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Abstract 

A common obstacle for students in the transition from arithmetic 
to algebra is developing a conceptual understanding of equations 
representing functions. Two experiments manipulated 
isomorphic problems in terms of their solution requirements 
(computation vs. interpretation) and format to test for 
understanding of linear functions. Experiment 1 provided 
problems in a story context, and found that performance on slope 
comparison problems was low, especially when problems were 
presented with equations.  Experiment 2 tested whether 
performance on slope comparison problems improves when 
problem prompts include explicit mathematical terminology 
rather than just natural language consistent with the problem 
story.  Results suggest that many undergraduate students fail to 
access the mathematical concept of slope when problem prompts 
are presented with natural language. Overall, the results suggest 
that even undergraduate students lack understanding of the slope 
concept and equations of linear functions, both which are 
foundational for advanced algebraic thinking.  

Keywords: algebraic problem solving, slope, linear functions 

Introduction 

A common obstacle for students in the transition from 

arithmetic to algebra is developing a conceptual 

understanding of equations representing functions.  Prior 

work has demonstrated that students can persist in procedural 

approaches rather than conceptual approaches (Rittle-

Johnson & Alibali, 1999; Rittle-Johnson, Siegler, & Alibali, 

2001); process-based approaches rather than object-based 

approaches (Kieran, 1992); operational or computational 

approaches rather than relational approaches (Chesney & 

McNeil, 2014; Kaput, 2000; McNeil & Alibali, 2005) even 

after algebra instruction.  Although much of the research on 

the transition from arithmetic to algebraic thinking has 

focused on younger students (middle school and high 

school), even college students may continue to experience 

difficulties and lack a mature understanding of linear 

functions (Hall et al., 1989; Wollman, 1983).  

Prior work has suggested that problem presentation plays 

an important role in solution success.  Mevarech and Stern 

(1997) found that context can affect performance on linear 

equation problems that are presented graphically. 

Importantly, the problems that Mevarech and Stern (1997) 

administered all pertained to the mathematical concept of 

slope.  They found that both younger students (around 12 year 

olds) and undergraduates performed better when problems 

were embedded in sparse contexts than when problems were 

presented in realistic contexts (e.g. graphs depicting how two 

hoses fill a pool at different rates).  Mevarech and Stern 

(1997) suggested that presenting problems in realistic 

contexts may overload the problem solver with extraneous 

information which obscures the underlying mathematical 

concept and leads to poor performance. 

Other work has also found that presentation format can 

affect undergraduate performance on solving linear equation 

problems.  Mielicki and Wiley (2016) presented 

undergraduate students with isomorphic problems pertaining 

to linear functions either in graphical format or with a set of 

equations. Problems either required computation of a point 

on a single line (solve for x, solve for y) or required relational 

reasoning (comparing slopes or comparing points across 

several linear functions). A main finding was that slope 

comparison problems were most difficult for students overall, 

and that these problems were especially difficult when 

presented in equation format. This finding conforms to the 

interpretation that Mevarch and Stern (1997) proposed for 

their findings, and suggests that students may have difficulty 

accessing relevant mathematical knowledge when slope 

problems are presented in equation format. Taken together, 

these findings of significant difference in performance due to 

problem presentation highlight specific deficits that many 

undergraduates possess in their understanding of equations 

representing linear functions.  

 

Experiment 1 
The goal of Experiment 1 was to further test the hypothesis 

that undergraduate students may lack a mature understanding 

of linear functions expressed as equations, and particularly 

the mathematical concept of slope.  As in Mielicki and Wiley 

(2016), students were asked to solve isomorphic problems 

presented either with graphs or with equations.  The problems 

entailed either computation or interpretation across a set of 

linear functions.  Both problem types featured distinct 

subtypes: computation problems either entailed solving for x 

or solving y and interpretation problems either entailed 

comparing the slopes of three linear functions or comparing 

y values of three linear functions along some range of x 

values.  Examples of each problem type are shown in Figure 

1.   

