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ARTICLE

Long-read metagenomics of soil communities
reveals phylum-specific secondary metabolite
dynamics
Marc W. Van Goethem1, Andrew R. Osborn2, Benjamin P. Bowen 1, Peter F. Andeer1, Tami L. Swenson1,6,

Alicia Clum2, Robert Riley2, Guifen He2, Maxim Koriabine2, Laura Sandor2, Mi Yan2, Chris G. Daum 2,

Yuko Yoshinaga2, Thulani P. Makhalanyane 3, Ferran Garcia-Pichel 4,5, Axel Visel 2,

Len A. Pennacchio 2, Ronan C. O’Malley 1,2 & Trent R. Northen 1,2✉

Microbial biosynthetic gene clusters (BGCs) encoding secondary metabolites are thought to

impact a plethora of biologically mediated environmental processes, yet their discovery and

functional characterization in natural microbiomes remains challenging. Here we describe

deep long-read sequencing and assembly of metagenomes from biological soil crusts, a group

of soil communities that are rich in BGCs. Taking advantage of the unusually long assemblies

produced by this approach, we recovered nearly 3,000 BGCs for analysis, including 712 full-

length BGCs. Functional exploration through metatranscriptome analysis of a 3-day wetting

experiment uncovered phylum-specific BGC expression upon activation from dormancy,

elucidating distinct roles and complex phylogenetic and temporal dynamics in wetting pro-

cesses. For example, a pronounced increase in BGC transcription occurs at night primarily in

cyanobacteria, implicating BGCs in nutrient scavenging roles and niche competition. Taken

together, our results demonstrate that long-read metagenomic sequencing combined with

metatranscriptomic analysis provides a direct view into the functional dynamics of BGCs in

environmental processes and suggests a central role of secondary metabolites in maintaining

phylogenetically conserved niches within biocrusts.
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A fundamental challenge in understanding the ecological
functions of secondary metabolites (also known as spe-
cialized metabolites or natural products) is that most

biosynthetic gene clusters (BGCs) are harbored by uncultivated
microbes and require specific native contexts for activation1. The
majority of BGCs, also referred to as microbial gene clusters,
encoding secondary metabolites are not usually expressed under
standard cultivation conditions in the laboratory2 and their
products have therefore been termed “secondary” metabolites. A
universal feature of BGCs is their modular, co-localized gene
architecture3 and large size, frequently spanning tens of thou-
sands of base pairs. Bacterial secondary metabolites play critical
ecological roles in mediating communication, antagonistic inter-
actions, nutrient scavenging, and have historically been a primary
source for antibiotic drug development;4 in fact more than half of
registered drugs are based on natural secondary metabolites5.
Additionally, secondary metabolites have applications in
agriculture6, biomaterials7, biofuels8, and cosmetics9.

Previous work has demonstrated the potential for deep shotgun
metagenomic sequencing to directly characterize BGCs from
environmental samples10,11, but the assembly of full-length BGCs
from short reads is associated with major limitations12. Notably,
BGCs are almost always part of the flexible, rather than core,
genome, which can assemble poorly using short read
metagenomes13. Alternative techniques include the use of clone
libraries1 or innovative sequence-based analyses14,15 including
the reconstruction of uncultivated microbes as metagenome-
assembled genomes (MAGs; reviewed in16). Although these
approaches typically give access to both dominant and rare
members of the community, many contigs will not be binned into
a genome17. Moreover, long-read sequencing circumvents the
requirement of generating MAGs in some cases, as large genome
segments are captured directly through sequencing and assembly,
which could favor low-abundance species.

We also know remarkably little about the transcription of
BGCs in nature or how the environment regulates their
production18 especially in soils. This information is critical in
understanding how often secondary metabolites are produced in
natural communities. Biological soil crusts (biocrusts) are the
world’s most extensive biofilms and together cover up to 12% of
total soil surface area19. Initial studies have suggested that they
are rich in secondary metabolites20. Cyanobacteria dominate
biocrust communities, specifically Microcoleus spp. that drive
biocrust establishment by stabilizing the soil surface, both pre-
venting erosion and improving soil fertility through the release of
photosynthate21,22. In contrast to many other types of soil
environments, biocrusts are easily transferable to the laboratory,
which allows for controlled interrogation of relevant environ-
mental processes such as wetting dynamics. In native environ-
ments, rain events suspend microbial dormancy in biocrust and
cause dramatic shifts to community structure and both
primary and secondary metabolite release23. The secondary
metabolites produced by microbes upon wetting are known to
include antimicrobial compounds thought to provide a selective
advantage24, yet the majority of secondary metabolites encoded
in the genomes of biocrust community members remain
unidentified25. Cyanobacteria are known secondary metabolite
producers3,26 but most studies have focused on aquatic cyano-
bacteria, leaving the secondary metabolites of terrestrial cyano-
bacteria largely underexplored27,28.

