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Detection of Leptospira kirschneri in a short-
beaked common dolphin (Delphinus delphis 
delphis) stranded off the coast of southern 
California, USA
K. C. Prager1*, Kerri Danil2, Elyse Wurster3, Kathleen M. Colegrove4, Renee Galloway5, Niesa Kettler6, 
Rinosh Mani6, Ryelan F. McDonough7, Jason W. Sahl7, Nathan E. Stone7, David M. Wagner7 and 
James O. Lloyd‑Smith1 

Abstract 

Background Pathogenic Leptospira species are globally important zoonotic pathogens capable of infecting a wide 
range of host species. In marine mammals, reports of Leptospira have predominantly been in pinnipeds, with isolated 
reports of infections in cetaceans.

Case presentation On 28 June 2021, a 150.5 cm long female, short‑beaked common dolphin (Delphinus delphis 
delphis) stranded alive on the coast of southern California and subsequently died. Gross necropsy revealed multifo‑
cal cortical pallor within the reniculi of the kidney, and lymphoplasmacytic tubulointerstitial nephritis was observed 
histologically. Immunohistochemistry confirmed Leptospira infection, and PCR followed by lfb1 gene amplicon 
sequencing suggested that the infecting organism was L.kirschneri. Leptospira DNA capture and enrichment allowed 
for whole‑genome sequencing to be conducted. Phylogenetic analyses confirmed the causative agent was a previ‑
ously undescribed, divergent lineage of L.kirschneri.

Conclusions We report the first detection of pathogenic Leptospira in a short‑beaked common dolphin, and the first 
detection in any cetacean in the northeastern Pacific Ocean. Renal lesions were consistent with leptospirosis in other 
host species, including marine mammals, and were the most significant lesions detected overall, suggesting lep‑
tospirosis as the likely cause of death. We identified the cause of the infection as L.kirschneri, a species detected 
only once before in a marine mammal – a northern elephant seal (Mirounga angustirostris) of the northeastern Pacific. 
These findings raise questions about the mechanism of transmission, given the obligate marine lifestyle of ceta‑
ceans (in contrast to pinnipeds, which spend time on land) and the commonly accepted view that Leptospira are 
quickly killed by salt water. They also raise important questions regarding the source of infection, and whether it 
arose from transmission among marine mammals or from terrestrial‑to‑marine spillover. Moving forward, surveillance 
and sampling must be expanded to better understand the extent to which Leptospira infections occur in the marine 
ecosystem and possible epidemiological linkages between and among marine and terrestrial host species. Generat‑
ing Leptospira genomes from different host species will yield crucial information about possible transmission links, 
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and our study highlights the power of new techniques such as DNA enrichment to illuminate the complex ecology 
of this important zoonotic pathogen.

Keywords Leptospira, Cetacean, Marine mammal, Common dolphin, Delphinus delphis, Northeastern Pacific

Background/introduction
Leptospirosis, the disease caused by infection with path-
ogenic species within the genus Leptospira, is a globally 
important zoonosis [1]. There are 41 pathogenic Lepto-
spira species and hundreds of known pathogenic sero-
vars, each with slightly different characteristics, host 
affinity and host–pathogen interactions [1–8]. Broadly, 
all mammals are believed to be susceptible to Lepto-
spira infection, and infection has also been detected by 
culture, hamster inoculation, and/or polymerase chain 
reaction (PCR) in a range of frogs, snakes, and turtles [4, 
9–16]. The full range of host–pathogen interactions for 
Leptospira is still being uncovered, with significant chal-
lenges arising from the diversity of pathogenic Leptospira 
strains, logistic hurdles in collecting samples from possi-
ble hosts, weaknesses in available tools for diagnosis and 
strain identification, and the broad spectrum of clinical 
presentations that accompany infections.

