
Lawrence Berkeley National Laboratory
LBL Publications

Title
Rapid generation of optimal generalized Monkhorst-Pack grids

Permalink
https://escholarship.org/uc/item/87r651ht

Authors
Wang, Yunzhe
Wisesa, Pandu
Balasubramanian, Adarsh
et al.

Publication Date
2021-02-01

DOI
10.1016/j.commatsci.2020.110100

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/87r651ht
https://escholarship.org/uc/item/87r651ht#author
https://escholarship.org
http://www.cdlib.org/

 Rapid Generation of Optimal Generalized Monkhorst-

Pack Grids

Yunzhe Wang1, Pandu Wisesa1, Adarsh Balasubramanian1, Shyam Dwaraknath2 and Tim Mueller1,*

1 Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland

21218, USA

2 Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA

Keywords: Brillouin zone, k-points, density functional theory, crystalline materials, symmetry-

preserving superlattices

Abstract

Computational modeling of the properties of crystalline materials has become an increasingly important

aspect of materials research, consuming hundreds of millions of CPU-hours at scientific computing

centers around the world each year, if not more. A routine operation in such calculations is the

evaluation of integrals over the Brillouin zone. We have previously demonstrated that performing such

integrals using generalized Monkhorst-Pack k-point grids can roughly double the speed of these

calculations relative to the widely-used traditional Monkhorst-Pack grids. However the generation of

optimal generalized Monkhorst-Pack grids is not implemented in most software packages due to the

computational cost and difficulty of identifying the best grids. To address this problem, we present new

algorithms that allow rapid generation of optimal generalized Monkhorst-Pack grids on the fly. We

demonstrate that the grids generated by these algorithms are on average significantly more efficient than

those generated using existing algorithms across a range of grid densities. For grids that correspond to a

real-space supercell with at least 50 angstroms between lattice points, which is sufficient to converge

density functional theory calculations within 1 meV/atom for nearly all materials, our algorithm finds

optimized grids in an average of 0.19 seconds on a single processing core. To facilitate the widespread

adoption of this approach, we present new open-source tools including a library designed for integration

with third-party software packages.

Keywords:

Brillouin zone, k-points, density functional theory, crystalline materials, symmetry-preserving

superlattice

 3

1. Introduction

Computational materials research has become increasingly vital in probing the properties of

crystalline materials, especially in screening materials at a large scale to accelerate material

discoveries for a wide range of applications. A routine operation for such calculations across a

variety of computational methods is the evaluation of integrals over the Brillouin zone, which

can be approximated by discretely sampling the Brillouin Zone at a set of points known as k-

points. Many popular computational materials simulation packages generate k-points using the

traditional Monkhorst-Pack scheme,1 which creates regular k-point grids with lattice vectors that

are integer fractions of a particular set of reciprocal lattice vectors. We have demonstrated in our

previous work that the number of symmetrically irreducible k-points, and hence the

computational cost of most methods that rely on k-point sampling, can be reduced by roughly a

factor of two by generalizing the Monkhorst Pack scheme so that the grids do not need to be

aligned with a particular set of reciprocal lattice vectors and selecting the optimal generalized

grid.2 The benefits of using generalized grids can be understood by considering that the set of

generalized k-point grids is a superset of traditional Monkhorst Pack grids, providing far more

options for selecting the optimal grid. Other researchers have since found similar results.3, 4

Calculating the properties of crystalline materials consumes hundreds of millions of CPU-

hours at supercomputing centers around the world each year, if not much more. (A single high-

throughput project, the Materials Project, spends more than 100 million CPU hours per year

calculating the properties of crystalline materials.) Given that modern high-performance

computing resources cost about US$ 0.0255 per CPU hour1 or more,5 we conservatively estimate

1 The CPU price is the latest listed value for the standard AWS machine type a1.medium with
2GB memory.

 4

that the use of generalized Monkhorst Pack grids in place of traditional grids has the potential to

save researchers millions of U.S. dollars per year in computing costs.

Some of the ideas behind the generalized k-point grids had been proposed by Froyen and

Moreno and Soler decades ago,1, 6 but they have not been widely adopted primarily due to the

computational challenge of identifying the best generalized grid for a given calculation. The

main challenge is that the number of possible generalized k-point grids grows rapidly with the

number of k-points in the grid (Section 2 of the Supplementary Information), making it difficult

to identify which grid is most efficient.2, 7 For example, there are 54,156,102 regular grids that

contain 4,000 k-points, a typical density for calculations on elemental metals. Identifying the

optimal grid requires identifying which among these candidates is expected to provide a

sufficiently accurate estimate of the integral with the fewest symmetrically irreducible k-points.

The problem is made more challenging by the fact that it is generally necessary to search over

many different k-point densities to find the optimal grid.

In our previous work we addressed these problems by creating a free, internet-accessible k-

point grid server, backed by a database of pre-calculated generalized grids, that rapidly returns an

efficient grid (typically the most efficient grid) for a given calculation.2 To date, this server has

delivered more than half a million grids to users outside our research group. In the years since

our previous work was published there has been increasing interest in the generation and use of

generalized k-point grids4, 8-28 and how they may be used in popular software packages.28 Yet

despite the increasing interest in the use of regularized grids, most common software packages

do not yet implement an efficient method for identifying highly efficient generalized grids, due

largely to the lack of publicly available algorithms and tools for doing so.

 5

To enable more widespread use of generalized Monkhorst-Pack k-point grids and fully realize

their potential for accelerating computational materials research, we have developed an open-

source library for grid generation, kpLib, that is designed for integration with existing software

packages without significantly increasing the size of their software distribution. This library is

based on novel algorithms, described in this manuscript, that greatly accelerate grid generation.

These algorithms include a method for significantly reducing the number of candidate

superlattices to be evaluated by transforming the problem from an enumeration of 3D

superlattices to an enumeration 2D superlattices with a finite set of allowed stackings. We have

also developed an open-source standalone tool for generalized k-point grid generation, the K-

Point Grid Generator. This tool has the same functionality as the K-Point Grid Server, but it can

be used on computing nodes that do not have network access to the K-Point Grid Server.

