strong temperature dependence (Fig. 4.6), while for BTA the optical
mode becomes significantly mixed with increasing temperature (Fig. 4.4). Given the large
contribution of the ligand to the optical mode in both materials, the stronger anharmonicity
of (BTA)2PbBr4 than in (PEA)2PbBr4 explains the higher rate of phonon relaxation in BTA
perovskite as resulting from stronger phonon scattering.

The relative temperature independence of (BTA)2PbBr4 can be understood by noting
the significant disorder in that lattice relative to (PEA)2PbBr4. This is quantified by the
spatial correlation between nitrogen-carbon dipoles, µ,

C(r) = hµ(0) · µ(r)i (4.10)

separated by a lateral distance r. This correlation function is illustrated in Fig. 4.3 (f), nor-
malized by its value at the origin, C(r)/C(0). For (PEA)2PbBr4, the normalized correlation
function, which ranges from 0 to 1, is unstructured, and does not decay appreciably over
40 Å. For (BTA)2PbBr4, however, the correlation decreases within a unit cell, and drops
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Figure 4.7: Time auto-correlation function of nitrogen-carbon dipoles (NC vectors) in BTA
(blue) and PEA (purple) perovskites as a function of time.

periodically to as low as 0.8. Compared to PEA, the lower long-ranged correlation in BTA
details an amorphous packing of BTA even at low temperature. Rather than the expected
phonon-defect scattering, considering the longer decorrelation time of organic ligands rela-
tive to the phonon relaxation time (Fig. 4.7), this implies that persistent dynamic disorder
results in a temperature insensitive relaxation rate. Molecularly, this disorder results from
the stronger, directional ⇡ � ⇡ stacking of PEA as shown in Fig. 4.3 (b), relative to the
weaker isotropic van der Waals interactions of BTA.

We have compared these simulation findings to a CsPbBr3 bulk perovskite by considering
two additional measures of anharmonicity. At the molecular level, we analyze the structure
of the inorganic framework. We have computed the displacement distribution of the lead
atoms from their equilibrium lattice positions at 300 K. Fig. 4.8 (a) illustrates that the dis-
tribution is much narrower in CsPbBr3 perovskite relative to (PEA)2PbBr4 or (BTA)2PbBr4,
indicating that structures of layered perovskites are less structurally rigid as compared to
bulk perovskite, while the distributions are nearly identical for both ligands. Additionally,
we have calculated the Grüneisen parameter,

�� = �
@ ln!�

@ lnV
= �

V

!�

@!�

@V
(4.11)

for the �’th mode with lattice volume V (Fig. 4.9). If all the vibrational modes are harmonic,
then the frequency would not depend on the volume. In terms of our simulations, since
simulations are performed at the constant pressure and temperature, the way to change the
volume is to change the temperature of simulations. The derivative of frequency with respect
to volume in Eq.4.11 is approximated by the fitting described in Fig. 4.9 and the volume V

and the lowest frequency ! at each temperature are used to calculate �. Since the frequency of
harmonic modes does not depend on the volume and temperature, a higher value of Grüneisen
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Figure 4.8: Generality and mitigation of coherent phonon dephasing dynamics. (a) Prob-
ability distribution of Pb atom displacement from average position in (BTA)2PbBr4 (blue
circles), (PEA)2PbBr4 (purple squares), and CsPbBr3 (green diamonds) perovskites. (b)
Grüneisen anharmonicity parameters in layered and bulk perovskites. Dotted lines connect
neighboring symbols. Oscillatory response from coherent phonon dynamics of (c) n = 2
multi-quantum well perovskites with PEA organic cations and (d) n = 1 quantum well per-
ovskites with phenylammonium (top) and octylammonium (bottom) organic cations.

parameter indicates a higher strength of anharmonicity. Fig. 4.8 (b) shows � for the lowest
optical mode as a function of temperature. We find that the anharmonicity in layered
perovskites is much higher than in the bulk perovskite, consistent with our expectation, and
the former grows with temperature.

Anharmonic interactions result in the decay of phonons through phonon-phonon scat-
tering, which for optical modes are expected to be dominated by Umklapp processes. The
dephasing rate of vibrational modes through Umklapp scattering is computable as:

�U = 2�2
kBT

GV0

!
2

!D

(4.12)

where �U is the dephasing rate of a specific vibrational mode, � is the Grüneisen parameter
described in the section below, G is the shear modulus, V0 is the volume per atom, !D is the



CHAPTER 4. VIBRATIONAL RELAXATION DYNAMICS IN LAYERED
PEROVSKITE 78

Figure 4.9: Lowest optical frequency as a function of total volume of the system for (A)
(BTA)2PbBr4 (B) (PEA)2PbBr4, and (C) CsPbBr3 perovskites.

