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Abstract 26 

Biofuels, such as bioethanol, are a clean and sustainable form of energy and have 27 

emerged as a viable alternative to fossil fuels. Plant biomass is an important raw 28 

material for the production of clean and renewable energy. The holocellulose contained 29 

in the composition of plants may be broken down into simple sugars, such as glucose, 30 

which are fermented by yeast to produce bioethanol. The conversion of glucose 31 

polymers into fermentable sugars is accomplished by enzymes known as holocellulases, 32 

which are produced by lignocellulolytic fungi. These enzymes act synergistically for the 33 

efficient degradation of cellulose polymers, and the fine and coordinated regulation of 34 

this process is performed by transcription factors (TFs). TFs are regulatory proteins that 35 

bind to the promoter region of their target genes (CAZymes, sugar transporters, 36 

signaling proteins, other TFs, etc.) to induce or repress their transcription. This review 37 

aims to understand the main regulatory mechanisms involved in plant biomass 38 

degradation by the most studied lignocellulolytic fungi Trichoderma sp., Aspergillus 39 

sp., Penicillium sp., and Neurospora crassa. In this context, the most studied TFs related 40 

to holocellulose degradation and genetic modification of TFs or promoters as a valuable 41 

tool to improve enzyme production for biotechnological purposes have been discussed. 42 

This review enables the expansion of knowledge on the regulation of the cellulolytic 43 

system of filamentous fungi and the application of this knowledge to the improvement 44 

of numerous bioproducts. Engineering TFs and promoters may yield more efficient 45 

strains that may be active in plant biomass hydrolysis. In this way, the technological 46 
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processes for obtaining ethanol from lignocellulose may become more commercially 47 

viable. 48 

Keywords: Cellulosic ethanol, holocellulase, transcription factor, gene expression, 49 

transcriptional regulation, lignocellulolytic fungi, promoter engineering. 50 

 51 
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TF - Transcription factor 71 

ZF - Zinc finger 72 

 73 

1. Introduction 74 

In recent years, concerns about the finite nature of fossil fuel reserves and 75 

environmental sustainability have led to an increased search for renewable and cleaner 76 

energy sources. Second-generation fuels, such as bioethanol, have been highlighted as 77 

environmentally friendly, sustainable, and cost-effective energy sources produced from 78 

abundant raw materials in the environment, such as plant biomass, including corn bran 79 

and sugarcane bagasse (SCB) (Robak and Balcerek, 2018). Biomass energy production 80 

has a significant advantage because the carbon dioxide released during combustion does 81 

not increase the CO2 in the atmosphere as it is of biogenic origin (Tursi, 2019).  82 

The structure of the plant biomass cell wall comprises holocellulose (cellulose 83 

and hemicellulose) and lignin (Moreira et al., 2011). Cellulose is a complex 84 

carbohydrate polymer composed of several hundred units of glucose and represents the 85 

most abundant organic compound in nature. In contrast to cellulose, hemicellulose is a 86 

heterogeneous branched polysaccharide formed by various pentoses and hexoses such 87 

as mannans, arabinogalactans, xylans, and galactans. Lignin functions in the joining and 88 

compacting the plant fibers, thus increasing their resistance (Tursi, 2019). The structure 89 

of lignin comprises a complex amorphous aromatic polymer that is removed during the 90 

production of bioethanol (Moreira et al., 2011). The proportion between 91 

cellulose/hemicellulose/lignin that composes the vegetal biomass varies depending on 92 

each plant. In wheat straw, for example, the concentration of cellulose ranges from 33–93 
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40% (w/w); hemicelluloses range from 20–25% (w/w); and lignin ranges from 15–20% 94 

(w/w) (Srivastava et al., 2021). 95 

One of the crucial steps in the production of bioethanol is ensuring the 96 

availability of sugars present in (hemi)cellulose for the subsequent fermentation by 97 

yeast. The release of simple sugars can occur chemically or enzymatically. 98 

Lignocellulolytic microorganisms play a crucial role in the latter.  The biological 99 

pretreatment of plant biomass is environmentally safe, cost-effective, and may be 100 

carried out under environmental conditions that also have lower energy costs (Alvira et 101 

al., 2010). Among the microorganisms most commonly used in the production of 102 

holocellulolytic enzymes are filamentous fungi belonging to the genera Trichoderma, 103 

Aspergillus, Neurospora, and Penicillium.  104 

Filamentous fungi transform plant residues, which are normally discarded by the 105 

agroindustry, into raw materials for the production of clean energy, as is the case with 106 

bioethanol. Bread residues, for example, may be bioconverted into ethanol efficiently, 107 

with the biomass hydrolysis process being carried out by the species Neurospora 108 

intermedia and Aspergillus oryzae (Kawa-Rygielska et al., 2022). Banana peels, wheat 109 

bran, and sawdust are also used as substrates for the cellulases produced by Aspergillus 110 

terreus and produce a high amount of ethanol with great purity (Sethi et al., 2017). 111 

Another suitable substrate for microorganism hydrolysis and ethanol production is the 112 

feedstock SCB. In a study by Huang et al., an engineered strain of Trichoderma reesei 113 

was used to produce ethanol directly from this feedstock (Huang et al., 2014). The 114 

cellulases and hemicellulases (referred together as holocellulases) produced by these 115 

fungi act synergistically to degrade vegetal polymers in a finely coordinated process 116 

(Gupta et al., 2016).  117 
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This review reports how the success of biomass hydrolysis is directly related to 118 

the microorganisms employed in the process and the use of genetic engineering to 119 

improve the ability of these microorganisms to degrade plant biomass. The regulatory 120 

mechanisms by which polysaccharides are degraded and transported into cells and the 121 

synthesis of regulatory proteins that control the transcription of specific genes involved 122 

in the production of holocellulases have further been discussed. This review also 123 

describes the most well-studied transcription factors (TFs) within lignocellulolytic fungi 124 

and how genetic engineering can be a key factor in optimizing the expression of these 125 

proteins and improve enzymatic production in the biotechnological industry. Several 126 

