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ARTICLE

Dynamic expectations: Behavioral and
electrophysiological evidence of sub-second
updates in reward predictions
Déborah Marciano 1,2✉, Ludovic Bellier 1, Ida Mayer 1,2, Michael Ruvalcaba1, Sangil Lee 1, Ming Hsu1,2 &

Robert T. Knight 1,3✉

Expectations are often dynamic: sports fans know that expectations are rapidly updated as

games unfold. Yet expectations have traditionally been studied as static. Here we present

behavioral and electrophysiological evidence of sub-second changes in expectations using

slot machines as a case study. In Study 1, we demonstrate that EEG signal before the slot

machine stops varies based on proximity to winning. Study 2 introduces a behavioral para-

digm to measure dynamic expectations via betting, and shows that expectation trajectories

vary as a function of winning proximity. Notably, these expectation trajectories parallel Study

1’s EEG activity. Studies 3 (EEG) and 4 (behavioral) replicate these findings in the loss

domain. These four studies provide compelling evidence that dynamic sub-second updates in

expectations can be behaviorally and electrophysiologically measured. Our research opens

promising avenues for understanding the dynamic nature of reward expectations and their

impact on cognitive processes.
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On December 18, 2022, 90 min into the final World Cup
game with France opposing Argentina, soccer fans all
over the world were holding their breath. The game had

started with a clear advantage for Argentina. At halftime,
Argentina led by two goals. But with less than 10 min left in the
game, France brought the score to a tie. During the next 30 min of
overtime, Argentina got the lead back, but France once again
leveled the score after a late penalty. The game went to a penalty
shootout, a best-of-ten tie-breaking method, that finally ended
with Argentina winning the cup. For Argentinean and French
supporters alike, the game was a roller-coaster ride, with the
expectations of seeing their team winning going up and down,
and up again.

Reward expectations play a critical role in how people process
outcomes and make decisions, and have been extensively
researched in psychology, economics and neuroscience1–8. Much
of this research has examined expectations as static, that is, fixed
in time. However, as our soccer example illustrates, we intuitively
know that expectations can vary rapidly even in the sub-second
time range. Here using a slot machine task that elicits rapid
changes in expectation, we provide behavioral and electro-
physiological evidence of moment-to-moment changes in
expectations.

Reward expectations have a central role in cognition with
powerful effects on learning and performance9–11. Expectations
enhance preparatory attention and reduce stimulus conflict12,
prioritize which information should be stored in working
memory13 and guide cognitive control allocation14. Expectations
also have a strong effect on affect, as illustrated by the placebo
effect15, or the findings that enjoyment of a film, a vacation2, a
beer3 or a wine4 is influenced by expectations about their quality. In
risky decision-making, unexpected outcomes were found to have
greater emotional impact than expected outcomes16, and a recent
computational analysis showed that happiness ratings in response
to a wheel of fortune’s outcomes are better predicted by reward
expectations and reward prediction errors than by earnings17.
Expectations can also have substantial effects on choice behavior,
for example by encouraging individuals to participate in a lottery18

or to engage in exploration vs. exploitation19.
Expectations have traditionally been studied as static predictions

about future outcomes. Reward predictions are typically elicited by
a single predictive cue, such as a sound, an odor20, or an image21,22.
In risky decision-making research, studies have used an array of
methods to convey reward probability in order to manipulate
expectations, such as varying the position of a horizontal line (high,
middle, or low probability of winning)23, the area of a wheel of
fortune associated with a gain16,17, or the colors of cues24. In all
these studies, the assumption is that expectations stay constant, with
little attention paid to the dynamic evolution of expectations
leading up to an outcome. However, as our soccer example illus-
trates, expectations are often dynamic, especially in situations where
new information about the odds of receiving a reward is provided.

Investigating dynamic expectations requires finding an appro-
priate task and the right methodology. Here we use slot machines
as a case study to assess moment-to-moment changes in expecta-
tions. In the simplest casino slot machines, players start games
either by pushing a button or pulling the handle. The reels spin,
then decelerate to a stop, and players are rewarded if matching
symbols align on the payline (Fig. 1a). The continuous deceleration
phase provides the perfect naturalistic setting to study the forma-
tion and changes of rapid reward expectations associated with
different outcomes, as symbols get closer to or pass the payline.

Slot machines have been extensively used and validated in the
gambling literature25,26. To increase their ecological validity,
some of these studies have used computerized slot machine
paradigms that mimic casino settings, with 3D graphics, sounds

and realistic spinning and deceleration phases27–29. Notably,
because it was not their focus of interest, these studies did not
examine the dynamic aspect of slot machines and mostly ignored
the spinning and deceleration phases. The few studies investi-
gating these phases either looked at the overall brain activity
during the spinning independently of the final outcome30,
focused on a single moment during the deceleration31 or used a
static, sequential slot machine game with no spinning32.

In our studies, we used the slot machine paradigm created by
Sescousse et al.29 (Fig. 1a). We hypothesized that during the
deceleration phase of a slot machine game, players’ expectations
fluctuate as they track the position of the winning item relative to
the payline, together with the decreasing speed of the machine. We
were particularly interested in differences between different types of
No-Win outcomes: Near Win Before (when the machine stopped
one item before a match, NWB), Near Win After (when the
machine stopped one item after a match, NWA), and Full Miss
(when the machine stopped at least two items away from a match,
FM) (Fig. 1b).We hypothesized that these different No-Wins would
be characterized by unique expectation trajectories. More specifi-
cally, we predicted that right before the machine stops, expectations
for NWB should be higher than expectations for NWA and FM.
Figure 1c illustrates the hypothetical expectation trajectories for all
four outcomes, and its legend details our predictions.

Measuring dynamic changes in reward expectations at beha-
vioral and neural levels can be challenging, as it requires: 1) a
methodology with a sub-second temporal resolution and 2) a
method that does not rely on self-report, as participants might
not be able to accurately describe their sub-second internal
beliefs. In addition, repeatedly asking participants to report their
expectations during a slot machine game would interrupt the
experience flow. Here we sought to overcome these challenges
using a combination of electroencephalography (EEG) and
behavioral methods to investigate the dynamics of expectations.

EEG has an excellent temporal resolution, detecting milli-
second changes in brain activity, and it does not rely on self-
report nor does it require overt responses. Past EEG studies
looked at Near Wins in slot machine games, however they mostly
focused on the outcome evaluation phase (once the machine
stops) and did not examine the period preceding feedback28,33–35.
The exception is a study by Alicart et al.31. Although the authors
emphasize that the stronger effects were observed post outcome,
they report that one second before the machine stopped, activity
in theta and alpha frequency-bands was higher for Near Wins
than Full Misses. However, the paper did not look separately at
NWB and NWA, while we predict that these two conditions
should show different expectation trajectories. Further, the ana-
lyses focus on one timepoint of the deceleration phase (1 s before
outcome), and do not examine how the signal evolves during the
deceleration phase as expectations are continuously updated.
Here we focused on the continuous EEG activity during the
deceleration phase. While there is no known EEG metric of
dynamic expectations, the prefrontal-dependent contingent
negative variation (CNV) event-related potential (ERP) is well
known to be linked to static expectations36–38. It is characterized
by a fronto-central scalp distribution and is maximal at the vertex
(electrode Cz)33,34. We predicted that CNV-like EEG activity
changes would distinguish between the different outcomes.

In parallel, we designed a paradigm, “Slot or Not”, to beha-
viorally measure moment-to-moment changes in expectations
and statistically relate them to those observed in EEG responses.
This task was inspired by live betting (also known as “in-play
betting”) which refers to gambling that occurs after a sport or
gaming event has started. It offers gamblers the opportunity to
identify and capitalize on changing odds during the course of the
game. Here we implemented live betting into a slot machine game
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to track expectations via betting behavior. We are not aware of
other behavioral tasks investigating the sub-second dynamics of
expectations.

In this paper, we present four studies investigating the
dynamics of expectations. In Study 1, we used EEG to define the
sub-second electrophysiological correlates of moment-to-moment
changes in expectations elicited by the deceleration phase of a slot
machine. In Study 2, we introduced a paradigm to measure
moment-to-moment changes in expectations from behavior. We
examined the relationship between the EEG findings of Study 1
and the behavioral findings of Study 2. Finally, in Studies 3 (EEG)
and four (Behavioral), we replicated Studies 1 and 2 in the loss

domain, using a modified version of the slot machine where a
match is associated with a loss of money, and mismatches with
gains. Our results provide evidence that reward expectations are
rapid and dynamic, and that they can be tracked in EEG activity
and in choice behavior.

