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Contributed Paper

Decision-support tools for dynamic management

Heather Welch ,1,2 ∗ Stephanie Brodie ,1,2 Michael G. Jacox,1,2,3 Steven J. Bograd ,1,2

and Elliott L. Hazen 1,2

1Institute of Marine Sciences, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 U.S.A.
2Southwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Suite 255A, 99 Pacific Street, Heritage
Harbor, Monterey, CA 93940 U.S.A.
3Earth System Research Laboratory, National Oceanic and Atmospheric Administration, 325 Broadway Street, Boulder, CO 80305
U.S.A.

Abstract: Spatial management is a valuable strategy to advance regional goals for nature conservation, economic
development, and human health. One challenge of spatial management is navigating the prioritization of multiple
features. This challenge becomes more pronounced in dynamic management scenarios, in which boundaries
are flexible in space and time in response to changing biological, environmental, or socioeconomic conditions.
To implement dynamic management, decision-support tools are needed to guide spatial prioritization as feature
distributions shift under changing conditions. Marxan is a widely applied decision-support tool designed for
static management scenarios, but its utility in dynamic management has not been evaluated. EcoCast is a new
decision-support tool developed explicitly for the dynamic management of multiple features, but it lacks some
of Marxan’s functionality. We used a hindcast analysis to compare the capacity of these 2 tools to prioritize 4
marine species in a dynamic management scenario for fisheries sustainability. We successfully configured Marxan
to operate dynamically on a daily time scale to resemble EcoCast. The relationship between EcoCast solutions and
the underlying species distributions was more linear and less noisy, whereas Marxan solutions had more contrast
between waters that were good and poor to fish. Neither decision-support tool clearly outperformed the other;
the appropriateness of each depends on management purpose, resource-manager preference, and technological
capacity of tool developers.

Keywords: climate variability, ecosystem management, fisheries bycatch, Marxan, prioritization, reserve design,
species distribution models

Herramientas de Apoyo para la Toma de Decisiones en el Manejo Dinámico

Resumen: El manejo espacial es una estrategia valiosa para llevar hacia adelante los objetivos regionales para la
conservación de la naturaleza, el desarrollo económico y la salud humana. Uno de los retos del manejo espacial
es la navegación a través de la priorización de múltiples caracteres. Este reto se vuelve más pronunciado dentro
de los escenarios de manejo dinámico, en los cuales los ĺımites son flexibles en el tiempo y en el espacio como
respuesta a las cambiantes condiciones biológicas, ambientales o socioeconómicas. Para implementar el manejo
dinámico, se necesitan herramientas de apoyo para la toma de decisiones para guiar a la priorización espacial
conforme la distribución de los caracteres se modifica bajo condiciones cambiantes. Marxan es una herramienta
de apoyo para la toma de decisiones utilizada ampliamente y diseñada para escenarios de manejo estático, pero
su utilidad para el manejo dinámico no ha sido evaluada. EcoCast es una nueva herramienta de apoyo para la
toma de decisiones desarrollada expĺıcitamente para el manejo dinámico de múltiples caracteres, pero carece
de algunas funcionalidades que tiene Marxan. Usamos un análisis de información retrospectiva para comparar la
capacidad de estas dos herramientas para priorizar a cuatro especies marinas en un escenario de manejo dinámico
con respecto a la sustentabilidad de las pesqueŕıas. Configuramos exitosamente la herramienta Marxan para que
operara dinámicamente con respecto a una escala diaria de tiempo y aśı se asemejara a EcoCast. La relación
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590 Decision-Support Tools

entre las soluciones de EcoCast y las distribuciones subyacentes de las especies fue más lineal y menos ruidosa,
mientras que las soluciones de Marxan tuvieron un mayor contraste entre las aguas que eran buenas y aquellas
que eran pobres para los peces. Ninguna de las dos herramientas de apoyo para la toma de decisiones tuvo un
mejor desempeño que la otra; la pertinencia de cada una depende del propósito del manejo, la preferencia del
administrador de los recursos y la capacidad tecnológica de quienes desarrollan la herramienta.