Figure 4.10: Dephasing rates predicted through Umklapp scattering using Eq. 4.12. Dotted
lines are used to connect neighboring symbols.

Debye frequency, and ! is the frequency of vibrational mode. According to the Eq. 4.12,
at a given temperature in each perovskite, the dephasing rate has quadratic scaling with
the vibrational frequency, indicating that the discrepancy between higher dephasing rate
between the simulation and experiment can be attributed to the higher frequencies in the
former. Since frequencies predicted from MD simulations are higher than the frequencies
measured from Raman scattering due to fixed charges in MD simulations, we checked that
the scale of dephasing rates predicted from theory agrees with experiments quantitatively
by multiplying the ratio of !2 from experiments to simulations. Within this analysis, in
explaining the dephasing rate through Umklapp process, we assumed that the di↵erence in
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value of dephasing rate is dominated by the frequency di↵erence between simulation and
experiment. The di↵erence in other thermodynamic parameters T , V0 (lattice constants),
and µ are quite small. In Fig. 4.10, we use Eq. 4.12 to estimate the dephasing rate. To
estimate rates through Umklapp scattering, we used the Grüneisen parameter � described
in Fig. 4.8 (b) and µ, V0, and ! evaluated at low temperature. Even though dephasing rates
from Umklapp scattering are much higher than the rates predicted from Eq. 4.7, they are
in qualitative agreement in terms of ordering where rates of (BTA)2PbBr4 perovskite are
higher than the rates of (PEA)2PbBr4 perovskite and much higher the CsPbBr3. Using an
Umklapp scattering model [113], the Grüneisen parameter and the corresponding lower shear
moduli of the layered perovskites can qualitatively reproduce the ordering of the dephasing
rates of (BTA)2PbBr4 and (PEA)2PbBr4, and suggest that both are an order of magnitude
larger than that expected for CsPbBr3 as described in Fig. 4.10.

While the direct comparison to the bulk CsPbBr3 perovskite is not possible experimen-
tally due to the decreased phonon amplitude and facile charge dissociation, we have studied
the vibrational dynamics of lattices with increased inorganic layers. We synthesized a sin-
gle crystal (PEA)2CsPb2Br7 (n = 2) perovskite and measured its ultrafast coherent optical
phonon dynamics. The transient absorption signal is shown in Fig. 4.8 (c) in which the
dephasing lifetime is longer, 8 ps, compared with single layered (PEA)2PbBr4 (n = 1) coun-
terpart. This is consistent with mitigating the anharmonic coupling to the ligand barriers,
and subsequent lower phonon-to-phonon scattering rates. Additionally, as a direct test of
the underlying molecular packing argument emerging from the simulations, we synthesized
and measured the coherent phonon dynamics of (PA)2PbBr4 where PA is Phenylammonium
and (OA)2PbBr4 where OA is Octylammonium perovskites. Fig. 4.8d demonstrates that the
phonon lifetime is longer with the PA organic cation, as clarified by its persistent oscillatory
response, as compared to the OA organic cation, in which no oscillations are observed. This
is consistent with the ability of aromatic cations to leverage ⇡� ⇡ interactions and stabilize
a more ordered ligand layer relative to alkyl cations, supporting the previous analysis of the
BTA and PEA organic cations.

4.4 Conclusion

We have presented an experimental and theoretical description of vibrational relaxation in
layered perovskites. We studied the dephasing dynamics of two di↵erent organic cations in
depth and observed a di↵erence in lifetime and response to the temperature of the phonons,
implying that organic cations play an important role in determining the relaxation dynam-
ics coupled to photogenerated excitations. This work elucidates that anharmonicity and
dynamic disorder from organic cations facilitate vibrational relaxation and optical vibra-
tional modes are largely mixed with the organic species. Our work contributes to the deeper
understanding of phonon dynamics and may provide the foundation for future studies on
the mechanism of electron-phonon interaction in Ruddlesden-Popper phase perovskites.
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Chapter 5

Biexciton interaction in lead halide

perovskite nanocrystals

The aim of this chapter is to explore the biexciton interaction in perovskite nanocrystals.
Using quasiparticle-based path integral molecular dynamics simulation, we have provided the
idea of how to study the interplay between anharmonic lattice degrees of freedom, dielec-
tric confinement, and electronic correlation to understand multiexcitonic behavior over the
range of nanocrystal sizes, and these detailed models are compared with simplified harmonic
models. Even though this work requires further investigation, we will discuss theoretical
and simulational details with the preliminary results and conclude this chapter with some
comments on the future work.