Additional algorithms for the K-Point Grid Generator and its implementation are described in

detail in section 5 and section 6.2 of the supplementary information.

To illustrate the performance of kpLib, we present benchmarks on structures randomly

selected from the Inorganic Crystal Structure Database.29 Our benchmarks demonstrate that at a

grid density sufficient to converge calculated energies on nearly all crystalline materials within 1

meV / atom, kpLib identifies the optimal grid in less than half a second on average, and in under

five seconds for grids that are eight times as dense. We further demonstrate that on average our

algorithm finds grids with significantly fewer irreducible k-points than an alternative algorithm

for generating generalized Monkhorst-Pack grids recently developed by Hart and co-workers.30,

31

In the following sections, a detailed explanation of the new algorithms is provided, and the

implementation of kpLib is briefly discussed. Various benchmarks of the speed of the algorithms

 6

and quality of the resulting grids are then provided. Additional comparisons between kpLib and

the K-Point Grid Generator, along with detailed descriptions of other algorithms used by these

software packages, are provided in the supplementary information.

2. Algorithms

2.1 Background and notation

Monkhorst-Pack grids are used to approximate the value of an integral over the Brillouin zone

by sampling reciprocal space on a regular grid of k-points, where the coordinates of the k-points

are given by

31 2
1 2 3

1 2 3

1 1 2 2 3 3

,

0 1, 0 1, 0 1

nn n

m m m

m m mn n n

+ + +

= =

=

… … …− = − −

b b sk b
 (1)

where 1m , 2m , and 3m are positive integers, 1b , 2b and 3b are reciprocal lattice vectors, and s

represents a shift vector that moves the grid away from the origin (known as the Γ point in

reciprocal space). There exists a mapping between each regular k-point grid and a real-space

superlattice that defines the Born-von Karman boundary conditions for the periodicity of the

wave functions.32, 33 The superlattice corresponding to the k-point grid defined by equation (1) is

given by

 ()1 2 3 1 2 3, , (, ,)
T T=g g g M a a a (2)

where 1a , 2a , and 3a represent the real-space primitive lattice vectors, 1g , 2g and 3g represent

the lattice vectors of the superlattice, and the transformation matrix M is equal to

 7

1

2

3

0 0

0 0

0 0

m

m

m

 =

M . (3)

The reciprocal primitive lattice vectors share an analogous relationship with those of the

reciprocal superlattice. The reciprocal lattice vectors of a direct lattice are calculated by

 [] [] 1

1 2 3 1 2 3, , , ,
T −=b b b a a a (4)

where the vectors share the same definition as in equations (1) and (2). Similarly, the primitive

reciprocal lattice vectors of the superlattice can be obtained by

 [] [] 1

1 2 3 1 2 3, , , ,
T −=d d d g g g (5)

where 1d , 2d , and 3d are the reciprocal lattice vectors corresponding to the direct superlattice.

Substituting equations (4) and (5) into equation (2), the following relationship can be derived:

 [] []1 2 3 1 2 3, , , ,
T TT=b b b M d d d . (6)

The matrix multiplication order implies that the row vectors of the matrix TM contain the

coordinates of the vectors { }1 2 3, ,b b b in the basis of { }1 2 3, ,d d d .

In terms of the matrix M, equation (1) can be written as

() ()

()() ()
()[]

1

1

1 2 3 2 1 2 3

3

1

1 2 3 1 2 3

1 2 3 1 2 3

0 0

, , 0 0 , ,

0 0

, , , ,

, , , ,

T

T

T T

T

m

n n n m

m

n n n

n n n

−

−

 = +

= +

= +

k b b b s

M b b b s

d d d s

 (7)

Therefore, the set of vectors { }1 2 3, ,d d d are a generating basis of the k-point grid. As shown in

equation (7), the traditional Monkhorst-Pack scheme uses a diagonal matrix M , which is

 8

equivalent to the constraint that the k-point grids are aligned with the reciprocal lattice vectors.

However Froyen has pointed out that this constraint is not necessary,6 and we have previously

demonstrated that much more efficient grids can be generated if the Monkhorst-Pack approach is

generalized by relaxing this requirement.2 The resulting generalized k-point grids, as shown by

Moreno and Soler, can always be represented as standard Monkhorst-Pack grids provided a

suitable set of reciprocal lattice vectors are chosen.7 Mathematically, this is equivalent to

perform a diagonal decomposition on the integer matrix M by unimodular matrices

 1−=M UDU (8)

and transforming the reciprocal lattice vectors to an equivalent set by plugging it into equation

(6):

[] []
[] []

[] []

1

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

, , () , ,

(, ,) (, ,)

, , , ,

T TT

T TT T

T T

−=

=

′ ′ ′ ′= ′ ′

b b b UDU d d d

U b b b D U d d d

b b b D d d d

 (9)

where 1′b , 2′b , and 3′b are the reciprocal lattice vectors that diagonalize the generating matrix.

Thus generalized Monkhorst Pack k-point grids can be used for all of the same types of

calculations that traditional Monkhorst-Pack grids are used for.

Equations (2) and (7) demonstrate that the search for optimal generalized k-point grids can be

accomplished by an iteration over real-space superlattices, specified by the matrix M, and shift

vectors, given by the vector s. Since the quality of k-point grids are determined by the number

of symmetrically irreducible k-points, all symmetries of structures should be preserved in the

grids, which transfers to the requirements that the corresponding superlattices must also be

symmetry-preserving. In the following discussion, we use the symbols latticer , iN , and TN to

represent, respectively, the minimum spacing between points on the a superlattice, the number of

 9

symmetrically irreducible k-points, and the number of total k-points in the Brillouin zone. TN is

also then the number of primitive cells in a unit cell of the corresponding real-space superlattice

(aka the “size” of the superlattice), and is given by the absolute value of the determinant of M.