Results
Study 1: EEG activity during deceleration varies by outcome
consistent with predictions. We first examined EEG activity
during the computerized slot machine game (Fig. 1a) to test the
prediction that different types of misses (No-Wins) are associated

Fig. 1 Study 1’s experimental paradigm and hypotheses. a Experimental paradigm: Each trial started with a 750ms fixation cross. In the choice phase,
participants had a maximum of 5 s to select one of six items on the left reel of the slot machine. They could move the reel downward and upward using the
left and right arrow keys on the keyboard, respectively, and validate their choice with the down arrow key. The right reel started spinning 500ms after
choice validation. The fast-spinning phase lasted 1400ms on average and was followed by the deceleration phase (3300ms on average), until the machine
stopped, marking the beginning of the outcome phase. The outcome phase was characterized by the payline turning orange, and different sounds and
written feedback depending on outcome. If the right reel stopped on the same item as the one selected on the left reel (match), participants heard a cash
register sound, and in parallel the words “You win $0.25” appeared on the screen. If the right reel stopped on a different item than the one selected
(mismatch), participants heard a buzzer sound, and the words “No win” appeared on the screen. Once every five trials on average, participants were asked
to rate their happiness and their motivation to play again on a continuous scale ranging from “Not at all” to “Very much”. They moved the cursor (always
initially positioned in the middle) using the right and left arrow keys, and validated their choice using the down arrow key. b Outcomes: We classify
outcomes depending on the distance from a match. Wins are characterized by a match. In Near Wins Before (NWB), the right reel stopped one item before
a match. In Near Wins After (NWA), it stopped one item after a match. In Full Misses (FM), it stopped 2 or 3 items away from a match. Note that NWB,
NWA and FM all lead to the same objective outcome ($0), and that they are not signaled differently to participants in terms of sound (buzzer) or written
feedback (“No win”). c Hypothetical expectation trajectories for the four outcomes: X axis represents time and Y axis represents subjective expectations. We
hypothesized that during the deceleration phase of a slot machine game, participants track the position of the winning item relative to the payline, resulting
in different expectations for Wins (in red), NWB (orange), NWA (purple) and FM (green). We predicted that expectations for FM should decrease earlier,
as participants realize the machine is going to stop soon and the winning item is far from the payline. For Wins, NWB, NWA, we predicted an increase in
expectations during the deceleration phase, as the winning item gets closer to the payline. Our main prediction regards the last moments before the
machine stops, and precisely the time window between the passage of the second to last item on the payline, and the machine coming to a standstill
(highlighted in gray). In the case of a Near Win After, participants see that their chosen item is already on the payline, but that the machine is not yet
coming to a stop. As they realize they have lost, their expectations should drop. In the case of Near Win Before, participants see their item getting closer to
the payline, and their expectations are high right before the machine stops, just as in the case of a Win. Right before the machine stops, for NWA and FM,
the uncertainty about the outcome of the slot machine has been resolved: participants know they will lose, and their expectations are thus low. For NWB
and Wins, however, the uncertainty has not been resolved yet, and expectations are high.
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with different EEG signals during the deceleration phase. Parti-
cipants encountered 25 Wins, 25 Near Wins Before (the reel
stopped one symbol before the selected symbol), 25 Near Wins
after (the reel stopped one symbol after the selected symbol), and
75 Full Misses (the right reel stopped two or three positions
away from the selected symbol). The EEG preprocessing steps
(details in Methods) followed what has been done in past studies,
except for the choice of the baseline correction period. Baseline
correction is a common EEG preprocessing step, consisting of
subtracting the mean activity of a baseline period from the
activity of interest35. Notably, previous Near-Wins studies base-
lined the EEG activity to the period preceding the outcome
reveal28,31,39–41. However, using the 100 or 200 ms preceding the
wheel stop is problematic because this is precisely when expec-
tations might differ the most between the different conditions.
Here we baselined EEG activity to the 200 ms period preceding
the spinning onset.

To test whether different outcomes elicited different EEG
activity during the deceleration phase of the slot machine, we
divided the deceleration phase into six 500 ms time-windows,
starting 3 s before the machine stopped (the deceleration phase
lasted on average 3.3 s). For each of these time-windows we ran a
one-way repeated-Measure ANOVA analysis (four outcomes:
Win, NWB, NWA, FM), with a significance threshold set at
p= 0.008 to account for the six time-windows (Bonferroni
correction, see Methods). Greenhouse–Geisser correction for
analysis of variance ANOVA tests was used whenever appro-
priate. If the ANOVA was significant, we performed pairwise
comparisons using Tukey tests. Here we report the findings of
interest. Full results are presented in the Supplementary materials
(Supplementary Tables 1–6).

At deceleration onset ([−3000 −2500] and [−2500 −2000]
time windows) there was no effect of Outcome (all p’s > 0.15). As
the deceleration progressed, the effect of Outcome emerged in the
[−2000 −1500] time-window (F(3, 105)= 5.72, p= 0.003). This
effect increased in the [−1500 −1000] time-window (F(3,
105)= 14.87, p= 0.001). Here we detail these effects for the last
second before the machine stopped.

In the [−1000 −500 ms] time window, pre-wheel stop EEG
activity differed depending on Outcome (F(3, 105)= 27.50,
p < 0.001). Pairwise comparisons revealed that EEG amplitude
was smaller for Win (−7.26 ± 6.57 μV) compared to NWB
(−2.52 ± 5.13 μV; t=−5.95, p < 0.001) and Full Miss
(−1.85 ± 3.31 μV; t=−6.78, p < 0.001), but not compared to
NWA (−7.31 ± 5.25 μV; t= 0.06, p= 1). NWA were also smaller
than NWB (t=−6.01, p < 0.001) and FM (t=−6.84, p < 0.001).
There was no significant difference between FM and NWB
(t= 0.83, p= 0.84). As can be seen on Fig. 2a, we observed two
pairs of outcomes: Wins and NWA with an enhanced CNV-like
negativity, and NWB and FM with no pre -wheel stop negative
shift. Expectations are lower for the latter pair: for FM,
participants realized early during the deceleration that they were
not likely to win (“my item just passed the payline and the
machine is slowing down, it won’t have the energy to complete a
full spin”), and for NWB, the selected item is still farther away
from the payline. (Note that all the data used to create the figures
are provided in Supplementary Data 1).

In the [−500 0 ms] time window EEG activity also
differed depending on Outcome (F(3, 105)= 13.37, p < 0.001).
The pairwise comparisons revealed a different pattern of
results than in the prior deceleration time window. EEG
amplitudes were smaller for Win (−6.83 ± 5.67 μV) than for
NWA (−2.36 ± 4.41 μV; t=−5.50, p < 0.001) and FM (−3.22 ±
3.36 μV; t=−4.44, p < 0.001), but not compared to NWB
(−5.78 ± 5.76 μV; t=−1.28, p= 0.58). NWB were also smaller
than NWA (t=−4.21, p < 0.001) and FM (t=−3.15, p= 0.011).

There was no significant difference between FM and NWA
(t= 1.06, p= 0.715). As can be seen in Fig. 2.a, we observed two
new pairs of outcomes: Wins and NWB with an enhanced CNV-
like negativity, and NWA and FM with a reduced negative shift.
This result is in line with our predictions. Indeed, at around
−685 ms on average, the one-before-last item enters the payline.
In the case of a NWA, this is the item participants selected,
meaning that at this moment, there is a match on the payline. As
soon as they realize the machine is not stopping, attentive
participants know they have lost—hence the abrupt change in
EEG activity. For NWB, the winning item is getting closer to the
payline, and expectations rise—as reflected by the enhanced
CNV-like EEG negativity. Topographies for the different
windows of interest are shown in Fig. 2b.

In addition, in line with the EEG literature on slot
machines28,31,39–41, we examined two ERPs elicited by the outcome
phase: the Feedback Related Negativity (FRN) and the P3 (see
Methods). The full results are presented in Supplementary Tables 7,
8 and in Supplementary Fig. 1. In line with past studies, we found
that the FRN and the P3 were larger for Wins than No-Wins (all
p’s <, p < 0.001)42–44,45–48. Notably, NWB elicited larger P3 than
the other No-Wins (all p’s ≤ 0.001). Given that P3 has been
associated with surprise and reward prediction errors48–50, these
results reinforce the claim that NWB create higher expectations
than NWA and FM right before outcome onset.

