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      As global populations grow and climate becomes more extreme, cities in drought prone 

regions of the world such as South East Australia are faced with escalating water scarcity and 

security challenges.  Approaches geared towards addressing these challenges are diverse, and 

detecting “success” against background climate variability is difficult.  Here we use 72 years of 

urban water consumption data from Melbourne, Australia, a city that recently overcame a 12 

year “Millennium” drought, to 1) evaluate the utility of wavelet-based approaches for 

deconstructing climatic and anthropogenic drivers of urban water demand and 2) assess the 

relative contribution of various water saving strategies to overall demand reduction during the 

Millennium Drought.  Our analysis points to conservation behavior as a dominant driver of 

municipal water savings (~69%), followed by non-revenue water reduction (~29%), and potable 

substitution with alternative sources like rain or recycled water (~3%).  Demand exhibited both 

climatic and anthropogenic signatures, with temperature and rainfall impacting consumption 

significantly at all frequencies except 0.09-0.2 cpy.  Residual patterns in demand (after removing 

climate effects) mapped to anthropogenic controls like outdoor water restrictions, which damped 

seasonal variability in consumption during the Millennium Drought, and changing 
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technologies/social norms, which impacted consumption at sub annual frequencies, particularly 

from 1960-1990. 
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INTRODUCTION 

 

 

As of 2012, approximately 93 million people live in areas subject to severe year-round water 

scarcity, with upwards of 2.4 billion experiencing scarcity at least one month per year [Oki and 

Kanae, 2006; Hoekstra et al., 2012].  While all continents are affected, the most severe water 

shortages are apparent in Australia, Asia (particularly China and India), the western United 

States, and parts of Mexico [Hoekstra et al., 2012].  Indeed, despite the promise of a record 

breaking El Nino in 2015/2016, the state of California (U.S.) is experiencing its worst drought in 

over a century, with 51 counties presently listed as primary natural disaster areas and another 7 

qualifying for natural disaster assistance [USDA 2016].  A similar story is playing out in Perth, 

Western Australia, which remains in a water vulnerable state (running two desalination plants at 

full capacity to meet public water demand), despite the cessation of drought in 2009, which 

failed to bring rain to drought-parched western catchments [Radcliffe, 2015; Legislative 

Council Secretariat 2015].  Indeed, where Australia is concerned drought-induced water 

scarcity is unlikely to abate in the near future. Climate model projections indicate a warmer, 

drier, future for both Southwest and Eastern Australia [Sheffield et al., 2012; Dai 2012], which 

will place cities in these regions under increased water stress, and has the potential to shift water 

supply systems from generally robust to predominantly insecure [Turner et al., 2014].   

 As we prepare to enter an era of increased water scarcity, a premium must be placed on 

understanding the factors driving water consumption (both climatic and anthropogenic) to 

promote efficient water use.  In this vein, a variety of studies have explored drivers of water 

demand, including meteorological variables like rainfall, temperature, and evaporation [Zhou et 
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al., 2000; Adamowski et al., 2013; Haquea et. al. 2015], socioeconomic variables, such as 

population, household income, and water price [Zhou et al., 2000; Haquea et. al. 2015], and 

other anthropogenic variables related to water policy, and water use behavior [Low et al., 2015; 

Haque et al., 2014; Haquea et. al. 2015].  Much of this work has utilized traditional multiple 

linear regression models, auto-regressive moving average models, trend-extrapolation, Fourier 

analysis, or artificial neural networks for evaluating relationships between demand and climatic 

or anthropogenic drivers [Zhou et al., 2000; Adamowski et al., 2013; Tiwari and Adamowski, 

2015].  However, more recently, wavelet analysis has been promoted as a means for assessing 

these relationships (particularly between meteorological variables and water demand).  The key 

advantage of wavelets is that they allow for synchronous identification of transient relationships 

between variables at multiple frequencies and times, whereas most other methods operate under 

the assumption of stationarity [Grinsted et al., 2004; Adamowski et al., 2013; Tiwari and 

Adamowski, 2015].   

 At this point only a few studies have used wavelets to identify coherent patterns in water 

demand, most notably Adamowski et al., 2013, who revealed high annual coherence between 

rainfall, temperature, and water consumption in Calgary, Canada (suggestive of strong 

seasonality in outdoor water use).  However, wavelet analysis is more commonly used in the 

hydrological, geophysical, ecological, and climate sciences, where it is often paired with multiple 

linear regression (MLR) models to facilitate identification of frequency and time-specific drivers 

of environmental pattern [Keitt et al., 2005; Westra et al., 2006].  Our study employs this 

combined approach (MLR plus wavelet analysis) for the first time to deconstruct the climatic and 

anthropogenic drivers of urban water consumption in a city with a long history of urban water 

scarcity, Melbourne, South East Australia.  The intent of this work is twofold 1) to illustrate the 
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utility of a transferable method for evaluating demand (broadly applicable across cities) and 2) to 

explore the relative contribution of specific climatic or anthropogenic factors to total water 

savings in Melbourne (findings which are likely to be city-specific). 