Knowledge of infection and transmission of Lepto-
spira is based mostly on studies of terrestrial mammals. 
In mammalian hosts, infections can be completely sub-
clinical, or can present with clinical signs ranging from 
flu-like symptoms (fever, muscle aches, headache) to 
pulmonary manifestations, reproductive failure, liver 
or renal failure, and even death [1, 2, 4, 17]. In infected 
hosts, leptospires ultimately colonize the kidneys and 
then are shed in urine; shedding can continue for months 
to years in some individuals or host species [4]. Lepto-
spires may also colonize other sites, including reproduc-
tive tissues [4]. Clinical disease in infected hosts is due 
to the damage caused by leptospires during initial sys-
temic infection and eventual tissue colonization, as well 
as the host inflammatory response against the patho-
gen [1]. Gross and histopathologic lesions detected in 
cases of leptospirosis can vary depending on host and 
infecting species, and reflect the bacterial virulence 
and host immune responses [4]. However, renal lesions 
are frequent and are characterized by tubulointerstitial 
nephritis or glomerulonephritis [2, 4, 18, 19]. The most 
common routes of transmission are direct contact with 
urine or indirect contact with urine-contaminated soil 
or water; intact skin is a strong barrier to infection, but 
damaged skin and mucous membranes are important 
routes of infection [20]. Vertical transmission can occur, 
and contact with infectious aborted tissues or sexual con-
tact can also lead to transmission [4]. Leptospire survival 
in the environment likely varies by Leptospira species and 

genotype, as well as by environmental conditions, with 
survival ranging from hours to as long as months, and in 
some cases over a year [8, 21–23]. Some of the shortest 
reported survival times were recorded for seawater [23] 
and salts may be inhibitory for pathogenic Leptospira in 
the absence of nutrients [24].

In marine mammals, reports of Leptospira have pre-
dominantly been noted in pinnipeds, with isolated 
reports of infections in cetaceans. Leptospira interro-
gans serovar Pomona has been circulating endemically 
in California sea lions (Zalophus californianus), with 
seasonal outbreaks occurring yearly since at least 1984 
[25–30]. Leptospira in other pinnipeds has also been 
documented, especially in the eastern Pacific Ocean, 
with seropositivity or infection reported in northern fur 
seals (Callorhinus ursinus), northern elephant seals (Mir-
ounga angustirostris), Pacific harbor seals (Phoca vitulina 
richardsi), and Steller sea lions (Eumetopias jubatus) on 
the west coast of the United States (northeastern Pacific 
Ocean); South American sea lions (Otaria byronia) along 
the coast of Chile; and manatees (Trichechus inunguis) 
in the Peruvian Amazon [25–27, 31–39]. In contrast, 
reports of Leptospira infection in cetaceans are quite 
rare, and Leptospira infection or seropositivity has not 
been previously detected in a cetacean host in the north-
eastern Pacific Ocean.

Globally, only eight cetacean species have been shown 
definitively to be infected with Leptospira. Two isolates 
with 98 and 99% similarity, respectively, to L.interrogans 
serovar Copenhageni were cultured from kidneys of 
a Fraser’s dolphin (Lagenodelphis hosei) and a melon-
headed whale (Peponocephala electra) from the Philip-
pines in 2017 [40]. An isolate that is suspected to be L. 
interrogans based on sequence results was cultured from 
the kidney of a newborn southern right whale (Eubal-
aena australis) that stranded dead in Argentina in 2010 
[41]. An isolate of L. interrogans serovar Pomona was 
cultured from a common bottlenose dolphin (Tursi-
ops truncatus) that stranded along the coast of Sardinia, 
Italy in 2016 [42]. Torres et  al. [43] detected Leptospira 
DNA using LipL32-PCR in a Clymene dolphin (Stenella 
clymene), 10 Guiana dolphins (Sotalia guianensis), seven 
La Plata dolphins (Pontoporia blainvillei), one rough-
toothed dolphin (Stenobredanensis), and a common 
bottlenose dolphin. Genetic characterization using secY 
gene sequences of Leptospira detected in three of these 
PCR positive animals—one each of a Clymene, a Guiana, 
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and a La Plata dolphin—identified them as L. interro-
gans with an identity > 99%, and serological classification 
indicated > 99% similarity with the Icterohaemorrhagiae 
serogroup. Serologic evidence of Leptospira infection 
(current or historic) and/or detection using a PCR primer 
that targets both pathogenic and non-pathogenic Lepto-
spira spp. has been reported in an additional nine ceta-
ceans [40].