Study 1 assessed sub-second changes in expectations: we found
evidence that EEG activity tracked expectations while the slot
machine decelerated and participants accumulated information.
In Study 2, we measured moment-to-moment changes in
expectations via behavior.

Study 2: Behavioral evidence of moment-to-moment changes
in expectations and association of behavioral results with EEG
responses. In Study 2, we implemented a paradigm to measure
dynamic expectations via behavior, incorporating live betting into
a slot machine game. In our “Slot of Not” paradigm (Fig. 3a),
participants were presented with two options: a sure amount of
money, and a slot machine associated with a potential high gain
(this machine was the same one as the one used in Study 1, see
Methods). Once participants chose one option, the slot machine
started spinning, and then decelerated to a stop. The critical part
of the game is that participants were allowed to switch between
options as often as they wanted while the machine spun. Parti-
cipants were incentivized to report their true expectations at each
timepoint: they were informed that their final payment would
depend on their choice at a random timepoint t (Fig. 3b). For
each trial, we obtained a timeseries of 0 and 1 values (0= parti-
cipant chose the sure amount, 1= they chose the slot machine)
from the beginning of the trial to the stop of the machine. Fig-
ure 3c show the expectations curves obtained from the aggre-
gating these timeseries across trials and participants.

We used the same approach as for the EEG data: we divided
the deceleration phase into six 500 ms time-windows, and ran a
one-way repeated-Measure ANOVA analysis (four outcomes:
Win, NWB, NWA, FM) for each time-window. The significance
threshold was set at p= 0.008 to account for the multiple time
windows (Bonferroni correction). Greenhouse–Geisser correction
for analysis of variance ANOVA tests was used whenever
appropriate. If the ANOVA was significant, we performed
pairwise comparisons using Tukey tests. Full results are presented
in Supplementary Tables 9–14.

We found no main effect of Outcome for the [−3000 −2500],
[−2500 −2000] and [−2000 −1500] time windows (all p’s > 0.2).

A significant effect of Outcome was found for the [−1500
−1000] time window (F(3,87)= 11.34, p < 0.001). In that time
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window, NWA were associated with a higher tendency to bet on
the slot machine (0.56, ±0.29) than Wins (0.41, ±0.26, p= 0.002),
NWB (0.35, ±0.25, p < 0.001), or FM (0.39, ±0.24, p < 0.001). All
other comparisons were not significant.

A significant effect of Outcome was found for the [−1000
−500] time window (F(3,87)= 33.63, p < 0.001). In that time
window, NWA were still associated with a higher tendency to bet
on the slot machine (0.58, ±0.25) than Wins (0.48, ±0.23,
p= 0.023), NWB (0.31, ±0.24, p < 0.001), or FM (0.30, ±0.20,
p < 0.001). In addition, Wins were associated with a higher
tendency to bet on the slot machine compared to NWB
(p < 0.001) and FM (p < 0.001). There was no difference between
NWB and FM (p= 0.987).

A significant effect of Outcome was found for the [−500 0]
time window (F(3,87)= 19.06, p < 0.001). In that time window,
Wins were associated with a higher tendency to bet on the slot
machine (0.58, ±0.25) than NWB (0.35, ±0.26, p < 0.001), NWA
(0.38, ±0.25, p < 0.001), and FM (0.22, ±0.17, p < 0.001). In
addition, FM were associated with a lower tendency to bet on the
slot machine compared to NWB (p= 0.043) and NWA
(p= 0.009). There was no difference between NWB and NWA
(p= 0.941). However, visual inspection of the grand averages
(Fig. 3c) reveals that NWB and NWA had opposite trajectories in
the [−500 0] time window, with NWA starting higher but
decreasing, and NWB starting lower and increasing, potentially
masking differences between the two conditions. To test for
differences between NWB and NWA, we conducted a post-hoc
slope analysis. For each participant and each outcome, in the
[−500 0] time window, we calculated the slope coefficient of the
expectation trajectory by regressing the tendency to bet over time.
We then conducted a paired t-test on these coefficients for NWB
and NWA and found that the slopes for these two outcomes
differed (t(29)= 5.53, p < 0.001).
Taken together, Study 2’s findings confirm that participants’

expectations of the slot machine ending with a match varied by
outcome during the deceleration phase. The expectation trajec-
tories were similar to our predictions (Fig. 1c), with FM
decreasing early in the deceleration phase (“there is no way the
machine is going to spin all the way to my item”), NWA peaking
earlier than Win and NWB, and then abruptly decreasing (“Oh
no, my item is on the payline, but the machine is not stopping,
I’ve lost!”), and Wins and NWB going up until the machine stops
(“my item is getting closer and closer to the payline!”).

Next, we examined whether single subjects’ EEG data during
the deceleration phase correlate with the behavioral expectation
trajectories. Our rationale was as follows: although the two studies
were run on different participants and the tasks are not identical,
they use the same slot machine stimuli. Finding that Study 1’s
individuals’ average EEG activity during the deceleration phase
parallels the expectations elicited in Study 2 would considerably
strengthen the claim that what is being tracked in the EEG data is
indeed expectations.

Here we present the rationale of the statistical method we
adopted to examine this correlation. Details can be found in the
Methods (See also Fig. 5 in the Methods). Because we are dealing
with timeseries, our analysis required us to select a time-window
on which to calculate the correlation between EEG and behavioral
data. Our selection was data-driven and was done as follows. For
each possible time-window (t seconds before outcome), we
calculated the correlations between each participant’s EEG
(averaged per condition) and the corresponding group-level
behavioral curves. Note that time-windows were of varying
lengths depending on t. We then averaged these correlations
across participants, and took this average’s absolute value. A
permutation test was performed to assess the significance of this
averaged correlation. Under the null hypothesis that the
relationship between the EEG and the behavioral data is not
outcome-specific, we permuted the data by randomly shuffling
the labels of the four outcomes attached to the individual subjects’
EEG signal. For each permutation we repeated the time-search
process, identified the time window maximizing the absolute
correlation between the behavioral curves and the EEG activity
and noted the value of this correlation. The permutation was
performed 10,000 times to create a null distribution against which
the actual correlation was compared to. We found that the
absolute correlation between the EEG activity and the behavioral
curves was maximized for the time window of −0.97–0 s previous
to the outcome, with a significant absolute correlation coefficient
of 0.44 (p < 0.001) (Fig. 3d). In that time window, the average
correlations across participants for each one of the outcomes
were: Win: −0.8698, NWB: −0.9620, NWA: −0.9298, FM:
0.7611. We also performed an additional analysis allowing for a
lag between the behavioral and the EEG timeseries and obtained
similar results (see Supplementary Note 2).

These results provide evidence that the differences in EEG
activity before the machine stops are not due to a visual artifact

