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Abstract

A new model of near integration is formulated in which the local to unity parameter
is identifiable and consistently estimable with time series data. The properties of
the model are investigated, new functional laws for near integrated time series are
obtained which lead to mixed diffusion processes, and consistent estimators of the
localizing parameter are constructed. The model provides a more complete interface
between I(0) and I(1) models than the traditional local to unity model and leads to
autoregressive coefficient estimates with rates of convergence that vary continuously
between the O(y/n) rate of stationary autoregression, the O(n) rate of unit root
regression and the power rate of explosive autoregression. Models with deterministic
trends are also considered, least squares trend regression is shown to be efficient, and
consistent estimates of the localising parameter are obtained for this case as well.
Conventional unit root tests are shown to be consistent against local alternatives in
the new class.

Keywords: Block modeling, Consistent estimation, Deterministic trends, Diffusion,
Functional laws, Integration, Local to unity, Mixed diffusion process, Power law as-
ymptotics.
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1. Introduction

Models with near unit roots have attracted much attention in recent years. These
models lead to a class of near integrated time series that offer some additional flex-
ibility over integrated processes in the modeling of nonstationary time series. They
were developed originally to provide a mechanism for studying local alternatives to
unit root specifications, giving limit diffusion processes in place of Brownian motion
(Bobkoski, 1983; Phillips, 1987a), unifying asymptotics for stationary and nonstation-
ary autoregressions (Chan and Wei, 1987; Phillips, 1987a), having natural extensions
to vector time series (Phillips, 1988) and delivering power functions and power en-
velopes for unit root tests (Cavanagh, 1985; Phillips, 1987a; Johansen, 1991). They
have also been used in empirical econometric work to construct confidence bands
that allow for autoregressive coefficients and roots in the neighborhood of unity (Ca-
vanagh, 1985; Stock, 1991).
The simplest local to unity model is a triangular array for a time series y; of the
form c
Yt = aYp—1 + Uy, (I:l—}—ﬁ, t=1,...n (1)

with iid(O, (72) innovations u;. While the autoregressive coefficient a — 1 as n — oo,
it is apparent that for any given sample size n in (1), the model accommodates a
much wider range of autoregressive coefficients as the localizing parameter ¢ varies,
including both stationary (¢ < 0), explosive (¢ > 0) and unit root (¢ = 0) possibilities.
This flexibility has helped to make the model popular in studying economic time series
for which roots near unity are considered highly plausible but roots at unity are
considered too restrictive. A feature of the local to unity model is that the localizing
parameter is identifiable (¢ can be deduced from the conditional mean ay;—; and
the sample size n ) but is not consistently estimable. In particular, standardized
observations from the model (1) satisfy the invariance principle

_1
n 2Ympy) = Je (7') > (2)

a linear diffusion process (Phillips, 1987a) that depends on c. So, writing the model
in the form Ay; = c2=L + wuy, it is apparent that the sample second moment of the

n
regressor x; = 4L of ¢ satisfies the weak convergence

> (1) = /01 Je () dr,

t=1

and does not diverge as n — oo, thereby failing to satisfy the excitation condition
for least squares regression consistency. Put another way, the signal to noise ratio
measured by

n 1—1\ 2
Val“(ib‘t) -~ %Zt:l (yn1) =~ 0
2 p Y

var(uy) o

and so the signal from z; is too weak relative to the error variation to produce a
consistent estimator of the localizing coefficient c.



While methods have been developed to utilize the way in which the limit distrib-
ution depends on the localizing coefficient (by virtue of the dependence of the limit
process J. (1) on c¢), the failure of consistent estimation has been an impediment to
inference in models of this type. The dependence of the limit distribution on ¢ also
affects resampling procedures like the bootstrap, which are known to be inconsistent
in models of this type because of this very dependence (Basawa et al., 1991). One
way in which the signal can be strengthened is through the use of additional data.
In fact, recent work by Moon and Phillips (1998) shows how panel data with inde-
pendent cross section observations is helpful in resolving the failure of consistency
in time series models like (1). This approach relies on the fact that the model (1)
continues to apply with the same localizing coefficient across a section of N indi-
vidual observations while N — oo. Then, \/N consistent estimation of c¢ is possible.
However, panel data for which the assumptions underlying this approach are plausi-
ble, particularly that of cross section homogeneity of the localizing parameter, seem
likely to be uncommon. So, these panel data results seem at present to be of more
theoretical than empirical import.

This paper offers a fresh approach to the problem of modeling time series with
roots near unity. Our idea is to develop a new formulation of local to unity models
that offers more flexibility than the traditional model (1). The new model leads to
a class of different limit processes beyond simple diffusions and it has the interesting
property that the local coefficient is identifiable and consistently estimable with time
series data, unlike (1). Consistent estimation opens up some new possibilities with
respect to efficient estimation, trend elimination, and the construction of confidence
intervals. The new model also provides a more complete interface between 7(0) and
I(1) models and between O(y/n) and O(n) asymptotics. In the traditional model
(1), the rate of convergence in autoregressive coefficient estimation is O (n), just
as in the unit root case ¢ = 0, and there continues to be a discontinuity in the
asymptotics between the stationary and nonstationary cases. Only as ¢ — —o0, +00
in the traditional model do we find results that correspond to the stationary and
explosive autoregressions (Phillips, 1987a; Chan and Wei, 1987). By contrast, in
our new model, the rate of convergence to the autoregressive coefficient is O (n®) for
o € [%, 1] and varies in a continuous way between that of stationary and nonstationary
asymptotics. The new model also captures the power law asymptotics of explosive
autoregressions and shows that, in a well defined local region greater than unity,
it is possible to obtain invariance principles, in contrast to standard results for the
explosive autoregression.

The paper is organized as follows. The new model is laid out and some of its
properties are analyzed in Section 2. A consistent estimator of the local to unity
coefficient is constructed in Section 3 and cases of near stationarity, unit roots and
near explosive behavior are separately analyzed. Estimation of the local parameter
in models with linear trends is discussed in Section 4. Section 5 studies issues of
efficient estimation of trend coefficients and trend extraction. Section 6 concludes
and describes some useful extensions of the present model. Proofs are collected
together in Section 7.



2. A Block Local to Unity Model

The time series model we propose is a block local to unity system defined as follows

Ykt = QYkt—1 T upt, tE€Tyk €Ky (3)
Ye,0 = Yk—1,m,
< C
a = em r~v ]_ —|— —_,
m

where Ty, = {1,....,m}, Kx = {-K,-K +1,...,0,1,..., M} with K > 0. This system
defines a sequence of blocks with m observations of the time series {yx;:t € Ty}
in each block and the observable blocks are taken to be k& = 1,..., M. The initial
conditions in each block are set so that they correspond to the final observation in
the previous block. In this sense, the model is articulated to capture the evolution of
a single time series. The observable series is {yr; :t € Tpsk =1,..., M} .

The coefficient in the autoregression in each block of (3) is local to unity with
localizing parameter ¢, which is the same in each block. In later sections of the
paper, depending on the sign of ¢, we will allow for various initial conditions and the
index set Kx for the blocks is introduced to provide this extra flexibility. Our initial
conditions are described in the following assumption.

Assumption 1 (Initial Conditions)

(i) Infinite past initialization: K = oo with index set K.
(11) Distant past initialization: K = 0 with index set Ko and

K
Yoo = Zajufl,fj K = [m#], (4)
=0

where the u_1,_; are independent of ug in (3), and
1
m 2yoo0 = J 1. (—kK),

0 , e .
where J_1.(—k) = [~ _e TRdB_; (s) is a reverse diffusion process and B_y is a
Brownian motion.

We use a general linear process generating mechanism for the errors uy; in each
block of (3). The idea is that there is an underlying sequence of innovations €; from
whose present and past history the errors in each block are formed. We further allow
for the specific generating mechanism to change between blocks, thereby permitting
some structural change across blocks in the short memory component of the model.
The specific structure is laid out in the following assumption.

Assumption 2 (Linear Process Errors)

(i) {et}oe o is a sequence of wd (0,1) variates with E |ei|F < oo for some p > 4.
(ii) up ¢ = Z;io b, i€k t—j, WheTe Ept = Emptt-
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(iii) 3 320 3bj < 00, for some a > 1, where bj := supy, [bg 5] -

2
() Let w? = <Z]°-i0 bk,j) , and assume that infy w? > 0.

M M 4

1 1 2 1 1 <
(v) po = Umproo 37 D peq Wi and prg = limps oo 57 > pq Wy €Tist.

Remarks

(a)

(d)

When b ; = b; for all k, the time series u; have homogeneous (over k)
generating mechanisms as measurable functions of the primitive innovations &,
and differ only in terms of the timing of the shocks with each new block &
bringing in a new block of primitive innovations €. This special framework
will apply, for example, when a single parametric model like an AR(p) governs
the formation of the shocks uy; in every block k, so that the parameters in this
model are the same for all k.