 This paper is organized in two parts, the first of which focuses on Melbourne's recent 

Millennium Drought and identifying urban water practices that contribute most substantively to 

water savings during the drought.  Subsequently, we look broadly over Melbourne's urban water 

history, which spans multiple droughts between 1940−2012, and use wavelet analysis and MLR 

to determine the prevailing climactic and anthropogenic drivers of demand at different times and 

frequencies.  Care is taken to 1) characterize coherent patterns between climate variables and 

consumption, and the evolution of their phasing over time, and 2) map transient events in 

residual consumption (e.g., following removal of climate-driven patterns) back to likely 

anthropogenic drivers of consumption with characteristic frequencies and/or temporal signatures.  
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CHAPTER 1: STUDY AREA: MELBOURNE AUSTRALIA 

 

 

Urban Water Supply 

Melbourne, the capital city of Victoria, Australia has a population of ~ 4.3 million people, and 

sources its drinking water from a series of protected catchments located to the north and north-

east of the city (green symbols in Fig. 1a).  Melbourne’s catchments cover a total area of 

~156,700 hectares, including 56,300 hectares of state forest, 90,800 hectares of national park, 

7,500 hectares of Melbourne Water land, and 2,100 hectares of private land.  Water from these 

catchments is stored in 10 major reservoirs with a total storage capacity of 1,812 GL [Viggers et 

al., 2013].  The largest of these reservoirs, the Thomson reservoir, was constructed in 1984, and 

holds ~60% of Melbourne's total water supply [van Leeuwen, 2015] (Fig. 1a). 

 Melbourne's stored reservoir volume is managed by a water wholesaler, Melbourne 

Water, who is responsible for 1) ensuring its quality and 2) partitioning it between environmental 

flows and water for urban consumption.  Water for the latter category is transferred to three water 

retail authorities (City West Water, Yarra Valley Water, and South East Water), who are 

responsible for delivering it to consumers (e.g., homes and businesses within the greater 

Melbourne Metropolitan Area) (Fig. 1b).  The two largest retailers, Yarra Valley Water and South 

East Water, have service areas of 4000 and 3640 km2 respectively, and each service ~1.7 million 

people [Pilgram, 2006].  City West Water is smaller in scale, with a service area of ~ 580 km2 

and a service population of 0.85 million people [WSAA Water Services]. As water is 

transferred from wholesaler to retailer and retailer to consumer, a fraction is lost as non-revenue 
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water (NRW) due to physical leaks in pipes, theft, or inaccurate water metering.  Although NRW 

and delivered, billable water are tracked separately by each retailer, both are part of the total 

urban water consumption for Melbourne reported by Melbourne Water (see red star in Fig. 1b). 

 

 
 

Figure 1: (A) Map of Melbourne’s water supply catchments detailing catchment bounds (green) 
reservoirs (blue), and Melbourne's city center, the Central Business District (CBD; red), (B) 
Water management flow diagram (from wholesaler to consumer). The red star denotes the water 
sold to retailers by Melbourne Water, which includes both non-revenue and billable water. 
Timeseries of urban water savings during (C) and at the end (D) of the Millennium Drought 
(1997-2009), including total savings (black), savings from alternative water sources (green), 
savings from non-revenue water reduction (red), and savings from conservation behavior (blue). 
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Drought in SE Australia 

Since 1930, Melbourne has experienced 3 long term droughts lasting > five years each (the 

Second World War Drought: 1937-1945, the 1960's Drought: 1962-1968 (most intense in 

1967/1968), and the Millennium Drought: 1997-2009), as well as 2 short term droughts ~ 1 year 

in duration (the Dust Cloud Drought: 1982-1983, and the 1990's Drought: 1994-1995) [Helman, 

2009].  Practically speaking, this means that ~50% of the past 82 years in SE Australia have been 

dry, suggesting that drought, particularly prolonged drought, is a persistent feature of SE 

Australia's climate.  While the Millennium Drought has been called one of the most severe 

droughts in recent memory [LeBlanc et al., 2009], it is notable that its spatial extent was smaller 

and its maximum precipitation deficit lower than both the Federation Drought (early 1900's) and 

the Second World War Drought, perhaps reflecting different dominant climate drivers [Verdon-

Kidd and Kiem, 2009].  This said, the Millennium Drought is both the hottest on record, and 

associated with the lowest inflows in the Murray Darling Basin (the breadbasket of Australia) 

ever recorded [Cai et al., 2008, Aghakouchak et al., 2014].  Furthermore, in Melbourne itself, 

the impact of the Millennium Drought on the annual rainfall deficit was actually larger than other 

droughts, making its impact on the urban water supply keenly felt [Verdon-Kidd and Kiem, 

2009].    
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CHAPTER 2: METHODS 

 

 

The Millennium Drought: A Water Savings Budget for Melbourne 

During the Millennium drought, Melbourne trialed a variety of approaches for reducing pressure 

on their primary storage reservoirs.  These approaches targeted alternative water sources (potable 

and non-potable), non-revenue water, and conservation behavior.  To determine the relative 

utility of each approach for reducing consumption during the drought, we performed a water 

savings budget for Melbourne from 1997, when the drought began, to 2009, when the drought 

officially ended.  Total per-capita water savings (STOT) were calculated as:    

STOT (t)=
V R(1997)
P (1997) −

V R(t)
P (t )  

(1) 

 

where VR (GL/y) is the total volume of reservoir water purchased from Melbourne Water by all 

three retailers each year (red star in Fig. 1), and P is the population of urban consumers the 

retailers service.  

 In order to estimate the fraction of STOT caused by increased use of alternative water 

sources, information concerning their uptake and storage capacity was compiled from Low et al., 

2015.  Although centralized (and potable) supply alternatives were pursued during the drought 

(e.g., the Wonthaggi Desalination plant and the Sugarloaf pipeline), both projects were 

completed after the drought ended, and have since contributed minimally (or not at all) to 

Melbourne's potable supply [Barnett and O'Neill, 2010, Grant et al., 2013, Radcliffe, 2015].  