2.2 A New Algorithm for Dynamically Generating Generalized K-Point Grids

Although the benefits of using generalized k-point grids are well-established,2-4, 24 they have

not yet been widely implemented in common software packages due primarily to the challenge in

implementing an algorithm for efficiently generating them. To address this problem and facilitate

the generation of generalized k-point grids in common materials software packages, we have

developed a novel algorithm for rapidly and dynamically identifying a highly efficient

generalized k-point grid. Unlike our previous approach, this algorithm does not make use of a

database, allowing us to implement it in a lightweight, open-source library designed to be

integrated with third-party software packages. Although the lack of a database reduces the speed

of grid generation (see section 4.1), we expect the optimized dynamic generation algorithm we

present here to be sufficiently fast for most practical applications. We have also released a

standalone open-source tool that provides additional functionality and makes use of a database,

using algorithms described in section 3 of the supporting information.

The dynamic grid generation method starts with three parameters describing the input

structure:

1. The real-space primitive lattice vectors, { }1 2 3, ,a a a .

2. The real-space conventional lattice vectors, { }1 2 3, ,c c c , where at least one of the vectors

is orthogonal to the other two for all but triclinic systems.

 10

3. The group of point symmetry operations, { }R , that the k-point grid (and real-space

superlattice) should preserve. These point symmetry operations can be generated by

removing translation from all the operations in the real-space crystallographic space

group, resulting in a symmorphic space group. If the system has time reversal symmetry,

then the reciprocal-space band structure will have inversion symmetry even if the real-

space crystal does not. In this case, inversion and any additional operators required to

complete the group should be added if they are not already present.

The algorithm then searches for the k-point grid that minimizes iN while satisfying the

following two constraints:

1. latticer for the corresponding superlattice not smaller than minr (a value provided by the

user),

2. TN is greater than or equal to minN (another value provided by the user).

We start by determining a lower bound for TN , which we call, lowerN . It is the larger value of

min
N and the minimum size that any superlattice can have with while satisfying lattice min

rr ≥ :

3

max ,
2

2

min
lower min

p

N
r

N
V

=

 (10)

where pV is the volume of the primitive cell,
32

2 min
r is the volume of a unit cell in a face-

centered cubic (fcc) lattice for which the distance between lattice points is minr , x is the floor

operation that returns the largest integer no greater than the argument x. Equation (10) can be

 11

justified by considering that fcc structures maximize the packing density for rigid spheres34 and

thus
32

2 min
r is the minimum unit cell volume for a superlattice for which lattice

r is at least min
r .

The search for optimal superlattices starts with lattices of size lowerN and generates symmetry-

preserving superlattices using an algorithm to be introduced in section 0. For each symmetry-

preserving superlattice, the scheme checks whether latticer is smaller than minr and discards it if it

is. When the first superlattice for which minlatticer r≥ is found, its corresponding k-point grid is

kept as the initial “best grid”, and the scheme can determine an upper limit for the search, upperN :

 upper symiN NN ×= (11)

where symN is the number of unique point symmetry operations for the system, as provided in the

third input parameter listed above. Any superlattices with T upperNN ≥ would necessarily have

more irreducible k-points than that of the initial best grid. If at some point a superlattice with iN

smaller than that of the best known grid is found, the best grid is updated to this newly found one

and the value of upperN is adjusted accordingly. When two k-point grids have the same iN , the

scheme favours the one with a larger latticer in the corresponding superlattice. If latticer of both

superlattices also tie, the scheme chooses the one with a larger TN . The search ends when the

upper limit of the sizes of superlattices is reached. Figure 1 summarizes the steps of the scheme.

 12

Figure 1. A diagram summarizes the workflow of the dynamic grid generation algorithm.

2.3 Algorithms for Efficient Enumeration of Symmetry-Preserving Superlattices

Enumeration of all symmetry-preserving superlattice is computationally expensive and has

been identified as the main hurdle of applying generalized k-point grids in calculations of

properties of crystalline materials.2, 7 Morgan et al. have presented an algorithm for accelerating

the enumeration of symmetry-preserving lattices for a given lattice size by expressing the

primitive lattice in Niggli-reduced form.31 For each of the 44 distinct Niggli bases, they have

determined symmetry-based constraints on the entries of H that can be used to reduce the

number of possible lattices that must be considered. We have developed an approach that

similarly iterates over symmetry-preserving lattices, with two key differences: it does not rely on

Niggli reduction, which reduces the complexity of the code and increases the ease of

 13

implementation, and it is optimized for grid selection based on minr , which has been shown to

work well as a descriptor of k-point density both in theory2 and in practice.2, 4 In our benchmarks,

we demonstrate that the algorithms presented here generally return more efficient grids than the

those generated using the method of Morgan et al.31

2.3.1 Hermite normal form and symmetry-preserving lattices

It is possible for two different matrices M to represent the same superlattice; i.e. the rows of

each matrix could represent a different choice of vectors used to represent the lattice. For the

purpose of enumerating over lattices we express the transformation matrix M in Hermite normal

form, a triangular form which uniquely defines a superlattice.35, 36 We shall use H to represent

the Hermite normal form of a general matrix M.

Efficient k-point grids will generally have symmetry-preserving lattices, which are invariant

with respect to the symmetry operations of the system. Hermite normal form provides a

convenient way to test whether a superlattice is symmetry-preserving by generating the Hermite

normal forms for the original matrix Mand all matrices generated by applying the symmetry

operations of the system to M. If all of the generated Hermite normal forms are the same, the

lattice is symmetry-preserving.

2.3.2 Enumeration Algorithm for Crystal Systems Other than Triclinic

We start by considering systems that are not triclinic. For such systems at least one of the

conventional lattice vectors must, by the symmetry of the system, be perpendicular to the other

two. For simplicity, our only requirement is that such a vector be listed third, as 3c .