Here we add to the limited body of knowledge regard-
ing Leptospira in cetaceans. We report the first detec-
tion of Leptospira in a short-beaked common dolphin 
(Delphinus delphis delphis), and the first detection in any 
cetacean in the northeastern Pacific Ocean. We identify 
the species as L.kirschneri and show that infection was 
associated with tubulointerstitial nephritis, which was 
the most significant lesion observed in this animal and 
the likely cause of death. Given the extremely limited 
body of knowledge regarding Leptospira in cetaceans 
and the marine ecosystem in general, this provides valu-
able new data on host range. This report raises pertinent 
questions about the ecology of Leptospira in the marine 
environment, including how the pathogen may transmit 
between cetaceans and whether these obligate marine 
hosts play a more significant role in Leptospira circula-
tion than is currently recognized.

Case presentation
On 28 June 2021, a 150.5 cm long female, short-beaked 
common dolphin (BLH0012) stranded alive along the 
coast of southern California (Ponto Beach, Carlsbad, 
San Diego County) and subsequently died. The carcass 

was refrigerated at 4͒°C until necropsied on 30 June 2021. 
Gross necropsy observations included normal body con-
dition [44], an empty stomach, pale yellow intestinal con-
tents, and multifocal cortical pallor within the reniculi 
of the kidney (Fig. 1). All other organs appeared normal 
on the gross exam. A standard set of tissue samples were 
collected and placed in 10% neutral buffered formalin, 
processed routinely for paraffin embedding, sectioned 
at 5 μm, stained with hematoxylin and eosin (H&E), and 
examined microscopically. The age of this dolphin was 
estimated to be two years old via counts of growth layers 
in its teeth, using methods outlined in Danil and Chivers 
[45]. Based on necropsy observations and estimated age, 
this individual was not sexually mature and was likely still 
nursing.

Histologically there was moderate lymphoplasmacytic 
tubulointerstitial nephritis. Multifocally, renal cortical 
tubules were surrounded and occasionally disrupted by 
moderate numbers of plasma cells and fewer lympho-
cytes. Some affected tubules were dilated, had attenu-
ated epithelium, and contained pale eosinophilic granular 
material (Fig. 2A). No glomerular lesions were apparent. 
Other lesions observed in the animal were consistent 
with debilitation and recent inanition. Immunohisto-
chemistry (IHC) of paraffin-embedded kidney sections 
was performed using a streptavidin–biotin method 
and a Leptospira-specific polyclonal antibody (National 
Veterinary Services Laboratory, Ames, Iowa, USA) 
directed against L. interrogans serovars Bratislava, Cani-
cola, Copenhageni (Icterohaemorrhagiae), Hardjo, and 
Pomona, and L.kirschneri serovar Grippotyphosa [33]. 

Fig. 1 Kidneys of short‑beaked common dolphins. The kidney from BLH0012, infected with Leptospira, is on the left and has multifocal cortical 
pallor (indicated by black arrows). On the right is a ‘normal’ kidney from a dolphin
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Multiple renal tubules, both near and distant from areas 
of inflammation contained wispy, IHC-positive antigenic 
staining in the tubular lumens (Fig. 2B). No antigen was 
demonstrated in negative control sections.

We conducted real-time PCR analysis on fresh fro-
zen kidney to detect and differentiate L. interro-
gans, L.kirschneri, L. borgpetersenii and L.noguchii, as 
described by Ferreira et al. [46] (2014), with the follow-
ing modification: PerfeCTa Tough Mix Low Rox master 
mix (Quantabio) and appropriate thermocycling condi-
tions for this master mix were used. We also conducted 
Leptospira genotyping PCR using primers targeting the 
lfb1 gene, followed by amplicon sequencing [47]. These 
methods indicated that the infecting organism most 
closely resembled L.kirschneri. In an effort to determine 
the specific Leptospira serovar and strain, dolphin kid-
ney was cultured for growth of Leptospira spp. In brief, 
tissue was macerated using a Micro-Biomaster Stom-
acher-80 (Seward Inc., Port St Lucie, FL) with 10 mL of 
7.2 pH phosphate buffered saline. The homogenate was 
filtered through a 0.4 µm filter. The filtrate was inoculated 
into the Leptospira semi-solid (modified EMJH) growth 
media [48]. A 1:10 dilution of the filtrate in liquid Lepto-
spira media (modified EMJH) was also inoculated in the 
Leptospira semi-solid media. The cultures were incu-
bated at 28–29 degrees C for 2 months. Cultures were 
visually inspected weekly for growth/Dinger zone, but no 
growth was observed.