A variety of non-potable projects were also pursued, intended to save potable water for required 

uses such as drinking.  These include recycled water schemes (e.g., dual pipe systems for in-
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home uses such as toilet flushing), permanent greywater and stormwater harvesting systems 

(primarily for outdoor irrigation), and rainwater catchment measures (e.g., rain barrels) [Low et 

al., 2015].  Of these different measures, rain barrels and recycled water schemes were the most 

prevalent (and well documented) during the drought [Low et al., 2015, Bloome et al. 2016].  As 

such, we define alternative water sources as the sum total of these two technologies for the 

purposes of this paper.  We also assume that potable substitution causes a corresponding decrease 

in potable water use, a reasonable assumption in light of the strict potable water restrictions 

during the Millennium Drought.  Given these assumptions, the fraction of STOT attributed to 

alternative source adoption (SALT) was calculated as follows: 

S ALT (t)=
V RW ( t)+ V RB(t )

P (t) −
V RW (1997)+ V RB(1997)

P (1997)  
(2) 

 

where VRB and VRW (GL/year) are estimates of the stored water volume in rain barrels or recycled 

water schemes, respectively (see Low et al., 2015 for a detailed description of the procedures 

used to estimate VRB and VRW). 

 In addition to the above-noted supply augmentation measures, Melbourne also explored a 

variety of NRW reduction strategies targeting both real (leaks and bursts) and apparent (theft and 

meter error) water loss.  These strategies were intended to reduce waste through improved 

distribution efficiency, and included 1) zone metering programs, where flow meters installed 

across the water supply network were used to quantify zone-specific NRW, and prioritize leak 

repair, 2) altered burst repair protocols, where saving water during bursts was prioritized over 

continuity of customer service, and 3) water meter replacement programs targeting aging meters, 

poor quality meters, and incorrectly sized meters, amongst others [Gan and Purss, Water 

outlook for Melbourne, 2014].  The per-capita water savings due to these NRW reduction 
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measures (SNRW) was calculated as follows: 

S NRW ( t)=
V NRW (1997)
P (1997) −

V NRW (t)
P( t)  

(3) 

 

where VNRW (GL/y) is the total reported volume of NRW summed across Melbourne's three water 

retailers.  In instances where NRW data from water retailers was incomplete (e.g, in 2009 for 

South East Water, and 1997 for Central West and South East Water), VNRW was estimated from 

Yarra Valley reports using the average ratio (1996-2012) of VNRW : Yarra Valley NRW, which was 

relatively stable at 2.4 GL/year (see Fig. S1c). 

 The third major approach for saving water during the Millennium Drought, conservation, 

is somewhat more difficult to quantify directly given 1) the myriad of individual programs 

involved (e.g., mandatory and voluntary water use restrictions, rebate programs for water 

efficient appliances, school and homeowner water education programs, and a variety of water-

wise advertisements featured on television, billboards, radio, and in newspapers [Low et al., 

2015]), as well as 2) the challenges associated with linking programs to behavioral change and 

volumetric estimates of potable water saved.  For instance, while the water savings associated 

with certain appliance exchange programs have been tabulated directly (e.g., ~8.67 GL/y from 

washing machine replacement alone [Joint Water Efficiency Plan, 2010/2011, Low et al., 

2015]), the effects of other programs, particularly educational ones like “Learn it! Live it!” and 

“Water Smart Behavior Change” instituted by Yarra Valley Water and Melbourne Water, 

respectively, remain unknown [Low et al., 2015].  Given these challenges we have chosen to 

define the fraction of total water savings due to conservation (SC) by difference (e.g., SC = STOT – 

(SALT + SNRW)), and have not attempted to compare the relative merits of specific conservation 

programs.  
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The Historical Water Record: anthropogenic vs climatic drivers of consumption 

In order to evaluate the combined influence of climatic and anthropogenic factors on 

Melbourne's urban water consumption in the long-term, we utilize an innovative combination of 

wavelet analysis and MLR.  This analysis considers 72 years of Melbourne's recorded water 

history (monthly averages from 1940-2012), and involves two meteorological datasets 

(temperature; T and rainfall; R), one hydrological dataset (reservoir inflow; I), and one urban 

water consumption dataset (C).  Consumption data were provided by Melbourne Water (same as 

above), whereas temperature and rainfall timeseries are from the Australian Water Availability 

Project.  These timseries were generated via a gridded, anomaly-based analysis of data from 

meteorological stations located in and around Melbourne's major water supply catchments (e.g., 

the Thomson, Upper Yarra, O'Shannaasy, and Maroondah reservoirs, Fig. 1a; details in Jones et 

al., 2009).  Reservoir inflows (in contrast) were calculated by difference across all reservoirs 

(e.g., I = dS/dt + C, where t is time, S is reservoir storage (measured by Melbourne Water), C is 

urban water consumption, and I is reservoir inflow).  Because our calculations do not account for 

additional water sinks such as evaporation, environmental flows and/or spills, actual inflows will 

exceed our estimates.    

 Analysis was performed in three parts (detailed separately below) using the wavelet 

coherence toolbox [Grinsted et al., 2004], the wavelet toolbox, and the statistics and machine 

learning toolbox from Matlab, Matworks, 2015b.  All timeseries had a monthly timestep and 

were de-meaned and de-trended prior to analysis.   
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Continuous Wavelet Transformation 

Continuous wavelet transformation (CWT) was used to characterize frequency and time specific 

patterns in R, T, I and C.  CWT, unlike traditional spectral techniques, does not assume that 

signal periodicities are stationary in time, allowing it to be used to resolve events that are 

localized or intermittent such as droughts, floods, and disease epidemics [Johnes et al., 2009, 

Chopra et al., 2015].  CWT uses wavelets (in this case the Morlet wavelet) as bandpass filters 

for a timeseries, where the wavelet is dilated or compressed to resolve the contribution of 

different frequencies to overall variance [Torrence and Compo, 1998, Grinsted et al., 2004, 

Guan et al., 2011].  By definition, wavelet power is the modulus of the wavelet coefficients that 

result when a timeseries is convolved with a wavelet function [Grinsted et al., 2004, Guan et 

al., 2011].  Importantly, because all wavelet-based analyses have edge effects associated with the 

convolution of a continuous wavelet with a finite timeseries [Guan et al., 2011], care must be 

taken to evaluate only the time-frequency region that is “free” of edge effects (i.e., beyond the 

so-called cone-of-influence (COI), see Grinsted et al., 2004).    