Condition (iii) on the majorizing sequence b; for the linear process coefficients
bi,; ensures the validity of a BN decomposition for uy  for each k, as in Phillips
and Solo (1992) -see section 9.1 in the Appendix. It also ensures that sup, w? <
00.

The moment condition in (i) and the summability condition (iii) ensure that
fourth moments of u; are finite.

The parameters py and i, in (v) are averages long run variance parameter and
square of long run variance parameter over the blocks in (3), respectively.

We write the data from a particular block as y* = (Y15 .-.,ykm)', and then

combine data from M blocks to write y = (y", 4%, ...,yM’)I. In this case, the total
sample size is n = mM.
By recursive substitution we have the representation

1 1 [m”’]_l jc 1 |mr]c
miayk,[mr] = m 2 Z emuk,[mr]fj +m 2e m yro
7=0
. [mr]—1 . T
= m? Z emuk,[mr]—j+m_§e ™ Yk—1,m
=0
B m—% [mr] le%u e k—1 o1 e B m—1 e |
= Z ke, [mer] —j +e m Ze m 2 Z emUfm—j
j=0 f=0 Jj=0
1 [mr]e

If ¢ < 0 and the initial conditions are in the infinite past, then we can write

[mr]—1

Z ic
em uky[mr]ij

=

Nl=

_1 _
m 2Ygfmr) = M



where the second series converges in the mean square sense (see Section 7.2 in the
Appendix).

Lemma 1 Let UM (uo,5, --- uM,j)'. Then, under Assumption 2, for any fixed M,
as m — oo,

[
1
— g UM = BM(r),
Vim = J

where BM (r) = (By (r), ..., Bar (7)) = BM () , Qu = diag (w%, ...,w?w) .
As in Phillips (1987a), we have the weak convergence

) ,
l r—s)c
HS e, = ) = [ ermran o), ©)

=0 0

where JM (r) = (Joe (), Jare (1)) and Jpe(r) = [y elr=5)¢dBy, (s) is a linear
diffusion. It follows by the continuous mapping theorem that if the initial conditions
are in the distant past at yo ¢ and satisfy Assumption 1(ii), then we have

k-1
m*%yk,[mr] = Jie(r)+ erCZe (h—1~ f)ch (1) + e(TJrk)CJ_Lc (—k)
=0
c=Hf,(r). (7)

If ¢ < 0 and the initial conditions are in the infinite past, it follows that

k—1
1
M 2Yg (mr] = Jre (1) +€° Z e(k_l_f)cJﬁc (1) := Hp (1), (8)
f=—x
(see Section 7.4 in the Appendix). Note that Z elb=1=9eJ; (1) converges

since Z;‘;O e%¢ < 0o and E (Jf,c (1) ) < oo and since {JﬁC )}f:_oo is a sequence
of independent diffusion processes.

Note that the limit processes Hy . (r) and H}f (r) involve linear combinations
of independent (across f) diffusion processes Jy . and are therefore both Gaussian.
They may be called mixed diffusion processes. Hy, . (1) is defined for ¢ < 0. However,
H} . (r) involves only a finite linear combination of terms when £ is finite, so it is also
well defined when ¢ > 0. Both these limit processes differ from the usual diffusion
limit (2) that applies for the traditional local to unity model. The block structure of
the model (3 ) ensures that the traditional diffusion limits apply within each block
to linear combinations of the shocks in each block, as in (6). But the observable



data covers M blocks with progressive re-initializations of the process to assure the
compatibility of the block structure with the observed time series. The new limit
processes Hy, . (r) and H} . (r) of the normalized observed data take these progressive
re-initializations into account.

The device of a block local to unity system facilitates the sequential asymptotic
analysis that is used later in the paper, and it also provides a statistical model for
what may be described as “isolated regions of persistent behavior” for macroeconomic
time series. Many macroeconomic time series are now well known to display a form
of persistence whereby economic shocks have long-run effects. However, it is possible
that shocks may affect an economy for a long period of time but not forever. In
other words, the effects of a shock may be highly persistent over a certain range (the
region of persistent behavior), but then may begin to disappear outside this range.
The region of persistent behavior may constitute a ‘little infinity’ relative to the full
sample. Consider a time series, {z,}, which evolves over blocks of time in such a way
that there is persistency inside each block, but only short memory across blocks, i.e.,

\2‘1,22, ....... 2y BmAly ceeeees s Ry ceeennneen s RhmA1y ceeeee- 7Z(l€+1)m7 .........

-
Block 1 Block 2 Block k

The number of observations in each block is m and the number of blocks is M. The
block local to unity system (3) (when ¢ < 0) is a simple model that has this property.
Since there is persistent memory inside each block but short memory across blocks,
we call this type of memory “regional persistence”. As a result, the partial sums
inside each block have nonstationary asymptotic behavior whereas partial sums over
blocks behave like a stationary system.

3. Estimation of the Local Parameter

3.1 The Near Stationary Case: ¢ < 0

In this section we assume that the initial conditions are in the infinite past. We
propose to estimate the autoregressive coefficient by the usual least squares estimator,
which we write here in pooled form as

TND Sy Tty
vay-r o 3Lyt

From this estimator, we are able to extract a corresponding estimate of the localizing
coefficient c. Using the model formulation y* = ay”* 1+ u®, we get

a=

M 1,k k
~ k=1 mY U

m(ad—a) == .
D k1 #yﬁ’lyfl

Asymptotic results for this estimator can be obtained most conveniently by using
sequential asymptotics in which m — oo first, followed by M — oo, which we denote
by (m,M — 00)seq. This type of asymptotic analysis will be used throughout the




paper. Sequential asymptotics are discussed in Phillips and Moon (1999), which also
explores the connections between this type of asymptotic analysis and joint limit
theory in which two indices like (m, M) may pass to infinity simultaneously. While
less general than joint limit theory, sequential asymptotics are easy to obtain and will
serve our purpose in this paper of revealing the main features of the block local to
unity system. As the analysis in Phillips and Moon (1999) indicates, we can expect
the main results obtained here under sequential asymptotics to hold for joint limits
under somewhat stronger conditions.
For fixed M, we have, as in Phillips (1987a), that as m — oo,

1 1
—ylflluk = / Hk7c(7")dB]€(7“) + )\k,
m Jo

and .
1 X
W?Jlﬁﬁyg = /0 Hy . (r)?dr,

where A\, = Zj’;l bi ob, ;. It follows that as m — oo,

y 1
~ £i1 %ylﬂuk i”:1 <f0 Hy cdBy + )\k)
m(a—a)= T3 1k k M (1 2 :
Dkt mzYY > k=1 Jo Hee ()" dr

We may now employ the usual nonparametric corrections (Phillips, 1987b) to @
that use consistent estimates Ay of \x giving the following modified estimator

£i1 <yli/1yk - m)\k)
M :
Zk:1 yﬁlﬂﬁl

It will be convenient in what follows to make the following high level assumption
about the nonparametric estimates such as \; that we use in our development.

Assumption 3 (Nonparametric Estimation of A\ and wy)

Use 6 to represent both A and w in (i)-(iii). Then
(1) b —p O as m — oo, Vk.
(i) Vmh (gk — (5k) —q N (0,V%) as m — oo, Vk, where h is the bandwidth used

~

in the construction of the estimate k.
(1) supy, Vi, < 00.

Parts (i) and (ii) of this assumption will be satisfied by a wide class of nonpara-
metric estimates of d; under Assumption 2 (see Hannan, 1970, Park and Phillips,
1988, and Andrews, 1991). Part (ii) will typically be satisfied when there is un-
dersmoothing of the estimate ¢ through the choice of bandwidth h, to ensure the
absence of bias in the limiting normal distribution. Part (iii) simply bounds the
limiting variances Vj over k.



The error in the estimator at is
M 3
% > <1yk/1u /\k>
M Zk 1 m2y 1fU 1

N o YL |y HeedBi+ (e = A (9)
MZk 1 Och() dr

Z chalB;C
=‘W - +0p (1) (10)
MZk 1 onc() dr

\/Mm(a"'—a) =

provided M -3 i‘il()\k — 5\k) = 0p (1), which holds under Assumption 3, as shown
in the Appendix. Now we consider taking limits as M — oo. By applying a suitable
strong law of large numbers (SLLN) to ; Zk 1o e c(r )? dr and a suitable central

limit theorem (CLT) to W Zk:l [_]0 Hk,chk} as M — oo, it can be verified that

at converges to a at the rate v Mm and further, that vV Mm(a't — a) has an asymp-
totic normal distribution. In particular, we have the following result, whose proof is
in the Appendix.