Palabras Clave: captura accesoria por pesqueŕıas, diseño de reservas, manejo de ecosistemas, Marxan, modelos
de distribución de especies, priorización, variabilidad climática
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Introduction

Spatial management strategies such as marine protected
areas and national parks have been successfully applied
to manage natural resources and disturbances (Margules
& Pressey 2000). To implement spatial management, de-
cisions must be made about which areas to prioritize
for protection (Pressey et al. 2007). These decisions be-
come more arduous when multiple features are man-
aged under the same plan, for example, resources such
as protected species and productive areas, and distur-
bances such as extractive operations and temperature
anomalies. To help navigate spatial trade-offs, a suite
of decision-support tools has been developed to allow
for systematic decision-making about the value of ar-
eas toward meeting management priorities, for example,
Marxan (Ball et al. 2009), C-Plan (Pressey et al. 2009),
and Zonation (Moilanen et al. 2009). Recently, dynamic
management—a subset of spatial management in which
boundaries are automatically updated in space and time
(Lewison et al. 2015)—has gained traction as a solu-
tion for managing features with changing distributions,
such as highly migratory species (Eveson et al. 2015).
To implement dynamic management, decision-support
tools are needed to continuously balance spatial trade-
offs as feature distributions shift under each new set of
conditions.

Dynamic management has been applied in atmo-
spheric (Sampson & Schrader 2000), marine (Hazen et al.
2017), and terrestrial (Quayle et al. 2004) ecosystems to
manage features that vary too quickly (days to years), and
over spatial scales that are too large (hundreds to thou-
sands of kilometers) to be accommodated by traditional
static management strategies. Operational dynamic man-

agement strategies function by acquiring data on current
or forecasted biological, environmental, and socioeco-
nomic conditions, then predicting and prioritizing target
features in real-time or forecasted conditions, and last
disseminating final products that communicate manage-
ment recommendations (Welch et al. 2019). This entire
process is automated to repeat at an appropriate temporal
frequency, for example, daily, weekly, or monthly. Al-
though static approaches require a 1-time prioritization of
features, dynamic approaches must repeatedly navigate
prioritization at each time step. Owing to the complexity
of this task, most dynamic management strategies to date
have focused on one target feature, for example, whales
(Hazen et al. 2017), hurricanes (Sampson & Schrader
2000), or wildfires (Quayle et al. 2004).

EcoCast was one of the first examples of an applied
multifeature dynamic management strategy (Hazen et al.
2018; Welch et al. 2019). Designed to improve the sus-
tainability of a swordfish fishery off the U.S. West Coast,
EcoCast aims to help fishers avoid bycatch of protected
species while maintaining swordfish (Xiphias gladius)
catch. Each day, EcoCast acquires the latest available
data on ocean conditions, predicts the distributions of
each species, and then prioritizes species using an alge-
braic algorithm to produce the final product, which is a
continuous fishing suitability map that presents waters
as relatively better and poorer to fish. Although other
examples of operational dynamic fisheries management
exist, they are often only applicable to single species
management (Howell et al. 2008; Hazen et al. 2017),
or require bycatch events to occur before management
actions are initiated (e.g., move-on rules and grid-based
closures) (Dunn et al. 2016). Hereafter, EcoCast refers
to the algebraic algorithm used to prioritize multiple
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features, as opposed to the specific dynamic management
scenario for the drift gillnet fishery.