The key to our approach is the recognition that for systems that are not triclinic, any regular

three-dimensional lattice consists of layers of identical two-dimensional lattices that are normal

 14

to 3c . Each two-dimensional lattice may be shifted from the one below it by a constant shift

vector that is parallel to its lattice plane, and for symmetry-preserving lattices only a finite set of

shift vectors are allowed. This decomposition helps quickly rule out superlattices that break

symmetries without applying linear algebra to check them. For example, if there is a twofold

rotational axis parallel to 3c , then this axis may only pass through points in the two-dimensional

lattice formed by linear combinations of half lattice vectors (Table 1). Any other shift would

result in a lattice that is not symmetry preserving, as symmetry operations could transform lattice

points to non-lattice points. Similarly, if there is a mirror plane perpendicular to 3c , then either

the mirror plane must be at the mid-point between two layers, in which case no shift is allowed,

or it must pass through one of the layers, and again only the shifts shown in Table 1 are allowed.

This concept is illustrated in two dimensions in Figure 2. Similar sets of shifts may be derived

for three-fold rotational axes (Table 1).

A high-level summary of our algorithm for enumerating symmetry-preserving lattices is then

as follows:

1. Determine all pairs of factors of the total lattice size. In each pair, the first factor

represents the size of the supercell in each two-dimensional layer and the second

represents the number of layers in each three-dimensional supercell.

2. For each pair of factors, enumerate all symmetry-preserving two-dimensional lattices

(in Hermite normal form) with the required size.

3. Combine each two-dimensional lattice with each allowed shift to create a candidate

three-dimensional lattice.

4. Verify that the three-dimensional lattice is symmetry-preserving.

 15

Table 1. Possible displacements of lattice planes in real space in 2 dimensions, and of the Γ

point in reciprocal space in 3 dimensions.

Figure 2. Two-dimensional examples of allowed and disallowed shifts. In all examples blue lines

represent a mirror plane, black dots represent lattice points on real-space superlattice, and dashed lines

show the different layers of lattice points that are orthogonal to 2c . a), b), c), and d) show allowed shifts

in which the mirror plane transforms every lattice point to another lattice point. In a) and b) there is zero

shift, and in c) and d) the shift is half the vector 1c . e) and f) show disallowed shifts.

Crystal System Shift vectors in the basis of { }1 2,c c

in real space

Shift vectors of the Γ point in the

basis of { }1 2 3, ,d d d as defined in

equation (5)

Cubic,
Tetragonal,
Orthorhombic,
Monoclinic

[0.0, 0.0], [0.0, 0.5], [0.5, 0.0],

[0.5, 0.5]

[0.0,0.0,0.0], [0.0,0.0,0.5],

[0.0,0.5,0.0], [0.5,0.0,0.0],

[0.5,0.5,0.0], [0.5,0.0,0.5],

[0.0,0.5,0.5], [0.5,0.5,0.5]
Hexagonal,
Trigonal

[0.0, 0.0], [1/3, 0.0], [0.0, 1/3],

[0.0, 2/3], [2/3, 0.0], [1/3, 1/3],

[2/3, 2/3], [1/3, 2/3], [2/3, 1/3]

 16

This algorithm effectively reduces the problem of enumerating three-dimensional lattices to

one of enumerating two-dimensional lattices, which significantly accelerates the search for

symmetry-preserving lattices. Firstly, it drastically decreases the total number of 3-dimensional

superlattices that need to be checked for symmetry preservation. Secondly, the symmetry groups

in the 2-dimensional sublattice have fewer symmetry operations than the corresponding groups

in 3 dimensions. Thirdly, a 2-dimensional matrix multiplication takes fewer elementary

operations than a 3-dimensional one. We can even further accelerate the search by recognizing

that if the number of layers is too small to satisfy the requirement that nlattice mir r≥ , we can skip

the enumeration of two-dimensional lattices and move on to the next set of factors. Similarly, if

we ever determine that the lattice minr r< for any two-dimensional layer, then we can stop evaluation

of all lattices constructed from that layer and move onto the next two-dimensional lattice. We

find that pre-screening the lattices for latticer in this way significantly increases the speed of the

algorithm when minr is the limiting factor, as demonstrated by the benchmarking results in

section 7.2 of the supplementary information.

The steps of the algorithm are shown in detail by the pseudocode in Figure 3. The term

“maxZDistance” at line 6 defines the maximum possible length of the shortest vector parallel

with 3c that superlattices can have while satisfying nlattice mir r≥ . The function

“symmetryPreserving(H , { R })” determines whether the set of symmetries is preserved in the

given superlattice by checking the invariance of H after applying symmetries. Line 28 verifies

that candidate lattices are superlattices of the primitive lattice after shifts in Table 1 are applied.

 17

Figure 3. Algorithm for fast enumeration of symmetry preserving superlattices for systems other

than triclinic.

 18

2.3.3 Enumeration Algorithm for the Triclinic Crystal System

The triclinic system doesn’t benefit from the above algorithm since all its superlattices

preserve the point symmetry operations of the primitive lattice, namely the identity operation and

sometimes the inversion operation. For triclinic systems we accelerate the search for

superlattices for which . . by again considering one dimension at a time. For each factor set, if

11 1 min
H r<a , the shortest distance between lattice points must be less than minr and the factor

set is not considered. Similarly, if the two dimensional lattice spanned by 11 1H a and

21 1 22 2H H+a a has lattice minr r< , we do not iterate over possible values of 31H and 32H as we

already know the lattices will not satisfy the required constraint. The procedures are summarized

as a pseudocode in Figure 4. The input lattice can be of any dimension up to three. We note that

a similar approach can be used to accelerate any scheme based on iterating over lattices in HNF,

such as the one developed by Morgan et al..31

 19

Figure 4. Algorithm for enumerating symmetry-preserving superlattices for triclinic system,

accelerated by enforcing lattice minrr ≥ at each dimension.

2.4 Evaluating Shift Vectors

K-point grids can be generated for each symmetry-preserving lattice using equation (7), where

the matrix H can be used for M. The only remaining unknown is the shift vector s. When the

shift vector has zero length, the k-point grid is called a Г-centered grid, as it must contain the Г

point in reciprocal space as a grid point. Often the use of shift vectors with non-zero length

results in more efficient grids, in part because avoiding the highly-symmetric Г point allows for

greater use of symmetry to reduce the number of symmetrically irreducible k-points.