Based on a cognitive task analysis, it was expected that the 

four subtypes of problems would have different cognitive 

demands in equation and graph format.  Overall, computation 

problems were expected to have higher solution rates than 

interpretation problems because the former only require 

consideration of a single linear function whereas the latter 

require comparing three functions.  Between the two subtypes 

of computation problems, solving for x was expected to be 
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more demanding than solving for y in equation format, since 

solving for x requires additional computational steps to 

isolate the variable (all problems were presented in y = mx + 

b format). For interpretation problems, the cognitive 

demands for problems requiring the comparison of slopes 

should not vary by presentation format if students understand 

the conceptual meaning of what the quantities in the y = mx 

+ b equation represent.  In either format, little calculation is 

necessary – the solver could easily compare the visual trends 

of the three lines with a graph, or compare the three values of 

“m” across equations.  In contrast, comparing points might 

be easier to do in graphical format because in equation format 

multiple calculations are required to compare y values for 

three equations.  These calculations may introduce additional 

opportunities for error which are not present when point 

comparison problems are presented with graphs. It was 

expected that these differences in computational demand 

would be reflected in solution accuracy.   

 

Method 
 

Participants 
A sample of 32 (21 female) undergraduate students from the 

University of Illinois at Chicago participated in exchange for 

course credit.  Participants were mostly first year 

undergraduate students (ages ranging from 17 to 23), and had 

taken 1 math course on average since starting college.  Many 

participants (91%) reported a science (Biology, Chemistry, 

Psychology, Engineering) or health-related (Pre-med, Pre-

nursing, Kinesiology) major.  No participants reported 

pursuing a mathematics major.  

 

 

 

 

Materials 

Each participant completed 12 interpretation and 12 

computation problems. Computation problems either entailed 

solving for x or solving for y.  Interpretation problems either 

entailed comparing the slopes or comparing the y values of 

the three linear functions over a range of x values.  Of the 24 

problems, half were presented with graphs and half were 

presented with equations (always in y = mx + b format). 

In addition to these manipulations, several other 

presentation features were either varied in the same way for 

each participant to reduce monotony, or counterbalanced in 

order to control for order effects.  Each problem was 

presented individually, but pairs of problems were presented 

with one format (graphs or equations) and the format for each 

pair was switched for the second half of the problems so that 

each participant saw three instances of each problem subtype 

(solve for x, solve for y, slope comparison, point comparison) 

in each format (graph, equations).  Six configurations of 

linear functions (one for each block of 4 problems) were used 

in the same order for each participant.  Computation 

problems requiring solving for x were always paired with 

slope comparison interpretation problems, and computation 

problems requiring solving for y were always paired with 

point comparison interpretation problems.  Pairs of problems 

were alternated, and graph versus equation format was 

alternated between each pair of problems.   In addition, each 

pair of problems was presented with one of two problem 

scenarios (i.e., real-world contexts such as comparing cab 

companies).   

 

 

 

 

 

 

 

 

Solve for x Problem in Graph Format Solve for y Problem in Symbolic Format 

Malik is comparing three cab companies.  Each company has a 

different fare structure for charging customers. 

 

Use the graph below to answer the following questions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If company C charges Malik $25, how many miles did he travel? 

Bob is participating in a walkathon, and he has gotten three sponsors to 

donate money to charity for every kilometer he walks.  Each sponsor has 

a different pledge plan for how much money they will donate. 

 

 

 

 

 

Here are the equations for each sponsor’s pledge where y is the amount of 

money donated in dollars and x is the distance walked in kilometers. 

 

Sponsor A: y = 3x + 5 

Sponsor B: y = 2x + 10 

Sponsor C: y = x + 15 

 

 

 

 

 

 

 

How much will Sponsor C donate if Bob walks 10 kilometers? 
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Slope Comparison Problem in Graph Format Point Comparison Problem in Symbolic Format 

Malik is comparing three cab companies.  Each company has a 

different fare structure for charging customers. 

 

Use the graph below to answer the following questions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Which company has the lowest rate per mile? 

Bob is participating in a walkathon, and he has gotten three sponsors to 

donate money to charity for every kilometer he walks.  Each sponsor has 

a different pledge plan for how much money they will donate. 

 

 

 

 

 

Here are the equations for each sponsor’s pledge where y is the amount of 

money donated in dollars and x is the distance walked in kilometers. 

 

Sponsor A: y = 3x + 5 

Sponsor B: y = 2x + 10 

Sponsor C: y = x + 15 

 

 

 

 

 

 

 

Which sponsor will donate the least if Bob walks over 5 kilometers? 