To enable genomic level species identification and 
phylogenetic analyses, DNA extracted from the Lepto-
spira positive kidney sample (BLH0012) was subjected 
to pan pathogenic Leptospira DNA capture and enrich-
ment as described in detail elsewhere [49]. Briefly, the 
sample DNA was diluted to 4 ng/µL in a volume of 40µL, 
sonicated to an average size of 290 bp using a Q800R2 

sonicator (QSonica, Newtown, CT, USA), and a short-
read next-generation library was prepared using Agilent 
Sure-Select methodology. The library was then subjected 
to two rounds of DNA capture and enrichment and then 
sequenced on an Illumina MiSeq using a MiSeq Reagent 
Nano Kit v2 500 cycle kit (2 × 250).

Kidney samples from 18 additional dolphins from the 
Southern California Bight were submitted for PCR and 
all were negative. These samples were from long-beaked 
common dolphins (Delphinus delphis bairdii; n = 11) and 
short-beaked common dolphins (n = 7) collected between 
the years 2002—2019.

Bioinformatic methods
To estimate the percentage of Leptospira reads in the 
enriched sequences, reads were mapped against the 
standard Kraken database with Kraken v2.1.2 [50]. Reads 
assigned as Leptospira were then extracted and assem-
bled using SPAdes v3.13.0 [51] with default settings. The 
BLH0012 assembly was placed into a genus dendrogram 
with Mashtree v1.2.0 [52] to confirm species member-
ship. The large scale Blast Score Ratio (LS-BSR) tool 
v1.2.3 was used to identify a set of 131 DNA capture 
and enrichment probes that had a blast score ratio (BSR) 
value [53] of ≥ 0.8 in 35 L.kirschneri genomes and < 0.4 
in other Leptospira genomes (n = 620). Reads from the 
short-beaked common dolphin Leptospira enriched 
genome (BLH0012) were mapped against these probes 
and the breadth of coverage was calculated at 3 × depth. 
Single nucleotide polymorphisms (SNPs) were identi-
fied among the BLH0012 enriched genome and 41 pub-
licly available L.kirschneri genomes (GenBank accession 
numbers annotated in Fig. 3) by aligning reads simulated 
by ART vMountRainier [54] against L.kirschneri sero-
var Valbuzzi str. 200,702,274 (GCA_000244515.3) with 

Fig. 2 Photomicrographs of kidney from short‑beaked common dolphin (BLH0012) with leptospirosis. A Hematoxylin and eosin stained section 
with lymphoplasmacytic tubulointerstitial nephritis. Bar = 20 μm. B Kidney stained with a polyclonal antibody directed against Leptospira sp. There 
is dark brown positive staining of material within tubules. Bar = 20 μm
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Fig. 3 Whole‑genome dendrogram of Leptospira genomes, showing dolphin sequence BLH0012 within a clade of L. kirschneri isolates. The 
dendrogram includes representative genomes of 63 Leptospira species from the P1, P2, S1 and S2 clades. [6], three L. interrogans serovar Pomona 
genomes derived from isolates obtained from two California sea lions and a Channel Island fox (Urocyon littoralis), and the enriched Leptospira 
genome assembly from sample BLH0012 (in red)
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minimap2 v2.22 [55] and calling SNPs from the BAM file 
with GATK v4.2.2 [56] using a depth of coverage ≥ 5 × and 
a read proportion of 0.9. All of these methods were 
wrapped by NASP v1.20 [57]. A maximum likelihood 
phylogeny was then inferred on the concatenated SNP 
alignments using IQ-TREE v2.2.0.3 with default param-
eters [58] (Minh et  al. 2020), and the integrated Mod-
elFinder method [59]; the phylogeny was rooted with 
L.santarosai strain LT821 (GenBank assembly acces-
sion: GCA_000313175.2). To explore the possibility that 
the Leptospira lineage present in this sample has been 
described previously but perhaps without genomic level 
resolution, we queried our assembly against the Lepto-
spira pubMLST database [60], which contained 217,925 
Leptospira allele sequences on the date of access [61].