5.1 Introduction

Lead halide perovskite nanocrystals are the subject of great interest owing to the unique pho-
tophysical properties of perovskites combined with the controllable properties of nanocrys-
tals. On top of the compositional flexibility, they have a flexibility on their sizes and shapes
of nanocrystals. Additionally, their material properties such as superior photoluminescence
quantum yield (PLQY) close to 90%, large exciton binding energy, high radiative recombina-
tion, narrow PL band, coming from quantum confinement e↵ect, make them ideal candidates
for the optoelectronic applications such as LEDs, lasers, photodetectors, and memory devies
[80, 215, 225, 2, 196].

The application of nanocrystals of semiconducting materials requires the deep under-
standing of the behavior of charge carriers and the photophysics of the materials, which can
be a↵ected by the size of nanocrystals due to the quantum confinement e↵ect. Upon pho-
toexcitation, electron is excited to the conduction band, remaining the positively charged
quasi-particle, hole, in the valence band where the bounded electron-hole pair is called an
exciton. With high excitation densities, not only exciton but exciton complexes including
biexciton can be generated [87, 194]. If there are multiple excitons, the interaction between
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excitons will significantly a↵ect the optical properties of nanocrystals where the biexciton
state, which is referred to the state of two bound excitons, is known to play a crucial role in
determining the optical gain of semiconducting nanocrystals [220]. Here, the study on the
biexcitonic state, specifically biexciton binding energy for the various nanocrystal sizes, will
be addresed.

The biexciton binding energy is defined as the energy di↵erence between two interacting
excitons and non-interacting excitons. Many studies on biexciton binding energy have been
reported but the range of experimentally reported values are broad, ranging from �100 to
100 meV [215, 225] where the positive value indicates the repulsive interactions of excitons
[36, 5]. However, the large variance in the size of nanocrystals, spectral drift, and thermal
broadening of spectral lines make these reports controversial [111, 4, 11]. From the theoretical
perspective, for perovskite nanocrystals, since photoexcited charges interact with each other
strongly through attractive and repulsive Coulomb interaction due to the confinement e↵ect,
we need to take electronic correlation between electrons and holes into account. Additionally,
as described in the previous chapters, due to the complex structure and anharmonic nature
of perovskites, including the dynamical e↵ects of phonons from fluctuating perovskite lattice
is very challenging. Even with the importance of lattice e↵ects on optical properties, the
e↵ects from multiple excitons-phonon coupling is poorly understood.

In this work, we employ quasiparticle path integral molecular dynamics combined with
an explicit atomistic description of the lattice, which allows us to include all orders of anhar-
monic lattice fluctuations, whose results are compared with harmonic models with Fröhlich-
type interactions. With this, we evaluate the biexciton binding energy for the range of
nanocrystal sizes where we systematically add lattice e↵ects from static dielectric screening,
fluctuating harmonic phonons, and explicit anharmonic perovskite lattice. In the following,
we discuss the theoretical details used to study biexciton with lattice fluctuations and present
simulation details with the validation of our model, followed by preliminary results, some
concluding remarks and future directions at the end.

5.2 Theory

We consider a system of biexciton, two electrons and two holes, interacting with CsPbBr3
perovskite nanocrystals where the system Hamiltonian consists of three pieces, H = Hel +
Hlat +Hint. The elctronic piece is defined with kinetic energies for biexciton and Coulomb
interaction between electrons and holes,

Hel =
X

i

p̂
2

i

2mi

+
X

i 6=j

qiqj

4⇡"1|x̂i � x̂j|
(5.1)

where the subscripts i, j 2 {e1, e2, h1, h2} indicate two electrons and two holes respectively, p̂
and x̂ are momentum and position operators, m is the band mass of each charge in the unit of
bare electron mass, "1 is the optical dielectric constant in the unit of vacuum permittivity,
and q is the charge of quantum particle which is �e for electrons and +e for holes. All
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electron and hole quantum particles are considered as distinguishable in this work. For the
lattice part Hlat and interaction piece Hint between charges and the lattice, since we will
introduce three types of lattice e↵ects which can be viewed as anharmonic, harmonic, and
static, we will define these two terms as we elaborate the discussion on each lattice e↵ect
with the superscript A, H, and S for the relevant quantities, respectively.

