
UC Davis
UC Davis Electronic Theses and Dissertations

Title
InSAR Inversion Using Point Sources: A Case Study of the Ridgecrest Earthquake Sequence

Permalink
https://escholarship.org/uc/item/87s2b47p

Author
Saylor, Cameron

Publication Date
2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/87s2b47p
https://escholarship.org
http://www.cdlib.org/


InSAR Inversion Using Point Sources:
A Case Study of the Ridgecrest Earthquake Sequence

By

Cameron Cole Saylor
Dissertation

Submitted in partial satisfaction of the requirements for the degree of

Doctor of Philosophy

in

Physics

in the

Office of Graduate Studies

of the

University of California

Davis

Approved:

John Rundle, Chair

Robin Erbacher

Eric Prebys

Committee in Charge

2022

i



Copyright © 2022 by

Cameron Cole Saylor

All rights reserved.



To all of my family and friends who have supported me.

ii



Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

1 Introduction 1

2 The Characterization of Earthquake Sources 6

2.1 Earthquake Faulting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Earthquake Detection and Measurement . . . . . . . . . . . . . . . . . . 7

2.3 Source Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Double Couple and Shear Dislocation Models . . . . . . . . . . . . . . . 12

2.5 Focal Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Moment Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Okada’s equations 19

4 Interferometric Synthetic Aperture Radar (InSAR) 25

5 First Iteration: The Genetic Algorithm 30

5.1 Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 Applying the Genetic Algorithm to Randomly Generated Data . . . . . . 34

5.3 Applying the Genetic Algorithm to ALOS-2 Data . . . . . . . . . . . . . 35

5.4 Performance of the Algorithm On a Single-Source Interferogram . . . . . 40

5.5 Changes to the Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.6 Applying the New Algorithm to ALOS-2 Data . . . . . . . . . . . . . . . 43

5.7 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Multiple Linear Regression Model 50

6.1 A Simpler But Faster Model . . . . . . . . . . . . . . . . . . . . . . . . . 50

iii



6.2 Applying the Multiple Linear Regression Inversion Model to ALOS-2 Data 51

6.3 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 51

7 LMFit 54

7.1 The LMFit Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.2 Applying the LMFit Algorithm to ALOS-2 Data . . . . . . . . . . . . . . 55

7.3 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 55

8 The Ridgecrest Earthquake Sequence: A Case Study 59

8.1 The Ridgecrest Earthquake Sequence . . . . . . . . . . . . . . . . . . . . 59

8.2 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8.3 Applying the Multiple Linear Regression Algorithm to Ridgecrest Data . 63

8.3.1 Using East-West Deformation Data . . . . . . . . . . . . . . . . . 63

8.3.2 Using North-South Deformation Data . . . . . . . . . . . . . . . . 65

8.3.3 Using Both East-West and North-South Data . . . . . . . . . . . 67

8.4 Applying the LMFit Algorithm to Ridgecrest Data . . . . . . . . . . . . 71

8.4.1 Inverting for Seismic Moment . . . . . . . . . . . . . . . . . . . . 71

8.4.2 Inverting for Seismic Moment and Strike Angle . . . . . . . . . . 75

8.4.3 Inversion With No Limit On Strike Angle . . . . . . . . . . . . . 79

8.4.4 Inversion With a 40° Limit On Strike Angle . . . . . . . . . . . . 83

8.5 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 91

9 Fractal Analysis 97

9.1 Box-Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

9.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

9.3 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

iv



List of Figures

2.1 The different types of earthquake faults. The top row shows two types of

dip-slip faults while the bottom row shows two types of strike-slip faults.

Top left: normal fault. Top right: reverse fault. Bottom left: left-lateral

strike-slip fault. Bottom right: right-lateral strike-slip fault. . . . . . . . 7

2.2 The ground motions caused by S and P waves propagating to the right

through an elastic medium [1]. S waves cause transverse ground motion,

while P waves cause longitudinal ground motion. . . . . . . . . . . . . . . 8

2.3 The ground motions caused by Love and Rayleigh waves propagating to the

right through a medium [1]. Love waves are the result of the interference

of multiple S waves and cause transverse ground motion. Rayleigh waves

result from the interference of both P and S waves and cause a combination

of transverse and longitudinal ground motion. . . . . . . . . . . . . . . . 9

2.4 An example seismogram. The arrivals of each wave type are indicated by

arrows. Adapted from [2]. P waves have the highest speed and arrive first,

followed by the S waves and then the surface waves. The surface waves

have the highest amplitude because they cause the most significant ground

motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 An early seismometer. This one would only measure ground motion in the

direction indicated by the arrows. Getting full 3-dimensional seismograms

would require two additional seismometers constructed to measure ground

motion in the other two directions [3]. . . . . . . . . . . . . . . . . . . . . 10

v



2.6 The geometric definitions of the various fault parameters. The strike angle

ϕ is the angle between the fault surface trace and north. The dip angle

δ is the angle between the fault plane and the horizontal plane. Rake

angle λ is the angle between the fault slip vector u and the fault strike

and determines what type of faulting occurs when the fault slips. L and

W indicate the length and width of the fault plane, respectively. The fault

slip vector u determines how much the fault slips, and can be broken into

strike-slip (us) and dip-slip (ud) components. . . . . . . . . . . . . . . . . 12

2.7 Two double couple source models that produce the same seismic wave

radiation pattern. The left model consists of moments defined by force

couples and the right consists of linear vector dipoles. The P axis is the

direction of maximum compressive stress, while the T axis is the direction

of minimum compressive stress. . . . . . . . . . . . . . . . . . . . . . . . 13

2.8 Two shear dislocation fault models that produce the same seismic wave

radiation pattern. The left model is a left-lateral north-south striking

fault and the right model is a right-lateral east-west striking fault. The

black and gray arrows show the P and T axes of the corresponding double

couple source model, respectively. . . . . . . . . . . . . . . . . . . . . . . 14