Phylogenetic results
Post enrichment, 81.45% of the BLH0012 sequencing 
reads assigned to Leptospira (1,323,517/1,624,860). The 
whole genome dendrogram, which included representa-
tive genomes of 63 Leptospira species from the P1, P2, S1 
and S2 clades [6], three L. interrogans serovar Pomona 
genomes derived from isolates obtained from Califor-
nia sea lions and a Channel Island fox (Urocyon littora-
lis), and the enriched Leptospira genome assembly from 
the dolphin kidney sample, BLH0012, placed it closest 
to L.kirschneri (Fig. 3). Of 131 likely L.kirschneri-specific 
120bp RNA capture probes that were included in our 
enrichment system, 87 were identified in the BLH0012 
enrichment with ≥ 3 × coverage, providing further sup-
porting evidence that this unknown Leptospira is most 
similar to L.kirschneri and falls within the phylogenetic 
clade of that species [62].

To more definitively assess the relationship of BLH0012 
within L.kirschneri, we constructed a whole genome SNP 
phylogeny using the BLH0012 genome and 41 publicly-
available L.kirschneri genomes previously generated 
from isolates. This analysis clearly placed the BLH0012 
genome among the L.kirschneri genomes, confirming the 
species identification. However, the long branch length 
leading to the BLH0012 genome (7892 unique SNPs; 
Fig. 4) suggests it is the first representative of a previously 
undescribed novel lineage within L.kirschneri. In support 
of this conjecture, our query of the enriched BLH0012 
assembly against all Leptospira loci in pubMLST revealed 
the closest allelic matches were to L.kirschneri but no 
perfect matches to any known Leptospira alleles at any 
locus; 6/7 loci were identified from both Leptospira 
MLST scheme  1 (tpiA was absent) [63] and scheme  3 
(rrs was excluded in the bait design) [49, 64], and 7/7 loci 
were identified from scheme 2 [65]. Overall, our analyses 
of the Leptospira genome enriched from dolphin kidney 

sample BLH0012 suggest it represents a previously unde-
scribed, divergent and novel lineage of L.kirschneri.

Discussion and conclusions
We report the first detection and characterization of 
Leptospira infection in a short-beaked common dolphin 
and the first detection of Leptospira in any cetacean 
from the northeastern Pacific Ocean. Renal lesions iden-
tified on histopathology of samples from this dolphin 
were consistent with clinically significant leptospirosis 
in other host species, including marine mammals [2, 4, 
18, 19, 27, 31–34, 66]. These lesions were the most sig-
nificant lesions detected, suggesting that leptospiro-
sis most likely played a significant role in live stranding 
and eventual death. We identified the isolate as belong-
ing to a divergent, previously undescribed lineage of 
L.kirschneri, a species that has been detected only once 
in the northeastern Pacific (or in any marine host): from a 
single northern elephant seal stranded in northern Cali-
fornia in 2004 [31]. Although antibody reactivity against 
L.kirschneri serovar Grippotyphosa has been detected 
via microscopic agglutination testing (MAT) in a num-
ber of marine mammals from the northeastern Pacific, 
including Pacific harbor seals, California sea lions, and 
northern elephant seals [32, 33, 36, 37], titers against 
other Leptospira species and serovars were typically also 
observed in the same individuals. Thus, the MAT cannot 
be used to definitively identify the infecting species or 
serovar as Leptospira antibody cross-reaction is common 
[67–69] and not all Leptospira species are included in 
MAT panels. Exposure to unknown species of Leptospira 
has also been detected via MAT in sea otters [66, 70–72].