Figure 1: Examples of interpretation problems (slope comparison, point comparison) and computation problems (solve for x, 

solve for y) in either equation or graphical format. 

 

The following were counterbalanced across participants: 

order of format presentation (graph first versus equation 

first), order of scenario (scenario A with graph and B with 

equations versus scenario A with equations and B with 

graph), order of pair presentation (solve for x/slope 

comparison pair first versus solve for y/point comparison 

pair first), and order of problem subtype presentation within 

pairs of problems (computation first versus interpretation 

first).  This 2x2x2x2 counterbalancing design led to 16 

versions, and 2 participants completed each version. 

Procedure 

All problems were presented one at a time on a computer 

screen, but participants wrote their responses in an answer 

booklet that was provided.  The answer booklets also 

included the graphs or equations for each problem so that 

participants could annotate and interact with the 

representations as needed.  After completing the problems, 

participants were asked to rephrase a subset of the problems 

with the prompt, “In your own words, please tell me what you 

think the problem is asking you to do.” 

Results 

A 2x2 within-subjects ANOVA was conducted with format 

(graph, equation) and problem type (interpretation, 

computation) as independent variables and proportion correct 

as the dependent variable.  As shown in Figure 2, the analyses 

revealed a main effect of representation, F(1,31) = 27.56., p 

< .001, ηp
2 = .47.  Participants solved both types of problems 

more successfully when problems were presented with 

graphs than when they were presented with equations.  The 

analysis also revealed a main effect of problem type, F(1,31) 

= 68.46, p < .001, ηp
2 = .69.  Participants solved computation 

problems more successfully than interpretation problems, 

regardless of presentation format.  There was a significant 

interaction, F(1,31) = 4.93, p < .05, ηp
2 = .14.  Follow up 

analyses revealed no differences in accuracy for computation 

problems in different formats, t(31) = 1.83, p = .08, and 

higher accuracy for interpretation problems presented in 

graphical format relative to equation format, t(31) = 4.51, p 

< .001. 

Additional 2x2 within-subjects ANOVAs were conducted 

separately for each problem type because the nested subtypes 

were not orthogonal.  For computation problem subtypes, 

there was no effect of format, F(1,31) = 3.36, p = .08, or 

problem subtype, F(1,31) = 3.14, p = .09, and no interaction, 

F < 1.  For interpretation problem subtypes, there was a main 

effect of format in favor of graphs, F(1,31) = 20.31, p < .001, 

ηp
2 = .40, and a main effect of problem subtype with higher 

accuracy on point comparison problems than slope 

comparison problems, F(1,31) = 43.36, p < .001, ηp
2 = .58.  

The interaction was not significant, F < 1.  

Participants’ rephrasing responses for slope comparison 

problems were coded based on reported solution methods.  

Most participants (31% for both formats) rephrased the 

question without providing any indication of a solution 

method.  Some participants referenced the representation, but 

did not provide a solution method (6% for graphs, 9% for 

equations), and others mentioned a method but did not 

provide enough information to determine whether the method 

was correct or not (6% for graphs, 3% for equations).  The 

remaining responses were coded as either incorrect solution 

method, or correct solution method/reference to the 

underlying concept (slope).  For slope comparison problems 

presented with equations, 38% of participants reported an 

incorrect solution method relative to 25% of participants for 

problems presented with graphs.  When slope comparison 
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problems were presented with equations, common incorrect 

strategies were “plugging in a number” for the x value of all 

three functions and comparing the results.  For slope 

comparison problems presented with graphs, incorrect 

strategies were often some variation on “I just looked at the 

graph to see which line was highest.” This approach indicates 

that students often experienced slope/height confusion 

(Leinhardt, Zaslavsky, & Stein, 1990). Conversely, 32% of 

participants reported a correct solution method or actually 

referenced the concept of slope when problems were 

presented with graphs relative to 18% when problems were 

presented with equations. 

 

 
Figure 2: Mean proportion correct for the four problem 

subtypes presented in graphical and equation format.  Error 

bars represent standard error. 