2.9 A sample focal mechanism of the models in Figures 2.7 and 2.8. This focal

mechanism could be the result of either a left-lateral north-south striking

fault or a right-lateral east-west striking fault. The red lines indicate the

strike of each possible fault. Both faults have a dip angle of 90°. . . . . . 15

2.10 The typical process used to calculate the focal mechanism and resulting

beachball diagram of an earthquake [4]. . . . . . . . . . . . . . . . . . . . 16

vi



2.11 The force couples associated with each element in the moment tensor. Each

couple in the 3x3 grid corresponds to the element of the moment tensor in

the same location (i.e. the top left double couple represents the moment

tensor component M11). The diagonal elements are those representing the

normal forces on the fault, while the off-diagonal elements combine to form

double couples that define the shear forces on the fault. . . . . . . . . . . 18

3.1 Geometry of the source model as defined in [5]. The fault of length L

and width W is located at a depth d. The fault slips according to the

elementary dislocations U1, U2 and U3. . . . . . . . . . . . . . . . . . . . 20

3.2 Geometry of the point source model after extending it to include strike

angle (ϕ) and rake angle (λ). . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 The components of the ground displacement caused by a strike-slip point

source. Each component is designated by the title above each plot. Positive

displacement is indicated in red, while negative displacement is indicated

in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 The components of the ground displacement caused by a dip-slip point

source. Each component is designated by the title above each plot. Positive

displacement is indicated in red, while negative displacement is indicated

in blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 A right-looking SAR mounted on a satellite. As the satellite flies along its

flight path, the SAR scans the area of the ground indicated by the gray oval.

The direction of the flight path is also known as the azimuth direction and

the range direction is perpendicular to it. The resulting SAR image would

have the same width as the swath and its length in the azimuth direction

would be determined by how long the SAR illuminated the ground as it

flew by. Figure adapted from an image courtesy of NASA/JPL-Caltech. . 26

vii



4.2 Two different SAR passes of the same area. In the initial pass, the SAR

records the phase of each point on the ground. In between the passes the

right half of the “ground” has subsided away from the satellite. During

the second pass, the SAR again records the phase of each point on the

ground, but measures a different phase for all points that shifted away

from the satellite. When the phases of each image are subtracted, the

result is the phase difference in the time between the two images, which

can be converted to the distance that each point moved away from the

satellite. Image adapted from a figure courtesy of NASA/JPL-Caltech [6]. 27

4.3 Two SAR images and their resulting interferogram. Since the images were

taken at the listed dates, the interferogram shows the ground motion that

occurred between those dates. The horizontal line at the sudden shift from

pink to yellow indicates the San Andreas fault which slipped during this

time period. Image courtesy of NASA/JPL-Caltech [6]. . . . . . . . . . . 28

4.4 An ascending and descending pass of the same ground area by a single

satellite mounted SAR. Since the SAR is always right-looking relative to

the flight path, it views the area from different sides during each pass. . . 29

5.1 (a) Azimuthal view of the synthetic ground deformation data. (b) Az-

imuthal view of the model generated by the algorithm. (c) Top view of the

synthetic ground deformation data. (d) Top view of the model generated

by the algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 (a) Azimuthal view of the ALOS-2 ground deformation data. (b) Az-

imuthal view of the model generated by the algorithm. (c) Top view of the

ALOS-2 ground deformation data. (d) Top view of the model generated

by the algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

viii



5.3 An azimuthal (left) and top-down (right) view of the 3D distribution of

point sources resulting from the genetic algorithm fit. The parameters of

the sources are outlined in Table 5.2. The points are colored according to

their seismic moment—darker points have a higher seismic moment, while

lighter points have lower seismic moment. . . . . . . . . . . . . . . . . . . 40

5.4 (a) Azimuthal view of the residuals between the synthetic ground defor-

mation data and the corresponding model. (b) Top view of the residuals

between the synthetic ground deformation data and the corresponding

model. (c) Azimuthal view of the residuals between the ALOS-2 ground

deformation data and the corresponding model. (d) Top view of the resid-

uals between the ALOS-2 ground deformation data and the corresponding

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.5 Histograms of the final parameter values found from 50 different fits of the

same single-source interferogram. . . . . . . . . . . . . . . . . . . . . . . 42

5.6 2D heatmaps resulting from comparison of a single-source model to the

single-source interferogram for every possible pairing of parameters. For

each diagram, the listed parameters are varied from their true values (in-

dicated by the blue dot at the center of each) and the error of the resulting

model is calculated according to Equation 5.1. Black represents low error,

while the progression toward white represents increasing error. The figure

is rotated 90°counterclockwise to allow it to fit on the page. . . . . . . . . 44

5.7 The z component of the ground deformation for the data (left) and model

(right). The axes are in the Universal Transverse Mercator (UTM) coor-

dinate system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.8 The point sources of the final genetic algorithm fit model shown in Figure

5.7. Each dot represents a point source and its color indicates the seismic

moment of the source. Darker colors indicate higher seismic moment with

the color moving toward white as seismic moment decreases. The axes are

in the UTM coordinate system. . . . . . . . . . . . . . . . . . . . . . . . 46

ix



5.9 The residuals between the data and model shown in Figure 5.7 (left) and

a histogram of the residuals (right). . . . . . . . . . . . . . . . . . . . . . 47

6.1 The z component of the ground deformation for the data (left) and model

(right) for the multiple linear regression inversion model. The axes are in

the UTM coordinate system. . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2 The residuals between the data and model shown in Figure 6.1 (left) and

a histogram of the residuals (right). . . . . . . . . . . . . . . . . . . . . . 52

6.3 The point sources of the final multiple linear regression inversion model

shown in Figure 6.1. Each dot represents a point source and its color

indicates the seismic moment of the source. Darker colors indicate higher

seismic moment with the color moving toward white as seismic moment

decreases. The axes are in the UTM coordinate system. . . . . . . . . . . 53

7.1 The z component of the ground deformation for the data (left) and model

(right) for the LMFit model. The axes are in the UTM coordinate system. 56

7.2 The residuals between the data and model shown in Figure 7.1 (left) and

a histogram of the residuals (right). . . . . . . . . . . . . . . . . . . . . . 56

7.3 The point sources of the final LMFit inversion model shown in Figure

7.1. Each dot represents a point source and its color indicates the seismic

moment of the source. Darker colors indicate higher seismic moment with

the color moving toward white as seismic moment decreases. The axes are

in the UTM coordinate system. . . . . . . . . . . . . . . . . . . . . . . . 57

8.1 The fault traces produced by the Mw 7.1 Ridgecrest mainshock [7]. . . . 60

8.2 Aftershocks (Mw < 2.5) occurring within a 21 day period after the Mw 6.4

foreshock. The earthquakes are plotted according to their UTC time. . . 60

8.3 A map displaying the locations of the aftershocks (Mw < 2.5) occurring

within a 21 day period after the Mw 6.4 foreshock. The axes are in the

UTM coordinate system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

x



8.4 The east-west (left) and north-south (right) ground displacement caused by

the Ridgecrest earthquake sequence. Positive deformation indicates move-

ment to the east/north, while negative deformation indicates movement to

the west/south. The axes are in UTM coordinates and the colorbar is in

units of meters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

8.5 The x component of the ground deformation for the data (left) and model

(right) for the multiple linear regression model. The axes are in the UTM

coordinate system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

8.6 The residuals between the data and model shown in Figure 8.5 (left) and

a histogram of the residuals (right). . . . . . . . . . . . . . . . . . . . . . 64