 Regions of significant wavelet power outside the COI were identified as those where 

power was consistently in excess (e.g., 95% of the time) of the expected power if the signal were 

red noise (i.e., generated by a first order autoregressive process with lag-1 autocorrelation 

characteristic of our respective R, T, I, or C timeseries, details in SI).  All patterns in wavelet 

power were assessed relative to known climatological or anthropogenic events in Melbourne's 

water history such as major droughts or reservoir additions, to identify patterns that were 

consistently associated with specific events.  
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Wavelet Coherence Analysis 

Wavelet coherence was used to identify shared patterns (i.e., correlated regions) between R, T, I, 

and C timeseries, and to explore their phase relationships.  By definition, coherence is the ratio 

of the shared power between two signals (X and Y) and the product of the power in each 

individual signal at various frequencies and times [Torrence and Webster, 1998; Grinsted et 

al., 2004; Guan et al., 2011].  This makes it analogous to a localized correlation coefficient in 

time-frequency space (0: no coherence, and 1: perfect coherence between signals [Grinsted et 

al., 2004]).  Wavelet coherence, like CWT, has associated edge effects and can only be 

interpreted outside the COI (defined as above).  

 Phase relationships between R, T, I, and C were estimated for regions of significant 

coherence (defined relative to an AR1 red noise process, see SI) using the complex argument of 

the cross wavelet transform, where phase angle is defined as the arc tangent of the imaginary 

component of the transform divided by the real component [Rosenblatt, 1965.; Grinsted et al., 

2004].  Phase angles were translated into monthly time lags between R, T, I, and C using the 

following relationship: Time lag = phase angle/2𝜋𝑓, where 𝑓	is frequency in cycles per month 

and the phase angle is a function of frequency and time. The temporal evolution of phase lags 

was evaluated to determine if relationships between consumption and climate variables changed 

over time.  Phase relationships were also compared across major drought events (e.g., the 

Millennium Drought, the 1960's drought, and the Second World War Drought). 

 

Discrete Wavelet Transformation and Multiple Linear Regression 

Discrete wavelet transformation (DWT) was used in combination with MLR to construct a best-

fit “climate only” model for urban water consumption, allowing information regarding 
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anthropogenic controls to be assessed through evaluation of the residuals (e.g., modeled – 

observed consumption).  DWT was used in lieu of CWT because it uses non-overlapping wavelet 

packets to generate unique (non-redundant) wavelet coefficients that are well suited for 

regression analysis [Westra et al., 2006]. Following a six-level (e.g., seven frequency) DWT, 

MLR was performed at each frequency band (dependent variable: C; independent variables: R, T, 

I, and all pairwise interaction terms).  Best-fit frequency-specific models were selected using 

Akaike's Information Criterion (corrected for small sample sizes), and then compiled into an 

overall best-fit model for C.  Subsequently, inverse DWT was used to recover our modeled C 

timeseries.  Because CWT provides higher fidelity timeseries decomposition than DWT 

(facilitating pattern analysis), CWT was performed on both observed and modeled C prior to 

taking their difference and assessing the residual for time-frequency signatures indicative of 

anthropogenic controls on urban water consumption.  A detailed description and flow diagram of 

our complete DWT and regression procedure (inspired by Westra et al., 2006) can be found in 

SI (Fig. S2a). 

  



14	
	

CHAPTER 3: RESULTS 

 

 

The Millennium Drought 

Annual urban water consumption peaked in 1997 at the start of the Millennium Drought (167 

kL/p/y) and reached its lowest value in 2011, two years after the drought concluded (86 kL/p/y; 

Fig. S1a).  This means that by 2009, when the drought officially ended, total potable water 

savings exceeded 70 kL/p/y (Fig. 1c,d).  A small fraction of these overall savings were due to 

alternative water sources (~ 2 kL/p/y), reflecting increased adoption of rain water barrels (post 

2007) and recycled water systems (post 2005) in almost equal measure (Fig. 1d, S1b) [Low et 

al., 2015].  NRW savings (all water retailers) totaled ~ 23 kL/p/y by the end of the drought (see 

Fig. S1c), and were initially higher than those from conservation behavior (e.g., between 1999 

and 2002 Fig., 1c).  Post 2002, however, savings from conservation behavior exceeded both 

NRW and alternative water sources combined, totaling ~53 kL/p/y by the end of the drought.  

 

The Historical Water Record 

Frequency and Time-Specific Variability in Climate and Consumption 

Although Melbourne's urban water consumption was elevated in 1997 at the start of the 

Millennium drought, the all-time summer high (1940-2012) occurred earlier (e.g., 1982), and the 

all-time summer low, later (e.g., 2011) (Fig. S2b).  Consumption exhibited the most power at 

annual frequencies (significant at the p < 0.05 level), diminishing in strength post 2002 (Fig. 2a).  

Power was also elevated between 1960 and 1990, at frequencies below 0.5 cpy. 

 Climate variables, like consumption, varied widely between 1940 and 2012, with R 
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ranging from 5.7-399 mm/month (taking on lower values in 1991 than during the Millennium 

Drought), mean monthly T ranging from 3.8-20 ˚C (hottest at the start of the drought in 1997), 

and I ranging from < 0-1700 GL/y (highest after the construction of the Thomson reservoir in 

1984) (Fig. S2c-e).  All three variables exhibit high power at annual frequencies, particularly T 

(Fig. 2e).  Interestingly, R exhibits discontinuities in annual power during the Second World War 

and Millennium Droughts (Fig. 2d), whereas I exhibits increases in power at all frequencies, 

coincident with reservoir additions (see vertical black lines, Fig. 2f).  

