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Abstract 

Computational modeling of the properties of crystalline materials has become an increasingly important 

aspect of materials research, consuming hundreds of millions of CPU-hours at scientific computing 

centers around the world each year, if not more. A routine operation in such calculations is the 

evaluation of integrals over the Brillouin zone. We have previously demonstrated that performing such 

integrals using generalized Monkhorst-Pack k-point grids can roughly double the speed of these 

calculations relative to the widely-used traditional Monkhorst-Pack grids. However the generation of 

optimal generalized Monkhorst-Pack grids is not implemented in most software packages due to the 



 

 

computational cost and difficulty of identifying the best grids.  To address this problem, we present new 

algorithms that allow rapid generation of optimal generalized Monkhorst-Pack grids on the fly. We 

demonstrate that the grids generated by these algorithms are on average significantly more efficient than 

those generated using existing algorithms across a range of grid densities. For grids that correspond to a 

real-space supercell with at least 50 angstroms between lattice points, which is sufficient to converge 

density functional theory calculations within 1 meV/atom for nearly all materials, our algorithm finds 

optimized grids in an average of 0.19 seconds on a single processing core. To facilitate the widespread 

adoption of this approach, we present new open-source tools including a library designed for integration 

with third-party software packages.   
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1. Introduction 

Computational materials research has become increasingly vital in probing the properties of 

crystalline materials, especially in screening materials at a large scale to accelerate material 

discoveries for a wide range of applications. A routine operation for such calculations across a 

variety of computational methods is the evaluation of integrals over the Brillouin zone, which 

can be approximated by discretely sampling the Brillouin Zone at a set of points known as k-

points. Many popular computational materials simulation packages generate k-points using the 

traditional Monkhorst-Pack scheme,1 which creates regular k-point grids with lattice vectors that 

are integer fractions of a particular set of reciprocal lattice vectors. We have demonstrated in our 

previous work that the number of symmetrically irreducible k-points, and hence the 

computational cost of most methods that rely on k-point sampling, can be reduced by roughly a 

factor of two by generalizing the Monkhorst Pack scheme so that the grids do not need to be 

aligned with a particular set of reciprocal lattice vectors and selecting the optimal generalized 

grid.2 The benefits of using generalized grids can be understood by considering that the set of 

generalized k-point grids is a superset of traditional Monkhorst Pack grids, providing far more 

options for selecting the optimal grid.  Other researchers have since found similar results.3, 4   

Calculating the properties of crystalline materials consumes hundreds of millions of CPU-

hours at supercomputing centers around the world each year, if not much more. (A single high-

throughput project, the Materials Project, spends more than 100 million CPU hours per year 

calculating the properties of crystalline materials.)  Given that modern high-performance 

computing resources cost about US$ 0.0255 per CPU hour1 or more,5 we conservatively estimate 

                                                 

1 The CPU price is the latest listed value for the standard AWS machine type a1.medium with 
2GB memory. 
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that the use of generalized Monkhorst Pack grids in place of traditional grids has the potential to 

save researchers millions of U.S. dollars per year in computing costs.   

Some of the ideas behind the generalized k-point grids had been proposed by Froyen and 

Moreno and Soler decades ago,1, 6 but they have not been widely adopted primarily due to the 

computational challenge of identifying the best generalized grid for a given calculation.  The 

main challenge is that the number of possible generalized k-point grids grows rapidly with the 

number of k-points in the grid (Section 2 of the Supplementary Information), making it difficult 

to identify which grid is most efficient.2, 7 For example, there are 54,156,102 regular grids that 

contain 4,000 k-points, a typical density for calculations on elemental metals. Identifying the 

optimal grid requires identifying which among these candidates is expected to provide a 

sufficiently accurate estimate of the integral with the fewest symmetrically irreducible k-points.  

The problem is made more challenging by the fact that it is generally necessary to search over 

many different k-point densities to find the optimal grid.   

In our previous work we addressed these problems by creating a free, internet-accessible k-

point grid server, backed by a database of pre-calculated generalized grids, that rapidly returns an 

efficient grid (typically the most efficient grid) for a given calculation.2 To date, this server has 

delivered more than half a million grids to users outside our research group. In the years since 

our previous work was published there has been increasing interest in the generation and use of 

generalized k-point grids4, 8-28 and how they may be used in popular software packages.28 Yet 

despite the increasing interest in the use of regularized grids, most common software packages 

do not yet implement an efficient method for identifying highly efficient generalized grids, due 

largely to the lack of publicly available algorithms and tools for doing so.   
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To enable more widespread use of generalized Monkhorst-Pack k-point grids and fully realize 

their potential for accelerating computational materials research, we have developed an open-

source library for grid generation, kpLib, that is designed for integration with existing software 

packages without significantly increasing the size of their software distribution.  This library is 

based on novel algorithms, described in this manuscript, that greatly accelerate grid generation. 