Theorem 2 Let Assumptions 1(i), 2 and 3 hold and let ¢ < 0. Then, as (m, M —
Oo)seq

vV Mm (Zi+ — a) = N(0,V,),
where

M .1
_ . 1 _
%=%%$ay;%EMHH)%I ()

and

It is shown in the proof of theorem 2 that
M

1 1 1 1 & 1
lim —Y E|[ Hp |=—| lim — 2) = —
Moso M kz [ /0 ’f] “2¢ (Minoo M ;“”J oot

=1

and
M 1 1 M } 1
lim — °E Hi.|=— [ lim — =y
Mo M ;wk [/0 k’c} 2 \ aiose M ;wk —2ct

It follows that V, = (—2c¢)

w% = w? for all k and then p

M—% When the errors are homogeneous across k, we get
2
py = p3 = w* and V, = —2c¢. Since py > p3, V, = —2cis a



lower bound for the limiting variance in the general case where the long run variances
vary across blocks.

The weighting in the limit variance V, in the general case (11) indicates that
we can improve the efficiency of the estimator @™ by means of a weighted regres-
sion. Let &7% be a nonparametric estimate of w? satisfying Assumption 3. Define the
semiparametric weighted regression estimator

M 1 kr ok N
k=132 <y—1y - m)\k)
k
M

~f
w 1k k
k=1 @9713/71

The following result shows that the asymptotic theory of @7 is very simple.

Theorem 3 Let the conditions of Theorem 2 hold. Then, for ¢ <0 and as (m, M —
Oo)seq
VMm (@} —a) = N (0,~2c). (12)

The limiting variance formula —2c¢ in theorem 3 has an interesting relationship
to that of a stationary autoregression. In particular, the formula is identical to the
limiting variance of the autoregressive coefficient a,, in a stationary autoregession
with m observations, which is (1 —a?) ~ 1 — (1+ %)2 ~ =2¢_ This suggests the
approximation m (ay, —a) ~ N (0, —2¢), which corresponds to (12) above.

Observe that in theorems 2 and 3, we still get the unit root/near integrated process
result of consistent estimation of a by @, a*, and @ in spite of serial dependence
(Phillips, 1987b), provided the second order bias terms are not too large and satisfy
assumption 3.

It follows from these asymptotics that

~t+ _ — ~ _ _ l
m(a a)—m(a 1) c—l—O(m —p 0,

and therefore

E:m('d+—1) —p €,

giving us an O (\/ M ) consistent estimator of c. Of course, we have a corresponding

estimator ¢, = m(a} — 1) in the case of the weighted regression estimator a},. In
short, we have the following limit theory.

Corollary 4 Let the conditions of Theorem 2 hold. Then, for ¢ < 0 and as (m, M —
00)seq; €y Cw —>p C and

VM @E—¢)=N(0,Va), VM@, —c)= N(0,-2¢).

The rate of convergence of ¢ depends on the number of blocks M and is therefore
determined by the number of separate blocks of information about the localizing pa-
rameter c. So, the success of this estimator relies on the homogeneity of the localizing



parameter across blocks and the number of blocks in total. The form of the limit
distribution of ¢,, makes inference about ¢ particularly easy in the case where ¢ < 0.

The estimator of the autoregressive coefficient a pools information within and
across blocks and has a rate of convergence that depends on both m and M. The
rate of convergence of @t and @, is v/Mm and this rate is intermediate between the
O (y/n) rate of a stationary autoregression and the O (n) rate of unit root regression.
For example, we may functionalize m and M on the sample size n, as in m = n”,
and M = n'~7, with 0 < v < 1. Then vMm = n® with a = % + %, and the rate of
convergence, n®, of a* then varies continuously from y/n to n. In effect, the block to
unity system (3) is a family of models that constitute an intermediate class between
stationary and unit root autoregressions.

When M is fixed, it is apparent from (9) that we have a class of nonnormal
asymptotics, which reduce to the traditional case (Phillips, 1987a&b) only when
M =1 and the initial conditions are in the near or distant past (then Hj, . is replaced
by Hf . in (9) and K = 0 or £ > 0 in (7) ). When m is fixed, then the model has
autoregressive parameter a ~ 1+ -= < 1, and is stationary.

In the general case where m — oo as n — oo, the autoregressive parameter
a~ 1+ — 1. However, since a ~ 1+ <1+ -5 = 1+, the block autoregressive
system with coefficient a and M — oo is ‘closer’ to stationarity when ¢ < 0 than a
conventional near integrated model with autoregressive coefficient 1+ and the same
localizing coefficient c. This explains why the asymptotic distributions of ¢ and a® are
normal and why there is enough discriminatory information in data from the block
autoregressive system to consistently estimate the localizing parameter c. In effect,
the model across blocks has a stationary autoregressive structure with coefficient
e’ < 1, as is apparent in the definition of Hy . (r) in (8).

However, when M is fixed, we have m = O (n) and the autoregressive parameter
a ~ 1+ = is in the same locality of unity as the conventional local to unity model. In
this event, ¢ is not consistent and the situation is analogous to that of the conventional
local to unity model. Nonetheless, the analysis above allows for a wider class of limit
theory in this case, as indicated in (10) above, where the number of blocks M plays a
role in the limit and the limit process Hy, . is a diffusion average, rather than a simple
linear diffusion.

In the light of these remarks, it would appear that there are substantial advantages
in modelling to working with the general case where both m and M — oo. This is
the situation that we will pursue in what follows and in our empirical application.

3.2 The Unit Root Case: ¢ =0 and wj = w? Vk

Let the initialization of the process be in the distant past, rather than the infinite
past, and let Assumption 1(ii) hold. We will consider the homogeneous case where
by,; = b;. Homogeneity in the linear process coefficients across blocks ensures that
w% = w? VE, so that the model is then comparable with a conventional unit root
system that has a single long run variance parameter w? and a single one sided long
run covariance parameter \.

>From the analysis in Section 2, we have m_%yk,[mr] = Hp _(r), as defined in

10



(7). When ¢ = 0, this limit process has the form
Hio(r) = By (r) +) By (1) + Bo(—+),

a linear combination of independent Brownian motions, all with variance w?. Our
limit theory for a* in this case is given in the following result.

Theorem 5 Let Assumptions 1(ii) and 2 hold. Then, in sequential limits as (m, M —

00) seq
mM (a* —a) = (/01 U(s)2d3)1 ./:U(s)dU(s) =&y,
where U (s) = BM (w?) .

Hence, in the ¢ = 0 case we get m (@™ — 1) —, 0, as required for ¢ = m (at — 1)
to be a consistent estimator of ¢ = 0. However, M¢ = &;; and therefore the estimate
of ¢ has a limit distribution in the unit root class in this case. Furthermore, we
revert to an O (n = mM) rate of convergence for a* and move to an O(M) rate of
convergence for ¢ when ¢ = 0.

3.3 The Near Explosive Case: ¢ > 0 and w? = w? Vk

In the case where ¢ > 0, it turns out that @ — a at the rate e“m, comparable

to the power rate of convergence in an explosive autoregression. Again, we work
with distant past initial conditions at oo and homogeneity across blocks so that
w% = w?,Vk. The latter helps us to relate our results to those already well known in

the literature for explosive autoregressions. The limit theory for this case is as follows.

Theorem 6 Let Assumptions 1(ii) and 2 hold. Then, in sequential limits as (m, M —

Oo)seq
eC(M+1) . eC(M+1), .

Z(¢)
620_1 a_a)7

2y (@ —a)= Y (¢) + Joe (—K)’

(13)
2 2

where Z (¢) = N (O,%) ,Y() =N (O,%), and Z (c),Y (c), and Jo.(—k) are

mdependent.

Remarks

1. It is apparent from (13) that the second order bias term that arises in traditional
unit root regression disappears in the near-explosive case. A similar result was
obtained in Phillips (1987a, theorem 2(c)) using the traditional local to unity
model (3) and sequential limits involving the localizing coefficient ¢ — co. The
reason is that the signal from the regressor is strong enough in the explosive
case to eliminate the bias effects as M — oo.

11



2. The limit variate (13) is a ratio of independent normals, each with zero mean,
and is therefore proportional to a Cauchy variate. Note that the initial condition
distribution Jy . (—k) plays precisely the same role in the limit distribution here
as it does in the well known explosive case (e.g., see theorem 2.5 of Anderson,
1959). However, unlike the conventional explosive model, the initial condition
distribution in our case is always normal as it arises from a preliminary limiting
process within the initial block.

