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Envisioning migration: Mathematics in both experimental
analysis and modeling of cell behavior

Elizabeth R. Zhang, Lani F. Wu, and Steven J. Altschuler
Green Center for Systems Biology, Department of Pharmacology, Simmons Cancer Center,
University of Texas Southwestern Medical Center, Dallas TX 75390, USA

Abstract

The complex nature of cell migration highlights the power and challenges of applying
mathematics to biological studies. Mathematics may be used to create model equations that
recapitulate migration, which can predict phenomena not easily uncovered by experiments or
intuition alone. Alternatively, mathematics may be applied to interpreting complex data sets with
better resolution—potentially empowering scientists to discern subtle patterns amid the noise and
heterogeneity typical of migrating cells. Iteration between these two methods is necessary in order
to reveal connections within the cell migration signaling network, as well as to understand the
behavior that arises from those connections. Here, we review recent quantitative analysis and
mathematical modeling approaches to the cell migration problem.

In parallel rather than in series: mathematics in experimental biological

methods

Complex biochemical networks responsible for the process of cell migration in different cell
types have been identified through traditional biological assays, such as Western blots and
morphological studies. From the vantage point of this tremendous body of work, a current
challenge is to understand how these many signaling components receive and coordinate
signals to produce productive migration. Mathematics has often been viewed as an endpoint
for experimental studies: experimentally measured biochemical constants for known
interactions are incorporated into equations, which can then be tested for their ability to
recapitulate observed behavior. Recent advances have, however, allowed the emergence of a
complementary approach: mathematics may be used to enhance experimental resolution and
analysis (Figure 1). While traditional biological assays will continue to reveal important
facets of cell migration, cell migration is also a particularly suitable subject for
mathematically fine-tuned experimental methods, for reasons which we discuss below.

Spatial coordination

The process of cell migration begins with polarization, in which cells generate a front and a
back in order to achieve movement in one direction [1-4]. This spatial segregation of
signaling components is critical for migration, but is difficult to analyze; traditional methods
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such as Western blots [5], light scattering [6], and standard flow cytometry cannot provide
spatial information. Recent complementary approaches allow quantitative characterization
of this spatial information. Machacek et al. performed cross-correlative analyses to track the
activity of GTPases with respect to the protruding edge of a cell [7]; this allowed
measurement of the distance from the cell edge at which GTPase activity peaked. Welf et
al.’s cross-correlative analysis of PI3K signaling [8] showed that PI3K reinforces rather than
produces protrusions in fibroblasts, while Galic et al. performed spatial cross-correlation
analysis on cells adhered to surfaces patterned with nanocones to demonstrate that N-BAR
proteins are directly recruited to the plasma membrane by membrane-curving forces [9].
Analysis of the spatial distributions of cytoskeletal readouts of polarizing primary
neutrophils identified differential paths of information flow [10] and the insulation of the
back signaling from the front signaling by the microtubules [11]. Quantifying spatial
parameters allows trends in probe localization to be not only identified, but also tested for
statistical significance, thus opening a new arena of study.

Meanwhile, clever image analysis has further been used to extract much more quantitative
spatial information from the cell shape itself. Driscoll et al. used kymographs to study the
evolution of cell shape, and found for Dictyostelium discoideum that cells change shape via
traveling curvature waves, possibly due to actomyosin dynamics [12]. Barnhart et al. [13]
tracked contours and created edge velocity maps of keratocytes on substrates of different
adhesion strengths. They found that keratocyte speed and shape have a biphasic dependence
on adhesion strength, and that adhesion strength (without long-term adaptation) is sufficient
for switching the migration behavior of cells. These authors’ methods transform cell shape
itself into a rich resource for the study of cell migration.

Timescales and cell-to-cell asynchrony

An additional difficulty in studying cell migration is achieving adequate temporal resolution,
as the characteristic timescales of cell migration are very short. For example, neutrophils can
rapidly transform extracellular cues into protrusive changes, creating actin ruffles within 20
seconds of initial chemoattractant exposure [14], and undergoing shape oscillations with a
period of roughly 8 seconds [15]. This is in stark contrast to studies of other periodic
behavior such as circadian clocks or stages of the cell cycle, where timescales may be on the
order of hours to days. An offset of seconds between two migrating cells can be equivalent
to a half-period shift. Readouts across a population of cells will thus be heterogeneous and
hard to interpret in absolute time. Further, unlike cell cycle studies, in which cells may be
synchronized with methods such as serum starvation, the protrusion-retraction cycles of
separately migrating cells are not synchronized with one another. Traditional biochemical
assays may demonstrate whether one protein activates, inhibits, or does not affect another
protein. However, to further explore the signaling behavior and functional implications of a
biochemical circuit, the temporal coordination of the components must be studied. The study
of migrating cells thus requires high temporal resolution and resourceful computational
methods that circumvent the difficulty of interpretation caused by cell-to-cell asynchrony
within a population.