These algorithms include a method for significantly reducing the number of candidate 

superlattices to be evaluated by transforming the problem from an enumeration of 3D 

superlattices to an enumeration 2D superlattices with a finite set of allowed stackings.  We have 

also developed an open-source standalone tool for generalized k-point grid generation, the K-

Point Grid Generator.  This tool has the same functionality as the K-Point Grid Server, but it can 

be used on computing nodes that do not have network access to the K-Point Grid Server. 

Additional algorithms for the K-Point Grid Generator and its implementation are described in 

detail in section 5 and section 6.2 of the supplementary information. 

To illustrate the performance of kpLib, we present benchmarks on structures randomly 

selected from the Inorganic Crystal Structure Database.29 Our benchmarks demonstrate that at a 

grid density sufficient to converge calculated energies on nearly all crystalline materials within 1 

meV / atom, kpLib identifies the optimal grid in less than half a second on average, and in under 

five seconds for grids that are eight times as dense. We further demonstrate that on average our 

algorithm finds grids with significantly fewer irreducible k-points than an alternative algorithm 

for generating generalized Monkhorst-Pack grids recently developed by Hart and co-workers.30, 

31 

In the following sections, a detailed explanation of the new algorithms is provided, and the 

implementation of kpLib is briefly discussed. Various benchmarks of the speed of the algorithms 
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and quality of the resulting grids are then provided. Additional comparisons between kpLib and 

the K-Point Grid Generator, along with detailed descriptions of other algorithms used by these 

software packages, are provided in the supplementary information. 

 

2. Algorithms 

2.1 Background and notation 

Monkhorst-Pack grids are used to approximate the value of an integral over the Brillouin zone 

by sampling reciprocal space on a regular grid of k-points, where the coordinates of the k-points 

are given by 
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where 1m , 2m , and 3m  are positive integers, 1b , 2b  and 3b  are reciprocal lattice vectors, and s 

represents a shift vector that moves the grid away from the origin (known as the Γ  point in 

reciprocal space). There exists a mapping between each regular k-point grid and a real-space 

superlattice that defines the Born-von Karman boundary conditions for the periodicity of the 

wave functions.32, 33 The superlattice corresponding to the k-point grid defined by equation (1) is 

given by 

 ( )1 2 3 1 2 3, , ( , , )
T T=g g g M a a a  (2) 

where 1a , 2a , and 3a  represent the real-space primitive lattice vectors, 1g , 2g  and 3g  represent 

the lattice vectors of the superlattice, and the transformation matrix M is equal to 
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The reciprocal primitive lattice vectors share an analogous relationship with those of the 

reciprocal superlattice. The reciprocal lattice vectors of a direct lattice are calculated by 

 [ ] [ ] 1

1 2 3 1 2 3, , , ,
T −=b b b a a a  (4) 

where the vectors share the same definition as in equations (1) and (2). Similarly, the primitive 

reciprocal lattice vectors of the superlattice can be obtained by 

 [ ] [ ] 1

1 2 3 1 2 3, , , ,
T −=d d d g g g  (5) 

where 1d , 2d , and 3d  are the reciprocal lattice vectors corresponding to the direct superlattice. 

Substituting equations (4) and (5) into equation (2), the following relationship can be derived: 

 [ ] [ ]1 2 3 1 2 3, , , ,
T TT=b b b M d d d . (6) 

The matrix multiplication order implies that the row vectors of the matrix TM  contain the 

coordinates of the vectors { }1 2 3, ,b b b  in the basis of { }1 2 3, ,d d d . 

In terms of the matrix M, equation (1) can be written as 
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 (7) 

Therefore, the set of vectors { }1 2 3, ,d d d  are a generating basis of the k-point grid. As shown in 

equation (7), the traditional Monkhorst-Pack scheme uses a diagonal matrix M , which is 
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equivalent to the constraint that the k-point grids are aligned with the reciprocal lattice vectors. 

However Froyen has pointed out that this constraint is not necessary,6 and we have previously 

demonstrated that much more efficient grids can be generated if the Monkhorst-Pack approach is 

generalized by relaxing this requirement.2 The resulting generalized k-point grids, as shown by 

Moreno and Soler, can always be represented as standard Monkhorst-Pack grids provided a 

suitable set of reciprocal lattice vectors are chosen.7 Mathematically, this is equivalent to 

perform a diagonal decomposition on the integer matrix M by unimodular matrices 

 1−=M UDU  (8) 

and transforming the reciprocal lattice vectors to an equivalent set by plugging it into equation 

(6): 

 

[ ] [ ]
[ ] [ ]

[ ] [ ]
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1 2 3 1 2 3
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, , ( ) , ,

( , , ) ( , , )
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T T
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=
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b b b UDU d d d

U b b b D U d d d

b b b D d d d

 (9) 

where 1′b , 2′b , and 3′b  are the reciprocal lattice vectors that diagonalize the generating matrix. 