We combined long- and short-read metagenomic sequencing
to produce large assemblies that enabled BGC discovery. We then
mapped time-series metatranscriptomes to gain insight into the
environmental cues governing BGC expression in wetted bio-
crusts. Our results showed that thousands of gene clusters could
be extracted from assembled long-read metagenomes which gave

insight into the secondary metabolism of uncultivated microbial
taxa. Coupling these results to metatranscriptomics indicated that
most BGCs were transcribed after a simulated rain event, and that
cyanobacteria dominated secondary metabolism throughout the
experiment.

Results and discussion
Long-read sequencing permits access to biosynthetic gene
clusters. Biocrust samples were collected from Moab, UT, USA
(Fig. 1a), and transported to the JGI in petri dishes that maintain
the physical structure of the crust. We then extracted and pre-
pared high-molecular-weight DNA from an intact biocrust
sample to be sequenced on both long- and short-read metage-
nomic sequencing platforms (Supplementary Fig. 1). In total, we
sequenced eight SMRT cells from three libraries yielding 156.3 Gb
from 36.7 million reads, where half of all sequenced bases were
contained in reads of 5 kb or longer, while the longest read was
167 kb. The average read length was 3,084 bp while the mean N50
value was 4070 bp. Both statistics were augmented by the Sequel
II library which comprised 108 Gb of sequence in just 19.1 mil-
lion reads.

The two short-read Illumina libraries provided an additional
20 Gb of sequence (Supplementary Data 1). To obtain an initial
phylogenetic profile of the communities under investigation we
performed full-length 16S rRNA gene analysis using exact
sequence variants (ESVs) which showed that Cyanobacteria,
and particularly Microcoleus vaginatus, were dominant biocrust
community members in most samples, with major representa-
tions of Actinobacteria and Alphaproteobacteria (Fig. 1b) which is
generally consistent with the known community composition of
these biocrusts29. Overall, the biocrust are less complex than
other desert soil communities30 yet are notably richer in
cyanobacteria. We found very few sequences for eukaryotes after
seeking 18S rRNA genes, range 100–1000 sequences per
metagenome, and acknowledge that more attention should be
given to the diverse members of kingdom in future research as
fungi, rotifers, algae and mosses can constitute important
components of the biocrust microbiome31,32. While this work
was focused on BGCs for bacteria, we saw a small number of
eukaryotic reads (>1% of all sequences, although no BGCs) and
this would be an interesting investigation for a future analysis of
this dataset, given their importance in late-stage biocrust33.

To access biosynthetic gene clusters, we individually assembled
the biocrust metagenomes into contiguous sequences (contigs).
Using both Canu34 and metaFlye35 we assembled the long-read
(n= 8 SMRT cells, 74,953 contigs, N50= 18.2 kb) into assemblies
that totaled 781Mb in size, with half of the sequence present in
contigs longer than 20 kb. The longest contig was more than
753 kb in length assembled from the largest long-read metagen-
ome (Supplementary Data 2). The two short-read Illumina
libraries assembled into ~8 million contigs (3.7 Gb, N50= 1 kb).

We also co-assembled the metagenomes to access even more
BGC diversity than was permissible from the individual assemblies.
Firstly, we co-assembled the five largest long-read metagenomes
(Sequel and Sequel II metagenomes) which yielded 1.4 Gb of
assembled sequence (Supplementary Data 2) with the longest
contig exceeding 1.3Mb in length (N50= 36 kb). We omitted the
RS II metagenomes from co-assembly since their sizes are small
compared to the Sequel counterparts. This co-assembly was as
large as our hybrid co-assembly of two short-read Illumina libraries
and the four Sequel long-read libraries produced with
metaSPAdes36 (1.7 Gb, N50= 2.3 kb). Putative misassemblies
identified through MetaQUAST were identified and removed37.
Overall, the long-read assemblies and co-assemblies produced the
largest number of long contigs (>50 kb) and were thus most suited
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for the investigation of full-length biosynthetic gene clusters.
Together they gave unprecedented access to the BGCs encoded by
uncultivated microbes including 1191 BGCs from the long-read
co-assembled metagenome.

Overall, the long-read metagenomes, and particularly their co-
assemblies, offered substantially deeper insight into biocrust
secondary metabolism than was possible through short-read
sequencing and assembly (Supplementary Fig. 2). For example,
the Sequel II assembly had 548 BGCs including 174 full-length
BGCs (i.e., the BGC was not truncated on either contig edge),
while the short-read assemblies had 359 BGCs between them yet
only 9 full-length BGCs. In total, that is, including all assemblies,
we predict that 712 BGCs are full-length clusters.

To put our assemblies in context of existing sequence
technology, our long-read co-assembly is ~90% of the very large
short-read Iowa prairie metagenomes at 1.5 billion bp38, but
1473% and 1688% of the biogas and Lake Biwa long-read co-
assemblies, respectively39,40. Despite their smaller size compared
to short-read metagenome assemblies, we get a higher percentage
of long contigs from long-read metagenomes which is paramount
for BGC detection.