Recent studies have addressed the issue of asynchrony with an elegant computational
multiplexing approach: the activity of a probe and the edge movement of the membrane are
read out from the same cell, and the relative time and distance between probe activation and
cell edge movement is recorded. This approach thus allows one readout from many
individual cells to be pooled, and pools may be compared for multiple probes to uncover the
coordination of the proteins represented by the probes. Using this approach, Machacek et al.
uncovered the relative timing of GTPases within protrusions of fibroblasts [7], Tkachenko et
al. demonstrated RhoGDI’s role in the temporal regulation of RhoA [16], and Ji et al.
predicted intracellular forces from the F-actin network [17]. Meanwhile, Marco et al. [18]
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developed a math model to characterize the relations of several parameters of cell
polarization, and then designed an experiment that tied in closely with their model. This
model-directed experiment allowed extraction of different parameters, which are
experimentally difficult to measure independently, and preserved context by allowing
simultaneous measurement from the same timepoints and individual cells. Specialized
application of mathematics can permit both computational alignment of asynchronous
events and synchronous extraction of parameters, and is thus especially powerful for the
study of cell migration.

Ab initio ad finem: the spectrum of uses for math modeling

Mathematical models vary widely in their levels of abstraction and biological detail [19]. At
the one extreme are conceptual models, which may seek to identify minimal circuits and ab
fnitio mechanisms underlying observed phenomena. At the other extreme are data-driven
models, which incorporate experimental data in order to ask whether the resultant equations
recapitulate, ad finem, experimentally observed behavior. What kind of models do we need
to build to learn more about a behavior as complex as cell migration? Here, we argue that
the path toward greater understanding of cell migration is not a straight shot through
increasingly mechanistic territory.

Conceptual modeling is commonly used when a circuit is poorly characterized. However,
conceptual models can also be applied to well characterized systems to replace the
biological circuit’s details with simpler functional units—much like the creation of Thévenin
equivalent circuits [20] for electronic circuits. Meanwhile, data-driven models are often
applied to well-known systems to identify missing pieces. For example, in the case of
bacterial chemotaxis, ultrasensitivity of the system could not be explained by known
components, and data-driven modeling was used to demonstrate that the motor itself adapts
at the level of switch component subunit clusters [21]. However, a data-driven approach
may also be used to guide our knowledge of which pieces of a poorly-characterized system
are most important to its operation. Iteration between conceptual and data-driven models can
identify design principles and constraints which may guide future experimental and
modeling endeavors in cell migration (Figure 1).

Bird's eye view: conceptual modeling

Conceptual models can be used to capture the essence of what is currently known about a
biological system. For instance, Ofer et al. [22] studied the simple migration system of
keratocyte fragments, which lack cell bodies. The authors created force-balance equations to
demonstrate the emergence of global shape and speed from underlying actin dynamics and
membrane tension. This study elegantly highlighted the minimum requirements for
coordinating retraction of the rear with protrusion at the front. Similarly, Neilson et al. [23]
[24] studied pseudopod formation in Dictyostelium discoideum. The authors modified
Meinhardt’s discrete model of chemotactic orientation [25] to demonstrate that a cyclical
internal process can be used to recapitulate both pseudopod formation and orientation bias.
This simple conceptual model suggested a pseudopod-centered mechanism of chemotaxis.
Conceptual models can identify minimal circuits, and thus reveal general principles at the
heart of more complex circuits.

Conceptual models for zooming out and narrowing in

Conceptual modeling can also be used to survey minimal circuits capable of creating
observed phenomena, which in turn can guide future studies—that is, zooming out can allow
the field to narrow in. For example, perfect or near-perfect adaptation enables cells to
respond to the gradient, rather than the average value, of a signal [26]. Ma et al. explored
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this property not by modeling the known signaling components of these networks, but by
generalizing chemotactic and other biological networks into abstract three-node networks,
and performing a topology search over all of the possible relations of the three nodes [27].
This search revealed that only two network designs, the negative feedback loop and the
incoherent feed forward loop, are capable of achieving perfect adaptation.

