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Abstract
As mental representations are standardly thought to underlie
all cognitive processes, a major goal of cognitive science has
been to uncover representations. Methods for representation
learning from behavioral data often model choice or reaction
time data alone, but not jointly, leaving out potentially use-
ful information. Here we develop two models of choice and
RT in the odd-one-out task, including one based on the Linear
Ballistic Accumulator. Parameter recovery simulations show
joint modeling of choice and RT with LBA recovers represen-
tations more accurately than modeling choice alone with soft-
max. However, on two empirical datasets of images and words,
joint models performed no better than choice-only models, de-
spite a significant correlation of reaction time with two mea-
sures of similarity and choice difficulty in both datasets. We
speculate on reasons for the unrealized promise of joint mod-
eling of RT and choice in representation learning.
Keywords: similarity; computational modeling; reaction time;
representation learning; concepts

Introduction
Mainstream cognitive science, in the Representational The-
ory of Mind tradition (Pitt, 2022), holds that mental repre-
sentations, whether distributed or local/symbolic, underlie ar-
guably all cognitive processes. Accordingly, cognitive scien-
tists have invested significant effort developing methods for
uncovering these representations, especially for distributed
representations, which assume that objects and concepts are
represented by – often high-dimensional – numerical vec-
tors. Such methods include multidimensional scaling from
Likert scale ratings and confusion matrices (Steyvers, 2002),
sorting items into piles (Shepard & Cooper, 1992), spatially
arranging items on a two-dimensional plane (Goldstone,
1994; Kriegeskorte & Mur, 2012; Hout, Goldinger, &
Ferguson, 2013; Richie, White, Bhatia, & Hout, 2020),
and, more recently, natural language processing (Mikolov,
Sutskever, Chen, Corrado, & Dean, 2013) and computer vi-
sion (Peterson, Abbott, & Griffiths, 2018). These methods
have uncovered interpretable representations (Hebart, Zheng,
Pereira, & Baker, 2020) that quantitatively predict behavior
in generalization (Shepard, 1987), categorization (Nosofsky,
1984), semantic judgment (Richie, Zou, & Bhatia, 2019),
similarity judgment (Richie & Bhatia, 2021), stereotyping
(Bhatia, 2017), and more (Bhatia, Richie, & Zou, 2019).

A challenge in using these methods, however, is that they
require significant dataset sizes for drawing conclusions that
generalize beyond small, selective stimulus samples. For ex-
ample, the number of trials needed to scale n items grows

quadratically with pairwise ratings or confusion data, and cu-
bically with odd-one-out judgments. The spatial arrangement
method tries to circumvent this by scaling all items at once
on a 2-d plane, but with item sets that are multi-dimensional,
this requires repeated trials to allow respondents to focus on
different item dimensions on each trial. The data intensity
of all these methods makes it especially challenging to study
variations in representations within and between subjects, as
it is difficult for one or even a handful of subjects to provide
enough data to learn representations for more than a trivial
number of items.

Given the apparent requirement for large dataset sizes, it
would be highly beneficial to develop more efficient represen-
tation learning methods. One possibility is to jointly model
two pieces of information that are automatically collected in
all behavioral tasks: choice and reaction time. Each of these
has been used separately for representation learning: choices
in the odd-one-out task have been modeled with the softmax
choice rule (Hebart et al., 2020), and confusion matrices of
reaction times in same-different judgments have been sub-
jected to multidimensional scaling (Young, 1970). Jointly
modeling these could combine potentially distinct sources of
information in each, and therefore lead to more efficient rep-
resentation learning than is possible with modeling choice or
reaction time alone.