The single largest BGC was identified in the large co-assembly
and was putatively assigned to the genus Nostoc. It encodes a

previously undescribed hybrid transAT-polyketide synthase-
nonribosomal peptide synthetase of 111 kb length, harboring six
core biosynthetic genes and eight additional biosynthetic genes.
Manual inspection suggests it is full-length, making it one of the
longest BGCs to be identified directly from a soil metagenome
(Supplementary Fig. 3). The co-assembly of multiple long-read
metagenomes offered deeper access to the spectrum of BGCs
while the diversity of these clusters found here suggests that much
secondary metabolic potential remains unrealized in current
databases. Moreover, the use of long-read sequencing is central to
finding full-length gene clusters, an issue that precluded the use of
short-read metagenomics previously.

Thousands of gene clusters recovered from biocrust metagen-
omes. We performed gene cluster identification and annotation
for secondary metabolites41 using all the de novo metagenome
assemblies owing to their high contiguity in assembly and high
proportion of contigs longer than 5 kb (n= 141,762 total contigs;
Fig. 1c). This approach recovered 2988 BGCs predicted to pro-
duce secondary metabolites from uncultivated biocrust microbes
across all metagenome assemblies. These span all major second-
ary metabolite classes with terpenes, ribosomally synthesized and
post-translationally modified peptides and non-ribosomal peptide

Fig. 1 Secondary metabolism of biocrust. a Photos of Biocrusts taken near Canyonlands National Park (Moab, UT) with the biological soil crust inlay
showing the characteristic green coloration. Photo credit Trent R. Northen. b Taxonomic composition of the metagenomes based on exact sequence
variants (ESVs) of 16 S rRNA genes across sequencing platforms. Relative abundances were calculated after assigning taxonomy against the SILVA
reference database. c Left panel shows the number of Biosynthetic Gene Clusters (BGCs) recovered from each assembly, arranged from shortest to
longest. Right panel shows the cumulative length of BGCs recovered from each metagenome in Megabases (Mb). d Taxonomic distribution of BGCs in
megabase pairs (Mb) at the phylum or class level. e BGCs longer than 5 kb from each major class of secondary metabolism, colored by putative phylum-
level assignments.
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synthetases particularly well represented. Cyanobacteria were rich
in non-ribosomal peptide synthetases and Type 1 polyketide
synthases and harbored the most BGCs overall encoding some
1470 BGCs (Fig. 1d; Supplementary Data 3). Four hundred and
twenty of these non-redundant BGCs could be assigned to the
genus Microcoleus—the pioneer microbial guild of biocrust42.

Next, we determined whether previous sequencing efforts had
captured the BGCs previously by making queries to the entire
NCBI nt sequence database (accessed December 6, 201943). Using
thresholds of 75% sequence identity over 80% of the sequence
length44 we identified 175 BGCs that had been sequenced
previously. Thus ~94% of BGCs had not been sequenced before
(Table 1). This reaffirms that biocrust are a rich source of BGCs
relative to either aquatic systems such as Lake Biwa or biogas
reactors which are simpler systems compared to soil. Moreover,
these results underscore the potential for long-read metagenomic
sequencing in BGCs discovery. We recognize that there is
substantial opportunity to do more in-depth analyses of the
diversity of BGCs recovered and feel that this presents a
promising future research direction.

Of the known clusters, 143 belonged to Cyanobacteria
including the late-branching genera Microcoleus, Nostoc, and
Oscillatoria. BGCs identified from non-cyanobacterial contigs
also had interesting elements. For example, Planctomycetes were
rich in acyl-amino acids, while Alphaproteobacteria had unusually
high numbers of the dipeptide N-acetylglutaminylglutamine
amides as well as N-acyl-homoserine lactones that may be
involved in quorum sensing45. Moreover, many terpenes and
Type 3 polyketide synthases belonged to the dominant hetero-
trophic phyla Alphaproteobacteria and Actinobacteria (Fig. 1e).
We also found 17 phenazines in our dataset, most of which

belonged to cyanobacteria, and some of which may have
functions in redox balance during anoxia46, which frequently
occurs in biocrust after intense rain events. Next we sought out to
resolve the environmental stimuli that induce BGC transcription
after wetting events in order to link BGCs to their role in biocrust
ecology. Here we opted to analyze all BGCs simultaneously in an
effort to unearth variations between their transcriptional profiles
that could emerge following wetting, for example.

Constitutive transcription of secondary metabolite gene clus-
ters. Desert biocrust communities are sensitive to rain events, as
revealed by dramatic changes in microbial community structure29

and core gene expression by RNA microarray23,47. To identify
secondary metabolite BGCs involved in these dynamics, we
mapped 13 biocrust metatranscriptomes to our metagenome
assemblies. The metatranscriptomes are from a simulated rain
event in the laboratory using intact biocrust from the same site
(Moab, UT, USA)48. They capture microbial transcription fol-
lowing a wetting event for three diurnal cycles at a resolution of
ten individual timepoints. Like the metagenomic data, 16S rRNA
transcript analysis using ESVs from the metatranscriptomic
datasets revealed an abundance of transcripts from Cyano-
bacteria, and especially Microcoleus vaginatus at all timepoints
(Fig. 2a). We observed a dramatic increase in 16S rRNA tran-
script copy numbers across all taxa 15 min and 1 h after wetting
possibly indicating increased microbial growth on substrates
releaseds during cell membrane permeabilization after wetting49

or simply ribosome synthesis as microbes emerge from dormancy
(Supplementary Data 9).