TFs involved in plant biomass degradation remain uncharacterized despite the advances 127 

discussed in this paper. It is therefore important to further investigate the regulatory 128 

mechanisms that control plant biomass degradation. All technologies involving the 129 

genetic engineering of TFs are important tools for optimizing the degradation of 130 

biomass by microorganisms. In the bioethanol production process, for example, such 131 

optimization is possible as the process makes the use of this clean and competitive 132 

energy source more commercially viable. This review assesses the latest findings 133 

regarding the regulation of the cellulolytic system and most recent technologies used in 134 

genetic engineering to obtain more efficient microorganisms that hydrolyze plant cell 135 

walls. Finally, future perspectives are presented to achieve a consolidated process for 136 

bioethanol production using lignocellulosic feedstock. 137 

 138 

2. The holocellulolytic system in filamentous fungi 139 

Technologies that use microorganisms for the production of renewable fuels 140 

have the advantage of reducing environmental waste and harmful greenhouse gas 141 
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emissions (Zabermawi et al., 2022). In filamentous fungi, the appropriate response to a 142 

given environmental stimulus is coordinated by different mechanisms. For example, 143 

stimuli can be caused by the release of sugars from the hydrolysis of cellulosic biomass, 144 

which involves four main steps: 1. The activation of specific intracellular signaling 145 

pathways responsible for the perception of signals in the environment; 2. Expression of 146 

TFs involved in the metabolism of different carbon sources; 3. Induction of the 147 

expression of enzymes capable of cleaving different substrates and releasing sugars for 148 

energy production; and 4. Expression of transporters in the cell membrane, which is 149 

responsible for sugar internalization and its incorporation in different metabolic 150 

pathways (Nogueira et al., 2020). These initial steps of the activation of the 151 

holocellulolytic system are regulated specifically by the available carbon source in the 152 

microenvironment of the microorganism. Thus, the recognition of the substrate by the 153 

fungus allows for the optimization of the production of degradative enzymes and is an 154 

essential process for the survival of microorganisms in nature (Bazafkan et al., 2014). 155 

The following discussion on this topic addresses the mechanisms involved in each step 156 

of the induction of the holocellulolytic system in the main filamentous fungi involved in 157 

the breakdown of lignocellulose. 158 

Trichoderma sp. is a filamentous fungus involved in lignocellulosic biomass 159 

degradation (Peterson and Nevalainen, 2012) and is an important biocontrol agent 160 

against a number of plant pathogenic fungi (Sood et al., 2020). These organisms have 161 

developed specific mechanisms to use plant-derived polysaccharides as a major source 162 

of carbon and energy. Transcriptional regulation by specific TFs is a successful strategy 163 

employed by Trichoderma reesei to regulate the production of Carbohydrate-Active 164 

Enzymes (CAZymes) (Dos Santos Castro et al., 2016). Under specific conditions, TFs 165 
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bind to their sites at the target promoters and initiate the activation or repression of the 166 

holocellulase-encoding genes.  167 

As shown in Figure 1, the promoter regions of all the CAZymes from T. reesei 168 

were selected and examined for potential specific binding motifs for the TFs XYR1, 169 

CRE1, ACE2, PacC, CLR1, and CLR2 using in silico analyses. XYR1 was observed as 170 

it is the main regulator of holocellulase production and a direct regulator of the genes 171 

involved in xylan/xyloglucan degradation. Almost no genes contained a binding site for 172 

CLR1 in the analyzed promoters, thus suggesting that CLR1 acts indirectly to regulate 173 

the enzymes involved in biomass degradation. For the other TFs, a varied profile was 174 

observed even when analyzing the same polysaccharide-related enzymes. Therefore, the 175 

finely tuned regulation performed by TFs is the key feature that allows T. reesei to 176 

adequately respond to environmental changes (Kunitake and Kobayashi, 2017).  177 

In T. reesei, the induction of holocellulase expression is controlled at the 178 

transcriptional level and in a carbon source-dependent manner (Gupta et al., 2016). The 179 

holocellulolytic apparatus of T. reesei encompasses endoglucanases, exoglucanases, β-180 

glucosidases, and other enzymes or proteins such as the lytic polysaccharide 181 

monooxygenases (LPMOs) (Song et al., 2018) and swollenin (Eibinger et al., 2016), 182 

which act synergistically to break down (hemi)cellulose compounds. Most of these 183 

enzymes are highly expressed in the presence of cellulose, sophorose, and SCB in 184 

comparison to glucose and glycerol (Dos Santos Castro et al., 2014).  185 

Aspergillus sp. is another important industrial workhorse due to its ability to 186 

produce and secrete extracellular enzymes that are used in a wide range of 187 

biotechnological processes (De Gouvêa et al., 2018). In 2015, Udatha et al. performed a 188 

secretome analysis and found that one third of the glycosyl hydrolases (GHs) produced 189 
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by A. oryzae were up- or downregulated in the presence of oligosaccharide inducers. In 190 

addition, more than 120 CAZymes and genes related to diverse metabolic process were 191 

differentially expressed in response to these inducers. These findings suggest a 192 

sophisticated capacity for the adaptation of this species to survive with the available 193 

nutrients (Udatha et al., 2015). A comparative secretomic analysis of A. niger and T. 194 

reesei further revealed that the A. niger secretome was the most diverse and identified 195 

the 89 least-secreted enzymes in response to SCB (Borin et al., 2015). A secretome 196 

analysis of Aspergillus in response to less complex carbon sources showed important 197 

changes compared to those caused by SCB. A small number of hydrolytic enzymes was 198 

observed when the fungus was cultured in the presence of glucose (Adav et al., 2010).   199 

Two other interesting examples of holocellulolytic fungi genera are Neurospora 200 

and Penicillium. N. crassa is an efficient plant biomass decomposer with a wide plant 201 

cell wall-degrading enzyme. Wu et al. showed that this fungus exhibited robust gene 202 

expression changes when cultured in the presence of monosaccharides, disaccharides, 203 

and complex biomass components (Wu et al., 2020). A quantitative proteomics analysis 204 

revealed that the N. crassa secretome is enriched with CBH1, GH6-1, GH5-1, and GH3-205 

4 (the most abundant), hemicellulases, and LPMOs (Znameroski and Glass, 2013). 206 