Interestingly, the potential of jointly modeling choice and
reaction time for representation learning was recognized
decades ago by Takane and Sergent (1983), who developed
a joint model of choice and reaction time in same-different
judgments, MAXRT. However, evaluations of this model
have been lacking. Takane and Sergent (1983) fit their model
to real data but did not compare it to modeling choice or re-
action time alone. Storms and Delbeke (1992) fit MAXRT
to real data to estimate item representations, x̂, and MAXRT
model parameters; used these estimated representations and
model parameters to simulate new choices and reaction times;
and then found MAXRT better recovered the item represen-
tations, x̂, than a choice-only model, MAXSD. While these
results are encouraging, this approach is essentially a param-
eter recovery simulation, since MAXRT was used to simulate
the data on which it and MAXSD were fit and compared. Still
needed is an empirical evaluation where choice-only and joint
choice-RT models are compared in, e.g., their ability to pre-
dict independently established item representations or out of
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Figure 1: a) Odd-one-out task. b) 2-d item representations for two trials likely to generate short and long RT’s. c) Overview of
the Linear Ballistic Accumulator Model of the odd-one-out trial in (a).

sample choices based on estimated item representations.
Our contribution is therefore to provide such an empirical

comparison between choice-alone and joint choice-RT mod-
els, in their efficiency of representation learning. As the joint
models we develop are somewhat novel and distinct from
MAXRT, we also conduct new parameter recovery simula-
tions to first establish the in-principle value of joint model-
ing. In the rest of the paper, we describe the task we study,
the models we consider, simulation and empirical studies of
this task and model, and discussion of our results.

Odd-one-out task
Figure 1a illustrates the odd-one-out task which we study. In
this task, a subject is given a set of three items, {i, j,k}, and
must decide which item is least like the other two. This de-
cision is equivalent to deciding which of the three possible
pairs {(i, j),(i,k),( j,k)} has the greatest overall similarity.

Models
Softmax choice model
Hebart et al. (2020) describe a model of choice in this task,
where the probability of choosing pair (i, j) depends on the
softmax choice rule

p(i, j) =
exp(xix j)

exp(xix j)+ exp(xixk)+ exp(x jxk)
(1)

where xi is a d-dimensional, real-valued vector represen-
tation of item i, and xixj is the dot product of the represen-

tations for items i and j1. Hebart et al. fit this model to hu-
man choices between object photos, and found interpretable
item dimensions in terms of animacy, color, shape, and more.
These representations also accurately predicted choices for
held out odd-one-out trials, via the same softmax model.

Linear Ballistic Accumulator
Joint models of choice and reaction time typically come from
the family of Evidence Accumulation Models (Evans & Wa-
genmakers, 2020). Although many EAMs might be appli-
cable to the odd-one-out task, we tested the Linear Ballis-
tic Accumulator (LBA), since it has a closed-form likelihood
function for choice tasks with three or more options (Brown
& Heathcote, 2008) and is implemented in the rtdists R pack-
age (Singmann et al., 2016). Figure 1 illustrates this model.

In the LBA, N accumulators track the amount of evidence
gathered for each of N options. On each trial, each accu-
mulator begins with a starting amount of evidence k, which
increases at drift rate d, up to threshold b. The first accu-
mulator to reach threshold determines the choice, and the RT
is determined by the amount of time this accumulator takes
to reach threshold plus some extra constant time for non-
decision processes, t0. Trial-by-trial variation in the LBA
standardly comes from two sources: k, which is sampled from
a uniform distribution U(0,A), and d, from a normal distribu-
tion N(v,s)2.

1Westfall and Lee (2021) describe a similar model, with the ad-
dition of weights on the features/dimensions of x, and a Luce rather
than a softmax choice rule (Luce, 2005).

2In principle, A, b, t0, and s can vary by accumulator, to accom-
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In our odd-one-out task, we have three accumulators, one
for each pair in (i, j),(i,k),( j,k), with the mean drift rate for
an accumulator equal to the dot product of xi and xj:

v(i, j) = xix j (2)

Thus, a highly similar pair (i, j) will have a high v(i, j), and
its accumulator will be more likely to reach threshold before
other accumulators, triggering a choice of (i, j) as the most
similar pair (or equivalently, k as the odd one out). Likewise,
highly similar pairs will tend to be chosen more quickly than
less similar pairs.