3. When the initial condition is at the origin and £ = 0, then Jy.(—x) = 0
and % (@ — a) has a limiting distribution that is standard Cauchy. This
Cauchy limit (13) corresponds to the well known result from White (1958)
and Anderson (1959, theorem 2.7)! about the limiting distribution of the least
squares regression coefficient in an explosive model with Gaussian errors and
zero initialization. However, unlike these standard results, the limit result here
does not rely on Gaussian errors. The difference is a major one and can be
explained as follows. What happens in the block local model, in effect, is that
as m — oo within each block we get normality in the data from the first stage
asymptotics. The model across blocks then mirrors the structure in a Gaussian
explosive autoregression. The outcome is that an invariance principle operates

in the block local model in the explosive vicinity of the unit root case.

Theorem 6 implies that
c=m(a" —1) —pe,

c]V[)

giving us, in this case, an O (e consistent estimator of ¢ > 0. In particular, we

have the following result.

Corollary 7 Let the conditions of theorem 6 hold. Then, if K =0 and ¢ > 0, and as
(m, M — 00)geq, € —p € and
eC(M+1) N
o (c—c)=¢,

where € is a standard Cauchy variable.

4. Estimation with Trending Data

Our results in previous sections can be extended to more general models that allow
for the presence of a deterministic trend in the original data. Such an extension is
important because many macroeconomic time series, such as real GNP, consumption,

!The normalization factor in theorem 2.7 of Anderson (1959) is a‘;—:, corresponding to a sample

. . . . . c(M—+1) . M+1
of size T. The normalization in (13) is < —ze—» Which corresponds to *——". The reason for the

exponent M + 1, rather than simply M is that we have M blocks in the data, but M + 1 blocks in
the process from the initialization at yo,0. In an explosive model, a change in the initial conditions
does affect the limit theory and it figures here in the normalization factor.

12



money and prices, are often characterized as integrated or near integrated processes
with drifts. Our treatment here will deal with the case of a linear trend but it is
easy to see how the approach applies for general polynomial trends. We also assume
homogeneity in the linear process coefficients across blocks so that wz = w?,Vk.
Again, this is easily generalized using the results of the previous section.

It is convenient to write the model in component form as follows:

Ykt = dit+Ypp t €Tk € K (14)

dpy = vo+7i(km+t)= 7/$k,ta wpy = (1, km + t), (15)
< C

yZ,t = ay;;,t—l + Uk, ylt,o = yZ—l,ma a=em~1+ m’ c<0. (16)

In (14) and (15), the deterministic component, dj ¢, contains both a linear time trend
t, and a block specific component km that assures the continuity of the trend across
blocks. The stochastic part, y;,, in (14) corresponds to (3) in Section 2 and is a
stochastic block local to unity pHrocess of the form

t—1 k—1 m—1

jc tc 1 Jc tc _
yZ,tZZem%HHm Z et 7l Ze’”“ﬁm*j +em el Koy o,
j:O fsz j:O

As in the simple case with no trend, the process y;, has both a block index, k,
and a within-block temporal index, t. However, by virtue of the sequence of block
initializations y; , = ¥yi_,,, the representation is consistent with a well defined
evolution of a siflgle time series sequence, this time with a linear drift. To simplify
the analysis, it is sometimes useful to recognize this alternative representation by
re-indexing yx ¢ in the following way

Zs = y[s/m]vsfm[s/m]vs - 1, 2, ...... ,n = mM.

We use this single indexed representation as well as the block representation in what
follows. It can be easily verified that

2 =" +ns+2 =71 + 2,

where z; = (1,s) is a single indexed linear trend and z} = y[; Jml, For any k
and ¢, yg ¢ corresponds to zgm¢-

Our purpose is to construct a consistent estimator of the local to unity parameter
c in this model, and, to do so, appropriate detrending of yg ; is required. The most
natural procedure, as in the traditional model (1) with trend, is to apply linear least

squares detrending by means of the regression

s—m[s/m]"

Ykt = Vo +V1(km + 1) + C/U\Z,t =7 wps + ??Z,t- (17)

Here, the estimate of the trend coefficient is given by the following pooled regression
formula

M m “lry m
- lzz] lzzmk,tyk,t]

k=1t=1 k=1t=1

13



M m “lrym m
! *
E g Tt T ¢ E E TrtYk,t

k=1 t=1 k=1t=1

The cases of primary interest are those where ¢ < 0 and ¢ = 0. As in the analysis of
the model without trend, it is convenient to separate the analysis of these cases. We
shall also consider the efficiency of this type of detrending by simple regression.

4.1 The Near Stationary Case: ¢ < (

To develop the limit theory, start by defining some scaling matrices for the determin-
istic trends. Let D = diag[1,n], F' = diag[1,m], and G = diag[1, M]. Then, D = FG,
and the deterministic components have the limits

Dilx[nr] e X(r)=(1,r), Fﬁlmk,[mr} = Xy(r) = (Lk+7).

The following theorem gives the limit theory for the least squares trend coefficient
estimator 7.

Theorem 8 Let Assumption 1(i) and 2 hold and suppose ¢ < 0. Then, as (m, M —
00) seq

VD& =) = (_%) [ /0 1 X(T)X(r)'dr] - [ /0 1 X(r)dU(T‘)} .8

m

where U (r) = BM (w?) .

The scaling matrix /nm=1D = diag[n%m_l, nz M ] in (18) indicates that consis-
tent estimation of the intercept -y, as well as the slope 7, in (15) is possible when
¢ < 0 provided that nim-! — 00, or, equivalently, % — 00. This is in contrast to
the traditional local to unity model, where the intercept or any slowly evolving com-
ponents in the deterministic trend are not consistently estimable. The reason why 7,
can be consistently estimable in the block local to unity model can be explained as

follows. From (14), (15) and (16), the regression equation can be written in the form

(t—1)

m

N c
Ay = ’Y’Acxk,t + Acyk,t =70 <_E> +7 <1 —ck—c ) + Ugt, (19)
where A, =1 — (1 + ¢/m)L is the quasi-differencing (QD) operator and L is the lag
operator. The excitation condition for least squares regression consistency for the
parameter 7y, holds when

For this to hold, we must have ¢ # 0 and % — o00. In effect, v, is consistently
estimable when the stationary element of the model (A blocks with autoregressive

14



coefficient e < 1 for ¢ < 0) dominates the nonstationary element (blocks of m

observations with autoregressive coefficient 14+ <) in the sense that 2 — oo.

m
The detrended time series is obtained from the residuals
C/U\Z,t =Ykt — ’/y\,xk,ta

whose asymptotic behavior is shown in the following Lemma to be the same as that
of the stochastic component of the series, yj ,.

Lemma 9 Under Assumption 1(i) and 2, and when ¢ < 0
m 2 g = Hie(r).

We now estimate the autoregressive coefficient in (16) by least squares regression
on the detrended time series ¥ ,, giving

5= >k 2t %,t—l%,t
2ok 2t Whe1)?

and construct the modified estimator of a as in Section 3.1 above, i.e.,

M ~ ~ N
L k=1 <Zt Yer—1Ykt — mAk)
a = 5

2
M
S Y ()

Theorem 10 Suppose ¢ < 0, Assumption 2, 3, and the distant past initialization
condition 1(1) hold. Then, in sequential limits as (m, M — oc0)

seq ’
VMm(at —a) = N (0,—2c).

It therefore turns out that the estimation errors that arise from detrending are
negligible in the limit and do not influence the asymptotic distribution of the coeffi-
cient estimator when ¢ < 0. As a result, the limiting distribution of v Mm(at —a) is
the same as that of v/Mm(at — a) in Theorem 2. This is entirely analogous to the
situation of a stationary autoregression about a deterministic trend.

Furthermore, in the same way as before, we may construct the localizing parame-
ter estimates

c=m(a"—1) —pc

giving us O (\/ M ) consistent estimators of ¢. Corollary 4 continues to hold for ¢.
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4.2 The Unit Root Case: ¢ =0
When ¢ = 0, we find that

20G-= [ [xexer]” [ [xeve].

where U (r) = BM (wQ) . The detrended time series are constructed as

~ ~1
Yt = Ykt — 7 Tkyt»
o

j— A/
Zg = Rg — 7 Xs,

and, as is usual in unit root theory, the detrending process influences the asymptotic
behavior of the filtered data. In particular, we have the following conventional result.

Lemma 11 For ¢ =0 and under Assumptions 1(ii) and 2,

n~2zr = U(r) - [/ UX’] [/XX’] _lX(r) = U(r).