The metatranscriptomic data comprised 137 Gb of high-quality
sequence in 919 million transcripts from 13 samples

Table 1 The number of biosynthetic gene clusters recovered from each assembly or co-assembly are shown with details
regarding full-length BGCs, BGCs sequenced previously and which assemblies contributed to the co-assemblies.

Co-assembly/Assembly Number of BGCs Full-length BGCs No. sequenced Previously Sequencing Platforms

Flye_co-assembly 300 67 28 PacBio Sequel (n= 4)
Combined_Sequel_Illumina 459 31 42 PacBio Sequel (n= 4) & Illumina HiSeq 2500 (n= 2)
Ultimate_Sequel+SequelII 1191 419 21 PacBio Sequel (n= 4) & PacBio Sequel II (n= 1)
pbio-1768.15750 16 0 3 PacBio RS II
pbio-1772.15782 5 0 1 PacBio RS II
pbio-1768.15751 0 0 0 PacBio RS II
m54017_180413_173154 24 3 8 PacBio Sequel
m54017_180414_134655 30 2 7 PacBio Sequel
m54017_180414_220614 0 0 0 PacBio Sequel
m54017_180417_205359 44 7 5 PacBio Sequel
pbio-2210.20021 548 174 9 PacBio Sequel II
11774.4.218925 139 3 19 Illumina HiSeq 2500
12041.5.235284 232 6 32 Illumina HiSeq 2500

Co-assembly/Assembly Metagenomes used for co-assembly/assembly

Flye_co-assembly m54017_180413_173154, m54017_180414_134655, m54017_180414_220614, m54017_180417_205359
Combined_Sequel_Illumina m54017_180413_173154, m54017_180414_134655, m54017_180414_220614, m54017_180417_205359, 11774.4.218925,

12041.5.235284
Ultimate_Sequel+SequelII m54017_180413_173154, m54017_180414_134655, m54017_180414_220614, m54017_180417_205359, pbio-

2210.20021
pbio-1768.15750 pbio-1768.15750
pbio-1772.15782 pbio-1772.15782
pbio-1768.15751 pbio-1768.15751
m54017_180413_173154 m54017_180413_173154
m54017_180414_134655 m54017_180414_134655
m54017_180414_220614 m54017_180414_220614
m54017_180417_205359 m54017_180417_205359
pbio-2210.20021 pbio-2210.20021
11774.4.218925 11774.4.218925
12041.5.235284 12041.5.235284
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(Supplementary Data 1, 2 and 4). To calculate secondary
metabolite gene transcription after wetting we mapped the
individual read transcripts to each contig containing a BGC
using BBMap50 (ref= assembled metagenome, in= filtered
metatranscriptomic sequences, outm= transcripts mapped to
contigs.sam) which leveraged our long contigs to profile
transcription for almost 3000 secondary metabolite gene clusters.
Remarkably, we found that 395 biosynthetic genes from 240

BGCs were transcribed at all timepoints (using a threshold of at
least five mapped transcripts per gene within a cluster at a single
time point which excluded low levels of read mapping), which
represent some 6% of all secondary metabolic genes in our dataset
(Fig. 2b). Most of the constitutively transcribed biosynthetic genes
within BGCs were AMP-binding domains, condensation
domains, PCP domains and phytoene synthases, all of which
have central roles in the biosynthesis of specialized metabolites.
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Cyanobacteria, and to a lesser extent Actinobacteria, encoded
most of these biosynthetic genes while our results further indicate
that non-ribosomal peptide synthetases and polyketide synthases
gene clusters were the most prominent class of secondary
metabolites that were constitutively transcribed. In some cases
we observed that multiple consecutive biosynthetic genes within
the same BGC were constitutively transcribed. On average we
found that at least two biosynthetic genes on the contig were
constitutively transcribed while single biosynthetic genes within a
BGC experiencing constitutive transcription were rare (Supple-
mentary Data 10).

Our results show stark contrast to previous observations that
BGC expression in the laboratory is low wherein most secondary
metabolites are not transcribed2. Their constitutive expression
supports the notion that secondary metabolites may play critical
(and possibly essential) roles in communication or niche
occupancy in these ecosystems. Given the relatively high
biosynthetic cost of synthesizing secondary metabolites vs.
primary metabolites51 this suggests that these compounds
provide fitness benefits to their hosts across the wetting event.
Furthermore, we recovered 88 BGCs from our assembled
metatranscriptomes, 59 of which were transcribed 11.5 h after
wetting. Most BGCs found in this dataset were non-ribosomal
peptide synthetases while cyanobacteria were the most common
source of these full-transcribed BGCs (Supplementary Data 4,
Supplementary Note 1).