Other similarity metrics besides dot product are possible.
For example, Hebart et al. (2020) found similar results with
Euclidean distance instead of dot product. However, some
metrics introduce challenges for modeling: cosine introduces
an identifiability problem (if all representations double in
magnitude, cosines are unchanged), and using softmaxed dot
products as mean drift rates (i.e., Equation 1) proved unre-
coverable in repeated simulations. For these reasons, we only
report results with dot product.3

Softmax plus difficulty
An alternative joint model of choice and reaction time is in-
spired by Ballard and McClure (2019), who modeled choice
and reaction time in multi-armed bandit reinforcement learn-
ing. Their model’s loss function includes a term for the soft-
max log likelihood of choices, and another term for the log
likelihood of a linear model of log reaction times 4. This lin-
ear model includes terms for the linear and quadratic effects
of the absolute value of the difference in values between ban-
dits, under the intuition that trials with bandits closer in value
would be more difficult, and hence increase decision time.
We defined a similar model based on choice difficulty mea-
sured with the Shannon entropy in the softmax probabilities,
and the overall sum of the dot products:

log(rt) = β0 +β1 ∗H(p)+β2 ∗H(p)2 +β3 ∗∑v (3)

where p is a vector of choice probabilities from softmax, v
is a vector of dot products between the three items’ represen-
tations, and entropy is defined as:

H(p) =−∑
i

pi log pi (4)

Notice that these two measures capture choice difficulty in
a slightly different way: H(p) predicts choices are difficult

modate, e.g., a left or right choice bias. For simplicity, we do not
model this.

3In fitting all three models with dot product as the similarity met-
ric, we arbitrarily fix one item’s representation to improve identifia-
bility, since (a) dot product is rotation invariant, (b) and drift rate is
known to trade off with other parameters in LBA (Brown & Heath-
cote, 2008).

4In principle, a hyperparameter could be used to trade off the
impact of the softmax and RT loss terms, but following Ballard and
McClure (2019), we omit this (but we return to this issue in the
discussion.)

and slow when all pairs are equally similar (e.g., three tools)
or equally dissimilar (e.g., a tool, a vehicle, and a building).
∑v predicts the former choice set will be fast and easy, and
the latter slow and difficult.

Parameter recovery simulations
To demonstrate that, in principle, joint modeling of choice
and reaction time improves representation learning over mod-
eling choice alone, we conducted parameter recovery simula-
tions. In each simulation, we first sample 20 2-dimensional
vector representations from the unit square to produce a (20,
2) matrix, X. We then simulatd choices and reaction times
on all possible odd-one-out trials with our LBA model5. We
selected LBA parameters that matched the empirical data we
describe later, in terms of reaction time distributions and rates
of between-subject agreement on the odd one out for a given
trial. These parameters are A = 2, b = 6, t0 = .2, s = .1,
which we associate with a simulated subject, S1. To simulate
individual differences which might complicate joint model-
ing, we we also add another, slower but more careful sub-
ject, S2, with A = 1.8, b = 12, t0 = .6, s = .08, who responds
to a different set of trials from S1. Since S1 will generally
have faster RT’s than S2, we ’demean’ each subject’s RTs as
follows: we log transform all RT’s; calculate each subject’s
mean, M1 and M2, and the grand mean, Mg; calculate sub-
ject level shifts shi f t1 = Mg −M1 and shi f t2 = Mg −M2; add
each subject’s shift to their log RTs; and finally exponenti-
ate all log RT’s back to the raw scale. We then fit all models
on these data with maximum likelihood estimation via scipy’s
minimize function (Virtanen et al., 2020). We evaluate model
performance in two ways. First, we calculate accuracy in
choosing the odd-one-out among all trials not randomly se-
lected for training. That is, if 25% of trials are randomly se-
lected training, we calculate accuracy on the remaining 75%
(this means that when training on all trials, we can not calcu-
late out of sample choice accuracy). Second, we calculate the
Procrustes disparity between true representations, X, and es-
timated representations, X̂. Procrustes analysis finds the rota-
tion, reflections, and scaling of X̂, that minimizes its disparity
with X:

M2 = ∑(X− X̂)2 (5)

which is just the sum of squared elementwise differences
between the two matrices.