The decision-support tool Marxan (Ball et al. 2009)
was explicitly developed to find solutions to the type of
multifeature trade-off problem EcoCast is trying to solve.
Marxan uses a simulated annealing algorithm to identify
complementary sets of areas that address management
priorities while minimizing costs. Although Marxan was
intended as a static management tool, its consideration
of complementarity and overall solution costs might con-
fer advantages over EcoCast when applied in dynamic
management scenarios, as EcoCast does not explicitly
incorporate these principles. Marxan has been frequently
applied in fisheries contexts (Klein et al. 2010; Metcalfe
et al. 2015), and has also been applied to find static solu-
tions that accommodate dynamic features like frontal sys-
tems, upwelling, and highly migratory species (Lombard
et al. 2007; Grantham et al. 2011; Roberson et al. 2017).
However, using static solutions to manage dynamic fea-
tures has drawbacks such as increased opportunity costs
and larger area requirements (Dunn et al. 2016; Hazen
et al. 2018), thus it is valuable to explore Marxan’s utility
as a decision-support tool for dynamic management.

By design, dynamic management strategies up-
date their boundaries regularly to adapt to changing
conditions. This built-in flexibility also allows dynamic
strategies to be responsive to changing management
priorities. Static management approaches require imple-
mentation phases to adjust to new priorities, whereas
dynamic schemes can adopt changing priorities without
requiring new management plans (Hazen et al. 2018).
EcoCast was designed to be responsive to changing man-
agement priorities, which could reflect recent bycatch
events, or new interaction risks as species shift in dis-
tribution. This responsiveness is achieved by adjusting
species weightings in the algebraic algorithm, which af-
fects the relative importance of each species in the final
product (e.g., species X is twice as important as species
Y). In Marxan managers can define targets for feature
protection, for example, to protect 20% of each species’
habitat, and these percentage targets could be updated as
management priorities change. However, it is important
to test tool performance under changing management
priorities to ensure intended outcomes are achieved.

With improving computational capacity and data avail-
ability, management scenarios can incorporate increas-
ing numbers of features. Static management scenarios
routinely include tens (Fernandes et al. 2005; Roberson
et al. 2017) to hundreds (Carroll et al. 2010; Welch &
McHenry 2018) of features. The incorporation of addi-
tional features likely incurs costs, which may be direct
monetary costs of implementation or indirect monetary
costs of larger area requirements and the displacement
of extractive operations. Incurred cost may also be mea-
sured in terms of efficiency, in which the inclusion of
additional features reduces the ability to manage any in-

dividual feature, compromising the overall performance
of the scenario and reducing return on investment (Laitila
& Moilanen 2012). As dynamic management expands to
explore multifeature prioritization, these costs and their
variability in time must be quantified.

We compared the performance of 2 decision-support
tools, EcoCast’s algebraic algorithm and the simulated
annealing algorithm underlying Marxan, to manage mul-
tiple marine species in a dynamic management scenario.
Our aims were to configure Marxan to operate dynam-
ically, evaluate the tools’ abilities to respond to chang-
ing management priorities, and quantify the tools’ effi-
ciency costs of managing additional species. Assessing
the performance of decision-support tools is a key step
in developing dynamic management strategies that can
accommodate climate variability and change.

Methods

Dynamic Management Scenario

The 2 decision-support tools were evaluated using a dy-
namic management scenario (see fig. 1 in Welch et al.
[2019] for a procedural flowchart of dynamic manage-
ment scenario development) designed to improve the
sustainability of a U.S. swordfish fishery that experiences
bycatch of protected leatherback turtles (Dermochelys
coriacea), blue sharks (Prionace glauca), and California
sea lions (Zalophus californianus) (Hazen et al. 2018).
The dynamic management scenario aimed to identify ar-
eas that are better and poorer to fish each day, based on
the distributions of swordfish and the bycatch species. To
estimate species’ distributions, boosted regression tree
models with a binomial (presence–absence) response
were built and validated for each of the 4 species, fol-
lowing the methods described in Brodie et al. (2018).
Environmental covariates were obtained from a Califor-
nia Current System configuration of the Regional Ocean
Modeling System with data assimilation (Neveu et al.
2016). Species data included fisheries observer data for
swordfish and blue sharks, and satellite-tracking data for
leatherback turtles, blue sharks, and sea lions (data de-
scribed in Hazen et al. [2018]).