Again, we estimate the autoregressive coefficient by least squares regression on
the detrended time series ¥ ,, giving the pooled estimator

_ Dokt @lkc,t—lgfg,t
>k 2t g1)?

and construct a® as before. Then we have the following asymptotics.

a

Theorem 12 When ¢ = 0 and Under Assumption 2, 3 and 1(ii),

[ udvu
Ju

An O (M) consistent estimator of ¢ = 0 can be obtained immediately from this
result since ¢ =m (a™ — 1) —, 0,and then

| udv
Jur

Thus, when ¢ = 0, we revert back to unit root asymptotics and the distribution (20)
is identical to that of the traditional model. In particular, a™ converges to a at rate
O, (n) and the limit distribution is a function of a detrended Brownian motion which
depends on the limiting deterministic trend function just as in Phillips and Perron
(1988) and Park and Phillips (1988). Moreover, since the limit distribution of Me,
(21) is identical to that of the Z, unit test in the traditional model, it turns out that
a significance test of the null hypothesis ¢ = 0 against ¢ < 0 that is based on the
statistic Z, = M¢ is identical to that of a conventional unit root test against a trend
stationary alternative. As is apparent from theorem 10, Z, = O, (M) when ¢ < 0,
so our theory shows that the Z, test is, in fact, consistent against local alternatives
in the block local system with ¢ < 0. Similar results can be shown to apply to other
unit root tests.

(20)

Mc =

(21)
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5. Effect of Quasi-Differencing in Trend Elimination

In the block local model (14), (15) and (16), the residual process in the ordinary
least squares regression (17) is near integrated and it might appear at first blush that
least squares estimation of the linear trend coefficient is not efficient, as is the case
in the traditional local to unity model (Phillips and Lee, 1996). In the traditional
model, an efficient estimator of the trend coefficients can be constructed by first
quasi-differencing the regression equation. If we apply the same QD procedure to
(14), we get, as in (19) above,

Acyrs =7 Aty + gy, (22)

where A, =1 — (1 + ¢/m)L is the QD operator. Then, the trend coefficient can be
fitted by regression on (22), giving

M m “lrym m
5 - lzzAcxk,tAcx;,t] I Ay]
Lk=1 t=

k=1t=1
M m -1

ZZAcmk tAcmkt { Z cxk,tuk,t] :
k=

k=1t=1

Analogous estimates of the trend coefficient in the traditional model were used by
Elliot et. al (1996) to construct modified unit root tests (with a prespecified value of
the localizing parameter ¢).

In practical work, the local parameter is not known and so the QD operation in
(22) is not feasible, thereby explaining the use of prespecified values like €. However,
in block local models like those considered here, ¢ can be consistently estimated and
used in a second stage QD detrending procedure. Thus, it might appear that there
would be an advantage to QD detrending with an estimated operator. However, this
turns out not to be the case.

Suppose that ¢ < 0 and we estimate ¢ by ¢ = m(a — 1), as in Section 4. Then
C=c+O0,(M~12). If we apply QD detrending with the operator Az to model (14),
(15) and (16), we get

Agyps = ’Y’Aaxk,t + Aéyz,t- (23)
The OLS estimator of v from (23) is

M m Lry m
;?f = [ZZAﬁxk,tAEm%,t] ZZAExk,tAEQk,t]

k=1 t=1
M m 7171 m
= 7+ ZZA Tyt D Z mk,tAgy;t].
k=1 t=1 k=1 t=

The limiting distributions of 5 and 7 are given in the following Theorem.
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Theorem 13 Suppose ¢ < 0, Assumption 2, and the distant past initialization con-
dition 1(1) hold. Then, in sequential limits as (m, M — oc0)

Y206 1), LeDG; =) = = | [ x0)x07] C[xeawe e

seq ?

where U(r) = BM (w?) .

It follows from theorem 13 that the errors arising from preliminary estimation
of ¢ are asymptotically negligible in the estimation of the trend coefficients, and the
limiting distribution of the feasible trend coefficient vector 7, is the same as that
of 7, the infeasible estimator that uses the true local parameter. Moreover, both
these estimates are asymptotically equivalent to the least squares trend estimator 7
that uses no information about the localizing parameter c. Hence, the simple trend
estimator 7 is efficient in the sense that it is asymptotically equivalent to the GLS
estimator, were we to know c¢. Thus, in the block local to unity model there is no
need to apply QD procedures in fitting the trend coefficient, at least asymptotically.
The explanation for this phenomenon is that when M — oo, the deterministic trend
becomes a dominating characteristic across blocks (because of the continuity of the
trend) and when ¢ < 0 the behavior of the model across blocks is, as we have seen,
essentially stationary. This produces a stochastic environment which validates the
Grenander - Rosenblatt (1957) theory of efficient trend elimination by least squares
regression.

6. Conclusions

This paper introduces a new statistical model to capture the notion of near inte-
gration. It has the advantage over the traditional model developed in earlier work
(Phillips, 1987; Chan and Wei, 1987) that the local parameter can be consistently
estimated. The model also provides a more complete interface between I(0) and
I(1) models and between O(y/n) and O(n) asymptotics. In fact, the rate of conver-
gence to the autoregressive coefficient in the new model is O (n®) for a € [1,1] and
varies in a continuous way between that of stationary and nonstationary asymptotics.
The model also captures the power law asymptotics of explosive autoregressions and
shows that, in a well defined local region greater than unity, it is possible to obtain
invariance principles, in contrast to standard results for the explosive autoregression.

Some additional features of the model stand out. First, semiparametric estimation
of the autoregressive parameter is possible using the methods of earlier work on unit
root estimation, giving a robust estimator in models that are closer to stationarity
than unit root models and traditional local to unity models. In other words, specifi-
cation of the short memory component of the model is not necessary for consistent
estimation, in contrast to stationary autoregression, where short memory error serial
dependence induces inconsistency. Second, conventional unit root tests are seen to be
consistent against alternatives that are local to unity in the new sense. Third, least
squares regression estimates of deterministic trend components are asymptotically
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efficient, and it is not necessary to quasi-difference the data or to use generalized
least squares techniques to improve efficiency in trend elimination procedures.

Implementation of the procedures given here requires the selection of the index
parameters m and M. A serious study of this matter is likely to be complex, due to
the interactive role of the localizing parameter ¢ and the block size m. Ideally, we
would like to obtain data based rules and, as in kernel estimation, this will require the
use of a suitable criterion function and some more refined asymptotics than we have
presented here. A further matter of interest is the extension of the present model to
allow for heterogeneous deterministic trends across blocks. The blocking mechanism
in the present model provides a natural structure for introducing such breaking trend
functions. Of course, allowance for endogenously determined breaks would require
the further extension of variable block sizes. Moreover, since the model allows for the
number of blocks to pass to infinity, this extension effectively introduces an infinite
number of nuisance parameters as M — co. While these and other interesting con-
siderations extend beyond the limitations of this initial study, they serve to give an
idea of the potential of block nonstationary systems in modeling time series economic
data.

7. Technical Appendix and Proofs

7.1 BN Decomposition of vy,
Following Phillips and Solo (1992) we decompose uy; as

Ut = b (1) epp + Eni—1 — Ekyts

where gk,t = Z;.;O i)k,jgk,tfj; l;j = Zi’ijJrl bk,l; and bk (1) = Z(]).;O bk,j- Under the
summability condition in Assumption 2, it is apparent that there exist finite constants
My and Ms such that

E&, < M (25)

and
Euj , < My

uniformly in £ and ¢ (see Moon & Phillips, 1999).
7.2 Proof of convergence in mean square of (5).
Let Xy = m=3 Z;”:_Ol e%uk,l,f,m,j. Write zp, = m=3 Z;n:_ol eﬁsk,m,j and Ry =

_1 m—1._ ~ _1 1 =Ye < .
m=2 <e m “Epo— 5k7m> +m 2 Z;ﬁ”zol e Ekm—j (1 — em> . Then, using the BN

decomposition of uy;, under Assumption 2, there exists a constant M such that

1 m—1 2
EX?2 = E|— S emup1—tm;
f k—1—fm—j
= E(br—f (D) ap1-5+ Re1-g)° < M. (26)
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where the last inequality is proved in Moon and Phillips (1998) and holds uniformly
in f. To finish the proof, we need only show that

2
lim F Z fCXf =0,

n—oo

f=n
which holds because
2 2
oo oo 1 1
Zechf = F Zeifceﬁchf
f=n

2
: (z (S o) < (S

: f:n
— 0

as n — oo,

where the first inequality holds by the Cauchy-Schwarz inequality and the last con-
vergence holds because ¢ < 0 and Z?f:l ef¢ < o0o. W

7.3 Proof of Lemma 1

From the BN decompositions of uy, ¢, we have

mr] [ U0, bo (1) o, L[ 00 Comn
Z : - 2} : Ul
UM, 7 bar (1) enj EM,0 — EM,[mr]
1 [mr] €0,5
12 .
= Aé\rz L e,
EM.,j

where the second line holds by the same argument as that on page 978 in Phillips
and Solo (1992). Since

1 [mer] €0,5 WO (T)
ﬁ Z : = WJM (7“) = "
=L\ enmy W (1)

a (M + 1) —vector standard Brownian motion, we have

Ll [ By (r)
Jj=1 UM, j B (7“)

as required.l
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7.4 Proof of (8)

We start by introducing some notation and definitions. Suppose that the iid sequence
{e¢}, in Assumption (2) (i) is defined on the probability space (€2, F,P). Define

-1
1 ic ck
Xmp = N emuUpm—j, Ympk=¢€2 Xmk,
—1

Xy = Jio(1), and Yy = e% X,

3

<
Il

Ym = (Ym,o, ey Ym,k, )/ and Y = (Yb, ...,Yk, )I .