We conducted the above procedure 20 times, when sam-
pling 6.25%, 12.5%, 25%, 50%, and 100% of the possible tri-
als. Figure 2 shows model performance at each level of sam-
pling. As can be seen, modeling choice and RT with LBA re-
covers item representations much more accurately than does
modeling choice alone with softmax, but LBA’s advantage in

5We could also have simulated choices and reaction times with
our Softmax Plus Difficulty model, but omit this for simplicity. The
point of parameter recovery simulations is merely to demonstrate
that joint modeling of choice and reaction time leads to more accu-
rate representation learning than modeling choice alone.
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Figure 2: In each simulation, 2-dimensional item representa-
tions, X, are generated; odd-one-out choices and RTs are sim-
ulated based on these item representations; and each model
is fit to choice (and RT) to estimate the items’ representa-
tions, X̂. Models are evaluated by calculating (top) dispar-
ity between X and X̂, or (bottom) accuracy in out-of-sample
choices.

predicting out of sample choices is much weaker (an issue
we return to when fitting empirical data). Perhaps surpris-
ingly, Softmax Plus Difficulty generally performs no better
than softmax alone.

Empirical tests
We now evaluate the usefulness of joint modeling of choice
and reaction time for learning item representations in two real
datasets.

Data
Hebart et al. (2020) Hebart et al. (2020) collected odd-
one-out judgments for photos of 48 objects from different
diverse categories, including foods, animals, tools, and ve-
hicles. 100 subjects on Amazon Mechanical Turk completed
440 trials each, such that every triplet was judged by between
two and eight subjects. Following Hebart et al., we filtered
all subjects who chose one item (left, middle, or right) at

least 40% of the time, or exhibited overly fast reaction times
(25% or more responses <800 ms and 50% or more responses
>1,100 ms). This removed about 10% of all data. We also re-
moved every subject’s first trial since this trial’s RT was usu-
ally abnormally slow (subjects were calibrating to the study)
and every trial <1000ms or >10,000ms, as these potentially
reflected accidental presses, or cases where the subject was
not attending to the choice for the duration (e.g., they may
have taken a break). This removed another ∼5% of data.

One aspect of these real data that we did not model in sim-
ulations, is that subjects tend to get faster over time. To ac-
count for this and for individual differences simultaneously6,
we residualized log RT on trial number, a binary indicator for
whether the trial was in the first 75 trials, the interaction of
these two variables, and random intercepts for subjects. Thus,
the fixed effects are equivalent to a piecewise regression split
at the 75th trial. This was done as visual inspection of RT
over time suggested that RT decreased most until this trial,
and then leveled off. Residuals were added to the estimated
overall intercept and then exponentiated to obtain raw RTs.

Trait words We collected a novel dataset of odd-one-out
judgments on 60 trait words (e.g., bright, animated, criti-
cal) selected to adequately span the Big 5 personality factor
space (Richie et al., 2020). 456 participants were recruited
on Prolific Academic (all from the USA, fluent in English,
with at least an 80% approval rate), and each completed 150
trait triplets interspersed with five catch trials where one trait
word was replaced with a random noun (e.g., banana). Each
trait triplet was tested twice, and subjects were free to take a
break after trials 50 and 100. We applied the same filtering as
above, and also removed subjects who failed more than one
catch trial. This led to removal of 14% of all trials. We also
applied detrending and demeaning pre-processing similar to
that described above.

Results
Descriptive analyses of reaction time Before fitting our
three models to these two datasets, we wished to verify that
reaction times in these data are indeed reflective of similar-
ity and choice difficulty. Thus, we measured the correlation
between reaction time, and the two measures of choice diffi-
culty utilized in the Softmax Plus Difficulty model: entropy
and overall similarity.