First, we take an explicit CsPbBr3 perovskite nanocrystals into account as the lattice
part, referred as the anharmonic lattice e↵ect. Given that the atoms in perovskite lattice
are heavy, adopting a path integral description for light electrons and holes quasiparticles
with the classical description for the lattice [51, 52], the partition function Z of the system
can be written as

Z =
Z
D[xeh, xlat] e

�S[xeh,xlat]/h̄ (5.2)

where xeh = {xe1
,xe2

,xh1
,xh2

}, xlat = {x1,x2, . . . ,xN} with N as a total number of atoms
in the lattice, and the path action is defined as S = Sel + Slat + Sint. The corresponding
electronic part of the path action with imaginary time ⌧ is given by

Sel =
Z

�h̄

⌧=0

X

i

miẋ
2

i,⌧

2
+
X

i,j

qiqj

4⇡"1|xi,⌧ � xj,⌧ |
(5.3)

where i, j 2 {e1, e2, h1, h2}, ẋ is the velocity of each quantum particle, h̄ is the Planck’s
constant, and ��1 = kBT with kB and T as the Boltzmann constant and temperature. If the
path action given by Eq.5.3 is discretized, each quantum particle becomes a ring polymer
where neighboring beads are connected by a harmonic spring, which is a classical counterpart
in an extended space [69, 22]. For the anharmonic lattice piece, classical assumption makes
the lattice part of the path action as SA

lat
= �h̄H

A

lat
with

H
A

lat
=

NX

i=1

p
2

i

2mi

+ Ulat(xlat) (5.4)

where pi and mi is the momentum and mass for ith atom of the lattice and Ulat is the sum
of all pairwise interactions between atoms determined by the empirical atomistic force field
whose details are described in the next section. For the interaction part, the path action is
written as

S
A

int
=
Z

�h̄

⌧=0

Ue1l
(xe1,⌧

,x
N) + Ue2l

(xe2,⌧
,x

N) + Uh1l
(xh1,⌧

,x
N) + Uh2l

(xh2,⌧
,x

N) (5.5)

where Ue1l
, Ue2l

, Uh1l
, and Uh2l

are the sum of pseudopotentials in the form of truncated
Coulomb potentials whose cuto↵ distances are chosen carefully using the atomic radii of
each atoms [135, 136, 164, 98]. The details on the atomistic force field and pseudopotentials
are presented in the next section.

Next, assuming that lattice fluctuations from perovskite nanocrystals can be e↵ectively
approximated by the collection of harmonic modes, the Hamiltonian for harmonic lattice is
given by

H
H

lat
=
X

k

1

2

⇣
p̂
2

k + !
2
q̂
2

k

⌘
(5.6)
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where p̂k and q̂k are mass weighted momentum and position operators of phonons at each
wave vector k and ! is the longitudinal optical frequency, which can be generalized with the
explicit k dependence as !k to encode spatially dependent lattice e↵ect [135]. Consistent
with the Coulomb interaction between charges and atoms in the lattice, the interaction term
is given by

H
H

int
=
X

k

q̂k
�e1e

ik·x̂e1 + �e2e
ik·x̂e2 � �h1

e
ik·x̂h1 � �h2

e
ik·x̂h2

k
(5.7)

with the interaction strength

�j = �ih̄!

✓
4⇡↵j

V

◆ 1

2

 
h̄

2mj!

! 1

4
✓
2!

h̄

◆ 1

2

(5.8)

where V is the volume of the system and ↵ is the dimensionless Fröhlich coupling constant
for each quantum particle [129, 57]. Given that the coupling is linear in qk, the lattice
variables can be integrated out [51, 135, 134],

Z = Z
H

lat

Z
D[xeh] e

�Sel/h̄e
�S

H

e↵
/h̄ (5.9)

where Z
H

lat
is the partition function of phonons without the coupling with charges and the

resultant e↵ective path action S
H

e↵
can be derived as

S
H

e↵
= �

X

i,j

�ij
↵ij!

2
p
h̄

�
p
8mij!

Z
�h̄

⌧=0

Z
�h̄

⌧ 0=0

e
�!|⌧�⌧

0
|

|xi,⌧ � xj,⌧ 0 |
(5.10)

where i, j 2 {e1, e2, h1, h2}, quantum mechanical particle with same charges share the same
value of ↵ and m, ↵ij =

p
↵i↵j, mij =

p
mimj, and �ij is equal to +1/� 1 for the same and

opposite charges, implying that the e↵ects of harmonic phonons on charges can be encoded
as the interaction between di↵erent imaginary times.

Lastly, the static lattice e↵ect is defined by taking ! ! 0 limit of harmonic lattice e↵ect,
which makes Eq. 5.6-5.7 or Eq. 5.10 vanish, leaving only Sel term in the resultant partition
function. For all types of lattice e↵ects, (i) anharmonic, (ii) harmonic, and (iii) static,
simulation details including discretized Hamiltonian are described below. Under each type
of lattice e↵ects, we perform path integral molecular dynamics simulations and evaluate the
biexciton binding energy.