Discussion 

One striking result from Experiment 1 was the low overall 

accuracy on slope comparison problems in both formats, but 

particularly for slope comparison problems presented with 

equations.  This pattern of results replicates the findings of 

Mielicki and Wiley (2016).   

Participants’ rephrasing responses suggest that graphs and 

equations may make different solution methods more 

accessible. Importantly, although the solution methods that 

students used when solving graphical slope problems 

sometimes led to a correct solution, these solution methods 

were not always indicative of conceptual understanding.  For 

instance, it was possible for students to confuse slope with 

height when problems were presented with graphs 

(Leinhardt, Zaslavsky, & Stein, 1990) and still answer the 

problem correctly because the line with the highest height (y 

value) also had the highest slope. 

However, even though performance was better on the slope 

comparison problems presented graphically, performance 

was still lowest overall on this problem type. It is possible 

that the overall low accuracy on slope comparison problems 

can be traced to difficulty during the problem comprehension 

phase. In previous work, it has been demonstrated that 

students often struggle with translating between stories, 

equations, and mathematical concepts (Cummins et al, 1988; 

Mayer, 1982; Nathan, Kintsch, & Young, 1992). In many 

contexts, students seem to fail to identify relevant 

mathematical principles. The results of Experiment 1 could 

be attributed to students not making the connection between 

the mathematical concept of slope and the demands of the 

task.  If this is the case, then altering the language of the 

problem prompt to make the mathematical principles more 

clear should improve performance. 

Experiment 2 

The main goal of Experiment 2 was to test whether students 

would be able to solve equations requiring comparisons of 

slopes more successfully when the comprehension phase of 

problem solving is supported by presenting problem prompts 

with explicit mathematical terminology as opposed to natural 

language (as in Experiment 1).  

This study focused specifically on only the two 

interpretation problem subtypes (point comparison, slope 

comparison) from Experiment 1.  Manipulating the linguistic 

form of the problem prompt was not expected to have an 

effect on performance for point comparison problems.  In 

Experiment 1, performance on point comparison problems 

benefitted from graphical format.  This graphical advantage 

was consistent with the predictions from the cognitive task 

analysis that point comparison problems presented with 

equations were more computationally demanding than those 

presented with graphs.  Thus the same pattern of results was 

expected for point comparison problems presented with 

mathematical terminology in Experiment 2. 

If the graphical advantage for slope comparison problems 

found in Experiment 1 was due to graphs making different 

(though not necessarily correct) strategies accessible to 

participants, then supporting the comprehension phase 

should eliminate this advantage because participants should 

rely less on incorrect strategies if they can better access the 

underlying mathematical concept of slope.  Thus, it was 

predicted that the graphical advantage found in Experiment 1 

would be replicated when problems were presented with 

natural language, but that this advantage would be eliminated 

when problems were presented with explicit mathematical 

terminology.  In addition, an overall main effect of linguistic 

form was expected because problem performance should 

improve overall when the comprehension phase is supported.   

Method 

Participants 

A sample of 32 (20 female) undergraduate students from the 

University of Illinois at Chicago participated in exchange for 

course credit.  Participants were mostly first year 

undergraduate students (ages ranging from 17 to 29), and had 

taken 0 to 3 math courses since starting college.  Many 

participants (84%) reported a science (Biology, Chemistry, 

Psychology, Neuroscience) or health-related (Pre-dental, 

Pre-nursing, Kinesiology, Occupational Therapy) major.  No 

participants reported pursuing a mathematics major.  
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Materials 

A subset of slope comparison and point comparison problems 

from Experiment 1 was used for Experiment 2, and a second 

version of each problem was created in which the problem 

prompts were rephrased using explicit mathematical 

terminology instead of natural language.  For example, 

prompts like “which cab company charges the most per 

mile?” were changed to “which line has the highest slope?”  

Each participant completed 8 problems, which were divided 

evenly between format (graphs, equations), type (point 

comparison, slope comparison), and linguistic form (natural 

language, mathematical terminology).  These were the main 

manipulations of interest. 

In addition, several presentation features were 

counterbalanced across participants.  Items were blocked by 

linguistic form, and the order of the blocks was 

counterbalanced across participants with half completing 

natural language problems first and half completing 

mathematical terminology problems first.  Within each block, 

the first and fourth problems were presented with one 

representation, and the second and third problems were 

presented with the other representation.  Slope comparison 

and point comparison problems were alternated within each 

block.  The order of problem type presentation and the order 

of format presentation were counterbalanced across 

participants.  This 2x2x2 design resulted in 8 versions of the 

task, and 4 participants completed each version. 