Thus generalized Monkhorst Pack k-point grids can be used for all of the same types of 

calculations that traditional Monkhorst-Pack grids are used for. 

Equations (2) and (7) demonstrate that the search for optimal generalized k-point grids can be 

accomplished by an iteration over real-space superlattices, specified by the matrix M, and shift 

vectors, given by the vector s.  Since the quality of k-point grids are determined by the number 

of symmetrically irreducible k-points, all symmetries of structures should be preserved in the 

grids, which transfers to the requirements that the corresponding superlattices must also be 

symmetry-preserving. In the following discussion, we use the symbols latticer , iN , and TN  to 

represent, respectively, the minimum spacing between points on the a superlattice, the number of 
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symmetrically irreducible k-points, and the number of total k-points in the Brillouin zone. TN  is 

also then the number of primitive cells in a unit cell of the corresponding real-space superlattice 

(aka the “size” of the superlattice), and is given by the absolute value of the determinant of M.  

2.2 A New Algorithm for Dynamically Generating Generalized K-Point Grids 

Although the benefits of using generalized k-point grids are well-established,2-4, 24 they have 

not yet been widely implemented in common software packages due primarily to the challenge in 

implementing an algorithm for efficiently generating them. To address this problem and facilitate 

the generation of generalized k-point grids in common materials software packages, we have 

developed a novel algorithm for rapidly and dynamically identifying a highly efficient 

generalized k-point grid.  Unlike our previous approach, this algorithm does not make use of a 

database, allowing us to implement it in a lightweight, open-source library designed to be 

integrated with third-party software packages.  Although the lack of a database reduces the speed 

of grid generation (see section 4.1), we expect the optimized dynamic generation algorithm we 

present here to be sufficiently fast for most practical applications. We have also released a 

standalone open-source tool that provides additional functionality and makes use of a database, 

using algorithms described in section 3 of the supporting information.  

The dynamic grid generation method starts with three parameters describing the input 

structure: 

1. The real-space primitive lattice vectors, { }1 2 3, ,a a a . 

2. The real-space conventional lattice vectors, { }1 2 3, ,c c c , where at least one of the vectors 

is orthogonal to the other two for all but triclinic systems. 
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3. The group of point symmetry operations, { }R , that the k-point grid (and real-space 

superlattice) should preserve. These point symmetry operations can be generated by 

removing translation from all the operations in the real-space crystallographic space 

group, resulting in a symmorphic space group.  If the system has time reversal symmetry, 

then the reciprocal-space band structure will have inversion symmetry even if the real-

space crystal does not. In this case, inversion and any additional operators required to 

complete the group should be added if they are not already present.  

The algorithm then searches for the k-point grid that minimizes iN  while satisfying the 

following two constraints: 

1. latticer  for the corresponding superlattice not smaller than minr  (a value provided by the 

user), 

2. TN  is greater than or equal to minN  (another value provided by the user). 

We start by determining a lower bound for TN , which we call, lowerN . It is the larger value of 

min
N  and the minimum size that any superlattice can have with while satisfying lattice min

rr ≥ : 

 
3

max ,  
2

 
2

min
lower min

p

N
r

N
V

  
=    

  
 (10)   

where pV  is the volume of the primitive cell, 
32

2 min
r  is the volume of a unit cell in a face-

centered cubic (fcc) lattice for which the distance between lattice points is minr , x    is the floor 

operation that returns the largest integer no greater than the argument x. Equation (10) can be 
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justified by considering that fcc structures maximize the packing density for rigid spheres34 and 

thus 
32

2 min
r  is the minimum unit cell volume for a superlattice for which lattice

r  is at least min
r . 

The search for optimal superlattices starts with lattices of size lowerN  and generates symmetry-

preserving superlattices using an algorithm to be introduced in section 0. For each symmetry-

preserving superlattice, the scheme checks whether latticer  is smaller than minr  and discards it if it 

is. When the first superlattice for which minlatticer r≥  is found, its corresponding k-point grid is 

kept as the initial “best grid”, and the scheme can determine an upper limit for the search, upperN : 

 upper symiN NN ×=  (11) 

where symN  is the number of unique point symmetry operations for the system, as provided in the 

third input parameter listed above. Any superlattices with T upperNN ≥  would necessarily have 

more irreducible k-points than that of the initial best grid. If at some point a superlattice with iN  

smaller than that of the best known grid is found, the best grid is updated to this newly found one 

and the value of upperN  is adjusted accordingly. When two k-point grids have the same iN , the 

scheme favours the one with a larger latticer  in the corresponding superlattice. If latticer  of both 

superlattices also tie, the scheme chooses the one with a larger TN . The search ends when the 

upper limit of the sizes of superlattices is reached. Figure 1 summarizes the steps of the scheme. 
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Figure 1. A diagram summarizes the workflow of the dynamic grid generation algorithm. 