8.7 The point sources of the final multiple linear regression inversion model

shown in Figure 8.5. Each dot represents a point source and its color

indicates the seismic moment of the source. Darker colors indicate higher

seismic moment with the color moving toward white as seismic moment

decreases. The axes are in the UTM coordinate system. . . . . . . . . . . 65

8.8 The y component of the ground deformation for the data (left) and model

(right) for the multiple linear regression model. The axes are in the UTM

coordinate system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8.9 The residuals between the data and model shown in Figure 8.8 (left) and

a histogram of the residuals (right). . . . . . . . . . . . . . . . . . . . . . 66

8.10 The point sources of the final multiple linear regression inversion model

shown in Figure 8.8. Each dot represents a point source and its color

indicates the seismic moment of the source. Darker colors indicate higher

seismic moment with the color moving toward white as seismic moment

decreases. The axes are in the UTM coordinate system. . . . . . . . . . . 67

8.11 The x component of the ground deformation for the data (left) and model

(right) for the multiple linear regression model utilizing both deformation

components. The axes are in the UTM coordinate system. . . . . . . . . 68

xi



8.12 The residuals between the data and model utilizing both deformation com-

ponents shown in Figure 8.11 (left) and a histogram of the residuals (right). 69

8.13 The y component of the ground deformation for the data (left) and model

(right) for the multiple linear regression model utilizing both deformation

components. The axes are in the UTM coordinate system. . . . . . . . . 69

8.14 The residuals between the data and model utilizing both deformation com-

ponents shown in Figure 8.13 (left) and a histogram of the residuals (right). 70

8.15 The point sources of the final multiple linear regression fit model utilizing

both deformation components shown in Figures 8.11 and 8.13. Each dot

represents a point source and its color indicates the seismic moment of

the source. Darker colors indicate higher seismic moment with the color

moving toward white as seismic moment decreases. The axes are in the

UTM coordinate system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

8.16 The x component of the ground deformation for the data (left) and model

(right) for the LMFit inversion model. The axes are in the UTM coordinate

system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8.17 The residuals between the data and model shown in Figure 8.16 (left) and

a histogram of the residuals (right). . . . . . . . . . . . . . . . . . . . . . 72

8.18 The point sources of the final LMFit inversion model shown in Figure

8.16. Each dot represents a point source and its color indicates the seismic

moment of the source. Darker colors indicate higher seismic moment with

the color moving toward white as seismic moment decreases. The axes are

in the UTM coordinate system. . . . . . . . . . . . . . . . . . . . . . . . 73

8.19 The y component of the ground deformation for the data (left) and model

(right) for the LMFit inversion model. The axes are in the UTM coordinate

system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8.20 The residuals between the data and model shown in Figure 8.19 (left) and

a histogram of the residuals (right). . . . . . . . . . . . . . . . . . . . . . 74

xii



8.21 The point sources of the final LMFit inversion model shown in Figure

8.19. Each dot represents a point source and its color indicates the seismic

moment of the source. Darker colors indicate higher seismic moment with

the color moving toward white as seismic moment decreases. The axes are

in the UTM coordinate system. . . . . . . . . . . . . . . . . . . . . . . . 75

8.22 The x component of the ground deformation for the data (left) and model

(right) for the LMFit inversion model utilizing both deformation compo-

nents. The axes are in the UTM coordinate system. . . . . . . . . . . . . 76

8.23 The residuals between the data and model utilizing both deformation com-

ponents shown in Figure 8.22 (left) and a histogram of the residuals (right). 76

8.24 The y component of the ground deformation for the data (left) and model

(right) for the LMFit inversion model utilizing both deformation compo-

nents. The axes are in the UTM coordinate system. . . . . . . . . . . . . 77

8.25 The residuals between the data and model utilizing both deformation com-

ponents shown in Figure 8.24 (left) and a histogram of the residuals (right). 77

8.26 The point sources of the final LMFit inversion model utilizing both defor-

mation components shown in Figures 8.22 and 8.24. Each dot represents

a point source and its color indicates the seismic moment of the source.

Darker colors indicate higher seismic moment with the color moving toward

white as seismic moment decreases. The axes are in the UTM coordinate

system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8.27 The x component of the ground deformation for the data (left) and model

(right) for the LMFit inversion model. The axes are in the UTM coordinate

system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.28 The residuals between the data and model shown in Figure 8.27 (left) and

a histogram of the residuals (right). . . . . . . . . . . . . . . . . . . . . . 80

xiii



8.29 The point sources of the final LMFit inversion model shown in Figure 8.27.

Each dot in the left half of the figure represents a point source and its color

indicates the seismic moment of the source. Darker colors indicate higher

seismic moment with the color moving toward white as seismic moment

decreases. Each arrow in the right half of the figure indicates the strike

direction of the corresponding point source on the left. The axes are in the

UTM coordinate system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

8.30 The y component of the ground deformation for the data (left) and model

(right) for the LMFit inversion model. The axes are in the UTM coordinate

system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8.31 The residuals between the data and model shown in Figure 8.30 (left) and

a histogram of the residuals (right). . . . . . . . . . . . . . . . . . . . . . 82

8.32 The point sources of the final LMFit inversion model shown in Figure 8.30.

Each dot in the left half of the figure represents a point source and its color

indicates the seismic moment of the source. Darker colors indicate higher

seismic moment with the color moving toward white as seismic moment

decreases. Each arrow in the right half of the figure indicates the strike

direction of the corresponding point source on the left. The axes are in the

UTM coordinate system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.33 The x component of the ground deformation for the data (left) and model

(right) for the LMFit inversion model. The axes are in the UTM coordinate

system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8.34 The residuals between the data and model shown in Figure 8.33 (left) and

a histogram of the residuals (right). . . . . . . . . . . . . . . . . . . . . . 84

8.35 The y component of the ground deformation for the data (left) and model

(right) for the LMFit inversion model. The axes are in the UTM coordinate

system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.36 The residuals between the data and model shown in Figure 8.35 (left) and

a histogram of the residuals (right). . . . . . . . . . . . . . . . . . . . . . 85

xiv



8.37 The point sources of the final LMFit inversion model shown in Figures

8.33 and 8.35. Each dot in the left half of the figure represents a point

source and its color indicates the seismic moment of the source. Darker

colors indicate higher seismic moment with the color moving toward white

as seismic moment decreases. Each arrow in the right half of the figure

indicates the strike direction of the corresponding point source on the left.