Moreover, P. oxalicum (Song et al., 2016) and P. funiculosum (Ogunmolu et al., 2015) 207 

have been shown to be great holocellulolytic enzyme producers. Ribeiro et al. showed 208 

that P. echinulatum is a good producer of endoglucanase, cellobiohydrolase, and β-209 

glucosidase (Ribeiro et al., 2012). Similarly, Schneider et al. showed that GHs are 210 

enriched in the P. echinulatum secretome (Schneider et al., 2016). A distinct 211 

holocellulolytic expression profile has been identified for P. decumbens and has a great 212 
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number and different types of holocellulolytic enzymes compared to other filamentous 213 

fungi (Liu et al., 2013). 214 

Filamentous fungi can grow on a wide variety of substrates and adapt to diverse 215 

growth conditions. These characteristics make the fungi interesting targets for studies 216 

that assess the recycling of lignocellulosic residues, which were previously disposable, 217 

for the production of clean energy (Wikandari et al., 2022). Research on the cellulolytic 218 

system of the main filamentous fungi has been used to advance the technologies that 219 

contribute to the improvement of biomass hydrolysis and consequent sustainability and 220 

market competitiveness of bioethanol as a source of clean energy. 221 

 222 

3. From sugar-sensing to its uptake: the crucial role of sugar transporters in 223 

regulating the holocellulolytic system 224 

Proteins involved in sugar transport play an important role in the hydrolysis of 225 

plant biomass and are therefore important research targets aimed at improving the 226 

strains used in the production of bioenergy. The expression of an adequate set of 227 

transporters is necessary for sugar uptake and their incorporation into different 228 

metabolic pathways, which regulate (hemi)cellulase production (Figure 2). Different 229 

membrane proteins have been described as important players in sugar metabolism as 230 

they act in both sugar uptake and the activation of downstream signaling pathways that 231 

control (hemi)cellulase-encoding genes (Nogueira et al., 2020). To activate cellulolytic 232 

machinery, T. reesei senses the insoluble polysaccharides in the environment and 233 

produces cellobiose and its transglycosylated product, sophorose. These 234 

oligosaccharides act as inducers for the production of cellulases and hemicellulases (RG 235 
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De Paula et al., 2019). However, the mechanisms involved in sugar recognition and the 236 

intracellular inductor cascade remain unclear. 237 

In T. reesei, several sugar transporters have been characterized due to their role 238 

in the transport of xylose, mannose, cellobiose, glucose, arabinose, xylitol, L-arabitol, 239 

or lactose (Huang et al., 2015; Nogueira et al., 2020) (Figure 2). In N. crassa, 240 

cellodextrin transporters have been shown to be important in the regulation of 241 

holocellulolytic genes.  CDT-1 and CDT-2 are important for cellulose sensing and 242 

contribute to the secretion of cellulases (Znameroski et al., 2014). Similarly, CLP1 has 243 

been found to be essential for the activation of cellulase. Various sugar transporters of 244 

N. crassa may also be important in the secretion of cellulases that act as transceptors 245 

(Cai et al., 2015). For instance, two glucose transporters (HGT-1/2) are essential players 246 

in the regulation of sugar uptake and carbon catabolite repression (CCR) (Wang et al., 247 

2017). Likewise, in A. nidulans, CltA and CltB are involved in cellobiose uptake and 248 

cellulose signaling (Dos Reis et al., 2016). In P. decumbens, the functional 249 

characterization of two cellodextrin transporters (cdtC and cdtD) revealed their crucial 250 

role in cellobiose consumption (Li et al., 2013). These findings clarify various aspects 251 

of the role of protein transporters in the control of (hemi)cellulolytic gene expression. 252 

The functional characterization of these novel transporters may therefore be necessary 253 

to reveal their potential in sensing and transducing the signals involved in biomass 254 

degradation. 255 

As noted for the CAZymes, transporter-encoding genes can also be important 256 

targets of the TFs involved in the regulation of plant cell-wall degradation. These TFs 257 

include CRE1 and XYR1. In silico analyses of the promoter regions of the 258 

aforementioned transporters have uncovered a fine and orchestrated regulatory 259 
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mechanism that is essential for the correct functioning of holocellulolytic machinery 260 

(Figure 3). The carbon catabolite repressor, CRE1, has the greatest regulatory effect on 261 

sugar transporters, which has been evidenced by the higher density of potential binding 262 

motifs in the promoter regions of its target genes. The positive regulator, XYR1, also 263 

appears to be a direct regulator of most of the described transporters, especially for the 264 

proteins, CDT1, STR1, and CLTA. Similar to that found for the CAZymes, the TF 265 

CLR1 does not seem to be a direct regulator of the transporters involved in 266 

(hemi)cellulose degradation, and the remaining TFs have exhibited variable regulatory 267 

activities in the promoter regions of the analyzed transporters. Dos Santos Castros et al. 268 

further studied the transporters regulated by TFs and found that the expression of 77 269 

genes encoding the transporters was modulated by XYR1 in a carbon source-dependent 270 

manner. These transporters included the ATP-binding cassette (ABC) transporter, sugar 271 

transporter, major facilitator superfamily (MFS) permeases, sugar permeases, and amino 272 

acid transporters (Dos Santos Castro et al., 2016). These studies indicate that sugar 273 

transporters are important potential targets of TFs relative to the holocellulolytic 274 

system. Thus, regulating the expression of these transporter-encoding genes is vital for 275 

the precise recognition and capture of nutrients present in the environment. Future work 276 

on efficient transport of nutrients should consider the development of mutant strains 277 

expressing multiple copies of specific transporters and the expression of transporters 278 

under the control of strong promoters. In addition, expression of disaccharide 279 

transporters such as cellobiose and xylose could be a good strategy to develop yeasts 280 

that can produce bioethanol in consolidated systems. 281 

 282 

4. Transcription factors from lignocellulolytic fungi 283 
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 The production of enzymes involved in the degradation of plant biomass 284 

requires orchestrated regulation dependent on the performance of several TFs. An 285 

overview of the regulation of plant cell wall degradation by activator and repressor 286 

proteins has been exemplified for the model fungus of cellulase production, T. reesei 287 