Fig. 2 Study 1’s EEG results. a EEG activity at Cz during the deceleration phase: Grand average ERPs for each outcome locked to the stop of the machine at
electrode Cz. The dashed lines indicate the 500ms time-windows used for the repeated-Measure ANOVA. N.S: ANOVA was Not Significant. *: p-
value < 0.01. ***: p-value < 0.001, n= 36 participants. The gray rectangle indicates the last second of deceleration with detailed results provided in the text.
The Feedback Related Negativity (FRN) and P3 are shown on the grand averages. See Methods for analysis of the FRN and P3, and Supplementary Fig. 1 for
results. b Topographies during the last second of deceleration in µV, for each outcome (upper topographies: [−1000 −500ms], lower topographies:
[−500 0ms]). Topographies of the differences between outcomes can be found in Supplementary Fig. 3.
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Fig. 3 Study 2’s experimental paradigm “Slot or Not” and results. a “Slot or Not” Experimental paradigm: Participants were presented with two options: a
slot machine associated with a potential gain of 100 points, and a sure amount (5 points in this example). Once participants selected one option, the slot
machine started spinning and then decelerated to a stop to reveal the slot machine’s outcome. If the two items on the payline matched, the word “Jackpot”
appeared on top of the slot machine. Otherwise, the word “Miss” appeared. 750ms after the machine stopped, a “ding” sound marked the end of the trial.
Participants could change their choice (switch from the slot machine to the safe amount and vice versa) as often as they wanted during the trial. Their
choice appeared as an orange frame around the chosen option. After the “Ding”, this frame turned yellow to indicate that their choice was final. b Payment
scheme: Participants were presented with this figure in the instructions in order to clarify the payment scheme. They were told that a trial and a timepoint
within that trial would be selected randomly, and that their choice at that timepoint, together with the slot machine’s outcome would determine their
bonus. The text highlighted in green is only valid for this specific example. If a participant felt the slot machine was about to stop, but the winning item was
still far away from the payline, they should have switched as soon as possible to the sure amount option, to maximize the number of timepoints associated
with the sure amount. Conversely, if a participant saw that the machine was about to stop and evaluated that the winning item was likely to stop on the
payline, they should have promptly selected the slot machine option. Note that while the payment scheme focused on one timepoint only, the analyses was
based on all timepoints in the deceleration phase. c Expectation trajectories results: X axis is time, locked to the machine’s stop. Y axis is the probability of
choosing the slot machine across participants and trials, for each outcome separately. The dashed lines show the time windows used in the repeated
ANOVA analysis. *** denote time windows in which “Outcome” was significant with a p-value < 0.001. N.S: ANOVA was Not Significant. Significance
threshold was set at p < 008 to account for multiple comparisons, n= 30 participants. d Significant correlation between the EEG data (top panel) and the
behavioral data (bottom panel). We found that the absolute correlation between the EEG activity and the behavioral curves was maximized for the time
window of −0.97–0 s previous to the outcome, with a significant absolute correlation coefficient of 0.44 (p < 0.001). Note that the EEG shown here are
grand averages.
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from wheel deceleration, but reflect different expectations
associated with the four outcomes. There are some notable
differences between the results of Studies 1 and 2. For example, In
Study 1, we observed a change in the trajectory of NWA around
500 ms before the machine stopped, while in Study 2, the decrease
in expectations occurred about 500 ms earlier (1000 ms before the
machine stopped). However, this divergence is not surprising
given the differences between the tasks and methods used in the
two studies. EEG tracks cognitive processes with millisecond
precision, whereas behavioral tasks require a decision and a
button press, which influences their temporal resolution. Further,
in Study 1, participants were obligated to bet on the slot machine,
and once they chose an item, they were passive viewers of the reel
spinning. In Study 2, participants could make betting decisions
during the spinning and deceleration phases, making the game
more engaging, and potentially increasing attention to the
deceleration phase.

Taken together, Studies 1 and 2 confirm our predictions that
Near Win and Full Miss are perceived differently hundreds of
milliseconds before the slot machine stops providing evidence
that sub-second changes in expectations can be measured and
tracked both at the behavioral and electrophysiological levels.

Study 3: EEG activity during deceleration varies by outcome in
the loss domain. In Study 3, we modified the slot machine game
presented in Study 1 so that a match was associated with a “big”
loss of money (“Loss”, -$.25), and mismatches (“Escapes”) with
small gains ($.10). This manipulation had two aims. First, it
allowed us to test for the robustness of our findings: do they
replicate under different task parameters? Second, the compar-
ison between expectations for gains and expectations for losses
might provide insights into what precisely is being tracked in the
EEG signal.

In this version of the game, participants encountered 25 Losses,
25 Near Loss Before (NLB) (when the machine stops just one
item before a loss), 25 Near Loss After (NLA) (when it stops just
one item after a loss) and 75 Full Escape (FE) (when it stopped at
least two items away from a loss).

Near Losses (also called “Narrow wins”) are less studied than
Near Wins. They have been implemented in lottery
paradigms51–53 and in the Balloon Analog Risk Task54, but not
in a slot machine game. No study has looked at moment-to-
moment changes in expectations in Near Losses using either
electrophysiology or behavior. We predicted that right before the
machine stops, participants should have smaller expectations of
losing (higher expectations of winning) for NLA and FE than for
NLB and Loss, for which the uncertainty about the outcome of
the slot machine is only resolved when the machine stops.

The analyses presented below followed those performed in
Studies 1 and 2. The EEG results during the deceleration phase
were similar to those of Study 1 (Fig. 4a). Full results are
presented in Supplementary Tables 15–20. At the beginning of
deceleration ([−3000 −2500] and [−2500 −2000] time win-
dows), no effect of Outcome was found (all p’s > 0.028). However,
as the deceleration progressed, differences emerged: the effect of
Outcome became significant in the [−2000 −1500] time-window
(F(3, 102)= 7.48, p < 0.001). This effect increased in the [−1500
−1000] time-window (F(3, 102)= 9.31, p < 0.001).

In the [−1000 −500ms] time window, we found that EEG
activity differed depending on Outcome (F(3, 102)= 17.08,
p < 0.001). Pairwise comparisons revealed that EEG amplitude
was smaller for Loss (−3.85 ± 5.42 μV) compared to NLB
(−1.25 ± 4.81 μV; t=−3.21, p= 0.009) and FE (−1.49 ± 3.74 μV;
t=−2.92, p < .022), but bigger than NLA (−6.30 ± 5.17 μV;
t= 3.03, p= .016). NLA were also more negative than NLB

(t=−6.24, p < 0.001) and FE (t=−5.95, p < 0.001). There was no
significant difference between FE and NLB (t= 0.30, p= 0.991). As
in EEG study 1, we observed two pairs of outcomes: Loss and NLA
(with NLA being more negative than Loss) showing a CNV-like
enhanced negativity, and NLB and FE with no negative shift.

In the [−500 0 ms] time window, we again found that EEG
activity differed depending on Outcome (F(3, 102)= 8.83,
p < 0.001). However, the pairwise comparisons revealed a
different pattern of results than in the earlier deceleration time
window. EEG amplitudes were more negative for Loss
(−5.34 ± 6.06 μV) than for NLA (−2.01 ± 5.18 μV; t=−4.01,
p= 0.001) and FE (−2.47 ± 3.87 μV; t=−3.46, p= 0.004), but
not compared to NLB (−5.14 ± 4.98 μV; t=−0.24.28, p= 0.99).
NLB were also more negative than NLA (t=−3.77, p= 0.002)
and FE (t=−3.22, p= 0.009). There was no significant difference
between FE and NLA (t= 0.55, p= 0.95). Again, we observed two
new pairs of outcomes: Loss and NLB showed a CNV-like
negativity, while NLA and FE did not. Topographies for the
different windows of interest are shown in Fig. 4b.

As predicted, we found a larger FRN for Loss than Escapes (all
p’s < 0.001), confirming that participants understood the meaning
of a match in this opposite slot machine game. P3 was also larger
for Loss than Escapes (all p’s < 0.001). Notably, NLB elicited
larger P3 than other Escapes (p’s <= 0.001). As for Study 1, these
results support the claim that NLB create higher expectations
than NLA and FE right before outcome onset. For full FRN and
P3 results, see Supplementary Tables 21 and 22 and Supplemen-
tary Fig. 2.

Study 4: Behavioral evidence of moment-to-moment changes
in expectations in the loss domain and association of beha-
vioral results with EEG responses. Finally, in our last study, we
modified the “Slot or Not” paradigm to investigate moment-to-
moment changes in expectations associated with Losses, NLB,
NLA and FE. Figure 4c presents the “grand averages” of the
participants’ expectations curves for the four outcomes.

As in Study 2, we tested whether different outcomes elicited
different expectation curves in the deceleration phase of the slot
machine using a repeated-Measure ANOVA. Full results are
presented in Supplementary Tables 23–28.

We found no main effect of Outcome for the [−3000 −2500],
[−2500 −2000] and [−2000 −1500] time windows (all p’s > 0.3).
A significant effect of Outcome was found for the [−1500 1000]
time window (F(3,60)= 6.68, p= 0.0023). In that time window,
NLA were associated with a lower tendency to bet on the slot
machine (0.53, ±0.31) than Losses (0.74, ±0.26, p= 0.005), NLB
(0.53, ±0.31, p= 0.006), or FE (0.77, ±0.18, p= 0.001). All other
comparisons were not significant.

A significant effect of Outcome was found for the [−1000 500]
time window (F(3,60)= 10.99, p < 0.001). In that time window,
NLA were still associated with a lower tendency to bet on the slot
machine (0.50, ±0.30) compared to NLB (0.75, ±0.26, p= 0.002),
or FE (0.86, ±0.14, p < 0.001). NLA did not differ from Losses
(0.60, ±0.31, p= 0.385). All other comparisons were not
significant.