For the purpose of this analysis, species distributions
were hindcast for 213 days in 3 periods that contained
the majority of the species data used to fit the mod-
els: October–November 1997 (µ = 16.1 °C), April 2003
(µ= 10.2 °C), and August–November 2005 (µ= 17.9 °C).
These periods represent a range of sea surface temper-
atures in the study region, used here as a surrogate
for ocean state (Supporting Information). For each day
in the hindcast period, the species distribution mod-
els were predicted over the day’s environmental covari-
ates to produce real-time habitat suitability maps ranging
from 1 to 0 (highest and lowest quality, respectively).
These daily habitats were then prioritized as specified
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by management priorities using the EcoCast and Marxan
decision-support tools (described below) to produce fish-
ing suitability maps for each day. Management priorities
for both tools were set using species weightings, which
were decimal values between −1 and +1. Weightings
for bycatch species were negative, and weightings for
swordfish were positive.

EcoCast Decision-Support Tool

EcoCast uses an algebraic algorithm to prioritize the
species habitat suitability maps. The habitat suitability
map for each species was multiplied by its weighting,
which determined each species’ relative contribution to
the final product. The absolute values of the weightings
summed to one, such that in a management scenario
with equal priority for 4 species, the 3 bycatch species
would each be weighted −0.25 and swordfish would
be weighted 0.25. The weighted habitat suitability maps
were summed to produce a final product showing waters
that were better and poorer to fish:

E = sp1 × w1 + sp2 × w2 + · · · + spN × wN , (1)

where E is the EcoCast output value, sp is the habitat
suitability map for each of N species to be considered for
management, and w is the respective weighting for each
species.

Marxan Decision-Support Tool

We developed a dynamic configuration of Marxan that
was responsive to changing management priorities and
produced final products with values that varied con-
tinuously from low (poorer to fish) to high (better to
fish) to align closely with the functionality of EcoCast.
Marxan was run using the R package Marxan (https://
github.com/jeffreyhanson/marxan), which is designed to
bring the entire Marxan workflow into R.

The daily species habitat suitability maps were in-
put as target features. For bycatch species, which need
to be protected from fishing, the raw habitat suitabil-
ity maps were used. For swordfish, which need to be
available for fishing, the habitat suitability maps were
subtracted from one such that the highest swordfish suit-
ability had a value of 0 and the lowest swordfish suitability
had a value of one. Swordfish were input as a target
feature as opposed to a cost in order to allow for a con-
sistent method of adjusting management priorities across
all species by changing the percentage targets for species
protection. To create planning units, the regular raster
grid (0.1° × 0.1°) of the habitat suitability maps was con-
verted into polygons. Planning-unit cost was the area of
each polygon, which was consistent across the domain.

Marxan takes as input the percentage of each target
feature to protect (i.e., the percentage of each species’
habitat to protect from fishing). The decimal species
weightings were converted into protection percentages

(e.g., a weighting of −0.25 for bycatch species translated
into 25% protection). The swordfish weightings were
subtracted from one, and applied to the inverted habitat
suitability surfaces (e.g., a weighting of 0.25 translated
into protecting 75% of the least suitable swordfish habi-
tat from fishing). A boundary length modifier of zero
was used to ensure Marxan was prioritizing achieving
weighting targets over solution compactness.

Marxan produces binary solutions in which planning
units are either protected or unprotected. To generate fi-
nal products with continuously varying fishing suitability,
Marxan was run 1000 times for each day to produce maps
of selection frequency in which planning units were val-
ued between zero and 1000 (unimportant and critically
important for meeting weighting targets, respectively).
Selection frequency was multiplied by −1 so that waters
that were better to fish had higher values (near 0) and
waters that were poorer to fish had lower values (near
–1000), consistent with the directionality of EcoCast.