(Figure 4).  288 

Biomass-degrading fungi are widely distributed in the environment and have 289 

evolved efficient means of recognizing and capturing available nutrients without 290 

wasting energy. TFs play a fundamental role in the regulation of these processes. They 291 

can activate or repress their target genes (including those encoding CAZymes, sugar 292 

transporters, signaling proteins, other TFs, etc.) in a direct or indirect manner. A 293 

phylogenetic analysis of the main TFs involved in biomass degradation in fungi is 294 

shown in Figure 5. Most of the proteins belong to the Cys2His2 zinc finger (ZF) class, 295 

including the main activator, Xyr1, and its homologues. The second most evident class 296 

comprises the Cys2His2 TFs, among which the carbon catabolite repressor CRE1 and its 297 

homologues are included. Homeodomain and GATA-type TFs appear in smaller 298 

numbers. Although these regulatory proteins have a highly conserved structure between 299 

species, some differences can be observed regarding their target genes or the 300 

mechanisms by which they are activated or repressed. In this section, the main TFs 301 

involved in the degradation of the holocellulose polymers by the most studied biomass-302 

degrading fungi are described. 303 

 304 

4.1. XYR1/XlnR/Xlr1 305 

 The protein XYR1 (xylanase regulator 1, ortholog of XlnR and Xlr1) is a TF that 306 

is considered to be the main activator of cellulase and hemicellulase expression in most 307 
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biomass-degrading fungi. Deletions of xlnR in A. niger impair the fungus during the 308 

colonization of wheat bran particles due to the reduced potential of A. niger to secrete 309 

arabinoxylan and cellulose-degrading enzymes in the mutant strain (Kowalczyk et al., 310 

2017). Additionally, a global transcriptome analysis of a Δxyr1 mutant of T. reesei 311 

showed that most of the genes regulated by XYR1 and the induction of carbon sources, 312 

such as cellulose and sophorose, are CAZymes, other TFs, and sugar transporter 313 

families (Dos Santos Castro et al., 2016). Recently, Cao et al. showed that XYR1 314 

interacts with the protein TrSNF12 and recruits the SWI-SNF chromatin-remodeling 315 

complex at cellulase gene promoters, thus allowing efficient cellulase gene transcription 316 

(Cao et al., 2019).  317 

 318 

4.2. CRE1/CreA 319 

The Cys2His2-type TF CRE1/CreA is the main regulator of CCR in fungi. The 320 

repressive role of CRE1 has further been evidenced in the hypercellulolytic T. reesei 321 

Rut-C30. In this strain, a truncated form of cre1 was identified and allowed for the 322 

production of holocellulases under glucose conditions (Peterson and Nevalainen, 2012). 323 

In 2014, Antoniêto et al. showed that CRE1 regulates its target genes in a carbon 324 

source-dependent manner in T. reesei. CRE1 recognized the glucose content in the 325 

medium and modulated the access of cellulases to the plant cell wall or blocked the 326 

entry of cellulase inducers into the cell (Antoniêto et al., 2014). Interestingly, the main 327 

activator of cellulase and hemicellulase expression, xyr1, was repressed by CRE1 in 328 

both T. reesei (Antoniêto et al., 2014) and A. nidulans (Tamayo et al., 2008) under 329 

glucose-repressing conditions. The repressive role of CRE1 was also described in N. 330 

crassa (Sun and Glass, 2011) and P. oxalicum (Yao et al., 2015). In these fungi, the 331 
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CCR mechanisms mediated by CreA were also involved in the decreased gene 332 

expression of the main cellulase- and hemicellulase-encoding genes.  333 

 334 

4.3. ACE1, ACE2, and ACE3 335 

Aro et al. investigated the role of activator of cellulase expression 1 (ACE1) in 336 

cellulase and xylanase gene expression, observing that the deletion of ace1 resulted in 337 

the increased expression of the major cellulolytic and xylanolytic genes during growth 338 

within carbon sources. ACE1 is therefore a repressor of cellulase and xylanase gene 339 

expression in T. reesei (Aro et al., 2003). The cellulase activator, ACE2, was first 340 

identified in T. reesei by Aro et al. in 2001. Genes encoding cellulases and xylanases 341 

were downregulated in the mutant strain ∆ace2, and cellulolytic activity was also 342 

reduced in the mutant strain during growth in cellulose (Aro et al., 2001). In 2014, 343 

Häkkinen et al. identified ACE3 and found that its overexpression improved both 344 

cellulase and xylanase production in T. reesei. In contrast, the deletion of this gene 345 

resulted in the abolishment of cellulase activity and decreased xylanase activity. The 346 

gene expression levels of cellulolytic and hemicellulolytic genes were also affected by 347 

ACE3, which confirmed its role in biomass degradation (Häkkinen et al., 2014).  348 

 349 

4.4. HAP complex 350 

The HAP (Heme Activator Protein) complex remodels the structure of 351 

chromatin, thus enhancing transcription (Tsukagoshi et al., 2001). In A. nidulans and A. 352 

oryzae, the HAP complex is called HAP B/C/E and comprises three subunits: HapB, 353 

HapC, and HapE. Several genes have been identified as targets for the HAP complex in 354 

these fungi, including genes that encode acetamidase and those related to penicillin 355 
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biosynthesis (Hortschansky et al., 2017). The HAP complex of T. reesei (called HAP 356 

2/3/5) was assessed by Zeilinger et al. (Zeilinger et al., 2003, 2001), who found that the 357 

three proteins HAP2, HAP3, and HAP5 were necessary to bind to the CCAAT box in 358 

the promoter of cbh2 in vitro.  359 

 360 

4.5. CLR1, CLR2, and CLR3         361 

 Along with Xlr1, the TFs CLR1 and CLR2 are considered the main regulators of 362 

cell wall degradation in N. crassa. These two proteins were identified in 2012 by 363 

Coradetti et al., who demonstrated that mutants with deletions of these genes exhibited 364 

a severe growth defect during growth in Avicel (Coradetti et al., 2012). Recently, the 365 

TF CLR3 was described as a repressor of CLR1 activity in N. crassa. CLR3 represses 366 

the expression of clr1 in the absence of cellulose. However, in the presence of cellulose, 367 

the repressive function of CLR3 is relieved, and CLR1 is able to repress genes related to 368 

plant cell wall degradation, including clr2 (Huberman et al., 2017). Beier et al. further 369 

demonstrated that CLR1 and CLR2 are involved in pectinase and xylanase gene 370 

expression in T. reesei and that this regulation is light-dependent. Furthermore, these 371 

TFs have less homology in comparison to other ascomycetes (Beier et al., 2020). 372 

 373 

4.6. LAE1/VEL1 (LaeA/VeA) 374 

 The VELVET complex comprises three proteins, namely LaeA, VeA, and VelB, 375 

which are involved in the development of and secondary metabolism in A. nidulans (G. 376 

Wang et al., 2019). The orthologs of LaeA and VeA in T. reesei, known as LAE1 and 377 