5.3 Simulation details

For the simulations of biexciton with explicit CsPbBr3 perovskite nanocrystals, we consider
the range of nanocrystal sizes from 2.4 nm to 6 nm. For the perovskite nanocrystals, we take
the relaxed structure for each size of nanocrystals [204] and adopt an atomistic force field
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i "i (kcal/mol) �i (Å) qi (e)

Cs 13.3381 2.927 0.86

Pb 0.2470 2.524 1.03

Br 0.2359 4.129 �0.63

Cssurf 13.3381 2.927 qsurf

Table 5.1: Lennard-Jones parameters for CsPbBr3 perovskite nanocrystals. For the parame-
ters not listed here can be calculated using "ij =

p
"i"j and �ij = (�i + �j)/2 and the charge

for surface Cs atoms can be given by Eq.5.12 for each size of nanocrystal.

[15], whose pair-wise interactions between atoms with type i and j are given by the sum of
Coulomb potential and Lennard-Jones (LJ) potential as

Uij(r) =
qiqj

4⇡"1r
+ 4"ij

"✓
�ij

r

◆
12

�

✓
�ij

r

◆
6
#

(5.11)

where the LJ parameters "ij and �ij are summarized in Table 5.11. For each size of nanocrys-
tal, since the total charge of the lattice is not neutral, di↵erent partial charge is assigned for
surface Cs atoms to reduce the e↵ect from surface boundaries of nanocrystals and to stabilize
the nanocrystals structure instead of having organic ligands on the surface in the experiments
[219, 209], relying on the fact that the lattice distortion of lead halide perovskites is largely
determined by the lead halide octahedra [210, 72]. The partial charge of surface Cs atoms
is defined as

qsurf = �
qCsNCs + qBrNPb + qBrNBr

Nsurf

(5.12)

where qi and Ni with i 2 {Cs,Pb,Br,Cssurf} are the charge and the number of atoms with
type i in the lattice with the subscript surf used for surface Cs atoms.

For electrons and holes quasiparticles, we use path integral approach and the Hamiltonian
can be given by discretizing the electronic part of path action from Eq. 5.3 as

Hel =
X

i

nX

t=1

min

2�2h̄
2
(xi,t � xi,t+1)

2 +
X

i,j

nX

t=1

qiqj

4⇡"1n|xi,t � xj,t|
(5.13)

where i, j 2 {e1, e2, h1, h2}, n = 1000 is the number of distretization of the path, xi,n+1 = xi,1

for each quantum particle i, and xi,t becomes the position of tth bead in i ring polymer. m is
the band mass which is set to 0.22m0 and 0.24m0 for electrons and holes [127], respectively,
and "1 = 4.3 is the optical dielectric constant in the unit of vacuum permittivity [127]. The
last term of Eq. 5.13 can be also denoted as

P
ij H

ij

C
. The interaction part between charges
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Cs Pb Br Cssurf

e1, e2 3.74423 1.08222 1.08222 3.74423

h1, h2 1.08222 1.08222 1.35839 1.08222

Table 5.2: Pseudopotential cuto↵ parameters rc for the interaction between quasiparticles
(two electrons and two holes) with each type of atoms in the lattice.

and the lattice whose Hamiltonian is given by discretizing the corresponding path action in
Eq. 5.5

H
A

int
=

1

n

nX

t=1

Ue1l
(xe1,t

,xlat) + Ue2l
(xe2,t

,xlat) + Uh1l
(xh1,t

,xlat) + Uh2l
(xh2,t

,xlat) (5.14)

is described by pseudopotentials in the form of truncated Coulomb potential where 1/|x| is
approximated by (rc+x

2)�1/2. Considering that the similar band masses of electron and hole
in perovskite imply the similar extent of delocalization of the charges, the cuto↵ parameters
rc for each pair interaction between charges and di↵erent types of atoms are chosen to get
the similar charge density distribution for electron and hole in the nanocrystals as shown in
Fig.5.1 (c), whose parameters are summarized in Table 5.2.

For the simulations of biexciton under harmonic lattice e↵ects, from Eq. 5.10, the Hamil-
tonian consists of two pieces, one from the electronic part of path action given by Eq. 5.13
and the other which can be obtained by discretizing the e↵ective path action of Eq. 5.10 as

H
H

e↵
=
X

i,j

H
ij

e↵
= �

X

i,j

X

t 6=s

�ij
↵ij�!

2
h̄
5/2

n2
p
8mij!

e
��h̄!|t�s|/n

|xi,t � xj,s|
(5.15)

where i, j 2 {e1, e2, h1, h2} and t, s 2 [1, n] with ! = 25.57THz [127]. The dimensionless
Fröhlich coupling constant can be calculated using

↵ij =
e
2

h̄

r
mij

2h̄!

✓
1

"1
�

1

"s

◆
(5.16)

where the resultant values are 2.65 and 2.76 for two electrons and two holes, respectively,
with the static dielectric constant as "s = 29.37 [127]. For simulations with static lattice
e↵ects, since Eq. 5.15 vanished as ! goes to zero, the Hamiltonian is given by only Eq. 5.13.