For each pair of items in both datasets, we calculated the
proportion of trials in which that pair was chosen as the most
similar. This serves as a rough measure of similarity between
a pair, and potentially as a measure of difficulty in a trial in
which the pair appears. That is, a pair of items that are highly

6One necessary assumption for accounting for individual differ-
ences this way, is that each subject’s trial set is more or less equal
in difficulty or other aspects determining speed. If one subject had
easier trials than another, then controlling for between subject vari-
ation would eliminate much of the trial-by-trial variance we wish to
attribute to item representations. However, given that each subject
does a random sample of 440 triplets, we are comfortable making
this assumption. Similar assumptions hold in the simulations.
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Figure 3: Percent of trials on which a pair of items is cho-
sen as the most similar (an implicit measure of pair similarity
and trial ease), versus mean reaction time on trials involving
that pair. Reaction time is fastest on trials involving pairs fre-
quently chosen as most similar (e.g., kind and nice).

similar (e.g., two images of tools, or near-synonymous traits
like kind and nice), will be chosen at a high rate, and will
generally be an easy, quick choice. Figure 3 plots each pair’s
choice proportion against the mean reaction time for trials in-
volving that pair. Reaction times are indeed lowest for pairs
that are chosen often. Reaction times are also highest around
p = .33, consistent with the suggestion that choice is slow-
est and most difficult when entropy is maximal in the choice
distribution (p = [.33, .33, .33]). Reaction times are middling
around p = 0 because choice entropy is maximized in this
case when p = [0, .50, .50], which is less entropy than when
p = [.33, .33, .33].

Indeed, in both datasets, the correlation between trial reac-
tion time and the entropy in the choice proportions for each
pair in the trial is around r = .10, p < 10−60, suggesting re-
action time is slower for more uncertain choices. The sum of
the choice proportions for each pair in the trial – a measure
of the overall similarity between all the items in the trial, and
our second measure of trial difficulty – was also correlated
with reaction time on a trial in both datasets, at r = −.02 in
Hebart et al. (2020) and r =−.04 in the traits data, p < 10−4

and p < 10−17, respectively. This suggests reaction time is
faster when the items are collectively more similar to each
other, although the effects are very small.

Both of these RT effects are accounted for in the joint mod-
els: LBA accounts for the overall similarity effect, and Soft-
max Plus Difficulty accounts for both the entropy and overall
similarity effects.

Cross-validation of model choice predictions Our first
approach to empirical evaluation of models was to compare
their ability to predict out-of-sample choices in 8-fold cross-
validation. Figure 4 displays these results. We initially re-
stricted model-fitting to two-dimensional representations, in-
volving only the first 20 items in each dataset, to maintain
tractability, as all analyses were implemented in CPU-based
packages, on the first author’s laptop, and used optimization
methods that required the entire dataset fit in memory at once.

Figure 4: Cross-validation choice accuracy on empirical data.
Contrary to expectations, for a given sample sparsity on both
datasets, models accounting for choice and reaction time
(LBA, Softmax + Difficulty), generally do not outperform
models accounting for choice alone.

3655



However, we later gained access to a high-performance com-
puting cluster, and fit all 48 Hebart et al. (2020) images to
four dimensional representations. Contrary to expectations,
in both analyses involving 20 items fit to two dimensions, all
models perform similarly for a given sample fraction on both
datasets; in the analysis involving all 48 Hebart images fit to
four dimensions, LBA performs worse than either softmax
model, which perform similarly.