A significant effect of Outcome was found for the [−500 0]
time window (F(3,87)= 11.23, p < 0.001). In that time window,
Losses were associated with a lower tendency to bet on the slot
machine (0.45, ±0.33) than NLB (0.66, ±0.30, p= 0.026) and FE
(0.86, ±0.15, p= 0.012). The comparison to NLA approached
significance (0.63, ±0.24, p= 0.056). In addition, FE were
associated with a higher tendency to bet on the slot machine
compared to NLB (p= 0.027 and NLA (p= 0.012). There was no
difference between NLB and NLA (p= 0.989). As in Study 1,
visual inspection of the trajectories (Fig. 4c) reveals that NLB and
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NLA had opposite trajectories in the [−500 0] time window,
potentially masking differences between the two conditions. To
test for differences between NLB and NLA, we conducted a slope
analysis (see Study 1). We found that the slopes for these NLB
and NLA differed (t(20)=−4.04.53, p < 0.001).

Finally, we found that group-level behavioral expectation
trajectories correlated with individual subjects’ EEG activity prior
to the outcome phase observed in Study 3. The absolute
correlation was maximized for the time window of −1.26–0 s
before the machine stopped, with an absolute correlation
coefficient of 0.39 (p < 0.001) (Fig. 4d). In that time window,
the average correlations across participants for each one of the
outcomes were: Loss: 0.2018, NLB:0.5643, NLA:0.7070, FE:
−0.6936. We also performed an additional analysis allowing for
a lag between the behavioral and the EEG timeseries and obtained
similar results (see Supplementary Note 2).

Taken together, Studies 3 and 4 show that Near Losses and FEs
are perceived differently hundreds of milliseconds before the slot
machine stops. These findings extend Studies 1 and 2 results to
the loss domain, and as discussed below, shed light on what
cognitive process is being tracked in the EEG signal.

Discussion
Reward expectations are critical for adjustments in decision-
making and reward-seeking behavior. Expectations are likely to
evolve in situations in which new information about the odds of
receiving a reward becomes available—for example during a

horse race or a soccer game. However, little is known about the
dynamics of expectations. Here, in four studies (two EEG, two
behavioral), we investigated the sub-second dynamics of reward
expectations, using slot machines as a test case. In EEG Study 1,
we found that different outcomes elicited different EEG activity
during the deceleration phase of the machine, indicating that
different expectations were formed before the final outcome was
revealed. Similar electrophysiological findings were found in EEG
Study 3 in the loss domain. In behavioral Studies 2 and 4, we
implemented a paradigm designed to track moment-to-moment
changes in expectations via betting behavior. We found that
different outcomes elicited different expectation trajectories in the
deceleration phase. Moreover, we found that these dynamic
expectations correlated with the EEG activity in both Study 1 and
3 in the last second of the machine’s deceleration. Taken together,
these findings provide evidence that reward expectations are
rapid and dynamic and can be tracked at the electrophysiological
and behavioral levels. Below we discuss these findings, as well as
their implications for healthy and unhealthy cognition.

In Studies 1 and 3, we found strong evidence that EEG activity
tracks expectations in the slot machine’s deceleration phase. In
both experiments, the EEG activity over the last second before
outcome onset differed for the different outcomes. This result is
consistent with the finding that theta and alpha-band activities
differ for Near Win vs. Full Miss 1 s before outcome onset31.
Notably, we found that in that last second, EEG activity changed
over time, suggesting that expectations evolved as participants
gathered more information about the location of the selected item

Fig. 4 EEG and behavioral results for the opposite slot machine (Studies 3 and 4). a Study 3 EEG activity at Cz during the deceleration phase: Grand average
ERPs for each outcome locked to the stop of the machine at electrode Cz. The dashed lines indicate the 500ms time-windows used for the repeated-
Measure ANOVA. N.S: ANOVA was Not Significant. *: p-value < 0.01. ***: p-value < 0.001. Note that threshold for significance was set at p < 0.008 to
account for multiple comparisons. N= 35 participants. The gray rectangle indicates the last second of deceleration, for which we provide detailed results in
the text. The Feedback Related Negativity (FRN) and P3 are shown on the grand averages. See Methods for analysis of the FRN and P3, and Supplementary
Fig. 2 for results. b Topographies during the last second of deceleration, in µV, for each outcome (upper topographies: [−1000 −500ms], lower topographies:
[−500 0ms]). c “Slot or Not” Expectation trajectories. X axis is time, locked to the machine’s stop. Y axis is the probability of choosing the slot machine
across participants and trials, for each outcome separately. The dashed lines show the time windows used in the repeated-measure ANOVA analysis. N.S:
ANOVA was Not Significant. Significance threshold was set at p < 0.008 to account for multiple comparisons, n= 21 participants. d Significant correlation
between the EEG data (top panel) and the behavioral data (bottom panel). We found that the absolute correlation between the EEG activity and the behavioral
curves was maximized for the time window of −1.26–0 s previous to the outcome, with a significant absolute correlation coefficient of 0.39 (p < 0.001).
Note that the EEG shown here are grand averages.
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on the reel and the speed of the reel. This interpretation is sup-
ported by the significant correlation between the EEG activity and
the expectation trajectories obtained in the behavioral experi-
ments (Studies 2 and 4). Further, in both experiments, there was
no difference between the different outcomes 3 s before reel
deceleration (Figs. 2a and 4a) when participants did not have the
necessary information to form different expectations.

Insights about what is being reflected in the EEG activity prior
to the machine stopping come from the comparison of the
findings of Studies 1 and 2 vs. Studies 3 and 4. In Studies 3 and 4,
participants played an opposite slot machine game, in which a
match was associated with a loss (vs. a gain in Studies 1 and 2). As
a result, we predicted that Study 3 and 4’s results would be a
mirror image of Study 1 and 2’s results. This is what we found
when comparing the behavioral curves of Studies 2 and 4.
However, the similarity between the EEG deceleration findings of
Study 1 and Study 3 is striking. As shown in Figs. 2a and 4a, in
the last second before the machine stops, the signal for Wins and
Losses, Near Win Before and NLB, Near Win After and NLA, and
Full Miss and FE are similar. This asymmetry between behavioral
and EEG results is best summarized by the sign of the average
correlation across outcomes between the EEG and behavioral
data. For Studies 1 and 2, this average correlation is negative
(Win: −0.8698, NWB: −0.9620, NWA: −0.9298, FM: 0.7611).
For Studies 3 and 4, this average correlation is positive (Loss:
0.2018, NLB:0.5643, NLA:0.7070, FE: −0.6936). This suggests
that what is being tracked in the EEG during the deceleration
phase is not the probability of winning per se (which is high in
the case of a Win, but low in the case of a Loss), but rather the
certainty of one’s outcome, or the certainty of getting a match, no
matter the value attached to it. In other words, the EEG activity
during the last second of the deceleration phase tracks unsigned
expectations. An alternative interpretation is that participants in
Study 3 mistakenly believed that a match would yield a gain.
However, this interpretation is not likely. While participants
might have been initially confused, we believe that the practice
trials combined with the buzzer and cash register sound as well as
the written feedback helped them overcome the learned default
between match and win. In addition, participants’ FRN and
happiness ratings (see SOM) provide additional evidence that
they understood the difference between losses and gains in this
unique version of the slot machine game.

The negative shifts observed during the deceleration phase are
reminiscent of the well-known contingent negative
variation (CNV)55,56. The CNV is negative-going ERP deflection
traditionally linked to stimulus anticipatory activity. The CNV
typically occurs following a stimulus S1 when a motor response to
a second stimulus S2 requires maintaining information about S1.
In our studies, S1 would be the items passing on the payline
during the deceleration, and S2 the machine stopping—which
doesn’t require any behavioral response. However, the CNV is
not a purely motor process: recent studies showed it represents
the neural correlate of expectancy for the S2 stimulus36–38, and is
larger for unpredictable targets36. This is consistent with the fact
that just before the machine stopped, we found enhanced negative
amplitudes for uncertain outcomes (Wins and Near Wins Before
in Study 1, Losses and Near Losses Before in Study 3) vs. certain
outcomes (Near Wins After and Full Misses in Study 1, Near
Losses After and FEs in Study 3). In addition, the known fronto-
central scalp CNV distribution33,34 is also consistent with our
findings (see topographies in Figs. 2b and 4b). Although there are
differences between classical CNV paradigms and our task—
especially the dynamic character of our S1 stimulus as opposed to
the fixed cue used in the CNV literature - our findings are
compatible with a common prefrontal neural sources for both
effects34.