Y, and Y are R® (= X{°R)-valued random elements. We use the following distance
metric between two elements of R*>

d(z,y) = sup [vg — yxl, (27)
>0

where * = (z1,%2,...), ¥y = (Y1,¥2,...) € R*®. Let N be the set of non-negative
integers, {0,1,2,...}. The space [*° (N) is defined as the set of all uniformly bounded,
real functions on N, that is, all functions x : N — R such that d (z,0) < oco.

By virtue of (26)

x 0. 0)
ck
E (Sup \Ymky) < ) EVmil =) €2 E[ Xl
k20 k=0 k=0
> k > k
< Ze% max{l,EXfmk} < Ze% max {1, M} < oo,

k=0 k=0

and it follows that Y}, is a sequence of {*° (N) —valued random elements with prob-
ability one. Similarly, it is easy to verify that Y is also an [*° (N) —valued random
element with probability one. Thus, we may restrict attention to the case where Y,
takes values in [*° (N).

For weak convergence in {* (N), we need only establish the following two condi-
tions: (i) finite dimensional convergence, and (ii) asymptotic tightness. In fact, ac-
cording to Theorem 1.5.4 of van der Vaart and Wellner (1996), Y;,, converges weakly
to Y if (i)

Ym,k1 Ykl
: = | : (28)
Yo k. Yy

n

as m — oo for arbitrary subset {ki,...,k,} of N and (ii) Y;, is asymptotically tight.
We already know that the finite dimensional convergence (28) holds by Lemma 1.
For asymptotic tightness of Y;,, we appeal to part of Theorem 1.5.6 of van der Vaart
and Wellner (1996): specifically, the sequence Yy, :  — [°°(N) is asymptotically
tight if Yy, 1 is asymptotically tight in R for every k& and, for all €, > 0, there exists
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a finite partition N = U!_;N; such that?

i s5,teEN;

limsup P {sup sup |Yim,s — Y| > 5} <. (29)
n

Since the individual sequence of random variables Y, ;. converges in distribution
to Y, = e Jie (1) for all k, Yy, is asymptotically tight in R for every k. Next,
condition (29) is satisfied if we show that for all e, > 0, there exists a constant kg
such that

lim supIF’{ sup |Yms — Y| > 6} <. (30)

n s,t>ko

For, if (30) holds, we can choose N; = {i} for i < ko, and Ny, = {t : t > ko}. Then,
N = UM N; is a finite partition and (29) is satisfied. Note that

IP’{ sup [Yims — Y| > 5}

s,t>ko

PO Yok — Vil > €

<
k=ko
2 2

1 e 1 o ck c

< ;E Z Yot = Ymrl | = ;E Z ez [e2 Xy 11— Xk
k:ko k:kO

1 s k > k 2

< = ez Z ez K (eEXm,k-i—l - ka) ) (31)
k=ko k=ko

where the last inequality holds by the Cauchy-Schwarz inequality. In view of (26),
by choosing kg large enough, the RHS of (31) can be made less than 7. Thus, (29) is
satisfied and we have

Y..=Y

as m — oo.
Next consider the functional v : [*° (N) — R defined by

> k
v(x)= Z e .
k=0

Then, it is easy to see that v (z) is continuous with respect to d in (27) and by the
continuous mapping theorem, we have the required result. H

’In van der Vaart and Wellner (1996), to define (29), an outer probability measure of P is used.
However, since the index set N of *° (N) is a countable set and there is no measurability problem on
the sup operator on the set N, we use the underlying probability measure P in defining (29) .
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7.5 Proof of Theorem 2

For fixed M, as m — oo, under the assumption that the initial conditions are in the
infinite past, we have as in (9)

F S o HiedBe+ (M =) |
31 Sorls Jo Hie (r)*dr
First, under Assumption 3 we have vmh (Xk - )\k) —q &, =N (0,Vg) asm — oo, Vk

and {{,} is an independent sequence of normal variates with zero mean and variance
that are bounded uniformly in &, since supy, Vi < oco. It follows that as m — oo,

VMm (at - a) +o,(1). (32

| XM A . M
W;(Ak_Ak)Nﬁ;mgkzop(l)v (33)
as (m, M — 00),,, -

Next, we apply a strong law to ﬁ Z,]:il 01 Hy. (r)*dr and a CLT to ﬁ ZQ; “01 H;mdBk}

as M — oo. To find the limit of 7; S 61 Hy,,. (r)? dr, we write

1 M .1
o7 Hk,c (T)er
1 M g 9 M g k-1
= — JQCdr++ / Ji.ceCdr eth=1=Ne g, (1
M;/O k, M; 0 f:ZOO re (1)
2
1 1Mk T
2rc —1—f)c
+./0 ¢ drﬂg fz_of Jre(1)

= [+ 1I+1I1, say.
Now {Ji.} is a sequence of independent normal variates and since sup, wi < co we

146
have sup, F ( fol J? cdr) < oo. It follows from the Markov strong law for i.ni.d
sequences that

1 M 1
. 2 2

— a.s. <]V}1£>HOOM kZ"”k) E </O Sc) > (34)
where Sc(r) = [ elr=3)edWV (s) . Next consider term IT. From the independence of
{Jk,c},, and since

1 k—1 2

sup E / Jice dr Z e(kflff)cjf’c (1)
k Jo

f=—0
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2
k—1

1 2
< supF (/ Jkﬁercdr) sup F Z e(kflff)cJﬁc (1) ] < oo,
JO k

k Pl

it follows that {fol i c€ dr <Z];;£OO e(kflff)ch,c(1)> }k is a sequence of square
integrable martingale differences with respect to the natural filtration, and by the
strong law for martingale differences (e.g., Hall and Heyde, 1980, p.36)

IT =45 0. (35)
Before considering term I71, under Assumption 2, we define

Zc = Sllip |wk| |SC (1)| ;

where S, (1) = [ e(1=9)¢dW (s) . Then, E (Zc)4 < oo and Z, is a dominating random
variable for the martingale difference sequence {J; . (1)} in the sense that

P{|Jpe ()] >z} < P{|Z| > 2} .

Also, we have

1 2

Y Ene - (g >t s
and -

Zjerc < 0.

=0

Then, by Theorem 3.16 of Phillips and Solo (1992), we have

2

I = /‘1 redr— Z iejcjk 1—je (
J0

kl 7=0

1
2re _ _ 2
S ./0 e“"dr (A}Enoo M,Zwk> ( o2 c) ES. (1)
M

— <_L20) (A}@OO % ;4) ES. (1) (36)

Combining (34), (35), and (36) , we have
1 M 1
i Z/ Hy,. (7’)2 dr
Ea o) _ 1 2\ _
— <N}@m i Zwk> <E (/ S ) 5 8e (1) ) = Vy. (37)
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To reduce Vi note that

= _2_07 (38)

so that Vi = “2 , where 1y = limps_o0 =5 i Zk lw%

We now derlve the limit distribution of — 1 Zk 1 o Hk cdBy. Let Zy . = [0 Hy, .dBy.
In view of the independence of By across k and the fact that

1
supEZlg,c = supws {E/ Hl%,c:|
k 0

k
.1 k—1 .1
= sup wiE/ Sf+wﬁ Z e2lk—1-fle 2ES’ (1 ) / e*redr
J=—o0 0

< (et [# ) - zsi0r]

we know that Z . is a sequence of martingale differences with respect to the natural
filtration and we may therefore employ a CLT for martingale differences. Let X%, =

M
y=1 EZ} .. Define
-1
+ ‘/ €7nCClI/V]€
J0

Zk,c = <Sup w%)
k

It is easy to verify that Zk,c is strictly stationary, Zk,c > |Ze| VE, and

k—1

Y sy ()

1
/ SpdWy,
Jo P

2 1 2
< 2 (Supm%) E (/ S’dek>
k 0
2 1 2
+2 (Supmi) E </ erchk>
k 0
2 1 E|Sre (1]

% {E <Sf’0(1) ) <1 —620> - < 1—e

< C,
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for some constant C' uniformly in k. Then, for any ¢ > 0,

>}]
>H

M ~2 ~2 E?M /
= E—?V[E |:Z17cl {Zl,c > ﬁ]\/fé’

< ———F 2201{220> <infE 7z, )ME}:|
inka(Z,ic) [ R i (Zie)

— 0as M — o0,

M

Z E
k=1
M

2
k,c

Z2, Z

E 27 1 227
M M

72

Zk,c
2
ZJM

g
&=

—_

where the second line holds by Zk,c > |Zj¢|, the third line holds by the strict station-
arity of Zg .» the fourth line is well defined because inf, E (Z,g C) > 0 in view of the

fact that infy, wz > 0, and the last line holds by virtue of the fact that E (Z,% C) <C.
Therefore, as M — oo

M g -1
— Hy.dBy = N |0, lim — ) WiFE Hi .. 39
VM = Sy T ( %OM il T )

Combining (33), (37), and (39), we have the required limit distribution.
To simplify the variance formula, observe that as in (37) and (38) we have

7.6 Proof of Theorem 3

The proof follows the same lines as that of theorem 2 above, and so we simply outline
the argument. For fixed M, as m — oo, we have as in (32)

F T L [10 Hy.odBy, + (Ak —Ak)}

VMm (6 — a) =
MZk 1“,2 fo ch ) dr

+o0,(1).