Procedure 

The procedure was the same as the procedure in Experiment 

1 except that rephrasing responses were not collected. 

Results 

A 2x2x2 within-subjects ANOVA was conducted with 

format (graph, equation); problem type (slope comparison, 

point comparison); and linguistic form (natural language, 

mathematical terminology) as independent variables and 

proportion correct as the dependent variable. As shown in 

Figure 4, the analysis revealed a main effect of linguistic form 

with problem prompts presented with mathematical 

terminology being solved more accurately than problem 

prompts presented with natural language, F(1,31) = 8.03, p < 

.01, ηp
2 = .21.  There was also a main effect of format, with 

higher accuracy on problems presented with graphs than 

equations, F(1,31) = 6.55, p < .05, ηp
2 = .17.  There was no 

main effect of problem type, F < 1.  The linguistic form by 

representation and representation by problem type 

interactions were not significant, F < 1, and the three way 

interaction also did not reach significance, F(1,31) = 2.99, p 

= .09.   

However, there was a linguistic form by problem type 

interaction, F(1,31) = 7.79, p < .01, ηp
2 = .20.  Follow up 

paired-sample t-tests collapsing across representation 

revealed no difference in performance on point comparison 

problems based on linguistic form, t < 1; however, presenting 

problems in mathematical language significantly improved 

performance on slope comparison problems, t(31) = 4.45, p 

< .001. 

Because it was predicted a priori that the results from 

Experiment 1 would be replicated for slope comparison 

problems presented in natural language form, and that 

mathematical language should eliminate the graphical 

advantage, paired-samples t-tests were conducted to compare 

performance on slope comparison problems presented with 

graphs with performance on problems presented with 

equations for each linguistic form.  As predicted, 

performance was better on slope comparison problems 

presented with graphs than presented with equations when 

problems were in natural language form, t(31) = 2.29, p < .05. 

There was no difference in performance on slope comparison 

problems when presented in mathematical terminology, t < 1. 

 

 
Figure 4: Mean proportion correct for slope comparison and 

point comparison problems presented in graph and equation 

format and in natural language or mathematical terminology 

form.  Error bars represent standard error. 

Discussion 

The main result from Experiment 2 was that accuracy on 

slope comparison problems, particularly when presented with 

equations, improved when problems were presented in 

mathematical language.  In addition, the graphical advantage 

found for slope comparison problems presented with natural 

language was eliminated when problems were presented with 

mathematical terminology. 

General Discussion 

The findings from Experiment 2 demonstrate that students 

are capable of solving slope comparison problems under 

certain conditions.  Students do possess some understanding 

of the slope concept, but the limitations of this understanding 

are brought to light when problems are presented with natural 

language and particularly in equation format.   

The graphical advantage for slope comparison problems 

found in Experiment 1 could be attributed to graphical format 

facilitating solution methods that lead to a correct answer 

without engaging the appropriate mathematical concept.  
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Student responses to the rephrasing prompts provide some 

support for this interpretation, but future research will need 

to address this possibility further by collecting trace data 

using think-aloud or eye-tracking methodology in order to 

better understand the ways that students are solving slope 

comparison problems in both formats. 

Taken together, these results suggest that many 

undergraduates have not made the shift from procedural to 

conceptual understanding of slope.  Students’ difficulty 

recognizing or accessing the slope concept during problem 

solving highlights specific weaknesses in undergraduates’ 

algebraic understanding.  Slope has been widely 

acknowledged as a fundamental mathematical concept, with 

important implications for achievement in mathematics.   

Understanding of slope has been identified as central to 

success in precalculus and calculus (Carlson, Oehrtman, & 

Engelke, 2010), which in turn are required for many STEM 

career paths.  Although slope is an important mathematical 

concept, it is also a notoriously difficult one for students to 

understand (Stump, 2001).  Because linear equations are 

foundational, understanding and addressing weaknesses in 

students’ conceptions of functions and slope represents an 

important step towards mending the leaky STEM pipeline. 
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