 20

For a shift to be guaranteed to result in a symmetry-preserving lattice, it must shift the origin to

a point that has the full point group symmetry of the origin. For all symmorphic space groups,

the only such points are located at linear combinations of full- or half-multiples of the primitive

lattice vectors. Thus, we consider only the eight such unique combination of k-point grid

generating vectors, { }1 2 3, ,d d d , as candidate shift vectors (Table 1). In some cases (e.g.

hexagonal systems), some of the shift vectors in Table 1 will not result in a symmetry-preserving

grid. We identify and reject these when determining the number of irreducible k-points. As this

occurs as soon as the first point that breaks symmetry is encountered, it comes with relatively

little computational cost.

2.5 Algorithm for Fast Calculation of Symmetrically Irreducible K-points and K-point

Weights

We select the optimal lattice based on the values of i
N , lattice

r , and T
N . The value of lattice

r can be

easily obtained from the superlattice vectors by Minkowski reduction, and TN equals the

absolute value of the determinant of the transformation matrix M. However, calculating iN for a

k-point grid is a relatively expensive operation. An intuitive approach is to apply all the point

symmetry operations to each k-point, ik , and compare the resulting coordinates with all the

other k-points. If one of the transformed k-points, i′k , is translationally equivalent to one of the

other k-points, jk , then the k-points ik and jk are symmetrically equivalent. However, this

algorithm scales as ()2

T
O N , where TN is the number of total k-points of a grid. As this operation

 21

is applied to each of the k-point grids found by the algorithm in section 0, this intuitive but costly

approach could easily become the major overhead of any k-point generation scheme.

We solve this complication by first recognizing that a unit cell in reciprocal space is a supercell

of a regular k-point lattice, where the two lattices are related by equation (6). To avoid confusion

with the Hermite normal form of M, which we have labelled H , we will refer to the Hermite

normal form of the transformation matrix in reciprocal space, T
M , as J (in general, ≠ TJ H).

The key to our approach is the recognition that it is possible to tessellate all of reciprocal space

with supercells of size 11 22 33JJ J× × arranged periodically on the superlattice, where 11J , 22J ,

and 33J are the diagonal elements of J and each lattice point is a corner of the supercell. This is

illustrated in two dimensions in Figure 5, but the same concept extends to any number of

dimensions. The off-diagonal elements of J serve to shift each layer of supercells relative to the

previous layer, so that the tessellation resembles stacked bricks. Within each of these supercells,

the coordinates of a k-point can be expressed as:

 []() []1 2 3 1 2 3, , , ,
T

k k k ⋅+ +r d dds (12)

where r is a lattice point on the reciprocal space lattice (blue dots in Figure 5), 1d , 2d , and 3d

are generating lattice vectors of the k-point lattice (also reciprocal primitive lattice vectors), 1k

is an integer from 0 to 11 1J − , 2k is an integer from 0 to 22 1J − , and 3k is an integer from 0 to

33 1J − . The coordinates of the k-point can then be easily transformed into any basis (such as

that of the primitive lattice in reciprocal space) using linear operations. We have shared this

approach for iterating over k-points with the Hart group for their work with generalized k-point

grids.30 Values for 1k , 2k , and 3k can be quickly calculated for any k-point using integer

 22

arithmetic, as discussed below and shown in lines 15 and 16 of Figure S6 of supplementary

information.

Given the enumeration of k-points using equation (12), we identify irreducible k-points in a

way similar to that described by Hart et al..30 We assign a unique index to each k-point in the

Brillouin zone or, equivalently, to each k-point in any unit cell of the reciprocal lattice, by

 31 11 2 11 221index k J k J kJ= + + + . (13)

The values of the index range from 1 to TN , and translationally equivalent k-points share the

same index. Linear scaling is achieved because the index for any given k-point can be calculated

in constant time, as can the sublattice of k-points that have a given index. Then iteration of all k-

points in a unit cell in reciprocal space, equivalent to all k-points in the Brillouin zone, is

accomplished by looping over values of 1k , 2k , and 3k in equation (13).

Figure 5. Two-dimensional illustrations of the concepts used for k-point enumeration and index

generation. The top row provides the three possible matrices in Hermite normal form for the set

 23

of factors (3,2). The middle row shows the three Bravais superlattices corresponding to these

matrices, assuming that the generating vectors for the k-point grid, 1
d and 2

d , are aligned with

the dashed gray lines. The bottom row shows how space can be tessellated by unit cells that are

3 2× supercells of the generating lattice vectors, with k-point indices marked within each cell.

To count the number of distinct k-points, we iterate over all translationally distinct k-points as

described above and apply all symmetry operations to each k-point. If an operation does not

transform the k-point to another k-point, the grid is not symmetry-preserving and is rejected (this

can sometimes happen if a shift of the Γ point breaks symmetry). If the index of any

symmetrically equivalent k-point is less than that of the current k-point, then we have already

seen a symmetrically equivalent k-point, so the counter for the number of irreducible k-points is

not incremented. If there is no symmetrically equivalent k-point with an index lower than that of

the current k-point, then the current k-point is the first we’ve seen in its orbit, so the counter for

the number of irreducible k-points is incremented. A simple variation of this algorithm is used to

calculate k-point weights by, for each k-point, determining the orbit of symmetrically equivalent

points and then incrementing the weight of the k-point that has the lowest index in that orbit.

Figure S6 in supporting information provides the pseudocode of this algorithm. The final,

returned arrays contain coordinates and weights for all k-points. The symmetrically non-distinct

points, however, have weights of zero. This fact is used to identify the subset of irreducible

points.