The axes are in the UTM coordinate system. . . . . . . . . . . . . . . . . 86

8.38 The x component of the ground deformation for the data (left) and model

(right) for the LMFit inversion model. The axes are in the UTM coordinate

system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

8.39 The residuals between the data and model shown in Figure 8.38 (left) and

a histogram of the residuals (right). . . . . . . . . . . . . . . . . . . . . . 88

8.40 The point sources of the final LMFit inversion model shown in Figure 8.38.

Each dot in the left half of the figure represents a point source and its color

indicates the seismic moment of the source. Darker colors indicate higher

seismic moment with the color moving toward white as seismic moment

decreases. Each arrow in the right half of the figure indicates the strike

direction of the corresponding point source on the left. The axes are in the

UTM coordinate system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.41 The y component of the ground deformation for the data (left) and model

(right) for the LMFit inversion model. The axes are in the UTM coordinate

system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8.42 The residuals between the data and model shown in Figure 8.41 (left) and

a histogram of the residuals (right). . . . . . . . . . . . . . . . . . . . . . 90

xv



8.43 The point sources of the final LMFit inversion model shown in Figure 8.41.

Each dot in the left half of the figure represents a point source and its color

indicates the seismic moment of the source. Darker colors indicate higher

seismic moment with the color moving toward white as seismic moment

decreases. Each arrow in the right half of the figure indicates the strike

direction of the corresponding point source on the left. The axes are in the

UTM coordinate system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8.44 The x component of the ground deformation for the data (left) and model

(right) for the LMFit inversion model. The axes are in the UTM coordinate

system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8.45 The residuals between the data and model shown in Figure 8.44 (left) and

a histogram of the residuals (right). . . . . . . . . . . . . . . . . . . . . . 92

8.46 The y component of the ground deformation for the data (left) and model

(right) for the LMFit inversion model. The axes are in the UTM coordinate

system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8.47 The residuals between the data and model shown in Figure 8.46 (left) and

a histogram of the residuals (right). . . . . . . . . . . . . . . . . . . . . . 93

8.48 The point sources of the final LMFit inversion model shown in Figures

8.44 and 8.46. Each dot in the left half of the figure represents a point

source and its color indicates the seismic moment of the source. Darker

colors indicate higher seismic moment with the color moving toward white

as seismic moment decreases. Each arrow in the right half of the figure

indicates the strike direction of the corresponding point source on the left.

The axes are in the UTM coordinate system. . . . . . . . . . . . . . . . . 94

9.1 The linear fit used to estimate the fractal dimension of the fault trace

image in Figure 8.1. The fractal dimension is listed in the title. . . . . . 99

9.2 The linear fit used to estimate the fractal dimension of the aftershock

locations in Figure 8.3. The fractal dimension is listed in the title. . . . . 100

xvi



9.3 The estimated fractal dimension of the system of point sources (with no

limit on strike angle) as a function of the seismic moment threshold. The

threshold axis is in units of the maximum seismic moment of the distribution. 100

9.4 The estimated fractal dimension of the system of point sources (with a limit

of 40° on the strike angle) as a function of the seismic moment threshold.

The threshold axis is in units of the maximum seismic moment of the

distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9.5 The distribution of point sources with no limit on strike angle after apply-

ing the threshold that yields a fractal dimension close to that of the fault

traces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

9.6 The distribution of point sources with a limit on strike angle after applying

the threshold that yields a fractal dimension close to that of the fault traces. 104

9.7 The distribution of point sources with no limit on strike angle after ap-

plying the threshold that yields a fractal dimension close to that of the

aftershock distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

9.8 The distribution of point sources with a limit on strike angle after applying

the threshold that yields a fractal dimension close to that of the aftershock

distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

xvii



List of Tables

2.1 The rake angles for the four different types of fault slip in Figure 2.1. The

definition of the rake angle λ is shown in Figure 2.6. . . . . . . . . . . . . 11

2.2 Summary of the angles required to define a fault’s orientation and their

associated limits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.1 The standard deviations of the Gaussian distributions used to mutate the

parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 The parameters found by the algorithm for each point source in the ALOS-

2 data fit. The strike and dip angles are recorded in radians and seismic

moment in Nm. Recall that these parameters use Okada’s convention,

where a strike angle of zero means the strike is parallel to the x axis. . . 39

7.1 The means and standard deviations of the residuals for each inversion of

the ALOS-2 data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

8.1 Parameters reported by USGS for the Mw 7.1 Ridgecrest mainshock [8]. . 63

8.2 The means and standard deviations of the residuals for each multiple linear

regression inversion of the Ridgecrest data. . . . . . . . . . . . . . . . . . 68

8.3 The means and standard deviations of the residuals for each LMFit inver-

sion of the Ridgecrest data. . . . . . . . . . . . . . . . . . . . . . . . . . 78

8.4 The means and standard deviations of the residuals for each LMFit strike

inversion of the Ridgecrest data. . . . . . . . . . . . . . . . . . . . . . . . 86

8.5 The means and standard deviations of the residuals for each LMFit limited

strike inversion of the Ridgecrest data. . . . . . . . . . . . . . . . . . . . 94

xviii



8.6 The means and standard deviations of the residuals for each inversion of

the Ridgecrest data. MLR refers to the multiple linear regression inversion.