26



Then

‘ 28 'L 1 1
2 2 2
M % Jo k,c (7") ar —q.s. <E (/O Sc) — _QCESC (1) > = ——26,

as in (38). Further, in the same way as (39) we find

\/_Z /chdBk:N(,}@mMZ [/ chD_N(O,—QiC).

It follows that in sequential limits as (m, M — 00)eq
vVMm (’dJr — a) = N (0,—2¢),
giving the stated result.

7.7 Proof of Theorem 5

If Assumptions 1(ii) and 2 hold, then, as in (9) but using the fact that ¢ = 0, it
follows that as m — oo for fixed M,

1 M 1,k A
M 2 k= 1( Y- 1“ m)‘k)

Mm(a" —a) =
12 Zk 1m2y Y
2 S s HodBe+ (3 — A ) |
M2Zk 1. OHI?O( r)*dr
where Hf, (1) = By (r )+Zf 6 By (1) + By (—k) . As in the proof of Theorem 2, we

have
M

o Z (M=) =0, (1) (40)

in sequential limit as (m, M — 00),,,
Before proceeding further with the proof, note that the sequence {Bjy, (1)}, is iid
N (0, w2) . Then, by Donsker’s functional law for partial sums of iid random variables

we have, as M — oo,
[Mr]

ZBf (r),

where U (r) = BM (w?) . It follows that as M — oo,

1]\1 1 1
— H”(rdBkri/Usts
M;/ﬂ o) dBi(r) = [
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because

1 M g
> | ) s
k=1"

1 M a1 1 M k—1
_ MZ/O By (r)dBy (1) + 42 3 [ S B (1) | Be()
1 k=1 \ f=0
+Bo (- ZBk
M 1 — 1 1
= ; \/_]V_[;)Bf(l) —MBk(1)+OP <W>
= /0 U (r)dU (r), (41)

where the final line follows by using partial summation techniques, as in Phillips
(1987b). Similarly, we have

1 M 4 ) -1 )
— HEo(r dr:/ U (r)dr, 42
MQ;/O fo)?dr = U @) (42)
Thus, in view of (40), (41), and (42),
mM (at —1) = —IO . ),
.[0 Ul(r ) ds

as required. |

7.8 Proof of Theorem 6

For fixed M, as m — oo we have, as in (9),

M Myt 1m 1 Yk j— 1k
e 2eM S M S
k=1 m2 j= lyk,] 1
e M Zk 1Jo Hl?c( )dBk( )+ AMe M

- S NG

For the limit when M — oo, we follow arguments similar to those of Basawa and
Brockwell (1984). First, consider the numerator of (43).
Note that

M .1
e My / Hy . (r)dBy (r) + AMe™M
0
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M .1
= My / Jie (r)dBy, (r)
k=1"0

M k—1 1
+ > e My e e (1) + €Ty e (<) / e"“dBy (r) + o (1)
k=1 f=0 "

M k—1 1
= > e MY ety (1) + Ty (—R) / e"dBy, (r) + o (1) (44)
k=1 f=0 0

where the last line holds because
’ M 9 \/M
=M Z /0 Jie (1) dB (1) = Op (W) =o0p(1).
k=1"
Before proceeding further, define

k—1
Xpq = Ze(k—l—f)cjﬁc(l)
f=0

= Jk_17c (1) -+ €Cjk_27c (1) + ...+ €(k71)c<]07c (1)

k—1 2¢
_ 2k—1—f)c | , 2 (e*-1)
= N|O, fEO e w e

N i
- 7 2C M

1 2c _
Qr = /0 €"dBy (r) = N (0,w2—(e 50 1)> .

Xt = ecXt,1 + Jt,c (1) t= 0, ceey k — ].,

and

Then, we have

where X 1 = 0.
Also, note that

’ 5 sell 262(JM+1)C 1
sup F (e*CMXM) = supe “Myt—mm——

M>0 M>0 2c

5 620 . e—QC]VI w2620
= supw < < 00.

M>0 2c 2c

Then, e~*M X is a martingale w.r.t the filtration Fy; = o (Jare (1), Jar—1,c (1), ...)and,
by the martingale convergence theorem, we have

2
G_CJMX]V[ —a.s. eY (C) ’ where Y (C) =N (O’ (;_> . (45)
C
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In addition, it is easy to see that
M-1

Z e *DQar i

k=0

M-1 9
—20(k+1) e _
g )se)

6—20 wQ o wQ

Moreover, the limit variates Z (c), Y (c¢), and J_1 . (—k) are independent, and Y (c)
and Z (c) have the same normal distribution.

Next consider the limit of (44). Proceeding as in Basawa and Brockwell (1984)
we get

M k—1 -1
Ze*CM Zek = f)ch 1) + e J_1 . (—k) / e"“dBy (1)
pt o Jo
Z}JLVI 01 —c(M—h— 1)XM ho1€ —c(h+1) Quni—n
= 1 ech C —K
( Le (=K) ) ( ny 01 e DO p
M-1
~ €° (Y( )+J_1c Z e h+1)QJM h
= (Y () +Ire(—k ))Z (c), (46)

where the third line holds because }e*C(M*k*DX M,k,l‘ < K. almost surely for some

random variable K. (c.f., Basawa and Brockwell, 1984, p161-171) and we can apply
dominated convergence. Thus, as M — oo

e~ M3 /0 Hf o (r)dBy (r) + AMe™M = e (Y (¢) + J_10 (k) Z(c).  (47)

Now, we proceed to the denominator of (43). By definition

1 M 1
g Y [ Hie s
k=1"0
1 M 9
_ —echZ /0 e (r)2 dr
QC]V[Z/ TCJkC Zek 1- fCJ )—Fekcjfl,c(—ﬁ)

2
M

it 3 S )+ o
k= f=0

1

= I+2I1+1I1, say.
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It is easy to verify that, by the strong law for iid variates,

M
I =045 (m) = Oq.s. (1) .

For 111, note that

2
M —
62CMZ Ze(k DT (1) + 5T 1o (—5)
M-1 2 1
_ (M—k-1)c ¢ _
= ;%{em1k1 (XMFM4+6 eJlﬁ(“D} (@%Hﬁ)
S 1 M~k ’
= > { o (K e () |
k=0
x1{0<k < M- }(em+1 > (48)

From (45) we know that for fixed k

1 , 2
{m <XMfk—1 + eMkleee 1y (—n))} 1{0<k<M-1}
= as® (Y () + Joc (—K))*,
as M — oo. Since

1 I—k—1)c ¢ ?
{m (X]V[_k_l +€(AI k 1) e JO,C (—H)>} 1 {0 S k’ S M— 1}

is almost surely dominated by a random variable as in (46), it follows by the domi-
nated convergence theorem that

(48) —as. (Y (€) + Joc (—K))’ (49)

For I1, by the Cauchy-Schwarz inequality, we have

II < (e%MZ(/‘ e Ty (7 )dr>2>

-1

M
1
ch]VI Z Ze (k1= f)CJf ) + ekcJO,c (_K)

k=1 \ f=0

1/2

oy 1/2
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where the first equality holds by (49). Thus

M 4
1
Y [ HR OV dr = (V@ oo (=0 = (60
k=1

Finally, combining (47) and (50), we have
) R e‘Z (¢
cM = = ( ) ]
@1 (Y (¢) + Joe (=K))

It follows that
ec(]\erl)m VA (C)

Y (¢) + Joc (—K)’

as stated. W

7.9 Proof of Theorem 8
For each k,

_ZF Tyt ;»/ Xi(r)Ho(r )dr_[{glfr)g:c(r)dr] (51)

Notice that

| Mo
\/—M;/o Hy, o(r)dr
_ 1 &0 re (k=1—f)c
_ \/—M;/o Tiedr + —— Z/ dr fzooe T . (2
We start with the first member of (52), and use the relation (c.f. Phillips, 1987a)
Juelr) = By(r) + ¢ /O el By (5)ds, (53)
where By(r) = BM (w?). Slnce {Bk( )} | is an independent sequence of Brownian
motions, it follows that \/_~ SM By (r ) is BM (w?) for all M and
ZBk = BM (w?). (54)
Hence,

%MZ /0 Jeedr = /‘1 [U(r)+ / (T_S)CU(S)ds} ar

_ / / (r— s)ch

= Lo /0 e dU(s) U (1) (55)

C
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by using partial integration.
Next, for the second member of (52), let

k—1
me= eI (1),

f=—o0
Then
ii . reg — (k—1—f)e e, 1 =
\/Mkl-/() e"“dr fz_:ooe Jre(1) —./0 e drm;nk.