VEL1, are two other regulators of plant cell wall degradation. Seiboth et al. showed that 378 

the regulation of cellulase gene expression by the methyltransferase, LAE1, is 379 
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dependent on the main positive regulator, XYR1. In addition, xyr1 transcription is also 380 

dependent on LAE1. Mutants carrying lae1 exhibit reduced cellulolytic and xylanolytic 381 

activities during growth in lactose and xylan carbon sources. Genes encoding CAZymes 382 

are also affected by the deletion of lae1 in T. reesei (Seiboth et al., 2012) and P. 383 

oxalicum (Li et al., 2016). These data reinforce the crucial role of the VELVET 384 

complex as a regulator of plant cell wall degradation. 385 

 386 

4.7. AraR 387 

 The TF AraR is a zinc binuclear transcriptional regulator, Zn2Cys6, identified in 388 

the Aspergillus species, which is involved in the regulation of L-arabinose catabolism 389 

and activation of genes encoding α‐L‐arabinofuranosidases. During cultivation of A. 390 

niger in SCB, AraR was shown to regulate several genes encoding biomass-degrading 391 

enzymes. Together with XlnR, they are responsible for regulating the genes related to 392 

the metabolism of simple and complex sugars, and this regulation is dependent on the 393 

complexity of the substrate and its derivatives (De Souza et al., 2013). The involvement 394 

of AraR in the production of α‐L‐arabinofuranosidases has also been described in P. 395 

oxalicum. Deletions of this TF cause reduced growth in the presence of L‐arabinose and 396 

decreased α‐L‐arabinofuranosidase activity in wheat bran-containing media (Gao et al., 397 

2019a).  398 

 399 

4.8. PacC/Pac3/Pac1 400 

The role of pH in the production of biomass-degrading enzymes was described 401 

for several fungal species, and the TF that regulates the pH signaling pathway is the 402 

protein PacC. An ortholog of PacC, known as Trpac1, was identified in T. reesei. Under 403 
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neutral pH, deletions of this gene resulted in increased cellulolytic activity and 404 

transcription levels of cellulase-encoding genes. The positive regulators of cellulase 405 

production, xyr1 and ace2, were also regulated by Trpac1 (He et al., 2014). This indirect 406 

regulatory mechanism was also observed in N. crassa. Antoniêto et al. showed that the 407 

deletion of pac3, which is the ortholog of pacC in the Aspergillus species, resulted in 408 

decreased cellulolytic activity at alkaline pH. In addition, xilanase production was 409 

positively regulated by PAC3 under alkaline, neutral, and acidic pH. Furthermore, the 410 

TFs xlr1, cre1, clr1, and clr2 were also regulated by PAC3 in a pH-responsive manner 411 

(Antoniêto et al., 2017).  412 

 413 

4.9. Other TFs involved in biomass degradation 414 

Many TFs have been identified and characterized in fungi, and many of these 415 

proteins are involved in the regulation of biomass-degrading genes. In T. reesei, the 416 

TFs, CTF1 (Q. Meng et al., 2020) and RCE1 (Cao et al., 2017), have been described as 417 

repressors of cellulase production. The latter binds in the same motif as Xyr1 in the 418 

cbh1 promoter, thus acting as an antagonist of Xyr1. Xyr1 is also involved with the 419 

positive regulator, RXE1. This TF strongly binds to the xyr1 promoter and regulates its 420 

transcriptional expression and the production of cellulase in T. reesei (L. Wang et al., 421 

2019a). The expression of genes encoding β-glucosidases has been found to be 422 

positively regulated by the TF BglR, and mutants carrying the deletion of this regulator 423 

have exhibited the reduced capacity to hydrolyze cellobiose in T. reesei (Nitta et al., 424 

2012). Another TF that has recently been described as a positive regulator of plant cell 425 

wall-degrading genes in T. reesei is AZF1. Deletions of azf1 result in diminished 426 

transcriptional levels of genes encoding CAZymes, transporters, and other TFs during 427 
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growth in SCB (Antonieto et al., 2019). Similar to AZF1, the homeodomain CLP1 acts 428 

as a positive regulator of cellulase genes in T. reesei (L. Wang et al., 2019b). The 429 

calcium signaling pathway is also involved in (hemi)cellulase gene expression and 430 

secretion in T. reesei, and the TF CRZ1 has further been identified as a key regulator of 431 

the fungus (Martins-Santana et al., 2020). The TF ARE1 is also a positive regulator of 432 

the main cellulase genes, including cbh1, cbh2, egl1, and egl2, in T. reesei (Qian et al., 433 

2019). XPP1 is described as a regulator of hemicellulose degradation, but no 434 

involvement with cellulase production has been observed (Derntl et al., 2015). VIB1 is 435 

another regulator involved in plant cell wall degradation in filamentous fungi. In N. 436 

crassa, VIB1  regulates the transcription of CAZymes by affecting the expression of 437 

clr2 (Xiong et al., 2014). In P. oxalicum, deletions of the novel TF ATF1 have been 438 

found to result in increased cellulase and xylanase production in media containing 439 

wheat bran and rice straw (Zhao et al., 2019).  440 

 441 

5. Engineering gene expression to enhance cellulase production in filamentous 442 

fungi 443 

 Given the central role of TFs in the regulation of plant cell wall degradation, 444 

these proteins are important targets in genetic engineering strategies for the construction 445 

of strains to increase cellulase production and degrade lignocellulosic biomass (Renato 446 

Graciano De Paula et al., 2019). The next section discusses the most recent and 447 

significant studies involving TFs and promoter engineering aimed at improving the 448 

production of holocellulase in filamentous fungi. 449 

 450 

5.1. TF engineering  451 
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The overexpression of transcriptional activators and deleting or silencing 452 

repressors are approaches that have been widely used to increase the production of 453 

holocellulases. In addition, strategies involving the rational engineering of TFs have 454 

emerged, including point and truncated mutations, the fusion of domains from different 455 

TFs, and construction of artificial TFs (Figure 6). 456 

 In 2019, Liu et al. introduced the CRE1 truncated sequence from T. reesei RutC-457 

30 in the mutant strain SS-II and generated the strain SS-II-cre196, which exhibited 458 

significantly higher cellulase activity than SS-II after 5 days of being cultured (Liu et 459 

al., 2019). Another TF truncated in T. reesei RutC-30 is the positive regulator, ACE3. A 460 

missense mutation was found to generate a stop codon and resulted in ACE3-723, 461 

which is 11 amino acids shorter at the C-terminus. Similar to CRE196, ACE3-723 is 462 

crucial for cellulase hyperproduction in RutC-30 (Chen et al., 2020). The ace3 truncated 463 

sequence was further inserted into the strain PC-3-7. This strain contains a mutation in 464 

the gene, bgl2, that results in reduced hydrolysis activity and subsequent relief from 465 