LM refers to the LMFit inversions for seismic moment. LM Strike refers

to the LMFit inversions for seismic moment and strike angle. LM Strike

limit refers to the LMFit inversions for seismic moment and strike angle,

with a limit of 40° placed on the strike angle. . . . . . . . . . . . . . . . . 95

9.1 Comparison of the fractal dimension of the fault traces to the fractal di-

mension of the point source distributions after applying a threshold on

their seismic moment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

9.2 Comparison of the fractal dimension of the aftershock distribution to the

fractal dimension of the point source distributions after applying a thresh-

old on their seismic moment. . . . . . . . . . . . . . . . . . . . . . . . . . 102

xix



Abstract

InSAR Inversion Using Point Sources:

A Case Study of the Ridgecrest Earthquake Sequence

Interferometric synthetic-aperture radar (InSAR) interferograms provide maps of the sur-

face deformation of the earth. Hidden in these deformation maps is valuable information

about the fault systems hidden beneath the surface of the earth. InSAR interferograms

are commonly used in inverse problems to determine the characteristics of earthquake

sources from the deformation that they caused, which tell us about the faults upon which

the earthquake occurred. These inversions typically use models composed of rectangular

fault planes, but many studies suggest that faults are much more complicated. In this

thesis, we present a new method for the inversion of InSAR interferograms using a model

composed of a distribution of seismic point sources. We argue that point sources provide

a much greater degree of flexibility to the model at less computational cost compared to

rectangular sources.

We start our analysis with an interferogram containing the ground deformation caused

by the 2015Mw 7.8 Gorkha earthquake [9]. After defining a point source model, we explore

several different methods of performing the inversion for the source parameters: a genetic

algorithm, a multiple linear regression and a nonlinear least-squares solver. During our

analysis, we describe the positive and negative aspects of each inversion method, as well

as possible interpretations of the results. We conclude our analysis with a case study of

the 2019 Mw 7.1 Ridgecrest earthquake mainshock, which serves to expand the preceding

analysis to fully explore the capabilities of each method using ground deformation in

multiple directions. To extend our analysis of the point source distributions from our

inversions, we calculate their fractal dimensions and compare them to the dimensions of

the aftershock distribution and fault traces.
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Chapter 1

Introduction

The characterization of earthquake faults remains a problem that is difficult to solve. In

some cases the earthquakes help us out by creating extensive networks of surface cracks

that we can measure either in the field or by using remote sensing techniques. In other

cases, however, they make our efforts more difficult. So-called blind thrust earthquakes

do not produce surface cracks, precluding direct mapping of the faults upon which they

occur. Yet, the lack of surface traces does not make remote sensing useless—maps of

the ground deformation caused by blind thrust earthquakes can still be produced using

methods such as interferometric synthetic aperture radar (InSAR). Ground deformation

maps are frequently used for inversion problems that allow us to infer the parameters

of the earthquakes that caused the deformation [10, 11, 12]. However, our current mod-

els frequently use simple rectangular fault models to represent even the most complex

earthquakes.

Significant errors can occur in fault geometry and slip dislocation models as a result

of fault surfaces not being well represented by simple planar or rectangular fault models.

For this reason, it is necessary to utilize all tools available to improve estimates of fault

geometry and location. As mentioned above, one such tool is InSAR, which provides

maps of surface deformation that contain valuable information about the complexity of

the fault system giving rise to the deformation [13]. InSAR is a radar technique that

uses a synthetic aperture radar (SAR) mounted on a satellite to image the same area at

two different times, and uses those images to determine the differences in phase of the
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waves that return to the SAR. Since the wavelength of the electromagnetic waves emitted

by the SAR is known, the phase difference between the images can be used to calculate

their difference in line-of-sight distance to the satellite. The result is a map of the line-

of-sight ground deformation of the imaged area that occurred between the times that the

original SAR images were taken [14]. Despite being susceptible to different sources of

error—such as orbital error [15] and atmospheric uncertainty [16, 17]—InSAR is able to

measure ground deformation to sub-millimeter accuracy if such effects are appropriately

accounted for [18].

Previous work has been done which aimed to invert the ground deformation contained

in InSAR interferograms to find the geometry of faults that could cause the observed

ground deformation. Such methods rely on having a model that depends on various

parameters that can recreate the desired dataset. In seismology, a commonly used model

is Okada’s analytical solutions for surface deformation due to faults in an elastic half

space, which can model ground deformation due to either point or finite rectangular

seismic sources [5].

The inversion detailed in Bagnardi and Hooper (2018), for example, utilizes an Okada

rectangular fault model described by 9 parameters: length, width, depth, strike angle, dip

angle, X and Y-coordinates, uniform slip in the strike direction, and uniform slip in the

dip direction [19]. Their approach uses a Bayesian inversion to determine a posterior prob-

ability density function (PDF), which describes how well a set of parameters can explain

a given dataset based on their uncertainties and taking into account prior information in

the form of a joint prior PDF. A Monte-Carlo Markov Chain utilizing the Metropolis-

Hastings algorithm is then used to efficiently search the parameter space by taking steps

in the prior PDF to get new sets of parameter values and comparing the likelihood of

the new model to the previous step [20]. After an appropriate number of iterations, the

sampling done by the algorithm approximates the desired posterior PDFs of each of the

parameters, which can be used to estimate their most likely values. Jo et al. (2017)

performed a different type of inversion for the MW = 6.0 2014 South Napa earthquake

for a similar set of parameters for a rectangular fault model [21]. They used two separate
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inversions in their analysis, the first being a Monte Carlo simulation of 10000 iterations

to find the fault parameters. The second was a least squares inversion performed to find

the slip distribution over the rectangular fault plane.

Aside from Monte Carlo methods, there are other analysis techniques that have been

used to invert InSAR interferograms. Feng et al. (2017) utilized a method of inversion

called multipeak particle swarm optimization (M-PSO) to study the 2011 MW = 6.8

Burma earthquake [22]. A PSO works by first defining a population (or swarm) of can-

didate solutions to a problem and then moving them throughout the parameter space to

find the optimal solution. The particles move according to a “velocity” that is based on

each particle’s own best known position in the parameter space as well as the best known

position of the other particles [23]. Wen et al. (2016) and Li et al. (2020) also used a

M-PSO inversion in their analyses of the 2015 MW = 6.5 Pishan earthquake and the 2013

MW = 6.6 Lushan earthquake, respectively, while additionally adding a second inversion

for the slip distribution on the fault plane [24, 25].

There have also been advances in specific aspects of the inversion, such as the slip

distribution. Liu and Xu (2019) developed another method for the joint inversion of

coseismic and postseismic fault slip from InSAR data called LogSIM, which uses a log-

arithmic model solved by a nonlinear least squares curve fitting function [26]. Zhang

et al. (2008) solved the slip distribution inverse problem with a model using triangular

dislocation elements to more accurately model the 3D fault surface [27]. They solved the

resulting inverse problem using a weighted damped least squares approach. G. Jiang et

al. (2013) also performed an inversion utilizing a model made up of triangular disloca-

tion elements, finding a solution using bounded variable least squares [28]. Fukahata and

Wright (2008) aimed to improve the inversion of the slip distribution by treating the dip

angle as a hyperparameter and estimating it using the Bayesian information criterion [29].