2.3 Algorithms for Efficient Enumeration of Symmetry-Preserving Superlattices 

Enumeration of all symmetry-preserving superlattice is computationally expensive and has 

been identified as the main hurdle of applying generalized k-point grids in calculations of 

properties of crystalline materials.2, 7 Morgan et al. have presented an algorithm for accelerating 

the enumeration of symmetry-preserving lattices for a given lattice size by expressing the 

primitive lattice in Niggli-reduced form.31 For each of the 44 distinct Niggli bases, they have 

determined symmetry-based constraints on the entries of H  that can be used to reduce the 

number of possible lattices that must be considered. We have developed an approach that 

similarly iterates over symmetry-preserving lattices, with two key differences: it does not rely on 

Niggli reduction, which reduces the complexity of the code and increases the ease of 
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implementation, and it is optimized for grid selection based on minr , which has been shown to 

work well as a descriptor of k-point density both in theory2 and in practice.2, 4 In our benchmarks, 

we demonstrate that the algorithms presented here generally return more efficient grids than the 

those generated using the method of Morgan et al.31 

2.3.1 Hermite normal form and symmetry-preserving lattices 

It is possible for two different matrices M to represent the same superlattice; i.e. the rows of 

each matrix could represent a different choice of vectors used to represent the lattice.  For the 

purpose of enumerating over lattices we express the transformation matrix M in Hermite normal 

form, a triangular form which uniquely defines a superlattice.35, 36 We shall use H  to represent 

the Hermite normal form of a general matrix M.   

Efficient k-point grids will generally have symmetry-preserving lattices, which are invariant 

with respect to the symmetry operations of the system. Hermite normal form provides a 

convenient way to test whether a superlattice is symmetry-preserving by generating the Hermite 

normal forms for the original matrix Mand all matrices generated by applying the symmetry 

operations of the system to M.  If all of the generated Hermite normal forms are the same, the 

lattice is symmetry-preserving. 

2.3.2 Enumeration Algorithm for Crystal Systems Other than Triclinic  

We start by considering systems that are not triclinic. For such systems at least one of the 

conventional lattice vectors must, by the symmetry of the system, be perpendicular to the other 

two. For simplicity, our only requirement is that such a vector be listed third, as 3c . 

The key to our approach is the recognition that for systems that are not triclinic, any regular 

three-dimensional lattice consists of layers of identical two-dimensional lattices that are normal 
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to 3c . Each two-dimensional lattice may be shifted from the one below it by a constant shift 

vector that is parallel to its lattice plane, and for symmetry-preserving lattices only a finite set of 

shift vectors are allowed. This decomposition helps quickly rule out superlattices that break 

symmetries without applying linear algebra to check them. For example, if there is a twofold 

rotational axis parallel to 3c , then this axis may only pass through points in the two-dimensional 

lattice formed by linear combinations of half lattice vectors (Table 1). Any other shift would 

result in a lattice that is not symmetry preserving, as symmetry operations could transform lattice 

points to non-lattice points. Similarly, if there is a mirror plane perpendicular to 3c , then either 

the mirror plane must be at the mid-point between two layers, in which case no shift is allowed, 

or it must pass through one of the layers, and again only the shifts shown in Table 1 are allowed. 

This concept is illustrated in two dimensions in Figure 2. Similar sets of shifts may be derived 

for three-fold rotational axes (Table 1).  

A high-level summary of our algorithm for enumerating symmetry-preserving lattices is then 

as follows: 

1. Determine all pairs of factors of the total lattice size.  In each pair, the first factor 

represents the size of the supercell in each two-dimensional layer and the second 

represents the number of layers in each three-dimensional supercell. 

2. For each pair of factors, enumerate all symmetry-preserving two-dimensional lattices 

(in Hermite normal form) with the required size. 

3. Combine each two-dimensional lattice with each allowed shift to create a candidate 

three-dimensional lattice. 

4. Verify that the three-dimensional lattice is symmetry-preserving. 
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Table 1. Possible displacements of lattice planes in real space in 2 dimensions, and of the Γ  

point in reciprocal space in 3 dimensions.  

 

Figure 2. Two-dimensional examples of allowed and disallowed shifts. In all examples blue lines 

represent a mirror plane, black dots represent lattice points on real-space superlattice, and dashed lines 

show the different layers of lattice points that are orthogonal to 2c . a), b), c), and d) show allowed shifts 

in which the mirror plane transforms every lattice point to another lattice point.  In a) and b) there is zero 

shift, and in c) and d) the shift is half the vector 1c . e) and f) show disallowed shifts. 