CCR. Corn straw saccharification by the mutant strain, PC-3-7-723 (carrying the 466 

truncated ace3), produced more glucose than the controls, PC-3-7, and RutC-30. In fed-467 

batch fermentation using a mixture of glucose and β-disaccharides as a substrate, PC-3-468 

7-723 increased approximately 20–30% of cellulase activity compared to the parental 469 

strain (Chen et al., 2020). 470 

 Mutagenesis further triggers mutations in the main cellulase expression 471 

activator, XYR1, in T. reesei. The Iogen M8 strain was obtained after two rounds of 472 

mutagenesis and exhibited elevated xylanase activity. This was caused by a point 473 

mutation in XYR1 (A824V), which resulted in a high level of cellulase and 474 

hemicellulase expression under inducer and non-inducer conditions (Derntl et al., 2013). 475 
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In A. niger, the mutation V756F in XlnR also resulted in elevated xylanase expression, 476 

even under repressing conditions (Hasper et al., 2004). An analysis of the effects of 477 

these point mutations in TFs allowed for the construction of strains to improve cellulase 478 

production (Figure 6). The substitution of the amino acid valine for phenylalanine at 479 

position 821 in XYR1 in T. reesei and the overexpression of this mutated TF increased 480 

the production of cellulases and xylanases when T. reesei was grown in lactose and 481 

glucose (Fonseca et al., 2020). In AraR, a close homolog of XlnR that regulates α‐L‐482 

arabinofuranosidase genes, the mutation A731V led to the active expression of α‐L‐483 

arabinofuranosidases (Gao et al., 2019a). Furthermore, when the mutations XYR1A824V 484 

(from T. reesei) and XLR-1A828V (from N. crassa) were introduced in P. oxalicum, the 485 

fungus was able to activate the expression of cellulolytic genes (Xia et al., 2019). 486 

Recently, Han et al. induced several mutations to modify phosphorylation sites in the C-487 

terminus of CRE1 in T. reesei and found that the mutation, S388V, increased FPase and 488 

pNPCase activity when the fungus was cultured in glucose-containing media (Han et 489 

al., 2020b). Regulatory modifications, such as phosphorylation and dephosphorylation, 490 

are important for the effectiveness of TFs in cells. Therefore, mimicking them through 491 

point mutations may be an excellent method to relieve CCR and increase the production 492 

of (hemi)cellulases. 493 

 An analysis of the repressor CreA in the strain JUA10-1 of P. oxalicum further 494 

revealed a frameshift mutation at the C-terminus that is important for cellulase 495 

hyperproduction. The introduction of this mutation in T. reesei CRE1 alleviated CCR 496 

and increased the expression of cel7a in the presence of glucose (Han et al., 2020a). In 497 

addition, the truncation of Mig1, which is a homologue of CRE1/CreA and the main 498 

repressor of cellulolytic gene transcription in Penicillium funiculosum NCIM1288, 499 
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caused the loss of its ZF domain and catabolic carbon derepression (Figure 6G). The 500 

resulting strain, PfMig188, exhibited increased cellulase production than the control in 501 

inducing and non-inducing conditions (Randhawa et al., 2018). Comparative genomics 502 

analyses involving hypercellulolytic strains can therefore reveal the mutations that drive 503 

TF engineering with increased or constitutive activity in induced (Figure 6D) or 504 

repressed sources (Figure 6G) for the increased production of cellulases in filamentous 505 

fungi. 506 

 Another approach for rational TF engineering is domain fusion, which consists 507 

of the fusion of the N-terminus domain from a protein with the C-terminus domain from 508 

another protein by a linker, or the insertion of one domain into another at a specific 509 

position in a protein (Renato Graciano De Paula et al., 2019). The construction of these 510 

chimeric TFs is a potent strategy to modify the expression of target genes and yield 511 

strains with desired phenotypes (Figure 6). In 2009, Su et al. fused the DNA binding 512 

domain (DBD) of CRE1 to the effector domain (ED) of the activator, ACE2, and the 513 

latter was inserted into the DBD of another transcriptional repressor, ACE1, under the 514 

regulation of the CRE1 promoter itself. The engineered TF was expressed in the T. 515 

reesei strain, RutC-30, and resulted in elevated levels of cellulase and hemicellulase 516 

expression and the increased activity of these enzymes (Su et al., 2009). 517 

 Zhang et al. also used this approach to construct an artificial ZF protein (Azfp) 518 

library comprising four ZFs as DBDs (Zhang et al., 2020, 2016). They were fused to the 519 

Gal4 effector domain in S. cerevisiae and overexpressed in T. reesei using the robust 520 

promoter, Ppki. In the obtained transformants, the activities of FPase and CMCase and 521 

biomass hydrolysis rate dramatically increased compared to those in the parental strains 522 

(Q. Meng et al., 2020). The utilization of the ED from XYR1 instead of the original 523 
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Gal4 from S. cerevisiae optimized the Azfp and resulted in efficient biomass conversion 524 

(Q.-S. Meng et al., 2020). Likewise, promising results were obtained when the XYR1 525 

ED was fused to the CRE1 DBD (Figure 6G). The resulting artificial regulator caused 526 

constitutive cellulase and hemicellulase production when the strain was cultivated with 527 

glucose as a carbon source, with a production that was 12.75-fold higher than that 528 

yielded by the RutC30 strain (Zhang et al., 2017). 529 

 The production of cellulase using glucose as a carbon source was also yielded 530 

when the DBD of CRE1 was fused with the strong activation domain VP16 of the 531 

herpes simplex virus. The resulting strain presented the constitutive production of 532 

cellulases that was 26.5-fold higher than that yielded by the parental strain (Zhang et al., 533 

2018b). The VP16 ED was also fused to the DBD of other T. reesei TFs, including 534 

XYR1, ACE2, and ACE1. The artificial regulator TXYR1VP abolished cellulase 535 

production but yielded increased xylanase activity per unit of biomass compared to 536 

RutC-30, while the other chimeric TFs yielded the increased production of cellulase and 537 

xylanase using inducing carbon sources (Zhang et al., 2018a, 2018b). The authors of 538 

this study speculated that the absence of cellulase activity in the strain expressing 539 