For the simulations under all three types of lattice e↵ects, since inside and outside of
nanocrystals are di↵erent mediums, we implement wall potentials to e↵ectively encode the
e↵ects from boundaries between di↵erent dielectrics. As schematically shown in Fig. 5.1
(a), the e↵ect of di↵erent dielectrics on the charge q inside the nanocrystal can be replaced
by an image point charge [175] where the potential Vq(r) exerted on the inside charge q



CHAPTER 5. BIEXCITON INTERACTION IN LEAD HALIDE PEROVSKITE
NANOCRYSTALS 86

Figure 5.1: (a) Schematics of how the e↵ect of di↵erent dielectrics on the charge q inside the
nanocrystal can be replaced by an image point charge where the potential Vq(r) exerted on
the inside charge q which is r distance away from the boundary due to the point charge q0 is
determined by two di↵erent dielectric constants. (b) Schematics of nanocrystals with walls
at the boundaries. (c) Charge density distributions of electron (red) and hole (blue) in the
perovskite nanocrystal.

which is r distance away from the boundary due to the point charge q0 is determined by two
di↵erent dielectric constants up to the first order as Vq(r) = qq

0
/8⇡"0r with q

0 = ("perov �
"0)/("perov + "0). Since the resultant value of the potential is positive, the charges, ring
polymers, stay inside the nanocrystals through the repulsive Coulomb interaction with walls
at the boundaries as schematically shown in Fig. 5.1 (b). Simulations are performed using
the LAMMPS package [141] in an ensemble with constant number of atoms, volume, and
temperature which is set to 50K using a Langevin thermostat with timestep 1.0 fs.

5.4 Validation of the model

To validate our models, we compute exciton binding energy from the simulations of an
electron-hole pair with an explicit perovskite nanocrystals, which is defined as the energy dif-
ference between the nanocrystal with exciton and the nanocrystal with two separate charges
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Figure 5.2: Snapshots of simulations on CsPbBr3 perovskite nanocrystals with (a) exciton,
(b) electron, and (c) hole where electron, hole, Pb2+, Br�, and Cs+ are represented in red,
blue, gray, brown, and cyan, respectively.

in isolation. The exciton binding energy is computed from the average energy of the system
given by [160]

hEi = �
@

@�
ln
Z

D[xe1
,xh1

,xlat] e
��H (5.17)

where H = Hel+H
A

lat
+H

A

int
and xlat = {x1,x2, . . . ,xN} with N as a total number of atoms in

the lattice, resulting in two terms, average kinetic energy hEiK and average potential energy
hEiP. For the kinetic energy, we use a virial estimator [76, 134] to e�ciently estimate the
kinetic energy and avoid the large fluctuations arising from the subtraction of two diverging
terms in path integral simulations. From Eq. 5.17, the resultant average kinetic energy
becomes

hEiK =
3kBT (NRP +N)

2
+

1

2

X

i

nX
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*
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+
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ij
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@xi,t
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+

(5.18)

where i, j 2 {e1, h1}, the number of chargesNRP is taken as 2 for an exciton, and x̄i represents
the center of mass of each ring polymer. The average potential energy can be written as

hEiP =
X

i 6=j

hH
ij

C
i+ hUlati+

X

i

hUi li (5.19)

which are referred from Eq. 5.3, 5.4, 5.14 with i, j 2 {e1, h1}. The exciton binding energy BX

is defined as BX = hEiex + hUlati � hEie � hEih where the subscript ex indicates the average
from simulations with two ring polymers, one electron and one hole, whereas the subscript
e/h denotes the average from one electron/hole in the nanocrystals, whose snapshots of
simulations are shown in Fig. 5.2.

For path integral simulations, the error comes from the discretization of the path and
scales by n

�2 with n as the number of descretizations, i.e. the number of beads in a ring
polymer. To analyze the number of bead dependence, we consider the smallest (2.4 nm)
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Figure 5.3: Exciton binding energy with the (a) smallest (2.4 nm) and the (b) largest (6 nm)
CsPbBr3 nanocrystals as a function of n�2 where the solid lines are linearly fitted lines. (c)
Exciton binding energy as a function of the size of nanocrystals L with n = 1000.

and largest (6 nm) nanocrystals and compute the exciton binding energy with n =200, 500,
700, and 1000. Described in Fig. 5.3 (a) and (b) are the exciton binding energies with two
di↵erent sizes of nanocrystals as a function of n�2 where the solid lines are linearly fitted
lines, illustrating that a thousand beads are large enough. With a thousand beads, Fig.
5.3 (c) shows the exciton binding energy for various nanocrystal sizes. For the values with
larger nanocrystals, they show a reasonable agreement with other theoretical calculations or
experimental measurements on lead halide perovskite with dielectric confinements [204, 137,
108, 107, 223, 145], implying the validity of our models.