Finally, the P3 findings strengthen the findings that Near Win
Before create higher expectations than Near Win After and Full
Miss. Indeed, P3 has been associated with surprise and reward
prediction errors48–50. In Study 1, P3 was larger for NWB com-
pared to NWA and FM, suggesting that participants were
more surprised by their loss following NWB. Study 3’s results
were similar, with larger P3 for NLB vs. NLA and FE. These
results are in line with past Near Win studies’ findings28,31,41. The
combined results of Studies 1 and 3 support the finding that P3
tracks unsigned (non-valenced) reward prediction error
magnitude50,57,58. Further discussion of the P3 and FRN findings
can be found in Supplementary Note 3.

One might wonder whether the EEG findings could be
accounted by alternative explanations such as basic perceptual
features (for example speed of spinning), arousal or attention.
Indeed, the deceleration phase is characterized by a change in
visual input, as the blurry items presented during the fast-
spinning phase become clearer, and stay for longer durations on
the payline. Participants might also become more attentive during
the deceleration phase, and more aroused, as they know that the
trial is about to end. Indeed, cues about the relevance of an
upcoming target result in the deployment of selective attention,
making it difficult to disentangle the effects of expectations from
those of attention59,60. However, in our slot machine task, such
processes should elicit a similar ramping up (or down) of the EEG
signal pre-outcome onset for all four outcomes. Thus, while these
processes might account for some of the EEG activity, they
cannot explain the unique patterns of activity elicited by the
different outcomes. Alternatively, attention/arousal could be
correlated with expectations. It could be that during deceleration,
participants are more aroused/attentive when the outcome is a
Near Win Before vs. a Full Miss because of the uncertainty
regarding their outcome, and that this extra arousal/attention is
what is being tracked by the EEG signal. This possibility does not
undermine or contradict our conclusions that differential sub-
second changes in expectations can be tracked at the
electrophysiological level.

The “Slot or Not” paradigm used in Studies 2 and 4 was spe-
cifically designed to measure sub-second changes in expectations
via behavior. Studies 2 and 4’s findings confirm our prediction
that expectations get updated during the deceleration phase of the
slot machine. We developed a statistical method to identify
relationships between timeseries and we found that the EEG and
the behavioral findings significantly correlate, providing evidence
that what is being tracked in the EEG is indeed dynamic
expectations.

Reward expectations play a critical role in healthy cognition,
and have powerful effects on learning, memory, affect and
decision-making. Studies addressing reward expectations typically
assume that expectations are static. Our findings confirm what
many of us know intuitively: expectations can change from
moment to moment. Investigating the temporal dynamics of
expectations is crucial if we want to understand how expectations
affect us in the real world, when one can accumulate evidence
regarding the odds of a certain event and update their expecta-
tions, whether it is on the road, at the horse races, or during a
romantic date.

Aberrations in how people form expectations play an impor-
tant role in several mental disorders. In major depressive disorder
and anxiety disorders neural responses to anticipated gains are
different than those of healthy controls61–64. Schizophrenia65 and
attention-deficit/hyperactivity disorder66 have been associated
with reduced striatal BOLD signal during reward anticipation,
while pathological gamblers show the opposite pattern67. The
representation of expected value in the orbitofrontal cortex is also
altered in manic patients68. Altered expectations likely contribute
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to some of the clinical features of these disorders, such as
enhanced/decreased motivation for seeking rewards, under/
overestimation of risks and maladaptive choice behavior. Exam-
ining the temporal dynamics of expectations may shed light on
what goes awry in these clinical populations. While slot machine
games are of particular relevant to problem gambling, they may
be useful for assessing expectation trajectories and reward
responsivity in clinical and developmental populations because
they are easily understood and easy to play32. Our behavioral
paradigm, “Slot or Not”, is also easy to implement and can be run
online. This is a major advantage for studies aiming to recruit
participants with disabilities (e.g., patients with Parkinson dis-
ease) or with rare disorders.

The Near Miss Effect illustrates how dynamic expectations can
add to our understanding of cognition. In the gambling literature,
the Near Miss Effect refers to the finding that Near Wins are
experienced as less pleasant than Full Misses, yet paradoxically
influence a gamblers’ actual behavior with bigger money bets
following near-misses along with an increased desire to continue
gambling25,41,69—an effect we also find in Study 1. This effect is
so powerful that it is illegal to increase the incidence of Near
Misses in Casino slot machines in many jurisdictions70. One
account of the Near Miss Effect is that Near Wins are mistakenly
interpreted as skill acquisition, and thus foster an “illusion of
control”71,72. Another account of the Near Miss effect is coun-
terfactual thinking: events that almost happened have a stronger
emotional impact than events that didn’t41,73,74. Our findings
point to a third, parsimonious explanation: the Near Miss Effect
could be the result of the different expectation trajectories leading
to the outcome. Expectations and reward prediction errors are a
key factor in satisfaction1,16,17. Since NWB and NWA have dif-
ferent expectation trajectories toward the end of the slot machine
spinning, different effects on affect are predictable. This inter-
pretation is in line with the finding that the Near Miss Effect
disappears in paradigms that lack an anticipation phase52.
Expectations could also explain why Near Miss, like wins, activate
regions of the reward network including bilateral ventral striatum
and right anterior insula27,75. Given that the ventral striatum and
insula are also engaged in expectations formation and RPE76,77,
this activity could reflect the high expectations elicited both by
wins and Near Win Before right before the machine stops, or the
similar RPEs elicited at outcome onset. These events may be
masked by the temporal resolution of the BOLD fMRI response.
The specific relationship between changes in expectations, moti-
vation and happiness is a subject of future research. Importantly,
the illusion of control, counterfactual thinking and expectations
accounts of the Near Miss Effect are not mutually exclusive.

To summarize, in a series of 4 studies, we found that expec-
tations are rapidly updated in the deceleration phase of a slot
machine game. These findings confirm that expectations are
dynamic, and show that sub-second changes in reward expecta-
tions can be tracked in EEG activity and in choice behavior. We
further examined the relationship between the behavioral and
electrophysiological timeseries, and found that the two were
significantly correlated. The results open exciting avenues for
studying the ongoing dynamics of reward expectations salient to
understanding their role in cognition and affect in healthy and
clinical populations.

Methods
We ran four studies: 2 EEG studies (Studies 1 and 3) and two behavioral studies
(Studies 2 and 4). In Study 1, we used EEG to define the sub-second electro-
physiological correlates of moment-to-moment changes in expectations elicited by
the deceleration phase of a slot machine. In Study 2, we introduce a paradigm to
measure moment-to-moment changes in expectations from betting behavior. In
Studies 3 (EEG) and 4 (behavioral), we replicated Studies 1 and 2 in the loss
domain using a modified version of the slot machine where a match was associated

with a loss of money, and mismatches with gains. Different participants took part
in the different studies.

Study 1–EEG near wins. Participants: The experiment was conducted on 42
participants. Data from six participants were excluded because too few artifact-free
trials were available. The final sample was composed of 36 participants (21 females,
1 non-binary, mean age = 20.4 years, SD= 1.65, range: 18–24), all undergraduate
and graduate students recruited at the University of California, Berkeley. Subjects
had normal or corrected-to-normal vision by their self-report, and no history
of neurological disorders. Participants were paid $12 per hour to participate in the
study. Informed consents were obtained after the experimental procedures were
explained. This study, like the three other studies presented in this paper, was
approved by the Institutional Review Board at the University of California, Ber-
keley. In all studies, all ethical regulations were followed.

Stimuli and Procedure: During the task, participants sat in a dark acoustic room
and played a computerized slot machine game on a desktop PC. The task lasted for
approximately 35 min. It was composed of 150 trials, divided into 3 blocks of 50
trials. Between blocks, participants were given a break and were offered water.