Next, we investigated how the observed constitutive expression
of secondary metabolic genes compared to the transcription of all
other genes, i.e., those not involved in secondary metabolism. Of
the 966,111 “non-secondary” genes detected across all contigs,
i.e., those with or without BGCs, just 43,139 (some ~4.5%) were
constitutively transcribed at all 10 time points (Supplementary
Data 5). These mapping rates were not artefacts of gene length
differences between primary genes and secondary metabolic gene
lengths (Supplementary Fig. 4). We then focused on 46 core
metabolic bacterial genes that we expected to have high
constitutive expression, e.g., those encoding DNA-binding or
ribosomal subunit proteins (Supplementary Data 4), and found
that indeed many of these core genes were transcribed at eight or
more time points, and ~18% that were constitutively transcribed
(5 mapped transcripts at all 10 timepoints; Fig. 2b). This same
analysis of secondary metabolic genes showed a more even
distribution across the time points with 6% transcribed at all 10
time points (Fig. 2b). Although lower than for core bacterial
genes, this represents a higher proportion of constitutive
transcription for secondary metabolic genes than was anticipated.

While our results show low level constitutive transcription of
many BGCs, the highest level of BGC transcriptional activity
occurred at night, 11.5 h after the initial wetting event
(Supplementary Fig. 5a). This enrichment in transcription was
mostly underpinned by a surge in transcriptional activity by the
Cyanobacteria (Supplementary Fig. 5b) which likely corresponds
to gene induction at night when they are not photosynthetically

active47. Strikingly, 80% of cyanobacterial BGC transcription
peaked at night. This included the significant transcription of two
putative siderophore-producing BGCs (DESeq2: P < 0.05), while
their observed rearrangements were presumably driven by
transposases (Fig. 2c, Supplementary Fig. 9 and Supplementary
Note 3). We also observed another peak of BGC transcriptional
activity 72 h after wetting (during the day, and the point of dry
down) which was due to the increased transcription of terpenes
and Type3 polyketide synthases by abundant heterotrophic
bacteria such as Deltaproteobacteria and Actinobacteria (Supple-
mentary Figs. 6–8, Supplementary Data 6).

To further examine the phylogenetic conservation of BGC
transcription among phyla we analyzed a subset of biosynthetic
genes individually (n= 12,470 genes) using t-SNE visualization52.
This analysis revealed some segregation of biosynthetic gene
transcription by taxonomy including for the Cyanobacteria and a
few other phyla (Fig. 3a). A two-sided Pearson pairwise
correlation analysis revealed that Bacteroidetes were the phylum
most strongly correlated with the cyanobacteria (Pearson’s
R= 0.858, adjusted p < 0.004, with a one-step Bonferroni
correction, Supplementary Data 8). This is interesting because
Bacteroidetes have recently been identified as one of the keystone
members of the biocrust cyanosphere53 and are also common
host-associated organisms54.

While Cyanobacteria exhibited the highest level of BGCs
transcription at night, 11.5 h after wetting, most other bacteria (in
this case almost exclusively heterotrophic guilds) showed
maximal BGC transcription during the day (Supplementary
Fig. 5). 82 BGCs that were maximally transcribed at 11.5 h
included 70 cyanobacterial BGC, while 6 were assigned as
Bacteroidetes.

Analysis of single gene expression is inherently more
complicated to interpret against phylogenetic clusters due to the
large number of comparisons. We compared the degrees to which
biosynthetic gene clusters shared similar transcriptional profiles
across phyla using a co-occurrence network based on the average
Z-scores of each BGCs transcription (n= 2988). This analysis
revealed clustering of secondary metabolite transcription of entire
BGCs by taxonomy. Namely, the bacterial phyla had distinct
temporal signatures of BGC transcription compared to each other
over the course of 3 days (Fig. 3b). Cyanobacterial BGC
expression was distinct from most bacterial groups in the biocrust
based on Pearson pairwise correlations (Fig. 3c; Pearson adjusted
P < 0.05). To our knowledge, this is the first such observation of
phylum-level differences in microbial BGC transcription in
manipulated natural communities. This may reflect conservation
of life history traits especially niche competition strategies. For
example cyanobacteria can grow heterotrophically on diverse
dissolved organic components55 and increased BGC expression
may reflect increased competition with heterotrophs occurring at
night. Thus, at night Microcoleus and other cyanobacteria may
produce antibiotics, such as many bacteriocins that we detected
here, to antagonize heterotrophs competing for dissolved organic