3. KpLib: A Lightweight, Open-source C++ Library

To facilitate the integration of the generalized Monkhorst-Pack k-point grids in simulation

packages, we implemented the presented algorithms in a lightweight library, kpLib. It is written

 24

in C++ to make interfacing easier for as many programming languages as possible. A python

module, kpGen, is also provided as a wrapper of the C++ library. The source code of kpLib only

contains 1122 lines, and the API uses elementary data structures as argument types, which

should be available in most programming languages and facilitate the construction of wrapping

functions. We have written a demonstration application, integrated with spglib 37, to show how to

work with the API. The library is open sourced and a documentation of the API is provided on

the homepage of its public repository (https://gitlab.com/muellergroup/kplib). We note that

packages that plan to integrate kpLib should ensure that the set of symmetry operations used to

generate the k-point grid are used consistently in the rest of the code.

4. Benchmarks

Here we present a series of benchmarks to demonstrate the speed at which our algorithm

generates k-point grids and the efficiency of the generated grids, including a comparison to the

grids generated using GRkgridgen.30, 31 All benchmarks were performed on the 102 structures

randomly selected from the Inorganic Crystal Structure Database (ICSD) used in our previous

work 2, 29. Version 2019.09.17 for kpLib was used for all benchmarks.

4.1 Grid Generation Speed

We have benchmarked the speed at which kpLib generates both Г-centered grids and grids

with automatically selected shift vectors (called “auto grids” in the following text). To accelerate

searches for large grids, we use an approach in which a search for small grids is performed, and

then the densities of the small grids are increased in every dimension by a constant scale factor.

This use of the scale factor was first introduced in section II.D of our previous work,2 and it is

also adopted in the dynamic generation approach (for a detailed discussion, see section 1 of

 25

supplementary information). We have benchmarked grid generation speed on 102 randomly

selected structures using a single core on Intel Xeon E5660 processors with a 2.80 GHz base

frequency and a 48 GHZ RAM, with and without the use of the scale factor. Grid sizes are

specified by minr , instead of minN , as the former is physically more meaningful,2, 4 and thus we

believe it is the most likely method to be used. A benchmark using min
N to compare the speed of

the dynamic generation approach and the database look-up approach is given in section 7 of

supplementary information.

Average computation time for both Г-centered grids and auto grids are shown in Figure 6. The

speed at which kpLib generates Г-centered and auto grids is very similar. When minr is 50

angstroms, which is sufficient for converging most calculations within 1 meV / atom,2 both types

of grids are generated in less than 0.2 seconds on average. For large grids, using the scale factor

increases generation speed, at a slight cost of grid quality (Figure 8). When minr is 100

angstroms, it takes only about 1 second to find the optimal grids using the scale factor, while the

exhaustive search with scale factor switched off finishes in about 4.6 seconds. The smallest value

of minr at which the scale factor starts to have an effect is 55 angstroms, but not all 102

structures use the scale factor at 55 angstroms and 69 out of the 102 structures do not use the

scale factor even at 100 angstroms.

 26

Figure 6. Average computation time of dynamic generation using kpLib with and without scale

factors at various values of minr for a) Γ -centered grids and b) auto grids. The computation

times at minr = 100 angstroms are labeled on the graphs.

The dynamic generation approach used by kpLib is more lightweight than the database

approach used by the K-Point Grid Generator, which includes a 7.3 MB database containing

428,632 pre-generated grids. However the database lookup method (section 3 of supplementary

information) is generally faster (Figure 7). Database searching is much faster than dynamic grid

generation for Γ -centered grids over a wide range of densities. The difference between the two

approaches is smaller when shifted grids are included, but the database is still two times as fast at

the largest minr . This difference in relative performance for shifted grids can be attributed to the

fact that dynamic grid generation loops over TN , and the database search loops over iN . When

searching for shifted grids rather than only Γ -centered grids, the upper bound for the loop over

TN is more rapidly reduced due to the larger number of candidate grids (Figure 1), whereas the

upper bound for the loop over iN is not (Figure S3 of the supplementary information).

 27

Figure 7. Comparison of computation time between database lookup method used by the K-Point

Grid Generator and the dynamic generation approach used by kpLib. This benchmark did not

include monoclinic and triclinic structures, as both the K-Point Grid Generator and kpLib use

dynamic grid generation for these.

4.2 Grid Quality Comparison between KpLib and GRkgridgen

We compared our dynamic grid generation method with GRkgridgen, another software

package which can generate generalized Monkhorst Pack grids.31 As the options for grid

generation differ between the two packages, we used the following settings to make a fair

comparison: both applications were instructed to select the grid with minimal iN (a natural

measure of the efficiency of a grid that meets user-provided constraints), and the required k-point

density was specified by providing a value for minN (defined as MINTOTALKPOINTS in kpLib

and NKPTS in GRkgridgen). In the version we tested, 0.7.5, GRkgridgen doesn’t guarantee that

the real-space superlattices corresponding to the returned grids satisfy lattice minr r≥ , but it does take

latticer into account when generating grids based on minN . As kpLib only accounts for latticer if minr

is provided by the user, to ensure a fair comparison we have constrained the grids generated by

 28

kpLib, to have latticer which is at least as large as that of the grid generated by GRkgridgen at the

same minN and for the same structure. The same 102 structures were used and both Γ -centered

grids and auto grids were compared. For kpLib without a scale factor, minN values ranged from 1

to 5623, while for kpLib using scale factor, the range is increased to 15,848 to better demonstrate

the effect of scale factor for large grids.

Figure 8. Ratios of average number of symmetrically irreducible k-points from the dynamic

search by a) kpLib, b) kpLib with the scale factor, to grids generated using GRkgridgen, for both

Γ -centered grids and auto grids. Both the maximal and minimal ratios are labeled for both types

of grids. Part b) has a larger range of minN (from 1 to 15,848), to better demonstrate the effect of

the scale factor on grid quality.