This is followed by determining the slip distribution using maximum-likelihood methods.

Their work is continued in another paper by Fukahata and Hashimoto (2016) who apply

the same method to the 2016 Kumamoto earthquake [30]. Frietsch et al. (2019) extended

the problem slightly, adding two new parameters for time-shift to the centroid time and
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the compensated-linear-vector-dipole (CLVD) component while also allowing for the pa-

rameters of multiple fault segments to be found at one time [31]. This makes it possible

to model a single event as multiple fault segments or model multiple separate events at

the same time.

Finally, it should be noted that InSAR is not limited in usefulness to earthquake mech-

anism inversion, as shown by Peng et al. (2018) who used InSAR-derived deformation

data to invert the mechanism of subsidence of Line 3 of the Xi’an metro near Yuhuazhai

[32]. They found from their inversion of a flat-lying sill model with distributed contrac-

tions—with a depth based on the average depth of local pumping wells—that the rapid

subsidence could be explained by excessive groundwater extraction in the area.

Also note that the inversion of the focal mechanism of earthquakes can be done from

a variety of sources other than InSAR data. A common method of inversion uses P-wave

first motion polarities, such as the analyses performed by Langet et al. (2020) and Hicks

et al. (2000) [33, 34]. If the number of seismic stations is too low to use first motion

polarities, a full waveform analysis can be performed to provide constraints on the focal

mechanism. Examples of full waveform analysis are reported in Hicks et al. (2000) as

well as Villegas A. et al. (2016) [34, 35]. Efforts made to improve these analyses include

work by Sokos and Zahradnik (2008) on the ISOLA software package, which can perform

multi-source inversions in addition to the typical single source inversions [36].

Though many previous inversions of InSAR data utilize a number of rectangular fault

planes, it has been shown that fault surfaces are much more complex. Researchers have

taken steps to fight this problem. Sahimi et al. (1993) performed an analysis of the

fracture patterns in heterogeneous rocks and found that “at large length scales, they are

percolation fractals with a fractal dimension D≈1.9 and 2.5, in 2D and 3D, respectively”

[37]. This implies that fault surfaces cannot be completely represented by simple planar

surfaces. Candela et al. (2012) studied fault surface roughness over nine decades of length

scales from 50 µm to 50 km and found that they could be characterized by an anisotropic

self-affine description [38]. Bruhat et al. (2019) investigated the effect of surface rough-

ness on surface displacement, finding that “slip distributions become increasingly more
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self-affine, that is, containing more short wavelength fluctuations as compared to the

self-similar fault profiles, as roughness increases,” suggesting that fault roughness has a

considerable effect on the behavior of faults and, therefore, our models must be improved

to take such effects into account [39].

The complexity of earthquake modeling is not limited to the fault surfaces, as shown

by the 2016 Kaikoura earthquake in New Zealand. This magnitude 7.8 earthquake was

one of the largest recorded in New Zealand, and was found to have caused the rupture

of at least 12 different faults, with some separated by up to 15 km [40]. Hamling et

al. (2017) also state that “The earthquake should motivate rethinking of certain seismic

hazard models, which do not presently allow for this unusual complex rupture pattern.”

Another complex earthquake sequence was that of the magnitude 7.3 Landers earthquake

in 1992, around which occurred the magnitude 6.5 Big Bear earthquake and the magnitude

5.7 Little Skull Mountain earthquake, which were later determined to be separate events

rather than mainshocks and aftershocks [41].

Due to the complex nature of faults, it is important to improve our models so that

they can appropriately represent a wider range of behavior. In this thesis, we introduce

a new approach that utilizes a model composed of a collection of seismic point sources.

We choose point sources because their superposition can represent any possible physical

surface as long as enough sources are included, providing much more freedom than simple

rectangular models. The first iteration of our inversion method uses a genetic algorithm

to simultaneously find the parameters of the entire collection of point sources. It is

followed by a version that uses multiple linear regression to rapidly solve for the model

parameters. The final iteration of our method uses a nonlinear solver called LMFit to

perform the inversions which improves upon the weaknesses of the preceding models.

Finally, we include additional analysis that explores the fractal properties of the point

source distributions obtained from the inversions.
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Chapter 2

The Characterization of Earthquake

Sources

2.1 Earthquake Faulting

A fault is a fracture in a volume of rock. Faults are usually represented by a fault plane

that passes through the fracture. The blocks of rock on either side of the fault can slide

past each other due to this fracture. Depending on the direction of slip, the fault is

categorized as either strike-slip or dip-slip. For a dip-slip fault, each of these blocks are

commonly referred to as the hanging wall and footwall. The hanging wall is the block

that lies physically above the fault plane, while the footwall is the block that lies below

the fault plane. The hanging wall and footwall are labeled in the top left part of Figure

2.1. There are several ways in which the slip on a fault can occur—four basic fault types

are shown in Figure 2.1.

The top half of Figure 2.1 shows two different types of dip-slip faults. The top left

shows an example of a normal fault. Normal faults occur when the hanging wall of the

fault moves downward relative to the footwall. When the movement direction of both

blocks is reversed, it is a reverse fault. An example of a reverse fault is shown in the

top right part of Figure 2.1. In this case, the hanging wall moves upward relative to the

footwall.

The bottom half of Figure 2.1 shows two different types of strike-slip faults. The

left side is a left-lateral strike-slip fault while the right is a right-lateral strike-slip fault.

6



Footwall

Hanging wall

Figure 2.1. The different types of earthquake faults. The top row shows two types
of dip-slip faults while the bottom row shows two types of strike-slip faults. Top
left: normal fault. Top right: reverse fault. Bottom left: left-lateral strike-slip fault.
Bottom right: right-lateral strike-slip fault.

Strike-slip faults do not have a hanging wall or footwall because the fault plane is vertical.

Instead, the type of strike-slip fault is determined by imagining standing on one block

while facing the fault and seeing which direction the other block moves. For example,

when standing on one side of a left-lateral strike-slip fault, the block on the opposite side

will be moving to the left.