TXYR1VP occurred because of the formation of the heterodimer with the native XYR1 540 

(Zhang et al., 2018a). To address this problem, an XYR1-deficient strain was 541 

constructed for the insertion of artificial TFs. They, in turn, carried the DBD of XYR1 542 

and ED of the Gal4-like TFs YPR1 and YPR2 (Yellow pigment regulator 1 and 2) from 543 

T. reesei. The resulting strains exhibited xylanase and cellulase activity when grown in 544 

different soluble carbon sources such as lactose, glucose, and glycerol. The strain TXY1 545 

(XYR1::YPR1) presented high levels of β-glucosidase activity compared to the control 546 

(Derntl et al., 2019). 547 



24 

 

 Wang et al. further constructed new TFs by intercalating the DBDs of the 548 

repressors, CRE1 and ACE1, with the EDs of the activators, XYR1, ACE2, ACE3, or 549 

CLR2. The fused TFs presented higher levels of cel7a expression, especially those with 550 

the XYR1 and ACE2 domains, which also exhibited the highest cellobiohydrolase 551 

activity when using lactose as a carbon source (F. Wang et al., 2019). The construction 552 

of chimeric TFs was applied to another cell factory, P. oxalicum. Gao et al. fused the 553 

DBD of ClrB to the regulatory and activation domain of XlnRA871V, which contains the 554 

T. reesei homologous mutation, A824V. The overexpression of the new TF resulted in 555 

the production of cellobiohydrolase without any carbon source and FPase activity that 556 

was seven-fold higher than that of the parental strain when grown in media containing  557 

cellulose and xylan (Gao et al., 2017).  558 

 The overexpression of native or artificial TFs is a great strategy to enhance 559 

cellulase production. However, when a (hemi)cellulase repressor or non-inducing 560 

soluble source is utilized, this production may not be significant. TFs contain a 561 

regulatory domain in their middle region that plays a fundamental role in their activity, 562 

subcellular localization, and interaction with DNA (Cziferszky et al., 2002). This 563 

internal domain can be regulated by post-transcriptional modifications, which may be 564 

involved in the inhibition of their activity in the presence of non-inducer sources 565 

(Ribeiro et al., 2019). In P. oxalicum, this problem was solved by deleting the internal 566 

regulatory region in the TF ClrB. The DBD at the N-terminus and activator domain at 567 

the C-terminus were then directly fused. The internal deletion in ClrB moderately 568 

enhanced cellulase production in cellulose-containing media and increased it by 10-fold 569 

compared to the parental strain when cultivation was carried out using soluble sources 570 

(Gao et al., 2019b). 571 
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 Modulating the expression of genes involved in the degradation of 572 

lignocellulosic biomass to obtain strains that produce larger amounts of cellulases and 573 

hemicellulases is a promising approach. TF engineering permits the increase or 574 

constitutive production of cellulases in engineered strains using different sources of 575 

carbon. This strategy makes it possible to use carbon sources, including glucose 576 

(holocellulase repressor) or glycerol (neutral). They may be significant in industrial 577 

applications as they are easier to apply operationally, such as during mixing, feeding, 578 

and filtering, than insoluble inducing sources (Randhawa et al., 2018).  579 

Overexpression or deletion of TFs that up- or down-regulate holocellulase 580 

expression seems to be a good strategy to obtain superproducing strains of 581 

holocellulolytic enzymes. However, future work should consider the systems biology of 582 

biomass-degrading fungi to make rational decisions. The network of gene expression 583 

regulated by transcription factors in these fungi appears to be more complex than 584 

thought. 585 

 586 

5.2. Promoter engineering  587 

 Promoters are regulatory regions that are upstream of the transcription start 588 

codon. TFs recognize specific sequences in these DNA regions and bind to these cis-589 

regulatory elements to activate or repress gene expression. Therefore, manipulating the 590 

binding motifs of these regulators is a promoter engineering strategy in the construction 591 

of new promoters with greater strength and different functions in modulating cellulase 592 

gene expression (Jin et al., 2019). In filamentous fungi, there are several native 593 

promoters that are used to drive gene expression. These include constitutive promoters, 594 

such as housekeeping genes of the glycolytic pathway that have a constant rate of gene 595 
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expression, or tunable promoters with expression that is dependent on the presence or 596 

absence of an inducer or repressor (Figure 7A and 7B) (Fitz et al., 2018). However, 597 

there is not substantial research on promoter engineering in filamentous fungi.  598 

A rational approach in promoter engineering is through the use of the cis-599 

regulatory elements present in target promoters. Their insertion or deletion is a way to 600 

change the characteristics of the promoter and the activation or repression of its target 601 

gene (Figure 7C) (Fitz et al., 2018). In T. reesei, the promoter of the cbh1 gene (Pcbh1) 602 

is the most well-described and widely used for heterologous expression (Kiesenhofer et 603 

al., 2018), with its expression induced by its degradation products and cellulose (Renato 604 

Graciano De Paula et al., 2019). This promoter has three binding sites for CRE1, which 605 

reduces cbh1 transcription in the presence of glucose. Deletions of these CRE1 binding 606 

sites in Pcbh1 allows for the detection of transcripts from reporter genes in glucose-607 

containing media (Ilmén et al., 1996). Zou et al. replaced these CRE1 sites with 608 

activation sites, such as those from the positive regulators ACE2 or HAP2/3/5, thereby 609 

generating the cbh1pM2 promoter, which exhibited increased gene expression and 610 

reductions in catabolic carbon repression (Zou et al., 2012). Pcbh1 also possesses eight 611 

binding sites for the repressor, ACE1. When using cbh1pM2 as the starting promoter, 612 

Sun et al. replaced the sites for the binding motifs with the activators ACE2 or XYR1. 613 

The new promoters presented a 3.6- and 5-fold increase, respectively, in the expression 614 

of an A. niger mannanase, which was used as a reporter gene in this case (Sun et al., 615 