Decision-Support Tool Comparison

The ability of the EcoCast and Marxan tools to respond to
changing species management priorities was compared
across 3 runs in which leatherback turtles and sword-
fish were weighted −0.3 and 0.7, −0.5 and 0.5, and
−0.7 and 0.3, respectively, in both tools. Efficiency costs
of managing additional species were evaluated between
single-species runs (leatherback turtles only), 2-species
runs (leatherback turtles and swordfish), 3-species runs
(leatherback turtles, swordfish, and blue shark), and 4-
species runs (leatherback turtles, swordfish, blue shark,
and sea lion). For the multispecies configurations of
EcoCast, the input species for each run were weighted
equally, and for Marxan, input species were weighted at
±0.5. For each run and each hindcast day (n = 213), the
EcoCast and Marxan algorithms were applied to prioritize
the species habitat suitability maps to produce daily final
products that indicated fishing suitability. Then, habitat
suitability values for each input species and output values
of fishing suitability from both tools were extracted at
3000 points distributed evenly in space and time across
the hindcast period. To allow for comparison between
EcoCast and Marxan, the output values for both were
rescaled from 0 to 1 to match the scale of species habitat
suitability.

Tool performance was evaluated based on the ex-
tracted relationships between habitat suitability for each
species (species inputs) and fishing suitability in the fi-
nal EcoCast and Marxan products (tool outputs). Rela-
tionships were evaluated within the scope of 3 man-
agement implications: predictability, interpretability, and
the strength of management recommendation (Table 1
& Fig. 1). Predictability, or the strength of relationships
between species inputs and tool outputs, was evaluated
using R2 values of generalized additive models (GAMs)
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Table 1. Management implications based on the relationship between species inputs and decision-support tool outputs.

Management
implication

Performance
metric∗ Definition Interpretation Optimal values

Predictability R2 (GAM) proportion of
variance
explained by the
model

strength of relationship
between tool outputs
and species inputs

high

Interpretability effective degrees
of freedom
(GAM)

number of values in
final model that
are free to vary

consistency of
relationship between
tool outputs and
species inputs

low

Strength of
management
recommendation

slope (LM) change in y for a
given change in x

change in tool output for
a given change in
species input

bycatch species:
negative and steep;
swordfish: positive
and steep

Strength of
management
recommendation

y intercept (LM) y value when x = 0 tool output for a species
input of 0

bycatch species and
swordfish close to
maximum and
minimum tool output
values, respectively

∗Performance metrics derived from both nonlinear (generalized additive models [GAMs]) and linear (LM) fits.

Figure 1. Two scenarios of potential relationships between species habitat suitability (species inputs) and fishing
suitability in final EcoCast and Marxan tool outputs: (a) an optimal scenario characterized by high predictability
(high R2, from generalized additive model [GAM]), high interpretability (low df from GAM), and strong
management recommendations (steep slopes and y intercepts close to maximum and minimum tool output
values from linear model [LM]) and (b) a problematic scenario characterized by low predictability (low R2 from
GAM), low interpretability (high df from GAM), and weaker management recommendations (flatter slopes and
moderate y intercepts far from potential maximum and minimum tool output values from LM). Data shown are
simulated for an example bycatch species (green) and a target species (black) (solid lines, nonlinear fits from
GAM; dotted lines, linear fits from LM).

(R package mgcv) fit between each tool output and each
species input. High predictability (high R2 values) gives
managers confidence that species habitat suitability is
strongly reflected in tool outputs. Interpretability, or the
consistency of the relationship between species inputs
and tool outputs, was evaluated using the effective de-
grees of freedom from the fitted GAM (Supporting Infor-
mation). High interpretability (low degrees of freedom)
means tool outputs responded in a consistent way to

changes in species inputs, facilitating achievement of ex-
pected management outcomes. The strength of manage-
ment recommendations, or the range of fishing suitability
in the final product, was evaluated using the slopes and
y-intercepts of linear regressions fit between each tool
output and each species input. Stronger management
recommendations (steeper slopes, extreme y-intercept
values) mean there is more contrast between waters that
are good and poor to fish, whereas lower ranges produce

Conservation Biology
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more ambiguity. Metrics from both nonlinear and linear
fits were used in tandem because optimal relationships
could be either nonlinear or linear.