When it comes to actual faults, it is rare to find a fault that is solely strike-slip or

solely dip-slip. Most faults are oblique-slip, which means they have both strike-slip and

dip-slip components.

2.2 Earthquake Detection and Measurement

The term earthquake refers to any event that generates seismic waves which shake the

surface of the earth. Typically, this is due to a sudden release of energy in the earth’s

lithosphere when the rocks on either side of a fault slide past each other. The sudden
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Figure 2.2. The ground motions caused by S and P waves propagating to the right
through an elastic medium [1]. S waves cause transverse ground motion, while P waves
cause longitudinal ground motion.

release of energy manifests itself in the form of two types of seismic waves: P waves and S

waves. P waves (pressure or primary waves) are longitudinal waves while S-waves (shear

or secondary waves) are transverse waves. Longitudinal waves oscillate the medium in the

direction of their propagation and transverse waves oscillate the medium perpendicular to

their direction of propagation. Figure 2.2 shows examples of both P and S waves traveling

through a medium. Primary waves are so-named because they travel the fastest, and are

therefore the first to arrive at a seismometer. They are shortly followed by the S waves,

which themselves are followed by surface waves.

Surface waves are the result of interference between P and S waves on the earth’s

surface, and they produce the largest ground motion of all of the waves. There are two

types of surface waves: Love waves and Rayleigh waves, which are shown in Figure 2.3.

Love waves are the result of the interference of multiple S waves and cause horizontal

transverse ground motion. Rayleigh waves arise from interference of both P and S waves

on the surface and cause both transverse and longitudinal ground motion. Figure 2.4 is

a representative example of a seismogram that shows the relative magnitudes and arrival

times of each wave type.

To record a seismogram we use a seismometer (also frequently called a seismograph,
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Figure 2.3. The ground motions caused by Love and Rayleigh waves propagating to the
right through a medium [1]. Love waves are the result of the interference of multiple S
waves and cause transverse ground motion. Rayleigh waves result from the interference
of both P and S waves and cause a combination of transverse and longitudinal ground
motion.

Figure 2.4. An example seismogram. The arrivals of each wave type are indicated by
arrows. Adapted from [2]. P waves have the highest speed and arrive first, followed by
the S waves and then the surface waves. The surface waves have the highest amplitude
because they cause the most significant ground motion.
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Figure 2.5. An early seismometer. This one would only measure ground motion in
the direction indicated by the arrows. Getting full 3-dimensional seismograms would
require two additional seismometers constructed to measure ground motion in the other
two directions [3].

which is the combination of a seismometer, a timer, and data recorder). A basic seis-

mometer consists of a mass on a spring that is attached to a fixed base. When seismic

waves pass by the seismometer, the base follows the ground motion while the mass remains

motionless due to inertia. The seismometer then records the relative motion between the

mass and base. Historically this was done by attaching a pen to the mass which hangs

onto a circular drum attached to the base and records the shaking as the base moves

relative to the pen. Figure 2.5 shows the construction of a single-direction seismometer.

Modern seismometers record their measurements electronically but remain based on the

same basic principles.

2.3 Source Parameters

Figure 2.6 contains a schematic of a simple rectangular fault and its associated parameters.

The hanging wall block is removed, leaving only the footwall block. The horizontal (x-

y) plane represents the earth’s surface and the angled plane that contains the vector u

represents the fault plane. Each of the labeled parameters are required to fully describe

the behavior of the fault when it slips. First is the position of the fault in the earth’s

crust. A common convention is to report the latitude, longitude, and depth d of the upper

left corner of the footwall, which is shown centered at the origin in Figure 2.6. The length

L and width W determine the extent of the fault plane and are also measured from the
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Fault type Rake angle

Normal -90°

Reverse 90°

Left-lateral strike-slip 0°

Right-lateral strike-slip 180°

Table 2.1. The rake angles for the four different types of fault slip in Figure 2.1. The
definition of the rake angle λ is shown in Figure 2.6.

Parameter Limits

Strike angle (ϕ) 0° < ϕ < 360°

Dip angle (δ) 0° < δ < 90°

Rake angle (λ) -180° < λ < 180°

Table 2.2. Summary of the angles required to define a fault’s orientation and their
associated limits.

upper left corner of the fault plane.

To determine the orientation of the fault plane, we require two angles: the strike ϕ and

dip δ. The strike angle is defined as the angle between north and the strike of the fault.

The fault strike is the line tracing the intersection of the fault plane and the horizontal

plane. In Figure 2.6 the fault strike is parallel to the x axis. The dip angle of a fault is

defined as the angle between the fault plane and the horizontal plane. A dip angle of 0°

would yield a horizontal fault plane and a dip angle of 90° would be a vertical fault plane.

The final parameter is the slip vector u which determines how much the fault slips

and in what direction the slip occurs. The direction is defined by the rake angle λ, which

is the angle between the strike of the fault and the slip vector. The rake angle defines the

direction the hanging wall block moves during fault rupture and therefore what type of

fault it is. The slip vector can be split into strike-slip (us) and dip-slip (ud) components

as indicated in Figure 2.6—this slip vector in particular shows oblique-slip faulting as a

combination of left-lateral strike-slip and reverse dip-slip faulting. The rake angles for

each fault type in Figure 2.1 can be found in Table 2.1. A summary of the parameters

required to fully describe an earthquake source are shown in Table 2.2.
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Figure 2.6. The geometric definitions of the various fault parameters. The strike angle
ϕ is the angle between the fault surface trace and north. The dip angle δ is the angle
between the fault plane and the horizontal plane. Rake angle λ is the angle between the
fault slip vector u and the fault strike and determines what type of faulting occurs when
the fault slips. L and W indicate the length and width of the fault plane, respectively.
The fault slip vector u determines how much the fault slips, and can be broken into
strike-slip (us) and dip-slip (ud) components.

A commonly used descriptor of earthquake size is the moment magnitude scale (Mw)

developed by Hanks and Kanamori (1979), which they report as Mw = (logM0−9.05)/1.5

[42]. It is based on seismic moment (M0) which is defined by the equation M0 = µAD,

where µ is the shear modulus of the rock, A is the area of the fault that ruptures during

the earthquake and D is the average displacement between the two sides of the fault. The

seismic moment represents the torque of each force couple in the double couple model of

seismic sources which is described in Section 2.4.