Fig. 2 Transcription of secondary metabolites. a Taxonomic composition of the metagenomes based on exact sequence variants (ESVs) of 16S rRNA
transcripts during a soil wetting experiment. Relative abundances were calculated after assigning taxonomy against the SILVA reference database. b Core
bacterial gene transcription (n= 46 genes including DNA-binding proteins, Large and Small subunit ribosomal proteins) shown in blue compared to
secondary metabolite gene transcription (orange). Genes transcribed at all 10 timepoints (rightmost point) are thought to experience constitutive
expression. The y-axis indicates the proportion of genes transcribed at each timepoint category. c Two putative rearranged siderophore-producing gene
clusters found in the co-assembled metagenomes that showed homology are aligned. The heatmaps indicate the transcription of each gene in the BGC
based on statistical tests against the control sample; 0 h at the point of wetting. Heatmap columns are scaled to the size of the mapped gene, and row order
(n= 13 rows) indicates progression across the experiment from 0 h (bottom row) to 3 days after wetting (top row). The left-hand column shows day
(yellow) and night (purple) categories. The predicted chemical structure of NODE_86 is shown above while the structure of NODE_81 is below the contig.
Transcriptional profiles of gene clusters with differentially expressed genes at night are shown with stars.
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compounds56, although we note that many other secondary
metabolic functions may be performed at night including redox
balancing or siderophore and pigment production.

Notwithstanding antagonism, the night-time expression of
BGC products could facilitate electron and nutrient transport.
Redox-active secondary metabolites are known to be produced by
microbes under anoxic conditions46. For example, Pseudomonas
aeruginosa enhances substrate-level phosphorylation during
anoxia through the production of phenazines that facilitate
electron transport 457. Constitutive expression of the
siderophore-producing gene clusters in cyanobacteria may reflect
cation import strategies (notably iron scavenging) needed to
support photosynthesis and other metabolic activities (Supple-
mentary Note 2, Supplementary Data 7).

Conclusion
In this study we show that long-read metagenomic sequencing is
a powerful new tool for the examination of secondary metabolite
gene clusters directly from complex environmental samples.
Integration with metatranscriptomics revealed that ~6% of sec-
ondary metabolic genes were constitutively transcribed over
3 days—a higher percentage than many other genes. Thus, while
conventionally unexpressed under laboratory conditions, our

results show that in situ BGCs appear to control important life
history traits involved in maintaining microbial niches. BGC
expression showed strong phylogenetic conservation where
Cyanobacteria, unlike most other phyla, exhibited the highest
levels of transcription at night. We speculate that this may reflect
the switch from cyanobacteria serving as primary producers
during the day to competing with heterotrophs for dissolved
organics at night.

Methods
Biocrust sample collection and DNA isolation. Biological soil crust (biocrust)
was collected from Green Butte Site near Moab, UT, USA (38°42′54.1′′N, 109°41′
27.0′′W) in 2014. Here we used a sterile petri dish to extract an intact biocrust after
adding water to the surface to test for greening which indicated biological
activity23. This field site is part of a long-term ecological research area of scientific
interest aimed at exploring climatic changes in arid regions. We sampled early
maturity biocrust (Microcoleus-dominated) by coring directly into the soil surface
with a petri dish (6 cm2 by 1 cm in depth). Samples were maintained in petri dishes
in a dark desiccator in the laboratory until required for DNA isolation
(~2 months). Previous studies have shown that biocrusts are viable for long-periods
of times when stored under these conditions58. Metagenomic DNA was isolated
using the MoBio Powersoil kit as per the manufacturer’s instructions with a minor
modification. We extracted DNA from 2 g of crust material by dividing the sample
into four separate tubes (0.5 g in each tube). The nucleic acids from each tube were
eluted in 50 μl of elution buffer and then pooled these into a final sample con-
taining 200 μl of elution buffer and DNA.

Fig. 3 Phylum specific transcription of secondary metabolites. a t-SNE visualization of every individual biosynthetic gene identified. The color of the
points indicate the phylum assignment whilst shapes indicate the BGC class. b Co-occurrence network based on Pearson correlations (r > 0.8) among
entire BGCs (n= 2988) based on average z-scores at each time point. Each node is a BGC within a contig that are colored by phylum and shaped by BGC
type. Closely clustered nodes share similar transcriptional profiles. c, Line plot showing 16S rRNA transcript copy number over time shown by black, dotted
lines. Average BGC transcription over time shown by the colored, solid lines. Cyanobacteria (green) show a unique night-time upregulation of secondary
metabolism. Purple background indicates night-time transcription.
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SMRT sequencing. We sequenced three SMRT cells on the PacBio RS II Single
Molecule, Real-Time (SMRT®) DNA Sequencing System (Pacific Biosciences, CA,
USA) using two different library inserts: 10 kb AMPure PB library [n= 2] and a
Low input 3 kb PB library [n= 1] using binding kit P6 v2 with 360-min and 120-
min movies for the respective libraries. This biocrust sample was well-suited for
long-read sequencing as it contained high-quality DNA without the need for
additional steps to increase DNA fragment size. The same libraries were then
sequenced on a PacBio Sequel System (Pacific Biosciences) using Sequel Binding
Kit 2.1 with a combination of 600- and 1200-min movies. A third library was made
using 10 kb AMPure PB approach with a Blue Pippin size cutoff of 4.5 kb. It was
sequenced on PacBio Sequel II System (Pacific Biosciences) using 1.0 template prep
kit and a 900-min movie.