2020).  616 

A comparative analysis of cis-regulatory elements for XYR1 in the promoters of 617 

cbh1 and xyn1 revealed that the presence of cis-elements, which are inverted and 618 

repeated sequences, plays a fundamental role in promoter inducibility. The insertion of 619 
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these sequences coupled to the rearrangement of XYR1 binding sites positively 620 

impacted the strength of the cbh1 promoter, especially during induction by xylan and 621 

wheat bran (Kiesenhofer et al., 2018). The insertion and rearrangement of cis-elements 622 

for positive regulators (Figure 7D), such as the CCAAT binding motif, also increased 623 

the expression of heterologous genes in fungi other than T. reesei (Liu et al., 2008), 624 

such as A. niger (Liu et al., 2003) and A. oryzae (Minetoki et al., 1998). Synthetic 625 

promoters can also be built using synthetic biology with only minimal constituents that 626 

are essential for transcription and cis-regulatory elements that can optimize gene 627 

expression (Fitz et al., 2018) and independently regulate carbon sources (Figure 7E) 628 

(Renato Graciano De Paula et al., 2019).   629 

  630 

6. Conclusions 631 

Ethanol derived from plant biomass has exhibited benefits in the field of energy. It is 632 

considered a clean and sustainable form of energy in addition to being economically 633 

beneficial as it allows for less dependence on fossil fuels. Filamentous fungi possess a 634 

robust set of cellulases that act synergistically in the degradation of plant biomass. In 635 

this sense, TFs play a key role as they regulate the expression of cellulase genes. It is 636 

further laborious to apply strategies like those mentioned earlier for many promoters. 637 

Despite this, promoter engineering has proven to be a powerful tool for building 638 

hypercellulolytic strains with promoters with greater inducibility and independence 639 

from carbon sources. The transcriptional regulation of cellulolytic genes, including the 640 

TFs that are involved, has emerged as an important mechanism in the degradation of 641 

lignocellulose biomass by filamentous fungi. Deciphering these complex networks and 642 

regulatory mechanisms may allow for the development of new strains that yield the 643 
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increased or constitutive production of cellulases. Several approaches that have been 644 

developed to achieve this goal have been highlighted in this review. The rational 645 

engineering of the holocellulolytic system from industrially relevant microorganisms 646 

may improve the efficiency of saccharification and, consequently, ethanol production. It 647 

is essential to elucidate the molecular mechanisms underlying the regulation of this 648 

system to improve the industrial processes that are aimed at producing energy from 649 

clean and sustainable sources, such as bioethanol. The next step is to ensure that these 650 

biosources are suitable for industrial applications to overcome the bottlenecks present in 651 

the production of cellulases. 652 
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 1097 

Figure Legends 1098 

Figure 1. CAZyme-encoding genes are direct targets for transcription factors 1099 

involved in biomass degradation. The binding motifs for the transcription factors 1100 
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(TFs) XYR1, CRE1, ACE2, PacC, CLR1, and CLR2 were searched for in the promoter 1101 

region (1.5 Kb) of genes encoding the CAZymes of T. reesei. The enzymes were 1102 

grouped according to their related polysaccharides. TF binding motifs were counted by 1103 

heatmaps created using the heatmap.2 function of gplots-R. 1104 

Figure 2. The key role of transporters during sugar uptake and the regulation of 1105 

holocellulases. Holocellulose is mainly composed of cellulose and hemicellulose. Fungi 1106 

belonging to genera Trichoderma, Aspergillus, Neurospora, and Penicillium have 1107 

developed fine mechanisms to uptake the sugar released from the plant biomass and 1108 

distinct transporter proteins responsible for sugar internalization. These sugars act by 1109 

inducing the expression of specific TFs that are responsible for regulating the 1110 

expression of holocellulolytic genes involved in holocellulose breakdown. 1111 

Figure 3. Transporter-encoding genes are direct targets for TFs involved in 1112 

biomass degradation. The binding motifs for the TFs XYR1, CRE1, ACE2, PacC, 1113 

CLR1, and CLR2 were searched for in the promoter region (1.5 Kb) of transporter 1114 

encoding-genes. TF binding motifs were counted with heatmaps created using the 1115 

heatmap.2 function of gplots-R. 1116 

Figure 4. Transcriptional regulation of the holocellulolytic system in the model 1117 

fungus, T. reesei. In T. reesei, at least 13 positive regulators and six repressors of 1118 

(hemi)cellulase production have been identified. The proteins, under inducing or 1119 

repressing conditions, bind to their target genes (CAZymes, sugar transporters, 1120 

signaling proteins, other TFs, etc.) to regulate their transcription. 1121 

Figure 5. Phylogenetic analysis of the main TFs related to (hemi)cellulase 1122 

regulation in fungi. The analysis includes proteins from Trichoderma, Aspergillus, 1123 

Neurospora, and Penicillium. The TFs cited in this review are highlighted in bold. 1124 
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Protein sequences of selected TFs were aligned using MAFFT v7.407 (Katoh et al., 1125 

2018). Ambiguously aligned regions were removed using the -automated1 function of 1126 

trimAl 1.4rev22 (Capella-Gutiérrez et al., 2009). The approximate maximum likelihood 1127 

phylogenetic tree was inferred using FastTree v2.1.10 (Price et al., 2010) and visualized 1128 

with Figtree 1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/). 1129 

Figure 6. Rational engineering of TFs. The breakdown of cellulose by cellulases (A) 1130 

releases cello-oligosaccharides that are transported to the cytosol and activate cell 1131 

signaling (B). Positive TFs activate the transcription of cellulolytic genes (C). TFs with 1132 

point or truncated mutations and chimeric TFs (with heterologous or artificial domains 1133 

– Chimeric TF I) also activate the transcription of these genes (D), thereby increasing 1134 

the production of cellulases (E). The glucose resulting from cellulose degradation 1135 

activates the catabolic repression of carbon through cellular signaling (F). Mutant and 1136 

chimeric TFs (with an ED from an activator and DBD from a repressor – Chimeric TF 1137 

II) with constitutive activity can activate the transcription of cellulolytic genes (G). 1138 

However, the repression of cellulase expression continues to occur and is mediated by 1139 

negative TFs (H). 1140 

Figure 7. Toolset of promoters to drive gene expression. (A) Constitutive promoters. 1141 

(B) Tunable promoters with expression that is activated/repressed in the presence of a 1142 

stimulus. (C) Promoter engineering by the replacement of repressor binding sites (red 1143 

squares) for activator binding sites (green squares). (D) Promoter engineering by the 1144 

rearrangement of cis-regulatory elements (golden bars). (E) Synthetic promoter with 1145 

minimal constituents. TF, transcription factor; TA, transcription activator; TR, 1146 

transcription repressor. 1147 
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Figure 4. 1196 
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Figure 5. 1215 
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Figure 6.  1229 
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