All analyses were completed in R version 3.4.1. The
R functions for running both EcoCast and Marxan and
sample data are available at https://github.com/Heather-
Welch/Decision-support-tools-for-dynamic-management.

Results

Qualitative Comparison

The dynamic configuration of Marxan produced fishing
suitability maps that were spatially similar to those
produced by EcoCast (Fig. 2). Both tools identified
comparable waters to protect leatherback turtles from
fishing and to maintain for fishing swordfish (Figs. 2b
& 2c, maps 1 and 2). However, areas of overlapping

distributions for swordfish and bycatch species (e.g.,
north of 40˚N) were valued as neutral fishing suitability
by EcoCast because the opposing weightings canceled
out the contributions of each species. This did not
occur in Marxan, which explicitly prioritized areas
suitable for bycatch species and unsuitable for swordfish
(Figs. 2b & 2c, map 3). An animation of EcoCast and
Marxan outputs across the 213 hindcast days is available
from https://heatherwelch.shinyapps.io/welch_et_al_
algorithms/.

Responsiveness to Changing Management Priorities

Both tools were responsive to changing management pri-
orities, which were reflected in the species weightings
(Fig. 3). Slopes were always negative for bycatch species
and positive for swordfish, meaning that waters deemed
better to fish had lowest and highest leatherback turtle

Figure 2. Predicted species distributions and EcoCast and Marxan solutions for an example day (10 January
1997): (a) habitat suitability layers for leatherback turtle, swordfish, blue shark, and California sea lion; (b)
EcoCast outputs with equal weightings for each species; (c) Marxan outputs with ±0.5 weighting for each species.
From left to right, (b) and (c) show weighting runs for 1–4 species. Icons show which species were input into the
tools.
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Figure 3. Effect of changing management priorities (i.e., weighting) for leatherback turtles and swordfish in
EcoCast (top row) and Marxan (bottom row) tool outputs relative to species habitat suitability (weightings are
indicated by paired numbers, which are negative for leatherback turtles and positive for swordfish; curves,
generalized additive models fitted to each weighting run).

and swordfish suitability, respectively. Both tools were
affected by changing ocean state, indicated by sea sur-
face temperature. Relationships between species inputs
and tool outputs were markedly different between warm
and cold periods, though the difference was more pro-
nounced in Marxan than in EcoCast (Fig. 3). The effect of
ocean state was especially apparent in the relationship be-
tween Marxan and leatherback turtle habitat suitability,
where it was most pronounced at extreme leatherback
turtle weightings (−0.7). For EcoCast, changing species
weightings primarily affected R2 values; more extreme
weightings for a given species increased the R2 value
for that species (Supporting Information). For Marxan
changing weightings primarily affected the y-intercept;
the more extreme the weightings, the more extreme the

y-intercept (i.e., the y-intercept moved closer to y max
[1] for leatherback turtles and y min [0] for swordfish).

Efficiency Costs of Managing Additional Species

When moving from one to 4 managed species, R2 values
averaged across input species for EcoCast and Marxan
were reduced from 1.00 to 0.39 and 0.90 to 0.27, re-
spectively (Supporting Information). In EcoCast, species
are indirectly affected by the inclusion of species with
which they are correlated. For example, leatherback tur-
tles and swordfish had similar R2 values (0.49 and 0.53,
respectively) in the 2-species run. However when blue
sharks were added, which are positively correlated with
leatherback turtles (r = 0.63) (Supporting Information),

Conservation Biology
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Figure 4. Effect of managing 1–4 species on EcoCast and Marxan tool outputs. Curves show generalized additive
models fitted to each weighting run.

the swordfish R2 decreased to 0.20, and the leatherback
turtle R2 increased to 0.63. In this EcoCast example, pro-
tecting blue sharks effectively increases the protection of
leatherback turtles as well. When sea lions were added
in the 4-species run, the inverse management priorities
and inverse correlations between swordfish and sea li-
ons (r = −0.76) (Supporting Information) translated into
the 2 species having more combined contribution to
the final product, ultimately decreasing the protection
of leatherback turtles (an R2 change from 0.63 to 0.36).