To test how well-suited long-read metagenomes are for BGC recovery, we also
made use of five publicly available PacBio SMRT metagenomes. The two datasets
analyzed include a biogas reactor library sequenced on the PacBio RS II System
with a 2 kb insert length39, and four metagenomes obtained from Lake Biwa, Japan
that were sequenced on a PacBio Sequel System with a 4 kb insertion length40. Raw
sequence statistics for each metagenome is provided in Supplementary Data 1. We
analyzed the sequencing effort of the metagenomes using Nonpareil v3.3059 which
relies on read redundancy. We performed a similar comparison using publicly-
available long-read metagenomes which also yielded improvements in contig sizes
and BGC yield from co-assembled datasets.

Illumina sequencing. Two unamplified 300 bp Illumina libraries were generated
and sequenced 2 × 150 bp on the HiSeq-2500 1TB platform (Illumina).

Taxonomy. We extracted prokaryotic 16S rRNA genes using SortMeRNA 2.1b60.
These 16 S rRNA sequences were then analyzed using DADA261 to identify exact
sequence variants (ESVs) under default parameters with the exceptions of truncLen
(150) and maxEE (1). The ESVs were then assigned taxonomy against the entire
SILVA 16 S rRNA gene reference database62. The taxonomy of the identified gene
clusters was inferred by BLAST queries43 against the NCBI nr-database whereby
hits were retained with E-values of less than 1 × 10−10 and bit scores greater
than 60.

Assembly. We performed read correction, trimming and assembly for the three RS
II SMRT cells with Canu v1.834. Here we included parameters suggested by the
developers of Canu for PacBio metagenomes including an estimated mean genome
size of 5Mb (genomeSize= 5 m). We also changed the following parameters from
their default values: corMinCoverage= 0, corOutCoverage= all, corMhapSensi-
tivity= high, correctedErrorRate= 0.105, corMaxEvidenceCoverageLocal= 10
and corMaxEvidenceCoverageGlobal= 10.

The four larger Sequel metagenomes were assembled using metaFlye v2.4.2
under default settings with an estimated genome size of 5Mb and the –meta option
implemented for metagenomic sequence data35. All Illumina sequence data were
quality trimmed prior to assembly using Prinseq-lite v0.20.463 with
-min_qual_mean set to 20 and -ns_max_n set to 0 which eliminates low quality
reads and ambiguous bases (internal N’s). We assembled the two biocrust Illumina
metagenomes with metaSPAdes v3.13.036 as recommended for paired-end short
read length Illumina libraries64. We also co-assembled the four Sequel libraries
together (termed Flye co-assembly), and then with the Sequel II library (termed
Ultimate co-assembly) using metaFlye. Finally, we co-assembled the four Sequel
libraries with the two Illumina metagenomes using metaSPAdes. Open reading
frames (ORFs) of core metabolic genes were predicted from the assembled
metagenomes using Prodigal65 and annotated using Prokka66 in KBase (https://
kbase.us/)67. All assemblies were quality-checked using MetaQUAST37 which
precluded the inclusion of misassemblies from our analysis.

Biosynthetic gene cluster analysis. All contigs >5 kb in length were explored for
biosynthetic gene clusters (BGCs) using the antiSMASH v5.0 web server under
strict settings41. Each predicted BGC was manually inspected for completeness to
determine which were truncated on the contig edges as well as to investigate
predicted chemical structures. Next, we consolidated and passed all putative BGCs
through BiG-SCAPE v0.0.0r and CORASON in glocal mode to explore the phy-
logenomic relationships between the BGCs recovered from the 11 biocrust meta-
genomic datasets14. BiG-SCAPE consolidates both antiSMASH and the MiBIG 2.0
database to support initial antiSMASH predictions and so we included the entire
MiBIG 2.0 database in our analysis to place our BGCs among verified clusters68.
We checked for duplicate contigs containing BGCs across assemblies using BB-
Dedup under default parameters and found no duplicates (sourceforge.net/pro-
jects/bbmap/).

To determine the genetic novelty of our BGCs we performed homology
searches against the NCBI nt database (downloaded December 6th, 2019) using
NCBI blast+ 2.9. We only retained top hits based on an E-value of 1 × 10−10. BGCs
were non-redundant (not sequenced previously and thus novel) if sequences
matched ≤80% of the BGC query length and had an average of ≤75% sequence
identity against the database. We corroborated the best BLAST taxonomic
assignments with the Contig Annotation Tool under default settings (CAT, v5.0.4)

to guard against incorrect taxonomic identifications69. Chemical structure
predictions were first created by antiSMASH v5.0.