5.5 Biexciton binding energy under di↵erent lattice

e↵ects

We now investigate the biexciton binding energy, which is defined as the energy di↵erence
of the system with two interacting excitons and the one with two non-interacting excitons
separately for the range of nanocrystal sizes under each type of lattice e↵ects. For the
calculations with explicit perovskite nanocrystals, the average energy of the system with
biexciton can be computed from Eq. 5.18 and 5.19 where i, j 2 {e1, e2, h1, h2} and NRP is
taken as 4 for biexciton. By definition, the biexciton binding energy under anharmonic
lattice e↵ect is defined as BXX,A = hEibiex + hUlati � 2hEiex where the subscript biex and ex
stand for biexciton and exciton, respectively.

For the calculations with isolated ring polymers without an explicit perovskite nanocrys-
tals, the average energy is determined by using Eq. 5.15 instead of using lattice relevant
potential energies which are Eq. 5.11 and 5.14. For the ring polymers under harmonic lattice
e↵ect, since the Hamiltonian itself is a function of � as shown in Eq. 5.15, the derivative in
Eq. 5.17 produces additional factors in the average energies. The resultant average kinetic
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becomes
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and the average potential energy is given by
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where i, j 2 {e1, e2, h1, h2} and hH
ij

e↵
i
0 is defined as hHij

e↵
i multiplied by an additional factor

of �h̄!|t � s|/n in the summation for each t and s [134]. For the calculation with static
lattice e↵ect, since He↵ term vanishes, the energy is determined by only HC term. Given
that performing simulations under dynamic lattice e↵ect is computationally challenging with
large number of beads, in order to e↵ectively extract the biexciton binding energy, we use a
perturbative approach, as described below, on the ensembles obtained from the simulations
under static lattice e↵ect whose method is tested with small number of beads.

For the derivation, an observable that we are interested in is defined as A for convenience,
which can be hEiK + hEiP given by Eq. 5.20 and 5.21 for biexciton and exciton simulations.
In the path integral framework, with ZD and ZS as the partition functions characterized by
the Hamiltonian defined as Hel +H

H

e↵
and Hel given by Eq. 5.13 and 5.15, respectively, the

average value of A under dynamic lattice e↵ect by definition can be written as
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where xeh can be {xe1
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,xh1
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} or {xe1
,xh1

} for the system of biexciton and exciton,
respectively. Using the trick shown below,
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the average of an observable under dynamic lattice e↵ect can be expressed in terms of the
quantity averaged under static lattice e↵ect as

hAiD =
ZS

ZD

hAe
��H

H

e↵ iS (5.24)

where h. . .iS indicates the expectation value taken within an ensemble under static lattice
e↵ect. Since ZD can be written in terms of ZS
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which results in
ZD = ZShe

��H
H

e↵ iS (5.26)
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Figure 5.4: (a) Biexciton binding energy under static (black) and dynamic (blue) lattice
e↵ects for the range of nanocrystal sizes where the inset shows the di↵erence between two
values at each nanocrystal size difined as �d�s = BXX,D�BXX,S with n = 300. (b) Biexciton
binding energy under anharmonic lattice e↵ect from CsPbBr3 nanocrystals with fluctuating
(red symbols) and frozen (gray symbols) lattice.

the average of A becomes
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where the second equality is held by using Taylor expansion on exponential terms in the
numerator and the denominator. Up to the first order, Eq. 5.27 becomes
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with a compact expression of

hAiD = hAiS � �h�A�H
H

e↵
iS (5.29)

which is the equation used to compute the average energy of the system with biexciton
and exciton for the calculation of biexciton binding energy under dynamic lattice e↵ect.
Under both static and dynamic lattice screenings, the biexciton binding energy is defined as
BXX,D/S = hEibiex � 2hEiex with the corresponding equation for the system energy.