 

Figure 2: Heat maps of wavelet power for the continuous wavelet transform (CWT) of 
consumption (A), modeled consumption (using a best-fit climate model; B), residual 
consumption (observed – modeled; C), rainfall (D), temperature (E), and inflow (F). Black 
boxes in (C) indicate regions of good (box 1) and poor (box, 2-4) fits between observed and 
modeled consumption. Shaded gray bars in (D) indicate long-term droughts, including (from left 
to right) the Second World War Drought, the 1960s Drought, and the Millennium Drought. Black 
vertical lines in (F) mark large reservoir additions (e.g., capacity exceeding 200 GL), including 
(from left to right) the Upper Yarra, Cardinia, and Thomson reservoirs. Time (years) is on the x-
axis, and frequency (cpy) is on the y-axis for all panels. Thick black contours denote regions of 
significant power (p < 0.05 level), and white shading (e.g., the cone of influence) indicates 
regions where estimates of wavelet power are unreliable. 
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Patterns in Wavelet Coherence and Phase Relationships 

Significant coherence was observed at annual frequencies for all possible pairings of R, T, I, and 

C, consistent with the high power annual band observed for each timeseries (Fig. S3).  Annual 

coherence was persistent (detected > 70% of the time across all timeseries pairs), and was 

highest between T and C (coherent 99% of the time) and lowest in pairings with I (coherent 74-

79% of the time).  Significant coherence was also detected at sub-annual frequencies (e.g., 0.25 

and 0.125 cpy), but only transiently.  Sub-annual coherence was largest between I and R, and 

increased over time (from ~1 cpy pre 1957 to 0.125 cpy by 1995; Fig. S3d).  Sub-annual 

coherence between R and T also changed over time (from ~ 0.25 cpy before 1970 to 0.125 cpy 

post 1970; Fig. S3a).  

 Given that significant coherence was most consistently detected at annual frequencies, 

our exploration of phase relationships between R, T, I, and C was limited to the annual band.  On 

average, T and C, and R and I were in phase (0.1 +/- 0.2 and 0.4 +/- 0.5 month lag, respectively; 

the pair R and I lead the pair T and C by ~ 5 months (Fig 3b, Table S1).  However, phase 

relationships between variables were not constant, and exhibited small, but significant (p < 0.01), 

trends (statistical details in SI).  For instance, the lag between R and I increased over time (total 

change of ~½ months between 1940 and 2012), whereas decreasing lags of similar magnitude 

were observed between R and T, R and C, I and T, and I and C (~½-1 months) (see trend lines, 

Fig. 3a, Table S1).  Phase relationships for individual droughts generally reflect these trends, 

with R and I leading T and C by the greatest margin during the Second World War Drought, 

followed by the1960's Drought and the Millennium Drought (Fig. 3c-e).   
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Figure 3:  (A) Timeseries of significant phase lag (estimated at an annual frequency) between 
rainfall (R), inflow (I), temperature (T), and consumption (C) from 1940-2012. Time (years) is on 
the x-axis, and phase lag (months) is on the y-axis. Observed phase relationships (circles; gaps 
indicate regions where no significant relationship occurred) and long-term trends (dashed lines) 
are shown in color: R leads T (black),  I leads T (blue), R leads C (green), I leads C (cyan), 
R leads I (red), and T leads C (pink). Grey bars mark individual drought events as in Fig. 2d. (B-
E) Maps illustrating average phase relationships between 1940 and 2012 (B), and for individual 
drought events, including the Second World War Drought (C), the 1960s Drought (D), and the 
Millennium Drought (E). Arrow widths and associated coefficients indicate the magnitude 
(+/- standard deviation) of the lag. Boxes are used to group model components that are in-phase 
(e.g., exhibit no significant monthly lag). 
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Climatic and Anthropogenic Patterns in Urban Water Consumption 

Climate variables alone (e.g., R, T, I, and all pairwise interaction terms) explained ~55% of the 

observed variance in Melbourne's urban water consumption (Fig. S4, Table S2).  Different 

variables were significant at different frequencies (p < 0.05 level).  For instance, R and T were 

significant predictors of consumption at all frequencies except 0.09 – 0.2 cpy. In the latter 

frequency band no variable explained more variance in consumption than expected by chance 

(i.e., the best model was the null model; see Fig. S4f).  I only improved model fits at greater than 

or equal to annual frequencies, and was never itself a significant predictor of consumption; its 

inclusion was contingent upon the significance of pairwise interactions with R and/or T.  

Importantly, the best-fit frequency-specific models presented here should be interpreted as one 

possible realization of a family of best-fit models, as their corrected Akaike weights fall between 

0.17 and 0.52 (i.e., there is only a 17-52% chance that the models we selected are truly “best”; 

Table S2). 