Metatranscriptomic mapping. We made use of metatranscriptomes sequenced
from biocrust material collected at the same sampling site in Moab, Utah that were
publicly-available on JGI GOLD47,48. The experimental design tracked the tran-
scriptional responses of biocrust communities over two complete diurnal cycles
following an artificial wetting event in the laboratory with 12 h of light followed by
12 h of dark (Supplementary Data 1). The time points at which transcripts were
collected include: 0 h (immediately before wet-up), 3 min, 15 min, 1 h, 9 h, 11.5 h,
and 18 h after wet up, then 72 h after wet up (immediately prior to dry down), then
2 h and 3 days after dry down. The 11.5 h and 18 h samples also represent tran-
scriptional activity at night-time while all other samples captured transcription
during the day.

Transcripts were quality-controlled using Prinseq-lite v0.20.4 as described
above for the Illumina data. The unassembled reads were then mapped to
assembled metagenomic contigs using bbmap v38.7350. We then used SAMtools
v1.970 for file conversion (sequence alignment maps to binary alignment maps) and
sorting. The mapped sequences and their contigs were then visualized within
Geneious71 to assess mapping rates across the contig length.

Statistics and reproducibility. We used DESeq2 v1.28.072 under default para-
meters in the R statistical environment v3.6.3 to test which genes underwent dif-
ferential expression by explicitly testing expression against the control sample (0 h).
Here we tested two environmental treatments, (i) the diurnal cycling regime (i.e.,
day to night to day) and, independently, (ii) the influence of wetting and drying.
Transcripts that had a maximum count of fewer than 20 reads in any sample were
removed. The remaining transcript levels were normalized by the total counts for
each sample and then multiplied by the average count across all samples. Duplicate
samples at the 15-min time point and triplicate samples at the 1-h timepoint were
averaged, and z-scores of normalized transcript abundance mapped to each bio-
synthetic gene to reveal which time points showed highest gene activity. Pearson
two-sided pairwise correlations were calculated on normalized values using Pin-
gouin (v 0.4.0) Python package with a one-step Bonferroni correction. Here, the
average Z-score of mapped transcripts to contigs with BGCs were compared among
phyla using the aforementioned filter of at least 20 mapped transcripts. The cor-
relations consider the average Z-score pattern across all timepoints (Supplementary
Data 8) after which Benjamini-Hochberg FDR correction is applied to the p-value
statistic. In addition, z-scores were used with t-SNE (T-distributed Stochastic
Neighbor Embedding) to visualize the biosynthetic gene transcription patterns in
ordinance space52. The t-SNE implementation in sklearn (v 0.23.2) manifold module
was used with the following parameters: “angle”: 0.5, “early_exaggeration”: 12.0, “init”:
“random”, “learning_rate”: 200.0, “method”: “barnes_hut”, ‘metric’: “euclidean”,
“min_grad_norm”: 1e-07, “n_components”: 2, “n_iter”: 3000, “n_iter_without_pro-
gress”: 300, “perplexity”: 40, “random_state”: None, “verbose”: 1. We also mapped
transcripts to the 16S rRNA gene data to estimate microbial transcription for each
phylum. The metatranscriptomes were also assembled using metaSPAdes to explore
whether entire BGCs could be recovered from this data.

Publicly-available long-read metagenomes. We downloaded four Sequel meta-
genomes (Pacific Biosciences) derived from Lake Biwa, Japan40 as well as RS II and
Illumina metagenomes from a biogas reactor39 (Supplementary Data 1). All PacBio
metagenomes were assembled with Canu v1.834 using the following parameters:
genome size of 5Mb (genomeSize= 5 m), corMinCoverage= 0, cor-
OutCoverage= all, corMhapSensitivity= high, correctedErrorRate= 0.105, cor-
MaxEvidenceCoverageLocal= 10, corMaxEvidenceCoverageGlobal= 10.
metaSPAdes36 was used for the short-read biogas metagenome and the co-
assembly of both biogas metagenomes. Unfortunately, we were unable to assemble
the biogas PacBio metagenome using either Canu or metaFlye35, possibly owing to
insufficient sequence coverage to generate contigs. We also co-assembled the four
Lake Biwa Sequel metagenomes using Canu. The quality of each assembly was
provided by MetaQUAST v4.6.337 and is available in Supplementary Data 2. We
then predicted BGCs from the assembled long-read metagenomes using anti-
SMASH v5.041. The results of this analysis showed that, as for the biocrust
metagenome assemblies, that co-assembling multiple metagenomes dramatically
improves yield of BGCs. For example, the Lake Biwa samples produced 50 BGCs
individually, but when co-assembled yielded 59 BGCs. This modest improvement
was also observed in full-length BGCs (16 compared to 18).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw data of the long- and short-read biocrust metagenomes can be accessed on the IMG/
M website (Submission ID 241874) or on the NCBI website (BioProject: PRJNA691698).
The raw metatranscriptomic data are publicly-available through the JGI GOLD portal
(sequence project IDs 1010318–1022409). Source data underlying Figs. 1b and 2a are
presented in Supplementary Data 9, source data underlying Fig. 1c–e are presented in
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Supplementary Data 3, source data underlying Fig. 2b are present in Supplementary
Data 5, and source data underlying Fig. 3c are presented in Supplementary Data 10.
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