Crystal System Shift vectors in the basis of { }1 2,c c

in real space 

Shift vectors of the Γ point in the 

basis of { }1 2 3, ,d d d as defined in 

equation (5) 

Cubic, 
Tetragonal, 
Orthorhombic, 
Monoclinic 

[0.0, 0.0], [0.0, 0.5], [0.5, 0.0],  

[0.5, 0.5] 

[0.0,0.0,0.0], [0.0,0.0,0.5], 

[0.0,0.5,0.0], [0.5,0.0,0.0], 

[0.5,0.5,0.0], [0.5,0.0,0.5], 

[0.0,0.5,0.5], [0.5,0.5,0.5] 
Hexagonal, 
Trigonal 

[0.0, 0.0], [1/3, 0.0], [0.0, 1/3],  

[0.0, 2/3], [2/3, 0.0], [1/3, 1/3],  

[2/3, 2/3], [1/3, 2/3], [2/3, 1/3] 
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This algorithm effectively reduces the problem of enumerating three-dimensional lattices to 

one of enumerating two-dimensional lattices, which significantly accelerates the search for 

symmetry-preserving lattices. Firstly, it drastically decreases the total number of 3-dimensional 

superlattices that need to be checked for symmetry preservation. Secondly, the symmetry groups 

in the 2-dimensional sublattice have fewer symmetry operations than the corresponding groups 

in 3 dimensions. Thirdly, a 2-dimensional matrix multiplication takes fewer elementary 

operations than a 3-dimensional one. We can even further accelerate the search by recognizing 

that if the number of layers is too small to satisfy the requirement that nlattice mir r≥ , we can skip 

the enumeration of two-dimensional lattices and move on to the next set of factors.  Similarly, if 

we ever determine that the lattice minr r<  for any two-dimensional layer, then we can stop evaluation 

of all lattices constructed from that layer and move onto the next two-dimensional lattice. We 

find that pre-screening the lattices for latticer  in this way significantly increases the speed of the 

algorithm when minr  is the limiting factor, as demonstrated by the benchmarking results in 

section 7.2 of the supplementary information.  

The steps of the algorithm are shown in detail by the pseudocode in Figure 3. The term 

“maxZDistance” at line 6 defines the maximum possible length of the shortest vector parallel 

with 3c  that superlattices can have while satisfying nlattice mir r≥ . The function 

“symmetryPreserving( H , { R })” determines whether the set of symmetries is preserved in the 

given superlattice by checking the invariance of H  after applying symmetries. Line 28 verifies 

that candidate lattices are superlattices of the primitive lattice after shifts in Table 1 are applied.  



 

 17

 
Figure 3. Algorithm for fast enumeration of symmetry preserving superlattices for systems other 

than triclinic. 
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2.3.3 Enumeration Algorithm for the Triclinic Crystal System 

The triclinic system doesn’t benefit from the above algorithm since all its superlattices 

preserve the point symmetry operations of the primitive lattice, namely the identity operation and 

sometimes the inversion operation. For triclinic systems we accelerate the search for 

superlattices for which . . by again considering one dimension at a time. For each factor set, if 

11 1 min
H r<a , the shortest distance between lattice points must be less than minr  and the factor 

set is not considered. Similarly, if the two dimensional lattice spanned by 11 1H a  and 

21 1 22 2H H+a a  has lattice minr r< , we do not iterate over possible values of 31H  and 32H  as we 

already know the lattices will not satisfy the required constraint. The procedures are summarized 

as a pseudocode in Figure 4. The input lattice can be of any dimension up to three. We note that 

a similar approach can be used to accelerate any scheme based on iterating over lattices in HNF, 

such as the one developed by Morgan et al..31 
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Figure 4. Algorithm for enumerating symmetry-preserving superlattices for triclinic system, 

accelerated by enforcing lattice minrr ≥  at each dimension. 

2.4 Evaluating Shift Vectors 

K-point grids can be generated for each symmetry-preserving lattice using equation (7), where 

the matrix H  can be used for M. The only remaining unknown is the shift vector s. When the 

shift vector has zero length, the k-point grid is called a Г-centered grid, as it must contain the Г 

point in reciprocal space as a grid point. Often the use of shift vectors with non-zero length 

results in more efficient grids, in part because avoiding the highly-symmetric Г point allows for 

greater use of symmetry to reduce the number of symmetrically irreducible k-points. 
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For a shift to be guaranteed to result in a symmetry-preserving lattice, it must shift the origin to 

a point that has the full point group symmetry of the origin. For all symmorphic space groups, 

the only such points are located at linear combinations of full- or half-multiples of the primitive 

lattice vectors. Thus, we consider only the eight such unique combination of k-point grid 

generating vectors, { }1 2 3, ,d d d , as candidate shift vectors (Table 1). In some cases (e.g. 

hexagonal systems), some of the shift vectors in Table 1 will not result in a symmetry-preserving 

grid. We identify and reject these when determining the number of irreducible k-points. As this 

occurs as soon as the first point that breaks symmetry is encountered, it comes with relatively 

little computational cost. 