 Our final “climate-only” model reproduced patterns in consumption most reliably at 

annual frequencies (> 80% variance explained), particularly between 1990 and 2002 (see box 1 

in Fig. 2c).  This said, it clearly fails to capture the decrease in annual power observed post-2002 

during the Millennium Drought (see box 2 in Fig. 2c).  The model also over-predicts power in 

greater than annual frequencies (during the Millennium Drought) as well as in sub-annual 

frequencies between 1950 and 1965 (see box 4 in Fig. 2c). Finally, the model under-predicts 

power from 1965-1990 at sub-annual frequencies (see box 3 in Fig. 2c).  Importantly, there are 

no consistent biases between modeled and observed consumption, but rather a series of transient 

biases that reflect distinct historical or climatological events unresolved by our climate-only 

model.  
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DISCUSSION 

 

 

During the Millennium Drought demand-side approaches for reducing urban consumption (e.g., 

conservation: 69%, and NRW reduction: 29%) conferred more benefit than supply-side 

approaches (e.g., alternative water sources: 3%; desalination plant and Sugarloaf pipeline: 0%) 

(Fig. 1d).  Similar success with demand-side techniques has been reported by the city of 

Cheyenne, Wyoming in 2002, where urban consumption was reduced ~50% in summer months, 

primarily through outdoor watering restrictions (total savings of 60.2 ML/d), as well as Boston, 

Massachusetts, where consumption declined ~25% in the early 1990's (and has remained low) 

primarily due to aggressive leak repair, rebate programs for water saving technologies in the 

home, and increased efficiency of industrial water use [Wilhite, 2005 ch7].   

 Although conservation saved more water at the end of the Millennium Drought than 

NRW reduction, the inverse was true between 1999 and 2002 (Fig. 1c), suggesting that early 

investment in NRW programs can have rapid (if diminishing) returns.  Furthermore, because 

pressure/leak management initiatives can reduce utility maintenance costs through extending the 

lifetime of infrastructure, NRW programs may prove an attractive (even profitable) means of 

reducing water consumption in the long term [Girard and Stewart, 2007; van den Berg, 2015].  

Indeed, a pilot study by Gold Coast Water in Queensland, Australia revealed that pressure and 

leak management initiatives can save upwards of 3.4 million AU dollars per year in maintenance 

costs, and provide more water savings benefit per dollar than either supply-augmentation (e.g., 

desalination, dam retrofits, and water supply pipelines) or the sum total of existing water rebate 

programs [Girard and Stewart, 2007].   
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 Although savings from alternative water sources during the Millennium Drought were 

consistently low, this may (in part) reflect the longer spin-up time required for such projects.  

Indeed, by 2013/2014 (five years after the drought concluded), $50 million AU dollars had been 

allocated to building stormwater systems for the purposes of potable substitution, implying that 

the full effect of these measures is yet to be realized [Low et al., 2015].  Furthermore, given that 

many alternative water systems provide benefits beyond supply (e.g., related to water quality, 

energy savings, and ecosystem/public health), their utility in urban environments is likely to 

exceed their importance for drought mitigation alone [Walsh, 2005; Walsh et al., 2016; 

Askarizadeh et al., 2015].   

 While some of the supply-side solutions implemented during the Millennium Drought 

were not utilized (e.g., the desalination plant and the Sugarloaf pipeline), they may have afforded 

the security necessary to innovate, enabling pursuit of less traditional (riskier) demand-side 

solutions to urban water problems [Coppock and Brown, 2007, Low et al., 2015]).  This kind of 

innovation comes at a cost, however, including 1) the fixed price of infrastructure (AU$ 6 billion 

for the desalination plant alone [Grant et al., 2013]), and 2) any future costs that accrue if 

infrastructure is maladaptive (e.g., increases emissions of greenhouse gasses, reduces incentives 

for adaptation, and/or the paths available to future generations [Barnett and O'Neill, 2010]).  

These considerations complicate efforts to quantify the net costs and/or benefits of centralized 

infrastructure to urban water security in the long term.   

 Looking beyond the Millennium Drought, there are clear patterns in urban water 

consumption throughout Melbourne's history (1940-2012), some of which appear driven by 

meteorological and/or hydrological variables.  This is clearly evidenced by the high annual 

coherence between consumption and climate variables (Fig. S3), previously noted by Zhou et 
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al., 2000 (for Melbourne) and Adamowski et al., 2013 (for 3 cities across Canada).  High annual 

coherence points to significant seasonality, with T and C oscillating in phase (more consumption 

in warmer summer months), and R:I  being nearly out of phase with T:C (consistent with the idea 

that consumption and temperature are highest when rainfall and inflow are lowest) (Fig. 3).  

Interestingly, the phase lag between R and I in Melbourne appears to have increased slowly but 

significantly over time, from in-phase around 1950 (peaking in winter/spring) to R leading I by ~ 

½ month in 2012 (Fig. 3, Table S2).  That is consistent with the findings of Cai et al., 2008 and 

others, who identified altered R-I relationships as a key difference between the Millennium 

Drought and prior mega-droughts like the Second World War and Federation Droughts: 

essentially, reduced autumn rainfall fails to prime upper soil layers with moisture, resulting in 

delayed (and reduced) inflow in response to major rain events in winter/spring [see also Verdon-

Kidd and Keim 2009; Ummenhofer et al., 2011; van Dijk et al., 2013].   

 Given the high shared power between climate and consumption at annual frequencies, it 

is unsurprising that our optimal climate-based consumption model performed best at those 

frequencies (Fig. 2c, box 1).  That said, post 2002 the model clearly overestimates the 

contribution of high frequency variability to urban water consumption (Fig. 2c, box 2).  This 

mismatch likely reflects the influence of water conservation programs during the Millennium 

Drought, as these programs: 1) saved more water post 2002 than other approaches (e.g., NRW 

reduction and alternative water sources; Fig. 1c) and 2) targeted outdoor (as well as indoor) 

water use, which varies seasonally.  Indeed, the first wave of mandatory water restrictions 

targeting outdoor water use (Stage 1 restrictions) were implemented in November 2002, 

coincident with the onset of our poor model-data fits.  Subsequent stages (implemented in 2003, 

2006, 2007, and 2008) only strengthened outdoor watering restrictions, culminating in Stage 3a, 
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which was one step below a total outdoor watering ban [Low et al., 2015]. 