We employed a two-reel slot machine task, identical to the one used in
Sescousse et al.29. The task was programmed using Neurobehavioral Systems
Presentation (version 14.1), incorporating sounds and 3D graphics that made the
task realistic and engaging. Participants were informed that their gains in the game
were hypothetical. Each trial started with a fixation cross (750 ms) and consisted of
four phases: choice, fast spinning, deceleration and outcome (Fig. 1a). In the choice
phase, participants selected one of six playing symbols on the left reel of the slot
machine. If 5 s passed without a selection, a message appeared on the screen to
remind them to make a choice. Following choice, the right reel spun for a variable
duration. In the fast-spinning phase (mean= 1430 ms, range: 850–1950 ms), the
reel spined at a fast, constant speed. The deceleration phase (mean= 3307 ms,
range: 2533–4050 ms) ended with the machine getting to a standstill. In the
outcome phase (1.5 s), if the right reel stopped on the same symbol as the one
initially selected on the left reel, that is, if they two items on the payline matched,
participants heard a cash register sound and saw the words “You win $0.25”. In all
other cases, participants heard a buzzer sound and saw the words “No win”. The
sounds had the same sound level. Note that all misses were accompanied by the
same sound and visual feedback. Following outcome, on some trials (on average,
every 5 trials), participants were asked to answer two questions: “How happy do
you feel?” and “How much do you want to play again?” using a continuous scale
ranging from “Not at all” to “Very much”. These ratings were coded into numeric
values ranging from 0 to 10 with an increment of 0.1 (analyses of the happiness and
motivation ratings provided by participants at the end of the trials can be found in
Supplementary Note 1). Participants completed 3 practice trials before starting the
main task. Participants inputted their choices and ratings using the arrows keys on
a keyboard. Participants encountered 25 Wins, 25 Near Wins Before (the reel
stopped one symbol before the selected symbol), 25 Near Wins After (the reel
stopped one symbol after the selected symbol), and 75 Full Misses (the right reel
stopped two or three positions away from the selected symbol). The order of trials
was randomized across participants.

EEG recording and preprocessing: EEG data was recorded reference-free using
an Active 2 system (BioSemi, the Netherlands) with 64 electrodes spread out across
the scalp according to the extended 10–20 system (http://www.biosemi.com/pics/
cap_64_layout_medium.jpg), and two electrodes placed on the participants’
earlobes for offline re-referencing. Horizontal electrooculogram (EOG) were
recorded from electrodes placed at the outer canthi of both eyes. Vertical EOG was
recorded from an electrode placed below the right eye, and from the right
frontopolar electrode FP2. EEG data preprocessing and analyses were conducted
using the Fieldtrip toolbox78 and custom code in MATLAB.

The EEG was continuously sampled at either 1024 or 512 Hz and stored for
offline analysis. Offline, EEG data were down-sampled to 512 Hz (when needed),
and re-referenced to the average of both ear lobe channels. EEG data were notch
filtered at 60 Hz, bandpass filtered between 0.1 and 256 Hz, demeaned and
detrended. Electrodes with excessive noise were replaced with an interpolation
from neighboring electrodes using spherical spline interpolation79 via the Fieldtrip
function ft_channelrepair. Blink artifacts were removed from the EEG signal using
Independent Component Analysis (ICA), combined with manual selection of
artifact components based on correlation with the EOG channels and typical
component topographies.

Trials were segmented from −3000 ms (beginning of the deceleration phase) to
1000 ms relative to the outcome phase (when the machine stops). Each segment
was baseline corrected to the 200 ms preceding the start of the spinning. Trials
contaminated by muscle activity, large voltage shifts and amplifier saturation were
identified by visual inspection and discarded using the Fieldtrip
function ft_reject_visual. Trials were then averaged separately for the four types of
outcomes: Win, Near Win Before, Near Win After and Full Miss. These averages
were digitally filtered with a low-pass filter at 30 Hz.

Study 2–behavioral “Slot or Not” near wins. Stimuli and Procedure: The
experiment was conducted online, on the Qualtrics platform, using custom Java-
Script scripts. Participants were recruited online through Prolific. They received a
$3 participation fee, with an option to win a bonus.
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Participants provided informed consent to take part in the study, and then read
the tasks instructions. They were tested on their comprehension of the instructions
with six questions. If they made any mistake, they were presented with the
instructions again. Participants who failed the comprehension questions three
times did not get to do the actual task, and received $1 for their time. Following the
comprehension test, participants played three rounds of practice and then moved
on to the actual task (36 trials, Fig. 3a). Participants who completed the game
received a participation fee of $2.75. In addition, they could win a monetary bonus
based upon their performances of the game, as detailed below.

Each trial started with two options being presented on the screen: a slot
machine and a sure amount. The slot machine was associated with a potential gain
of 100 points. The sure amount varied across trials (but never during a trial), and
was equal to 1, 5, 10, 15, 20 or 25 points.

Participants selected one option using the right and left arrows on their
keyboard. The chosen option was highlighted with an orange frame. The slot
machine then started spinning, and then decelerated to a stop. Importantly,
participants could change their choice (switch from "slot machine" to "safe
amount" and vice versa) as often as they wanted during the trial, up to 750 ms
after the machine stopped. To incentivize participants to report their
expectations at each given timepoint, we created the following payment scheme.
Participants were instructed that one trial, and one timepoint during that trial
would be randomly drawn, and that their decision at that timepoint would be
implemented. If at that timepoint they chose the sure amount, they would
receive the sure amount for this trial as their bonus. If they chose the slot
machine, their bonus would depend on the outcome of the slot machine: they
would receive 100 points if the slot machine’s outcome was a jackpot, 0
otherwise. Participants were told that the chance that their bonus would be
determined by the outcome of the Slot Machine (or the Sure Amount) is
proportional to the time they spent on that option during the round selected for
payment. For example, if they chose the Sure Amount from the beginning and
didn’t switch, they would always receive this amount. On the other hand, if they
spent half on the round on the Slot Machine, there would be a 50% chance that
their bonus would be determined by the outcome of the Slot Machine. In other
words, we wrote, “each moment you spend on one option increases the chances
that that option will determine your bonus”. Participants were provided with an
illustration of how their bonus would be determined (Fig. 3b). Points were
converted to money, with a rate of 1 point= $0.05.

Over the 36 trials of the study, participants encountered 6 jackpots (same items
on the payline), 6 Near Win Before, 6 Near Win After, and 18 Full Miss. The order
of these trials was randomized for each participant. The position of the slot
machine on the screen (right/left) was randomized for each trial.

The slot machine stimuli were the same used in Study 1: we extracted videos
from the Presentation experiment and integrated them into the Qualtrics
experiment, in order for Study 1 and Study 2 to be comparable. We changed the
written feedback that appeared at the outcome phase: instead of “You win $0.25”
and “No Win”, the words “Jackpot” and “Miss” were displayed.

Participants and exclusion criteria: 51 participants were recruited online. 16
participants failed three times on the comprehension test and did not play the
game. We also excluded five participants who did not switch at all in 90% or
more of the trials, including in the 750 ms time window following the stop of the
machine (when the outcome is already known). Our final sample was thus
composed of 30 participants (13 female, mean age= 35.20 year, SD= 11.79,
range: 19–64).

Study 3 – EEG near losses. Studies 3 (EEG) and 4 (behavioral) aimed to extend
the understanding of moment-to-moment changes in expectations to the loss
domain. To investigate people’s expectations of losing, we modified the slot
machine game presented in Study 1. In Study 3, a match was associated with a loss
of money, and mismatches with gains. In this mirror-image of a classical slot
machine, players could thus encounter Losses, NLB (when the machine stops just
one item before a loss), NLA (when it stops just one item after a loss) and FE.

Participants: The experiment was conducted on 41 new participants. Data from
6 participants were excluded because too few artifact-free trials were available. The
final sample was thus composed of 35 participants (14 female, mean age= 20.7
years, SD= 2.55, range: 18–28), undergraduate and graduate students recruited at
the University of California, Berkeley. Subjects had normal or corrected-to-normal
vision by their report, and no history of neurological disorders. Participants were
paid $12 per hour to participate in the study. Informed consents were obtained
after the experimental procedures were explained.

Stimuli and Procedure: We used the exact same slot machine game as in Study
1. The only difference was the meaning of a match. In this version of the game, if
the two items on the payline matched, there was a buzzer sound, and participants
lost $0.25. In all other cases, participants won $0.10 and heard a cash register
sound. We introduced gains in this paradigm for two reasons: 1) to keep
participants motivated during the task, 2) so that the slot machine would have the
same expected value as in Study 1. As in Study 1, the monetary gains and losses
were hypothetical. Participants encountered 25 Losses (the two items on the
payline matched), 25 NLB (the machine stopped one symbol before a match), 25
NLA (the machine stopped one symbol after a match), and 75 FE (the machine
stopped two or three positions away from a match).

EEG recording: Recordings settings and preprocessing steps were identical to
those of Study 1. As in Study 1, the amplitudes of the FRN and P3 elicited by the
outcome phase were measured as their mean value in an 80 ms window around
their peak. The FRN elicited by the outcome phase peaked at 248 ms, and we
measured it as the mean value in the 210–290 ms window. The P3 peaked at
424 ms, and we measured it as the mean value in the 385–465 ms window. For the
deceleration phase, we used the same time windows as in Study 1: −1000 to
−500 ms, and −500 ms to 0.