 

2.5 Algorithm for Fast Calculation of Symmetrically Irreducible K-points and K-point 

Weights 

We select the optimal lattice based on the values of i
N , lattice

r , and T
N . The value of lattice

r  can be 

easily obtained from the superlattice vectors by Minkowski reduction, and TN  equals the 

absolute value of the determinant of the transformation matrix M. However, calculating iN  for a 

k-point grid is a relatively expensive operation. An intuitive approach is to apply all the point 

symmetry operations to each k-point, ik , and compare the resulting coordinates with all the 

other k-points. If one of the transformed k-points, i′k , is translationally equivalent to one of the 

other k-points, jk ,  then the k-points ik  and jk  are symmetrically equivalent. However, this 

algorithm scales as ( )2

T
O N , where TN  is the number of total k-points of a grid. As this operation 
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is applied to each of the k-point grids found by the algorithm in section 0, this intuitive but costly 

approach could easily become the major overhead of any k-point generation scheme. 

We solve this complication by first recognizing that a unit cell in reciprocal space is a supercell 

of a regular k-point lattice, where the two lattices are related by equation (6). To avoid confusion 

with the Hermite normal form of M, which we have labelled H , we will refer to the Hermite 

normal form of the transformation matrix in reciprocal space, T
M , as J (in general, ≠ TJ H ).  

The key to our approach is the recognition that it is possible to tessellate all of reciprocal space 

with supercells of size 11 22 33JJ J× ×  arranged periodically on the superlattice, where 11J , 22J , 

and 33J  are the diagonal elements of J and each lattice point is a corner of the supercell. This is 

illustrated in two dimensions in Figure 5, but the same concept extends to any number of 

dimensions. The off-diagonal elements of J serve to shift each layer of supercells relative to the 

previous layer, so that the tessellation resembles stacked bricks. Within each of these supercells, 

the coordinates of a k-point can be expressed as: 

 [ ]( ) [ ]1 2 3 1 2 3, , , ,
T

k k k ⋅+ +r d dds   (12) 

where r  is a lattice point on the reciprocal space lattice (blue dots in Figure 5), 1d , 2d , and 3d  

are generating lattice vectors of the k-point lattice (also reciprocal primitive lattice vectors), 1k  

is an integer from 0 to 11 1J − , 2k  is an integer from 0 to 22 1J − , and 3k  is an integer from 0 to 

33 1J − . The coordinates of the k-point can then be easily transformed into any basis (such as 

that of the primitive lattice in reciprocal space) using linear operations. We have shared this 

approach for iterating over k-points with the Hart group for their work with generalized k-point 

grids.30 Values for 1k , 2k , and 3k  can be quickly calculated for any k-point using integer 



 

 22

arithmetic, as discussed below and shown in lines 15 and 16 of Figure S6 of supplementary 

information.  

Given the enumeration of k-points using equation (12), we identify irreducible k-points in a 

way similar to that described by Hart et al..30 We assign a unique index to each k-point in the 

Brillouin zone or, equivalently, to each k-point in any unit cell of the reciprocal lattice, by 

 31 11 2 11 221index k J k J kJ= + + + . (13) 

The values of the index range from 1 to TN  , and translationally equivalent k-points share the 

same index. Linear scaling is achieved because the index for any given k-point can be calculated 

in constant time, as can the sublattice of k-points that have a given index. Then iteration of all k-

points in a unit cell in reciprocal space, equivalent to all k-points in the Brillouin zone, is 

accomplished by looping over values of 1k , 2k , and 3k  in equation (13). 

 

Figure 5. Two-dimensional illustrations of the concepts used for k-point enumeration and index 

generation. The top row provides the three possible matrices in Hermite normal form for the set 
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of factors (3,2). The middle row shows the three Bravais superlattices corresponding to these 

matrices, assuming that the generating vectors for the k-point grid, 1
d  and 2

d , are aligned with 

the dashed gray lines. The bottom row shows how space can be tessellated by unit cells that are 

3 2×  supercells of the generating lattice vectors, with k-point indices marked within each cell. 