 Another notable failure of our climate-only model is evident between 1960 and 1990, 

where power is underestimated at sub-annual frequencies (Fig. 2c, box 3).  This timeframe maps 

to a period of technological innovation and changing social norms regarding water use in 

Melbourne.  For instance, piped hot water became freely available in the home by the mid-1960s 

paving the way for hot water appliances such as the dishwasher and washing machine, as well as 

new accepted hygiene practices (most particularly the daily shower) [Davison, 2008 ch 3].  

These changes, alongside shifts in outdoor watering habits (spurred by suburban sprawl and a 

preference for backyard lawns) ushered in a new era of high urban water use (see consumption 

peak in Fig. S2b) [Davison, 2008 ch 3].  The mid 80's to early 90's, in contrast, mark the start of 

a more water conservative mindset for Melbourne, including mandatory use of dual flush toilets 

in new toilet installations (1984), public awareness campaigns like “Don't Be a Water Wally” 

(1984), and user-pays water pricing regulations (1986) [Davison, 2008 ch 3; National Water 

Commission, 2011; Low et al., 2015].  Superimposed on this long term (lower frequency) 

pattern are two droughts, first in 1968, the worst year of the 1960's drought, and then in 1983, the 

dust cloud drought (see hotspots at 0.5 cpy in box 3, Fig 2a,c).  The intense model-data 

mismatch during these periods likely reflects 1) the short, sharp nature of the droughts 

themselves, and 2) their occurrence in a era when Melbourne's average water consumption was 

at an all-time high.  

 Although our analysis of residual consumption (discussed above) is intended to isolate 

patterns driven by anthropogenic factors from those driven by climate, it is important to 

recognize that this separation may be incomplete, as our best-fit “climate” model is unlikely to 

represent only climate.  For instance, our inflow variable I (included in best-fit models at greater 
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than or equal to annual frequencies) is clearly influenced by human modification of the water 

supply catchment (e.g., reservoir additions), as well as rainfall, making it a hybrid variable (i.e., 

it reflects both human and climate drivers, Fig. 2c and S3d).  Similarly, anthropogenic effects on 

temperature such as global warming could make temperature a hybrid variable, complicating 

model interpretation.  Nevertheless, our combined wavelet and MLR analysis clearly identifies 

both climatic and anthropogenic factors as important drivers of Melbourne's urban water 

consumption.  The effects of climate were present at nearly all frequencies (not just seasonal, as 

has been assumed in other studies [Zhou et al., 2000], see Fig. S4), whereas the effects of 

anthropogenic factors varied: sometimes evident at low frequencies (e.g., between 1960 and 

1990), and other times at high frequencies (e.g., during the Millennium Drought). 
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APPENDIX A: SUPPLEMENTAL METHODS 

 

 

Significance tests for wavelet power and coherence 

Regions of significant power or coherence (black contour lines in Figs. 2, and S3) were 

identified using Monte Carlo analysis.  Briefly, 10,000 synthetic red noise timeseries (Xn+1) were 

generated for rainfall (R), temperature (T), inflow (I), and consumption (C) as in EQ (1): 

X n=1= σ X√1+ r12Zn   

X n+ 1= r1 X n+ σ X√1+ r 12Zn    EQ (1)  

where n is an index spanning 1 to length X, r1 is the lag-1 autoregressive coefficient for R, T, I, or 

C, σx is the standard deviation of X, and Zn is a white noise process (e.g., randomly generated 

normal variable) with zero mean and unit variance. These red noise timeseries were used to 

generate frequency and time-specific null distributions for wavelet power and coherence from 

which an upper 95% confidence (CI) bound could be estimated (see below).  All values of 

coherence or power from R, T, I or C data that exceeded this 95% CI bound were determined to 

be significant at a p < 0.05 level.  

 To estimate, the upper CI bound for spectral power, frequency and time-specific null 

distributions were generated by taking the continuous wavelet transform (CWT) of each red 

noise timeseries (as in Grinsted et al., 2004), generating 10,000 realizations of power for each 

time-frequency coordinate in each input timeseries (e.g., R, T, I or C).  A similar approach was 

used to generate frequency and time-specific null distributions of coherence (e.g., between R:T, 

R:I, R:C, T:I, T:C, and I:C), save that coherence between pairs of rednoise timeseries was 

estimated in lieu of individual timeseries power (see Grinsted et al., 2004 for wavelet coherence 
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equations).  A percentile approach was used to calculate the upper 95% confidence bound for 

each null distribution, where values comprising the null (coherence or power) were sorted, and 

the 9,500th value retained as the upper (95%) bound. 

 

Discrete wavelet transformation and multiple linear regression 

In practice, DWT is analogous to CWT in that it provides a complete representation of the 

original timeseries in time and frequency space, but differs in that the frequencies and 

timeframes (translations) evaluated are restricted to an orthonormal set.2  This feature facilitates 

subsequent analyses like regression that require independence in time and scale, but comes at the 

cost of reduced signal fidelity (i.e., transient events and/or oscillatory behavior are harder to 

resolve).  DWT uses simultaneous low and hi-pass filtering to repeatedly split a timeseries into 

detail coefficients, which capture variability at a given frequency, and approximation 

coefficients, which capture the remainder (e.g., lower frequency components) of the signal.2,3  At 

each step, the wavelet coefficients are downsampled by a factor of two and the approximation 

coefficients passed on to be filtered again at a lower frequency.  In our analysis we use the Haar 

wavelet as a high-pass filter (e.g., mother wavelet) and the corresponding Haar scaling function 

as a low-pass filter (e.g., father wavelet) for R, T, I, and C, as in Keitt et al., 2005. 