For Marxan, interspecies correlations are handled
implicitly as the same habitat can satisfy management
priorities for multiple species. Therefore, R2 values for
input species were unchanged among the 2-, 3-, and
4-species runs (Supporting Information). Weighting
targets for blue sharks and sea lions were already met in
the 2-species run (leatherback turtle and swordfish) due
to the direct leatherback turtle–blue shark correlation
and the inverse swordfish–sea lion correlation. Both
tools displayed trends of decreasing spreads between
the mean bycatch species y-intercept and the swordfish
intercept and flattening mean slopes as additional species
were added. This trend persisted for EcoCast when the
2-, 3-, and 4-species runs were rescaled from 0 to 1 to
remove the effect of decreasing weighting magnitude
(Supporting Information). Mean slope was always steeper
and mean spread was always greater for Marxan across
all weighting runs (Fig. 4 & Supporting Information).

Discussion

Decision-support tools provide a method of system-
atically navigating spatial prioritization, increasing the

transparency and defensibility of management scenarios
(Margules & Pressey 2000). Although decision-support
tools are well established in the field of static manage-
ment, comparable tools for dynamic management have
not been explored, due in part to the infancy of the field.
Although EcoCast was explicitly designed as a fisheries
sustainability tool and Marxan is intended to be used
as a conservation planning tool, Marxan has additional
functionality that could confer advantages over EcoCast.
Relationships between species habitat suitability (species
input) and fishing suitability (tool output) were generally
more predictable and interpretable in EcoCast, whereas
Marxan produced stronger management recommenda-
tions. However, neither decision-support tool clearly out-
performed the other. Therefore, the appropriateness of
each tool depends on management purpose, resource
manager preference, and the technological capacity of
tool developers (Table 2).

For dynamic management scenarios that prioritize
responsiveness to changing management priorities,
EcoCast’s algebraic algorithm may be a more appropriate
tool. The range of useable species weightings was
reduced in Marxan due to the effects of ocean state and
species weightings on Marxan’s selection frequency.
Selection frequency is affected by the total amount of
habitat available and patchiness of available habitat (Car-
wardine et al. 2007), both of which can vary significantly
with ocean state. The effect of ocean state was most
pronounced in Marxan (Fig. 3 & Supporting Information),
especially under extreme species weightings and for
leatherback turtles, which have markedly different
distributions between warm and cold ocean states
(Benson et al. 2011). The relationship between selection
frequency and species inputs broke down when species
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Table 2. Summary of decision-support tools’ capabilities based on management purpose, manager preference, and technological capacity of tool
developers.

EcoCast Marxan

Management purpose
predictability high low
interpretability high low
strength of management recommendation weak strong
sensitivity to ocean state low high
sensitivity to interspecies correlations high low

Manager preference
weighting interpretation relative absolute
examples of applied use many few

Technological capacity of tool developers
run time (seconds) 3.2 156
complexity low high
flexibility low high

weightings were extreme (±0.9) or near 0. Under
extreme weighting scenarios, Marxan must protect
nearly all of a given species’ habitat, leading to a wide
range of habitat suitability values with high selection
frequencies. Conversely, when species weightings were
close to 0, there were many different possible solutions
to meet weighting targets, causing low selection fre-
quencies. The response of Marxan’s selection frequency
to ocean state and species weightings effectively caps
the range of weightings beyond which decreased
predictability and interpretability limit utility of the final
product.