Comparing trait representations to Big Five Scores One
possible objection to the previous analysis is that it inherently
favors the softmax model, since softmax is designed to pre-
dict choice (and only choice), while the other two models are
”forced” to accommodate an additional aspect of the data, re-
action times (see Hawkins et al., 2014 for a similar argument
in the context of best-worst scaling). Indeed, our parameter
recovery simulations showed that, while LBA recovered item
representations much more accurately than softmax, it had
a much smaller advantage in predicting choices. Thus, in the
absence of a real ground truth space to compare learned repre-
sentations to (as is the case in simulations), we instead sought
to compare each model’s learned representations to indepen-
dently obtained, well-established representations. For trait
words, arguably these are subjects’ ratings of how well dif-
ferent trait words describe themselves (Ashton, Lee, & Boies,
2015). Factor analysis of such ratings reveals familiar struc-
ture, with for example, a five factor solution yielding the Big
5: agreeableness, extraversion, etc. Each trait word’s fac-
tor scores can thus be seen as a representation (with similar
words having similar factor representations) to which we can
compare representations learned from our odd-one-out data.
For each model and training fold in our cross-validation anal-
ysis (at Fraction=1), we took the estimated trait word repre-
sentations, and calculated their procrustes disparity with the
two-factor solution of self-report trait ratings from Ashton
et al. (2015). Softmax showed a lower disparity (M = .67,
SD = .03) than LBA (M = .69, SD = .03) and Softmax Plus
Difficulty (.70, SD = .03), although this difference was not
significant, F(1,21) = 2.45, p = .11.

Discussion
Representation learning is a central problem in cognitive sci-
ence, yet methods for representation learning are often data-
hungry. Here, we explored the possibility that jointly mod-
eling choice and reaction time in the odd-one-out task might
improve data-efficiency in representation learning over mod-
eling choice alone. Parameter recovery simulations were
consistent with this, with a joint model based on the Lin-
ear Ballistic Accumulator outperforming a choice-only Soft-
max model. Empirical analyses of two datasets, one with im-
ages and one with words, also suggested that reaction time
showed some correlation with item similarity and choice dif-
ficulty, but joint models of item representations were no better
than choice-only models at predicting out of sample choices,
or independently obtained factor scores for personality traits.
Overall, these results present a somewhat negative picture re-

garding the utility of joint modeling of choice and reaction
time for representation learning.

What accounts for the null results in our empirical model
comparison? One possibility is that our joint models are mis-
specified. For example, mean RT is around 3s and 5s for
Hebart et al. (2020) and our traits data, respectively, while
Biele (2023) suggests 3s decisions are already stretching
LBA’s intended use case. Unsuitability of Softmax Plus Dif-
ficulty, however, would be surprising, given a similar model’s
success in a reinforcement learning task (Ballard & McClure,
2019). It could be that, as mentioned earlier, we need to fit a
hyperparameter controlling the tradeoff between the softmax
and difficulty terms in the Softmax Plus Difficulty model, al-
though again, we point out that Ballard and McClure (2019)
did not need to do this to find an advantage of joint modeling.

Another possibility may be that the relationship in these
two datasets between RT and similarity/choice difficulty is
too noisy (Takane & Sergent, 1983). Neither measure of
choice difficulty correlated with RT above r = .1, while
Ballard and McClure (2019) found average correlations of
r = .2. This difference could be due to task differences, or be-
cause both our datasets were collected online while the data
used by Ballard and McClure (2019) were collected in a lab
(Wimmer, Braun, Daw, & Shohamy, 2014), which may have
led to less noisy data. If noise is the culprit, it may be neces-
sary to improve data collection methods and/or fit even larger
datasets. While our dataset from Hebart et al. (2020) which
exhausts all possible triplets among 48 objects contains more
than 37,000 trials, the main dataset of Hebart et al. (2020)
contains 1.46 million trials for 1,854 objects. Scaling to a
dataset this size likely requires re-implementing all models
in packages enabling GPU processing power and stochastic
gradient descent.

Whatever the reasons, given the success of joint (choice,
reaction time) modeling at improving latent parameter esti-
mation in other domains (Zorowitz & Niv, 2023), we sug-
gest that future research continue to explore the possibility of
joint modeling in representation learning. Our data and code,
available on OSF, hopefully assist next steps.
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