 Once wavelet coefficients were obtained through DWT for each timeseries, the following 

steps were taken in order to construct a best-fit regression model for C using climate variables 

(see Fig. S2): 1) universal thresholding was applied to the wavelet coefficients of R, T, I, and C 

to reduce noise, as recommended by Westra et al., 2006; 2) the variance inflation factor (VIF) 

was calculated for R, T, and I at each frequency to identify multicolinearity (variables with VIF > 

5 at a given frequency were excluded from the regression at that frequency); 3) MLR was 
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performed for each frequency band, where the dependent variable was C and the independent 

variables were R, T, I, and their pairwise interaction terms: functional marginality was invoked 

so that no models included interaction terms without first including both parent variables; 4) The 

best model for each frequency was selected using Akaike's Information Criterion, corrected for 

small sample sizes, and 5) these models were compiled to construct an optimal climate model 

across all frequencies.  After characterizing our optimal climate model in time-frequency space, 

an inverse DWT was used to recover the synthetic consumption timeseries represented by the 

model.  CWT was then performed on both modeled and observed consumption: the residual 

(observations – model) was evaluated for time-frequency regions not well explained by climate 

that could reflect anthropogenic controls on urban water consumption. 

 

Significance tests for long-term trends in phase: non-parametric bootstrapped regression 

Non-parametric bootstrap statistics were used to estimate 95% confidence intervals for the slope 

of the long term trend in phase lag (estimated at an annual frequency) across all combinations of 

R, T, I, and C between 1940 and 2012 (trends are shown in Fig. 2).  A residual-based resampling 

(or fixed x) approach was employed for this analysis (as in Azizian et al., 2015).  Briefly, a first 

order polynomial was fit to each phase lag timeseries (e.g., Lag (y values) and year (x values).  

The residuals were calculated and bootstrapped 10,000 times, producing 10,000 realizations of 

error.  Each realization of error was added to the original linear fit and then re-fit.  The slope 

estimates from these 10,000 fits were retained, and used to calculate 1) the average slope and 2) 

95% confidence intervals about that average.  Because the probability distribution of the slopes 

was observed to be symmetric, confidence intervals were calculated using a basic percentile 

approach where all 10,000 slope estimates were sorted and the 250th and 9,750th values retained 
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as the lower (2.5%) and upper (97.5%) confidence bounds, respectively. 
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APPENDIX B: SUPPLEMENTAL FIGURES 

 

 

 

Figure S1: Annual timeseries of (A) per capita urban water consumption (kL/p/y), (B) per capita 
water volume from alternative sources (kL/p/y), and (C) per capita non revenue water (NRW) 
between 1995 and 2012. Total per capita NRW and alternative water volume are shown using 
white bars (B, C). Each total is broken into multiple components: rain water barrels (orange) and 
recycled water (green) for alternative water sources (B), and by retailer (e.g., City West Water 
(blue), South East Water (cyan) and Yarra Valley Water (red)) for NRW (C). 
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Figure S2: (A) A flow diagram of the combined discrete wavelet transform (DWT) and multiple 
linear regression (MLR) procedure used to construct our climate-forced consumption model: 1) 
DWT was used to generate frequency-dependent timeseries of wavelet coefficients for each 
dependent variable (rainfall (u1; blue), temperature (u2; red), and inflow(u3; green)) and our 
independent variable (consumption (v1; yellow)), 2) universal thresholding was applied to all 
wavelet coefficients generating de-noised coefficients u'1, u'2, u'3, v'1, 3) MLR was performed at 
each frequency using all combinations of dependent variables and their pairwise interaction 
terms (u'1, u'2, u'3, u'1u'2, u'1u'3, u'2u'3), 4) the best frequency-specific model for v'1 was selected 
using Akaike's information criterion corrected for small sample sizes (AICc), and 5) inverse 
DWT was performed on the compilation of all best fit frequency-specific models, recovering a 
best-fit consumption timeseries (𝐂). (B-E) Raw timeseries (e.g., prior to de-meaning and de-
trending) of all dependent and independent variables used as inputs in our climate-only model: 
(B) consumption, kL/p/y; (C) rainfall, mm/month; (D) temperature, Celsius; and (E) inflow, 
GL/y. 
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Figure S3: Contour plots of wavelet coherence (color) between (A) rainfall and temperature, (B) 
rainfall and consumption, (C) temperature and consumption, (D) rainfall and inflow, (E) 
temperature and inflow, and (F) inflow and consumption. Time (years) is on the x-axis, and 
frequency (cpy) is on the y-axis. Thick black contours denote regions of significant coherence (p 
< 0.05 level), and white shading (e.g., the cone of influence) indicates regions where coherence 
estimates are unreliable. Arrows denote phase relationships between variables: down (up) 
denotes variable 1(2) leading variable 2(1). Perfectly horizontal arrows indicate relationships that 
are totally in phase (pointing right) and out of phase (pointing left), respectively. Note that black 
vertical lines in (D-F) mark reservoir additions, including (from left to right) the Upper Yarra, 
Cardinia, and Thomson reservoirs.  
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Figure S4: Timeseries of the frequency-specific model fits that comprise our overall best-fit 
climate model. Time (years) is on the x-axis, and the observed (black dots) or modeled (red line) 
magnitude of wavelet coefficients for consumption is on the y-axis. Panels correspond to 
different frequency bins: (A) 3-6 cpy, (B) 1.5-3 cpy, (C) 0.75-1.5 cpy, (D) 0.3-0.75 cpy, (E) 0.2-
0.3 cpy, (F) 0.09-0.2 cpy, and (G) < 0.09 cpy. The parameters included in the best-fit model for 
each frequency bin are listed at the top of its respective panel. 
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APPENDIX C: SUPPLEMENTAL TABLES 

 
 

 
 

 

 