Under each type of lattice e↵ect, Fig. 5.4 shows the biexciton binding energy for various
nanocrystal sizes. Shown in Fig. 5.4 (a) is the biexciton binding energy under static (black
squares) and dynamic (blue triangles) lattice e↵ect where the inset shows the di↵erence
between two values defined as �d�s = BXX,D � BXX,S. Even though the di↵erence tends
to increase as we increase the confinement e↵ect, the small di↵erences imply that exciton-
exciton interactions are not altered a lot by harmonic phonons where we suspect that small
di↵erences are attributed to the cancellation of two e↵ects from phonons, localization of
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charges due to phonons and the screening of e↵ective interactions between charges. To
explicitly study the e↵ects from fluctuating perovskite nanocrystals, Fig. 5.4 (b) describes
the biexciton binding energy under anharmonic lattice e↵ect with fluctuating lattice (red
symbols) and frozen lattice (gray symbols). With the frozen lattice, even though charges
can feel an anharmonic potential produced from the surrounding lattice, they show similar
trend and interaction strength of biexciton binding energy with the values under static or
dynamic lattice e↵ects as we vary the size of nanocrystals. On the other hand, the biexciton
binding energy is largely altered by the fluctuating lattice where the fact that the values
from largest nanocrystal are similar in both cases but they start to deviate from each other
as we increase the confinement e↵ect by making nanocrystals smaller implies the e↵ect of
fluctuating nanocrystals on biexciton binding energy. While analyzing the biexciton binding
energy with fluctuating lattice, we observe that the charges tend to be separated with certain
range of the nanocrystal sizes, L ⇡ 3.6 nm. So far, we have found that charges are localized
due to the change in the total dipole moments of the lattice which is caused by the presence of
charges but more studies on how charges a↵ect the dynamics and the structure of the lattice
and at the same time, how the charges are a↵ected by the lattice are needed to elucidate the
role of fluctuating lattice on biexciton binding energy.

5.6 Conclusion

In this chapter, we have presented how path integral molecular dynamics simulation is used to
study biexciton interaction in the perovskite nanocrystals. By applying three types of lattice
e↵ects which are anharmonic, harmonic, and static, we are able to systematically explore the
e↵ects from the fluctuating lattice on biexciton interaction. So far, we have elaborated the
theory considered in this work, simulational details including the implementation of walls and
pseudopotentials, and the validation of our model from the calculation of exciton binding
energy with explicit perovskite nanocrystals, referred as anharmonic model in this work.
Based on our study, even with the broad range of reported values and potential antibonding
behavior of biexciton binding energy, in all cases considered here, our results suggest that
excitons are bound to each other. While we have found that the fluctuating perovskite
nanocrystals can largely a↵ect the exciton interactions, compared to other types of models,
more studies on how the properties of nanocrystals are a↵ected by the charges are required
to further investigate the anharmonic lattice e↵ect on biexciton binding energy. Despite
there is still significant work to be done, this framework may provide a promising method
for engineering and understanding multiple excitations in semiconducting nanocrystals.
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[132] P. Němec and P. Malý. “Temperature dependence of coherent phonon dephasing in
CsPbCl3 nanocrystals”. In: Physical Review B 72.23 (2005), p. 235324. issn: 1098-
0121. doi: 10.1103/physrevb.72.235324.

[133] Abraham Nitzan. Chemical dynamics in condensed phases. Oxford University, 2006.

[134] Yoonjae Park and David T. Limmer. “Renormalization of excitonic properties by
polar phonons”. In: The Journal of Chemical Physics 157.10 (2022), p. 104116. issn:
0021-9606. doi: 10.1063/5.0100738. eprint: 2205.11780.

[135] Yoonjae Park, Amael Obliger, and David T. Limmer. “Nonlocal Screening Dictates
the Radiative Lifetimes of Excitations in Lead Halide Perovskites”. In: Nano Letters
22.6 (2022), pp. 2398–2404. issn: 1530-6984. doi: 10.1021/acs.nanolett.2c00077.

[136] Michele Parrinello and Aneesur Rahman. “Study of an F center in molten KCl”. In:
The Journal of Chemical Physics 80.2 (1984), pp. 860–867.

[137] Sumaiya Parveen et al. “Large exciton binding energy, high photoluminescence quan-
tum yield and improved photostability of organo-metal halide hybrid perovskite quan-
tum dots grown on a mesoporous titanium dioxide template”. In: Journal of Colloid
and Interface Science 539 (2019), pp. 619–633. issn: 0021-9797. doi: 10.1016/j.
jcis.2018.12.105.



BIBLIOGRAPHY 103

[138] Thang Pham et al. “Torsional instability in the single-chain limit of a transition
metal trichalcogenide”. In: Science 361.6399 (2018), pp. 263–266. issn: 0036-8075.
doi: 10.1126/science.aat4749.

[139] John P Philbin and Eran Rabani. “Electron–hole correlations govern auger recombi-
nation in nanostructures”. In: Nano Letters 18.12 (2018), pp. 7889–7895.

[140] John P Philbin et al. “Area and thickness dependence of Auger recombination in
nanoplatelets”. In: The Journal of Chemical Physics 153.5 (2020), p. 054104.

[141] S. Plimpton. “Fast Parallel Algorithms for Short-Range Molecular Dynamics.” In: J
Comp Phys 117 (1995), pp. 1–19.
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