This general finding may then guide future mechanistic studies of cell migration. A recent
cross-correlative study of GTPases, actin, phosphoinositides, and edge velocity by Kunida et
al. indicated adaptation of Racl activity in response to PI3K inhibition [28]. To search for a
source of this behavior, Kunida et al. looked to the abstract, conceptual search performed by
Ma et al. for networks capable of adaptation. Of the two candidate topologies that Ma et al.
identified, the negative feedback topology recapitulated Kunida et al.’s experimental
findings. Kunida et al. thus searched for a negative regulator of actin and Racl, and found
that myosin light chain kinase acts as a node in the causative negative feedback loop for the
observed adaptation. Although negative feedback between frontness signals such as Racl
and backness signals such as myosin light chain kinase has long been established in
migrating cells [5], the relevance of such feedback to adaptation is an unexplored area. Thus,
mathematical modeling and constraints from an abstract topology search were used in this
mechanistic study to find a new behavioral implication of a known biochemical link. More
recent topology searches for networks capable of polarization [1] or for networks capable of
front-back buffering [11] may provide similar guidance for future mechanistic efforts.

Data-driven models as predictors

Data-driven models may be used not only as final tests of understanding, but also as ways of
picking up /n silico where observation is limited /n vitro. For instance, Shibata et al. [29]
created kinetic equations to describe the reactions of phosphatidylinositol lipids in
chemotactic cells. Their simulations and experiments both showed two types of behaviors
for the localization of PtdIns(3,4,5)P3: traveling waves and the formation of transient
domains. The authors explored ranges of variables in their simulations in a systematic
manner that is not possible /n vitro, and found that the traveling waves are induced by an
instability of the stationary uniform state, while stochastic noise was important for transient
domain-formation.

Similarly, Marée et al. [30] created a data-driven model to explore the effects of both
biophysical and chemical feedback on cell polarization and motility. Their model suggested
that cell shape is not just a downstream readout, but also feeds back by directly affecting the
internal distribution of GTPases. Meanwhile, their model allowed them to test the effect of
different values of phosphoinositide feedback; this allowed the authors to note that an
intermediate level of phosphoinositide feedback creates normal migration. Lin et al. [31]
expanded this model and predicted that a gradient of Rac activation can create a strong cell
polarization response, that the timing of this polarization depended strongly on the gradient
of Rac, and that antagonism between Rac and Rho could amplify polarization; /in vitro
creation of such a gradient with a rapamycin stimulation system confirmed their /n silico
prediction.

Finally, data-driven models have been used to predict not only outcomes, but also new
hypotheses altogether. Wu et al. [32] created data-driven decision-tree models to analyze a
‘cue-signal-response’ data set from multipotent stromal cells. Similar to their work in
fibroblasts [33, 34], the modeling classified responses to combinations of signals and
conditions. Their decision trees revealed a non-intuitive prediction that decreasing ERK
would promote cell migration, which they then confirmed in vitro.
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Modeling new realms

How will we begin to combine the many models of different subprocesses of migration into
a multiscale model? As the field progresses, previously coarse-grained models are becoming
finer-grained as experimental findings provide more detailed metrics [4]. In addition, the
field is growing wider with new models of subprocesses of migration that were not built in
original models, including: social migration [35, 36], integrin-clustering [37], interactions
with the extracellular matrix [38], haptotaxis [39, 40], and N-BAR domain proteins [41].
Iteration between conceptual and data-driven modeling will be required to navigate the
future challenge of weaving together these subprocesses (some of which will be dependent
on others).

Outlook

Cell migration is a multifaceted process, many pieces of which remain poorly elucidated.
While the utility of mathematics in biology is often thought to be the creation of detailed
models, the path to the elusive end-to-end, whole-cell model is not a straight line through
increasingly mechanistic territory. Instead, the path to this distant goal requires feedback
between experimental analysis, conceptual modeling, and data-driven modeling. Beyond the
power of testing experimentally-derived models, mathematics may be incorporated
throughout the iterative cycle of experiment and theory: to increase the resolution with
which behaviors are observed and to predictively associate behaviors and networks.
Importantly, these applications of mathematics may not only push the field closer to a
whole-cell understanding of migration, but also reveal general principles utilized in cell
migration and perhaps across many other cell signaling processes.
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Figurel.

Envisioning migration. Mathematically fine-tuned experimental analysis enhances the
resolution with which behaviors can be observed, while mathematical models provide
guidance and prediction of behaviors and networks.
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