Study 4–behavioral “Slot or Not” near losses. Study 4 was a replication of Study
2 in the loss domain.

Stimuli and procedure: We used the exact same paradigm (“Slot or Not”) as in
Study 2, but changed the meaning of matches. In this version of the game, if the
two items on the payline matched, this was a miss, associated with the potential
loss of 50 points. If the two items on the payline did not match, this was a jackpot,
associated with a potential win of 30 points. Over the 36 trials of the study,
participants encountered 6 Losses (same items on the payline), 6 Narrow Escape
Before, 6 Narrow Escape After, and 18 FE.

Participants and exclusion criteria: 61 participants were recruited online. 32
participants failed three times on the comprehension test and did not play the
game (we suspect some failed on purpose to get the $1 compensation fee). We also
excluded 8 participants who did not switch at all in 90% or more of the trials,
including in the 750 ms time window following the stop of the machine, that is,
when the outcome was already known. Our final sample was thus composed of 21
participants (13 female, mean age= 33.81 year, SD= 9.73, range: 20–58).

Statistics and reproducibility. Study 1: For the analysis of the deceleration phase, we
used electrode Cz, where the CNV is maximal55. We averaged the data into six 500ms
time windows from −3000ms (beginning of the deceleration) to the stop of the
machine ([−3000 −2500 ms], [−2500 −2000], [−2000 −1500], [−1500 −1000],
[−1000 −500], [−500 0]). Then, for each time window we ran a one-way repeated
measures ANOVA (four outcomes: Win, NWB, NWA, FM). The significance level was
set at 0.008 to account for the fact that we tested 6 time-windows, following the formula

α0 ¼ 1� 1� αð Þ1=k; ð1Þ
where α′= Bonferroni correction, α= critical p value (0.05) and k= number of tests
(6). Greenhouse–Geisser correction for analysis of variance ANOVA tests was used
whenever appropriate. If the ANOVA was significant, we performed pairwise com-
parisons using Tukey tests with a significance level at 0.05.

Post-outcome, we examined the Feedback Related Negativity (FRN) and P3.
The FRN (also known as the Medial Frontal Negativity, MFN) peaks over the
scalp’s midline within 250–350 ms after feedback is provided, and is generated in
part in the anterior cingulate cortex42,80,81. The amplitude of the FRN elicited by
the outcome phase was measured as its mean value in an 80 ms window centered
around its peak. Peaks were determined as follows. Since the FRN has been shown
to be maximal at fronto-central midline sites82,83, we averaged the data across the
three frontocentral midline electrodes (Fz, FCz, Cz). The peak of the FRN was then
defined as the most negative point in the 200–350 ms time window of the grand
average across subjects. The FRN elicited by the outcome phase peaked at 251 ms,
and was measured as the mean value in a 210–290 ms window.

The P3 is a large positive component occurring in the 300–600 ms time window
after stimulus onset when the stimulus has behavioral consequences. It is generated
in frontal and temporo-parietal sites84 and reflects the summed activity of multiple
intracranial sources85. Since P3 is maximal at the centro-parietal area86, we
averaged the data across Cz, CPz, Pz, POz, and Oz. The peak of the P3 was then
defined as the most positive point in the 300–500 ms time window of the grand
average. The P3 elicited by the outcome peaked at 373 ms, and was measured as the
mean value in a 330–410 ms window. For both the FRN and the P3, we ran a one-
way repeated measures ANOVA (4 outcomes: Win, NWB, NWA, FM). The
significance level was set at 0.05. Greenhouse–Geisser correction for analysis of
variance ANOVA tests was used whenever appropriate. If the ANOVA was
significant, we performed pairwise comparisons using Tukey tests.

Study 2: The behavioral analyses followed the same approach as Study 1’s ERPs
analyses. For each trial, we obtained a timeseries of 0 and 1 values (0= participant
chose the sure amount, 1= they chose the slot machine) sampled every 50ms. We
defined six 500ms-time windows of interest from −3000ms (beginning of the
deceleration) to the stop of the machine ([−3000 ms −2500], [−2500 −2000],
[−2000−1500], [−1500−1000], [−1000−500], [−500 0]). For each subject, in each
one of these time windows, we averaged the number of 0 s and 1 s separately for the
four outcomes (Win, NWB, NWA and FM). Then, for each time window we ran a
one-way repeated-measure ANOVA (four outcomes). The significance level was set
at 0.008 (0.05 divided by 6) to account for the fact that we tested six time-windows.
Greenhouse–Geisser correction for analysis of variance ANOVA tests was used
whenever appropriate. If the ANOVA was significant, we performed pairwise
comparisons using Tukey tests with a significance level at 0.05. Figure 3c presents the
“grand averages” of the participants’ expectation trajectories for the four outcomes.

Do the different outcomes expectations’ time course found in Study 2 relate to Study
1’s individual subjects EEG activity prior to outcome onset? We will first present an
overview of the method we adopted to examine the relationship between the two
timeseries; technical details appear below. Figure 5 illustrates parts of the method.
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Our analysis required us to select a time window on which to calculate the
correlation between EEG and behavioral data. Rather than selecting one based on
visual inspection, we performed a data-driven search and looked for the time
window (t seconds before outcome) that maximizes the absolute average
correlation between the behavioral curves and the EEG activity. For each possible
time window (t seconds before outcome), we calculated the correlations between
each participant’s EEG (averaged per condition) and the corresponding group-level
behavioral curves. Note that time-windows were of varying lengths depending on t.
We then averaged these correlations across participants, and took this average’s
absolute value. The time window that maximized this absolute correlation was
selected. Second, a permutation test was performed to assess the significance of this
correlation. Under the null hypothesis that the relationship between the EEG and
the behavioral data is not outcome-specific, we permuted the data by randomly
shuffled the labels of the four outcomes attached to the individual subjects’ EEG
signal. For each permutation, we identified the time window maximizing the
absolute correlation between the behavioral curves and the EEG activity and noted
the value of this correlation. The permutation was performed 10000 times to create
a null distribution against which the actual correlation was compared to.

The parameter search was performed using fmincon in MATLAB using
sequential quadratic programming with bounds at −3 and −0.5 s. We set the

minimum duration of time-windows to 500 ms. For each subject, for a given time
window -t to 0 s, we interpolated the four behavioral curves and the four EEG
curves in 100 timepoints between -t and 0 s to hold the number of data points
constant throughout the parameter search process. The correlation coefficient was
then obtained by concatenating the four behavioral curves (100 time points each)
into one vector and concatenating the four EEG curves (also 100 time points each)
into one vector and calculating the Pearson correlation between the two vectors
(each with 400 time points).

Study 3: EEG analyses were identical to those performed in Study 1.
Study 4: Analyses were identical to those performed in Study 2.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data reported in this paper were deposited on Zenodo and are available for public
download (https://doi.org/10.5281/zenodo.8048351)87.

Fig. 5 Time-search method used for the correlation analysis. The left upper panel shows the group-level behavioral expectation trajectories from Study 2.
The left lower panel shows individual subjects’ EEG averages. The dashed rectangles represent candidate time-windows for the correlation analysis. t, in
red, represents the window starting point in seconds. Note that depending on t, time-windows varied in length. The upper and lower middle panels show
the behavioral and EEG data on a specific candidate time-window. For each possible time-window (starting t seconds before outcome onset), we calculated
the Pearson R correlation coefficients between Study 2’s group-level expectations curves and Study 1’s individual subjects’ EEG (See Methods for more
details on how this correlation was computed). We then computed the average correlation across subjects, and took the absolute value of that correlation.
The lower right panel shows a plot of these absolute average correlations for all the possible time-windows. Finally, we selected the time-window
maximizing this absolute average correlation (see Methods). To assess the significance of this average correlation, we then performed a permutation test:
we randomly shuffled the labels of the four outcomes attached to the individual subjects’ EEG signal (10000 permutations). For each permutation we
repeated the time-search process depicted above, identified the time window maximizing the absolute correlation between the behavioral curves and the
EEG activity and noted the value of this correlation.
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Code availability
Original code was deposited on Zenodo and is available for public download (https://doi.
org/10.5281/zenodo.8048382)88. Any additional information required to reanalyze the
data reported in this paper is available from the lead contact upon request.
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