The time series 7, is a linear process of the form
U a‘(L)Vka

where {v = Jy_1.(1)} is a sequence of independent normal innovations, and a(L) =
Z]O'io a;L7, with a; = e’°. Thus, following the approach of Phillips and Solo (1992),
we can write

1

=
SN~—

S = (1)L§[:J (1)+o<
JM N = a meI k—1,c D

1 1 X 1
— T+ 0, [ —
1—60\/M'; b-1e(1) p(vM)

Then, as in (53) and (54) above, we obtain

M 1 -1
1
— Je_1..(1) = U(1 —l—c/ e(ls)cUsds=/e(15)chs.
57 2 eenel) > U e [ Ugas = )

The limit behavior of the second member of (52) is therefore

1 M g k-1 (be1-f) .1 1 1 (1-s)
— e’ “dr e\" e g (1 = / emdr> < > </ eV VU (s >
), 2 em) = (f =) \Us )

f=—o

- —% (/01 e<15>CdU(s)> .

Combining (52), (55) and (56) we obtain

\/LM?[: /0 Her)dr = %ec | /‘1 e 5°dU(s) — %U(l) - % < /O 1 e<15>CdU(s)>

0
1
_ _%U(l):—l/ dU(s). (57)

¢ Jo
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If we denote _[01 Hy, o(r)dr by (}, under the assumption of homogeneity, (; is a sta-
tionary process and, in a similar way to (57), the partial sum

b

1
ﬁ;% = Bc(t) = —EU(t)-

Thus
\/%é/ (k:j;r) Hyc(r)dr = ﬁé%/‘Hm(r)dr—FOp (%)
M
- X))o (w)
= ./0.1 sdB¢(s) = —% ./0.1 sdU (s). (58)

Thus, from (51), (57) and (58) we obtain
1 1 1 vi
D*l * — G*l_ F*l Ikt
m\/ﬁ zk: zt: Lk,tYk \/M Z m Z xk,t m

Jo Hielr
- \/_ZG /X’“ Hikelr)dr = \/_Z[()kir)ch()d]

1 /1
=[x,

C .

IO dU(s)
fo sdU(s)

in sequential asymptotics as (m, M — 00),_ . Further, in a straightforward way

seq

1 , 1
—§ § D—lxmxktp—l—»/ X(r) X (r)dr
n ’ 0

k t

In consequence, we have
vn 1 AR
n ’
YU DGR — — - D*l D*l D*l *
/%5 o) ( )9 SLRNE ) (m DY y)

_ _% <./O.1X(r)X(r)’dr> B <./O.1X(s) dU (s)) ,

giving the stated result.

7.10 Proof of Lemma 9

71/2/\* _ 1/2 * _ 1/2(

Y Jmr] T Y Jmr Y= 7) Tk, [mr]
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_ N 1 n, . _
= m 12 - L(W_PY),DD lxk,[mr]

Yk, mr) W m
= mil/QyZ,[mr] + Op(Mil/Q)
= Hk c(’/“).

i

[ |
7.11 Proof of Theorem 10

. Dokt y;:,tfluk,t
a = a+ P 2
>k Zt(yk,tfl)
(a=1)A =722 wk,t—lyz,tfl
>k 2t Why1)?
V=" 2k 2 (@hs — wk,t—l)?ng,tA
>k 2Ty 1)? '

Thus
1 1
Y (7 L )?)

1 mla—1) [ =)D (530, 6 (£ 50 F e 1 )|

7 B S [ @ )2
1[G D] [ 5 (& D Mo — o) Bt )]
3/2
M3/ Alj k [# Zt(@g t—l) }
\/% Dok (% p gfs,t—lukvt) 1 1

2 T (e L, 1))
Asm — oo

\/IZVI 2k <% 2 @};t,lum) N ﬁ >k ([ HiedBy + \g)
1
#5k (F Si-0)?) & S [ Hio(r)?

Thus, if we consider the adjusted estimator a* and take sequential limits as (m, M — 00) g4 5
we have

_ \/% 2k <% > ?/J?Huw - )\k)

VMm@t —a)
B3 (3 i)?)

+0,(1) = N(0,V,).
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In similar way, we obtain

Fa i 2 (5 T e~ M)
Y (o L))

VMm(at —a) = +0p(1) = N(0,—2¢).

7.12 Proof of Lemma 11
When ¢ =0,

n -1 n
1 1 1 z
—=D@HE-7) = |=Y D laD | =Y Dz
vn =) {n Tols ] {n * Vn

By definition,

@Z,t = Ykt — ﬁ'wm,
2: = Zs— ﬁliﬂs,
and thus
_I/QEF;LT] = n_l/QZ[*nT] - n_l/QW - V)IDD_lm[nr]
. . —1
~ U - {/ UX’} [/ XX’} X(r) = U(r).
|

7.13 Proof of Theorem 12

Since
a1+ >k Ztykt 1 Ukt n @_V)IZth(wk,t—$k,t—1)@k€,t71
Zth(ykt 1)? Zth(?ng,th ’
and
i 1) = ZeE Y0/ y) G 9D i S D A E L /]
nt Y (Z1/Vn)?
we get
@ —1) = JUdU - fUX'[[ XX'] ' [ XoU

Ju
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where Xo(r) = X'(r) = (0,1)) = PX(r) with
00
p=[10]

/XOQ:P/XQ:O,

ot -1 =L

Since

we obtain

giving the stated result. B

7.14 Proof of Theorem 13
By definition,

M m “Lry m
;y = [Z Z Acxk7tACx;g7t] Z Z Acmk,tAcyk,t]

k=1 t=1 Lk=1 t=1
M m 1l rm o om
= 7t Z Z Acy tAka t [Z Z Acxk,tuk,t] -

k=1 t=1 k=1 t=1

Thus,
1 - 1

\/IEN(ﬁ - 7) = [E Z N_lAcmk,tAcw;ﬁtN_l [% Z N_lAcwk,tuk,t]

. —1 .

N [ / Xc(r)Xc(r)'} / X.(r)dU(r),
where

N = diag[m 1, M), X.(r) = —c(1,r)".

Simply noting that X.(r) = —cX(r) gives the stated result for 7.

Suppose that ¢ < 0 and we estimate ¢ by ¢ = m(a — 1), as in Section 4. Then
€= c+ Op(M1/2). If we apply QD detrending to model (14), (15) and (16) based
on ¢, we get

Agykt = V' Davps + Aal - (59)
The OLS estimator of vy from (59) is

M m
Y, = [ZZA;UMAC%

-1

rM m
Z Z Aawk,tAEyk,t]

k=1 t=1 k=1 t=1
M m 17 rM om
e "}/—'— ZZAka tA xkt [ZZAka tAcyk t] .
—1t=1 1t=1
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Notice that
Aay?;t = upt — (C— C)m_lyZ,H,

and
1 -1 *
NG ZN Az 1 Ay 4
1
= ZN Amktukt— (c—c¢) ZN_I ZN A xkt
\/_
= —= ) N Agzpugy + Op(M 12,
\/ﬁ -
where

N = diag[1, M], Ny = diag[m 1,1], N = N|Ns.

It can be verified that the error terms coming from the preliminary estimation of ¢
are of smaller order of magnitude and

VAN =) = | [ Xty [

The limiting distribution of the trend coefficient vector 7; is then the same as that
of v, the estimator using the true local parameter.ll

8. Notation

—a.s. almost sure convergence - I

. , weak convergence
=4 distributional equivalence d 8
S . , [] integer part of
= definitional equality .
rAs  min(r,s)

Oy, 5,(1) tends to zero almost surely .

. .. = equivalence
—r convergence in probability op(1)  tends to zero in probabilit
Wi (r) standard Brownian motion V& P P Y

) . . . D i-diff
BM (w2) Brownian motion with variance w? Q quasi-ditierence
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