We use the number of irreducible k-points in the generated grid as a metric of grid efficiency,

as the computational cost of most calculations that use k-points scales linearly with the number

of irreducible k-points. The scale factor makes little difference in the number of irreducible k-

points for grids generated below 5623minN = (Figure 8). For auto grids at all values of minN ,

 29

including those generated using the scale factor, grids from kpLib consistently have fewer

irreducible k-point than the grids from GRkgridgen on average. The same is true for Γ -centered

grids generated without using the scale factor, although for very dense grids when the scale

factor is used GRkgridgen may return grids that are 1-2% more efficient on average. The

difference between kpLib and GRkgridgen is much larger for auto grids than Γ -centered grids,

and it is larger for small T
N than large ones. We note that the gain in performance for relatively

small values of TN can be particularly beneficial as calculations with such small grids often have

large supercells and are thus computationally demanding. For auto grids, which we expect to be

the most commonly used mode, the expected increase in calculation speed using the grids

generated by kpLib ranges from 3% to 37%.

5. Conclusion

The widespread use of generalized Monkhorst-Pack k-point grids has been limited by the lack

of algorithms and tools for rapidly generating highly efficient grids. By effectively reducing the

problem of generating optimal 3-dimenstional generalized Monkhorst-Pack k-point grids to that

of enumerating over 2-dimensional lattices, along with several other algorithmic innovations, we

have demonstrated that is possible to very rapidly identify optimal generalized Monkhorst-Pack

k-point grids for a given material, given user constraints on the spacing of the real-space grid

points and/or the minimum total required k-points. For commonly-used grid densities, the grids

generated by the algorithms presented in this paper are on average significantly more efficient

than those generated using previously developed algorithms. Given the demonstrated benefits of

using generalized Monkhorst-Pack k-point grids2-4, 24, we conservatively estimate that

widespread adoption of these algorithms could save computational materials researchers more

 30

than a hundred million CPU hours, worth millions of US dollars, each year. To facilitate this

widespread use, we have implemented our algorithms for grid generation in kpLib, a lightweight

open source library with only 1122 lines of code for integration with third-party software

algorithms, and we have developed a standalone open-source tool, the K-Point Grid Generator,

for rapidly generating generalized Monkhorst-Pack grids.

Corresponding Author

Tim Mueller – Department of Materials Science and Engineering, Johns Hopkins University,

Baltimore, MD 21218, United States. E-mail: tmueller@jhu.edu

Data Availability

The source code of kpLib and K-Point Grid Generator are freely available online at

https://gitlab.com/muellergroup/kplib and https://gitlab.com/muellergroup/k-pointGridGenerator.

The raw data required to reproduce these findings are available to download from

https://gitlab.com/muellergroup/kplib/-/blob/master/doc/paper_data/Raw_Data.xlsx.

ACKNOWLEDGMENTS

Y.W., P.W., A.B., and T.M. thank the National Science Foundation for the financial support

under Award No. DMR-1352373, the Homewood High-Performance Cluster (HHPC) and

Maryland Advanced Research Computing Center (MARCC) for providing computational

resources, and Prof. Gus Hart for helpful discussions. S.D. thanks the U.S. Department of

Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering

Division for financial support under Contract no. DE-AC02-05-CH11231: Materials Project

program KC23MP.

 31

REFERENCES

1. Monkhorst, H. J.; Pack, J. D., Special Points for Brillouin-Zone Integrations. Physical

Review B 1976, 13 (12), 5188-5192.

2. Wisesa, P.; McGill, K. A.; Mueller, T., Efficient generation of generalized Monkhorst-

Pack grids through the use of informatics. Physical Review B 2016, 93 (15).

3. Morgan, W. S.; Jorgensen, J. J.; Hess, B. C.; Hart, G. L. W., Efficiency of Generalized

Regular k-point grids. Comp Mater Sci 2018, 153, 424-430.

4. Choudhary, K.; Tavazza, F., Convergence and machine learning predictions of

Monkhorst-Pack k-points and plane-wave cut-off in high-throughput DFT calculations. Comp

Mater Sci 2019, 161, 300-308.

5. Amazon Web Services Amazon EC2 Pricing. https://aws.amazon.com/ec2/pricing/on-

demand/ (accessed June 19 2020).

6. Froyen, S., Brillouin-zone integration by Fourier quadrature: Special points for

superlattice and supercell calculations. Phys Rev B 1989, 39 (5), 3168-3172.

7. Moreno, J.; Soler, J. M., Optimal Meshes for Integrals in Real-Space and Reciprocal-

Space Unit Cells. Physical Review B 1992, 45 (24), 13891-13898.

8. Mundet, B.; Hartman, S. T. T.; Guzman, R.; Idrobo, J. C. C.; Obradors, X.; Puig, T.;

Mishra, R.; Gazquez, J., Local strain-driven migration of oxygen vacancies to apical sites in

YBa2Cu3O7-x. Nanoscale 2020, 12 (10), 5922-5931.

9. Chowdhury, T.; Kim, J.; Sadler, E. C.; Li, C.; Lee, S. W.; Jo, K.; Xu, W.; Gracias, D.

H.; Drichko, N. V.; Jariwala, D.; Brintlinger, T. H.; Mueller, T.; Park, H.-G.; Kempa, T. J.,

 32

Substrate-directed synthesis of MoS2 nanocrystals with tunable dimensionality and optical

properties. Nature Nanotechnology 2020, 15 (1), 29-34.

10. Wisesa, P.; Li, C.; Mueller, T., Materials with the CrVO4 structure type as candidate

superprotonic conductors. 2019.

11. Williams, L.; Kioupakis, E., BAlGaN alloys nearly lattice-matched to AlN for efficient

UV LEDs. Appl Phys Lett 2019, 115 (23), 231103.

12. Wang, Y.; Cao, L.; Libretto, N. J.; Li, X.; Li, C.; Wan, Y.; He, C.; Lee, J.; Gregg, J.;

Zong, H.; Su, D.; Miller, J. T.; Mueller, T.; Wang, C., Ensemble Effect in Bimetallic

Electrocatalysts for CO2 Reduction. J Am Chem Soc 2019, 141 (42), 16635-16642.

13. Rosenbrock, C. W.; Gubaev, K.; Shapeev, A. V.; Pártay, L. B.; Bernstein, N.; Hart, G.

L., Machine-learned Interatomic Potentials for Alloys and Alloy Phase Diagrams. arXiv preprint

arXiv:1906.07816 2019.