Infection with L.kirschneri distinguishes this case from 
other observations of Leptospira infections in marine 
mammals of the northeast Pacific Ocean. L. interrogans 
serovar Pomona has caused yearly, seasonal outbreaks 
in California sea lions for decades, with infections rang-
ing from subclinical to deadly [26, 27, 25, 28–30, 73, 74]. 
Confirmed infections with L. interrogans serovar Pomona 
have also been detected by culture in northern elephant 
seals [37] and northern fur seals [34, 35], and by PCR in 
a Steller sea lion [31]. The different species of Leptospira 
indicates there is no direct connection between these 
observations of Leptospira in marine mammals in the 
northeastern Pacific, but it is important to note that sam-
pling and testing have been limited. Further Leptospira 
surveillance of marine mammals, including of short-
beaked common dolphins, is needed to identify other 
hosts carrying closely related strains of L.kirschneri, 
which would indicate potential intra- or interspecies 
transmission linkages and the host range for this novel 
lineage of L.kirschneri. It is also possible that the dolphin 
was infected by cross-ecosystem spillover transmission 
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from a terrestrial host [75, 76]; L.kirschneri has been 
detected in a range of terrestrial hosts, including rodents, 
horses, cattle, dogs, humans and wild boar [77–91].

Confirmed infection of a cetacean raises interesting 
questions about the mechanism of transmission, given 

the obligate marine lifestyle of cetaceans (in contrast 
to pinnipeds, which spend time on land) and the com-
monly accepted view that Leptospira are quickly killed 
by salt water. If there is intraspecies transmission among 
short-beaked common dolphins, it could be occurring 

Fig. 4 Phylogeny of L. kirschneri genomes, showing that the BLH0012 genome represents a divergent lineage of L. kirschneri. This whole genome 
SNP phylogeny included BLH0012 Leptospira sequences (in red) and 41 L. kirschneri genomes. The dolphin sequence falls among the L. kirschneri 
genomes, with long branch length (7893 unique SNPs) suggesting that it is a divergent lineage
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via vertical or sexual transmission, preventing exposure 
to salt water. In this case, sexual transmission is unlikely 
given the age of the dolphin; however vertical transmis-
sion may have occurred as it was likely still nursing. 
Expanded surveillance and testing in this species would 
be needed to assess whether infection prevalence, age 
distribution, and tissue distribution are consistent with 
this possibility. If transmission occurred via the environ-
ment, whether from another marine host (of the same 
or a different species) or cross-ecosystem spillover from 
a terrestrial host, the pathogen would need to survive 
for some period in sea water. However, Leptospira are 
generally understood to survive poorly in salt water [21, 
23, 24]. Some researchers have reported halophilic or 
halotolerant pathogenic Leptospira species; yet in all of 
these cases isolates were cultured in nutrient rich media 
of varying salinity which was often less than that of sea 
water [40, 41, 92]. In addition, work by Trueba et al. [24] 
suggests that the inhibitory impacts of salinity are most 
important under starvation conditions (i.e., what would 
be experienced in the ocean), hence in the absence of 
nutrient rich media the reported halotolerant and halo-
philic species are unlikely to survive long. Finally, Saito 
et al. [93] showed that isolates of the pathogenic species 
L.kmetyi were killed within 12 h in 3% NaCl solution (i.e., 
the same salinity of the ocean), but were able to survive 
3–4 days if incubated with soil overnight. These data, 
together with considerations of rapid dilution in circu-
lating ocean water, suggest that the window of oppor-
tunity for environmental transmission would be quite 
short for dolphins, and would be more likely in coastal 
species such as bottlenose dolphins. However, under cer-
tain optimal conditions (large aggregations of animals, or 
behaviors involving particularly close contact with urine) 
intraspecific environmental transmission might occur in 
marine settings. This could have implications for under-
standing Leptospira ecology in pinnipeds as well, where 
transmission has broadly been assumed to occur while 
animals are hauled out on land.

Ultimately, to better understand the extent to which 
Leptospira infections occur in the marine ecosystem and 
the epidemiological linkages between and among marine 
and terrestrial host species, surveillance and sampling 
must be expanded across these ecosystems. Sequencing 
of Leptospira genomes from different host species will 
yield crucial information about possible transmission 
links, either through sequencing of isolates obtained via 
culture of prospective samples, or by application of DNA 
enrichment techniques to both banked and prospectively 
collected samples that test positive by PCR. The advent of 
these new techniques ushers in a new era for understand-
ing and untangling the complex ecology and transmis-
sion of this important zoonotic pathogen.
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