 

To count the number of distinct k-points, we iterate over all translationally distinct k-points as 

described above and apply all symmetry operations to each k-point. If an operation does not 

transform the k-point to another k-point, the grid is not symmetry-preserving and is rejected (this 

can sometimes happen if a shift of the Γ  point breaks symmetry). If the index of any 

symmetrically equivalent k-point is less than that of the current k-point, then we have already 

seen a symmetrically equivalent k-point, so the counter for the number of irreducible k-points is 

not incremented. If there is no symmetrically equivalent k-point with an index lower than that of 

the current k-point, then the current k-point is the first we’ve seen in its orbit, so the counter for 

the number of irreducible k-points is incremented. A simple variation of this algorithm is used to 

calculate k-point weights by, for each k-point, determining the orbit of symmetrically equivalent 

points and then incrementing the weight of the k-point that has the lowest index in that orbit. 

Figure S6 in supporting information provides the pseudocode of this algorithm.  The final, 

returned arrays contain coordinates and weights for all k-points. The symmetrically non-distinct 

points, however, have weights of zero. This fact is used to identify the subset of irreducible 

points. 

 

3. KpLib: A Lightweight, Open-source C++ Library 

To facilitate the integration of the generalized Monkhorst-Pack k-point grids in simulation 

packages, we implemented the presented algorithms in a lightweight library, kpLib. It is written 
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in C++ to make interfacing easier for as many programming languages as possible. A python 

module, kpGen, is also provided as a wrapper of the C++ library. The source code of kpLib only 

contains 1122 lines, and the API uses elementary data structures as argument types, which 

should be available in most programming languages and facilitate the construction of wrapping 

functions. We have written a demonstration application, integrated with spglib 37, to show how to 

work with the API. The library is open sourced and a documentation of the API is provided on 

the homepage of its public repository (https://gitlab.com/muellergroup/kplib). We note that  

packages that plan to integrate kpLib should ensure that the set of symmetry operations used to 

generate the k-point grid are used consistently in the rest of the code. 

 

4. Benchmarks 

Here we present a series of benchmarks to demonstrate the speed at which our algorithm 

generates k-point grids and the efficiency of the generated grids, including a comparison to the 

grids generated using GRkgridgen.30, 31 All benchmarks were performed on the 102 structures 

randomly selected from the Inorganic Crystal Structure Database (ICSD) used in our previous 

work 2, 29. Version 2019.09.17 for kpLib was used for all benchmarks. 

 

4.1 Grid Generation Speed 

We have benchmarked the speed at which kpLib generates both Г-centered grids and grids 

with automatically selected shift vectors (called “auto grids” in the following text). To accelerate 

searches for large grids, we use an approach in which a search for small grids is performed, and 

then the densities of the small grids are increased in every dimension by a constant scale factor. 

This use of the scale factor was first introduced in section II.D of our previous work,2 and it is 

also adopted in the dynamic generation approach (for a detailed discussion, see section 1 of 
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supplementary information). We have benchmarked grid generation speed on 102 randomly 

selected structures using a single core on Intel Xeon E5660 processors with a 2.80 GHz base 

frequency and a 48 GHZ RAM, with and without the use of the scale factor. Grid sizes are 

specified by minr , instead of minN , as the former is physically more meaningful,2, 4 and thus we 

believe it is the most likely method to be used. A benchmark using min
N  to compare the speed of 

the dynamic generation approach and the database look-up approach is given in section 7 of 

supplementary information.  

Average computation time for both Г-centered grids and auto grids are shown in Figure 6. The 

speed at which kpLib generates Г-centered and auto grids is very similar. When minr  is 50 

angstroms, which is sufficient for converging most calculations within 1 meV / atom,2 both types 

of grids are generated in less than 0.2 seconds on average. For large grids, using the scale factor 

increases generation speed, at a slight cost of grid quality (Figure 8). When minr  is 100 

angstroms, it takes only about 1 second to find the optimal grids using the scale factor, while the 

exhaustive search with scale factor switched off finishes in about 4.6 seconds. The smallest value 

of minr  at which the scale factor starts to have an effect is 55 angstroms, but not all 102 

structures use the scale factor at 55 angstroms and 69 out of the 102 structures do not use the 

scale factor even at 100 angstroms. 
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Figure 6. Average computation time of dynamic generation using kpLib with and without scale 

factors at various values of minr  for a) Γ -centered grids and b) auto grids. The computation 

times at minr  = 100 angstroms are labeled on the graphs. 