14. Nyshadham, C.; Rupp, M.; Bekker, B.; Shapeev, A. V.; Mueller, T.; Rosenbrock, C.

W.; Csányi, G.; Wingate, D. W.; Hart, G. L., Machine-learned multi-system surrogate models

for materials prediction. Npj Comput Mater 2019, 5 (1), 51.

15. Li, C.; Gao, H.; Wan, W.; Mueller, T., Mechanisms for hydrogen evolution on transition

metal phosphide catalysts and a comparison to Pt(111). Phys Chem Chem Phys 2019, 21 (44),

24489-24498.

16. Kratzer, P.; Neugebauer, J., The basics of electronic structure theory for periodic systems.

Frontiers in chemistry 2019, 7.

 33

17. Hernandez, A.; Balasubramanian, A.; Yuan, F.; Mason, S. A. M.; Mueller, T., Fast,

accurate, and transferable many-body interatomic potentials by symbolic regression. Npj Comput

Mater 2019, 5 (1), 112.

18. Greenman, K.; Williams, L.; Kioupakis, E., Lattice-constant and band-gap tuning in

wurtzite and zincblende BInGaN alloys. Journal of Applied Physics 2019, 126 (5), 055702.

19. Cao, L.; Zhao, Z.; Liu, Z.; Gao, W.; Dai, S.; Gha, J.; Xue, W.; Sun, H.; Duan, X.;

Pan, X.; Mueller, T.; Huang, Y., Differential Surface Elemental Distribution Leads to

Significantly Enhanced Stability of PtNi-Based ORR Catalysts. Matter 2019, 1 (6), 1567-1580.

20. Cao, L.; Niu, L.; Mueller, T., Computationally generated maps of surface structures and

catalytic activities for alloy phase diagrams. Proceedings of the National Academy of Sciences of

the United States of America 2019, 116 (44), 22044-22051.

21. Liu, Y.; Zhang, H.; Behara, P. K.; Wang, X.; Zhu, D.; Ding, S.; Ganesh, S. P.;

Dupuis, M.; Wu, G.; Swihart, M. T., Synthesis and Anisotropic Electrocatalytic Activity of

Covellite Nanoplatelets with Fixed Thickness and Tunable Diameter. ACS applied materials &

interfaces 2018, 10 (49), 42417-42426.

22. Li, C. Y.; Raciti, D.; Pu, T. C.; Cao, L.; He, C.; Wang, C.; Mueller, T., Improved

Prediction of Nanoalloy Structures by the Explicit Inclusion of Adsorbates in Cluster

Expansions. J Phys Chem C 2018, 122 (31), 18040-18047.

23. Ding, Y.; Wang, Y., Tunable Electronic Structures of Hydrogenated Zigzag and

Armchair Dumbbell Silicene Nanosheets: A Computational Study. The Journal of Physical

Chemistry C 2018, 122 (40), 23208-23216.

 34

24. Wolloch, M.; Suess, D.; Mohn, P., Influence of antisite defects and stacking faults on the

magnetocrystalline anisotropy of FePt. Physical Review B 2017, 96 (10), 104408.

25. Williams, L.; Kioupakis, E., BInGaN alloys nearly lattice-matched to GaN for high-

power high-efficiency visible LEDs. Appl Phys Lett 2017, 111 (21), 211107.

26. Raciti, D.; Cao, L.; Liv, K. J. T.; Rottmann, P. F.; Tang, X.; Li, C. Y.; Hicks, Z.;

Bowen, K. H.; Hemker, K. J.; Mueller, T.; Wang, C., Low-Overpotential Electroreduction of

Carbon Monoxide Using Copper Nanowires. Acs Catalysis 2017, 7 (7), 4467-4472.

27. Cao, L.; Raciti, D.; Li, C. Y.; Livi, K. J. T.; Rottmann, P. F.; Hemker, K. J.; Mueller,

T.; Wang, C., Mechanistic Insights for Low-Overpotential Electroreduction of CO2 to CO on

Copper Nanowires. Acs Catalysis 2017, 7 (12), 8578-8587.

28. Vienna Ab initio Simulation Package KPOINTS in VASP Wiki.

https://www.vasp.at/wiki/index.php/KPOINTS.

29. Inorganic Crystal Structure Database. Fiz Karlsruhe: 2016.

30. Hart, G. L. W.; Jorgensen, J. J.; Morgan, W. S.; Forcade, R. W., A robust algorithm for

k-point grid generation and symmetry reduction. Journal of Physics Communications 2019, 3

(6), 065009.

31. Morgan, W. S.; Christensen, J. E.; Hamilton, P. K.; Jorgensen, J. J.; Campbell, B. J.;

Hart, G. L. W.; Forcade, R. W., Generalized regular k-point grid generation on the fly. Comp

Mater Sci 2020, 173.

32. Ashcroft, N. W.; Mermin, N. D., Solid State Physics. Brooks/Cole: Belmont, USA, 1976;

p 132-143.

 35

33. Tinkham, M., Group Theory and Quantum Mechanics. McGraw-Hill Book Company:

New York, 1964; p 279-281.

34. Giacovazzo, C.; Monaco, H. L.; Artioli, G.; Viterbo, D.; Milanesio, M.; Ferraris, G.;

Gilli, G.; Gilli, P.; Zanotti, G.; Catti, M., Fundamentals of Crystallography. third ed.; Oxford

University Press: Oxford, 2002; p 842.

35. Mueller, T. Computational studies of hydrogen storage materials and the development of

related methods. Massachusetts Institute of Technology, Boston, Massachusetts, 2007.

36. Hart, G. L. W.; Forcade, R. W., Algorithm for generating derivative structures. Physical

Review B 2008, 77 (22).

37. Togo, A.; Tanaka, I. Spglib: a software library for crystal symmetry search arXiv e-prints

[Online], 2018. https://ui.adsabs.harvard.edu/abs/2018arXiv180801590T (accessed August 01,

2018).

.