For dynamic management scenarios that aim to man-
age many features, Marxan may be a more appropriate
tool, due to its increased ability to preserve contrast
between waters that are better and poorer to fish and
its implicit handling of interspecies correlations. The
relationships between species inputs and tool outputs
became compressed in EcoCast as more species were
added, leading to a reduced range of fishing suitability
and weaker management recommendations in the final
product (Fig. 4 & Supporting Information). In contrast,
Marxan, which operates on the principal of complemen-
tarity, preserved a larger range of fishing suitability as
species were added, ultimately producing stronger man-
agement recommendations. EcoCast was more sensitive
to interspecies correlations than Marxan, which could
produce unintended management outcomes as additional
species are managed. Not surprisingly, the performance
of both tools for any one species was compromised as
more species were added. Recently, efforts to manage
biodiversity have moved away from single-species ap-
proaches toward holistic approaches that consider the
interdependence of ecosystem components. Although
this shift has many positive aspects, cautionary tales from
disciplines as diverse as fisheries (Vinther et al. 2004),
ESA listed species recovery (Clark & Harvey 2002), and
conservation planning (Laitila & Moilanen 2012) indicate
there may be a point of diminishing returns, beyond

which the inclusion of additional features compromises
management outcomes.

Resource manager preference will also affect decision-
support tool selection. In Marxan management priorities
are interpreted absolutely, such that managers can ex-
plicitly state how much of each species habitat is pro-
tected or maintained for extractive uses. In the EcoCast
algorithm, the management priorities reflected in species
weightings are interpreted relatively, such that managers
must decide how much each species is prioritized in
relation to other species. The EcoCast algorithm’s rel-
ative interpretation of management priorities requires
adjustments as new species are added because the ab-
solute values of the species weightings sum to one. In
contrast, management priorities can remain unchanged
in Marxan as species are incrementally added, facilitating
the uptake of new species data as it becomes available.
Explicit criteria for setting meaningful management pri-
orities are well explored in the Marxan literature (e.g.,
Pressey et al. 2015). Some criteria are only relevant to
Marxan’s absolute interpretation of management priori-
ties; however, other criteria could be leveraged to inform
EcoCast’s relative interpretation of management priori-
ties, such as scaling priorities relative to feature rarity,
decline, or threat (Lieberknecht et al. 2010). The utility
of setting relative versus absolute management priorities
will depend on manager preference and their comfort
interpreting the parameterization and outputs of different
tools.

Resource managers may favor Marxan for its well-
established track record in applied management. Marxan
is the most widely applied decision-support tool for spa-
tial prioritization and has been used to develop a variety
of operational management scenarios such as integrated
land-sea planning, terrestrial and marine protected ar-
eas, and conservation corridors (Fernandes et al. 2005;
Smith et al. 2008; Adams et al. 2017). In contrast, the
EcoCast algorithm is relatively new and has only one
example of applied use (Hazen et al. 2018). Established
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practices frequently have significant inertia, and resource
managers may prefer the Marxan algorithm for its greater
familiarity.

Last, the technological capacity of tool developers will
affect decision-support tool selection. The EcoCast algo-
rithm is computationally simple, but this simplicity comes
at a cost of reduced flexibility. Conversely, the Marxan
algorithm is more complex to run, yet it has much greater
flexibility. In Marxan tool developers can adjust parame-
ters that control the cost of planning units, the penalties
for missing weighting targets, and the compactness of
solutions, which were not explored here. Run time may
affect tool selection, which is greatly minimized in Eco-
Cast (in our tests, 3.2 s per day to find a solution for a
4-species run vs. 156 seconds in Marxan).

Other decision-support tools that were developed for
static applications, such as Zonation (Moilanen et al.
2009) and C-Plan (Pressey et al. 2009), could be explored
in dynamic capacities and might provide functionalities
beyond those offered by Marxan or EcoCast. Static con-
servation planning exercises that include dynamic fea-
tures must first simplify feature variability, for example,
by identifying persistent critical habitat areas such as
breeding grounds (Game et al. 2009), or finding features’
average distributions across time (Lombard et al. 2007;
Grantham et al. 2011). However, these simplified repre-
sentations can result in significant losses of information
on feature variability. Applying the EcoCast algorithm or
the dynamic configuration of Marxan in these scenarios
can preserve variability by allowing scales of management
to align with scales of feature variability, as opposed to
forcing scales of feature variability to align with scales of
management.
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