The dynamic generation approach used by kpLib is more lightweight than the database 

approach used by the K-Point Grid Generator, which includes a 7.3 MB database containing 

428,632 pre-generated grids.  However the database lookup method (section 3 of supplementary 

information) is generally faster (Figure 7).  Database searching is much faster than dynamic grid 

generation for Γ -centered grids over a wide range of densities. The difference between the two 

approaches is smaller when shifted grids are included, but the database is still two times as fast at 

the largest minr .  This difference in relative performance for shifted grids can be attributed to the 

fact that dynamic grid generation loops over TN , and the database search loops over iN .  When 

searching for shifted grids rather than only Γ -centered grids, the upper bound for the loop over 

TN  is more rapidly reduced due to the larger number of candidate grids (Figure 1), whereas the 

upper bound for the loop over iN  is not (Figure S3 of the supplementary information). 
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Figure 7. Comparison of computation time between database lookup method used by the K-Point 

Grid Generator and the dynamic generation approach used by kpLib. This benchmark did not 

include monoclinic and triclinic structures, as both the K-Point Grid Generator and kpLib use 

dynamic grid generation for these. 

4.2 Grid Quality Comparison between KpLib and GRkgridgen 

We compared our dynamic grid generation method with GRkgridgen, another software 

package which can generate generalized Monkhorst Pack grids.31 As the options for grid 

generation differ between the two packages, we used the following settings to make a fair 

comparison:  both applications were instructed to select the grid with minimal iN  (a natural 

measure of the efficiency of a grid that meets user-provided constraints), and the required k-point 

density was specified by providing a value for minN  (defined as MINTOTALKPOINTS in kpLib 

and NKPTS in GRkgridgen).  In the version we tested, 0.7.5, GRkgridgen doesn’t guarantee that 

the real-space superlattices corresponding to the returned grids satisfy lattice minr r≥ , but it does take 

latticer  into account when generating grids based on minN . As kpLib only accounts for latticer  if minr  

is provided by the user, to ensure a fair comparison we have constrained the grids generated by 
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kpLib, to have latticer  which is at least as large as that of the grid generated by GRkgridgen at the 

same minN  and for the same structure. The same 102 structures were used and both Γ -centered 

grids and auto grids were compared. For kpLib without a scale factor, minN   values ranged from 1 

to 5623, while for kpLib using scale factor, the range is increased to 15,848 to better demonstrate 

the effect of scale factor for large grids.  

 

 

Figure 8. Ratios of average number of symmetrically irreducible k-points from the dynamic 

search by a) kpLib, b) kpLib with the scale factor, to grids generated using GRkgridgen, for both 

Γ -centered grids and auto grids. Both the maximal and minimal ratios are labeled for both types 

of grids. Part b) has a larger range of minN  (from 1 to 15,848), to better demonstrate the effect of 

the scale factor on grid quality. 

We use the number of irreducible k-points in the generated grid as a metric of grid efficiency, 

as the computational cost of most calculations that use k-points scales linearly with the number 

of irreducible k-points.  The scale factor makes little difference in the number of irreducible k-

points for grids generated below 5623minN =  (Figure 8).  For auto grids at all values of minN , 
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including those generated using the scale factor, grids from kpLib consistently have fewer 

irreducible k-point than the grids from GRkgridgen on average. The same is true for Γ -centered 

grids generated without using the scale factor, although for very dense grids when the scale 

factor is used GRkgridgen may return grids that are 1-2% more efficient on average. The 

difference between kpLib and GRkgridgen is much larger for auto grids than Γ -centered grids, 

and it is larger for small T
N  than large ones. We note that the gain in performance for relatively 

small values of TN  can be particularly beneficial as calculations with such small grids often have 

large supercells and are thus computationally demanding. For auto grids, which we expect to be 

the most commonly used mode, the expected increase in calculation speed using the grids 

generated by kpLib ranges from 3% to 37%. 

 

5. Conclusion 

The widespread use of generalized Monkhorst-Pack k-point grids has been limited by the lack 

of algorithms and tools for rapidly generating highly efficient grids. By effectively reducing the 

problem of generating optimal 3-dimenstional generalized Monkhorst-Pack k-point grids to that 

of enumerating over 2-dimensional lattices, along with several other algorithmic innovations, we 

have demonstrated that is possible to very rapidly identify optimal generalized Monkhorst-Pack 

k-point grids for a given material, given user constraints on the spacing of the real-space grid 

points and/or the minimum total required k-points.  For commonly-used grid densities, the grids 

generated by the algorithms presented in this paper are on average significantly more efficient 

than those generated using previously developed algorithms.  Given the demonstrated benefits of 

using generalized Monkhorst-Pack k-point grids2-4, 24, we conservatively estimate that 

widespread adoption of these algorithms could save computational materials researchers more 
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than a hundred million CPU hours, worth millions of US dollars, each year.  To facilitate this 

widespread use, we have implemented our algorithms for grid generation in kpLib, a lightweight 

open source library with only 1122 lines of code for integration with third-party software 

algorithms, and we have developed a standalone open-source tool, the K-Point Grid Generator, 

for rapidly generating generalized Monkhorst-Pack grids. 
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