2.4 Double Couple and Shear Dislocation Models

There are two models that are commonly used to model the waves radiated from earth-

quake sources. First is the double couple point force model which represents an earthquake
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T axis

P axis

Figure 2.7. Two double couple source models that produce the same seismic wave
radiation pattern. The left model consists of moments defined by force couples and
the right consists of linear vector dipoles. The P axis is the direction of maximum
compressive stress, while the T axis is the direction of minimum compressive stress.

using forces that act on a single point in an elastic medium. The simplest force model

that reproduces the elastic wave pattern generated by an earthquake is a double couple,

which represents a pure shear dislocation. A double couple consists of two orthogonal

pairs of forces, each of which contains anti-parallel forces separated by a moment arm.

An example double couple model is shown in the left half of Figure 2.7. The right half

of Figure 2.7 shows another double couple that is mechanically equivalent to the one on

the left. The locations of the two planes of maximum shear (also called nodal planes) can

be inferred from the model on the left. One plane results from each couple of forces and

lies both between and parallel to the forces in that couple. The model on the right more

clearly shows the P and T axes which are the directions of maximum compression and

tension, respectively. Both of these double couple models produce the same seismic wave

radiation patterns and simply display different information about the seismic source they

represent.

The second model that produces seismic wave radiation similar to actual earthquakes

is the shear dislocation model. In this model, the fault is represented by a discontinuity in
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Figure 2.8. Two shear dislocation fault models that produce the same seismic wave
radiation pattern. The left model is a left-lateral north-south striking fault and the
right model is a right-lateral east-west striking fault. The black and gray arrows show
the P and T axes of the corresponding double couple source model, respectively.

a medium which separates the two volumes that slide past one another. If the wavelength

of the radiated waves is reasonably greater than the size of the fault, the shear dislocation

model produces the same seismic wave radiation pattern as the double couple model. Two

shear dislocations that produce identical wave radiation patterns to one another, as well

as to the double couple models in Figure 2.7, are shown in Figure 2.8. The black and

gray arrows indicate the P and T axes for the double couple model (as shown in the right

side of Figure 2.7), respectively. Looking at both shear dislocation models illuminates one

problem to keep in mind: there are two different models that produce identical seismic

wave patterns. The left model is a left-lateral north-south striking fault, while the right

model is a right-lateral east-west striking fault.

2.5 Focal Mechanism

A focal mechanism describes the type of slip that occurs during an earthquake. Sometimes

referred to as a fault-plane solution, it contains information about the orientation of the

slipping fault as well as the slip vector itself. The most common graphical representation
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Compressional

Dilational

Dilational

Compressional

Figure 2.9. A sample focal mechanism of the models in Figures 2.7 and 2.8. This focal
mechanism could be the result of either a left-lateral north-south striking fault or a
right-lateral east-west striking fault. The red lines indicate the strike of each possible
fault. Both faults have a dip angle of 90°.

of a focal mechanism is the so-called “beachball” diagram. Figure 2.9 shows what the

beachball diagram looks like for the models in Figures 2.7 and 2.8. The red lines indicate

the two possible fault planes and the arrows indicate their direction of slip.

Focal mechanisms are typically calculated using P-wave first motions. First motions

are the direction of ground motion when the P-wave generated by an earthquake first

arrives at a seismometer. To calculate the focal mechanism you need a sufficient number

of seismograms containing first motion data.

To begin, the first motion measurements are projected onto the lower hemisphere of

a sphere centered at the hypocenter of the earthquake as shown in the left portion of
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Figure 2.10. The typical process used to calculate the focal mechanism and resulting
beachball diagram of an earthquake [4].

Figure 2.10. The next step is to determine the nodal planes by drawing two orthogo-

nal great circles that separate the compressive observations (upward motion) from the

tensional observations (downward motion) and therefore show the locations at which no

displacement was measured. The middle portion of Figure 2.10 displays the nodal planes,

as well as the N (null), P (pressure) and T (tension) axes. The P axis indicates the direc-

tion of maximum compressive stress, while the T axis indicates the direction of minimum

compressive stress. Finally, the quadrant containing the T axis is colored black and the

quadrant containing the P axis is colored white as shown on the right side of Figure 2.10.

With this shading convention, black indicates motion toward that quadrant and white in-

dicates motion away from that quadrant. However, the solution is still ambiguous—there

are two valid solutions that yield the same focal mechanism as pointed out in the previ-

ous section. The focal mechanism alone is not sufficient to determine which of the nodal

planes is parallel to the actual fault plane. Therefore, additional information is necessary

to remove the ambiguity—usually other geologic information such as models of tectonic

slip.
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2.6 Moment Tensor

The moment tensor is the mathematical representation of an earthquake’s focal mecha-

nism that is based on the double couple source model. It contains all of the information

necessary to define the earthquake’s fault plane and both the type and amount of slip that

occurs. That information is contained in the 9 elements of the 3x3 matrix in Equation

2.1. Each element of Mkj represents a single force couple, each of which are shown in

Figure 2.11. The couples are arranged in the same order as their corresponding matrix

elements. Mkj is a symmetric matrix, meaning that only 6 elements are necessary to fully

define it. The diagonal elements of Mkj are linear vector dipoles, and so represent the

normal forces in each direction. The off-diagonal elements make up three double couples

(explained in Section 2.4) representing shear forces about each axis. For example, M12

and M21 form a double couple of forces that cause shear about the 3 axis.

Mkj =


M11 M12 M13

M21 M22 M23

M31 M32 M33

 (2.1)
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Figure 2.11. The force couples associated with each element in the moment tensor.
Each couple in the 3x3 grid corresponds to the element of the moment tensor in the
same location (i.e. the top left double couple represents the moment tensor component
M11). The diagonal elements are those representing the normal forces on the fault,
while the off-diagonal elements combine to form double couples that define the shear
forces on the fault.
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Chapter 3

Okada’s equations

Okada’s equations for ground deformation are commonly used in the modeling and char-

acterization of earthquake sources. They are a set of closed analytical expressions for

the surface deformation, strains, and tilts caused by inclined shear and tensile faults in

a semi-infinite elastic half-space. The geometry of Okada’s rectangular source model can

be seen in Figure 3.1. The point source model has a similar set of parameters but rather

than having a length and width as portrayed in Figure 3.1 it is represented as a point

located at the coordinates (0, 0, -d). The homogeneous, isotropic, elastic medium exists

in the volume below the z = 0 plane. The parameters required to calculate the ground

deformation field of a point source are then as follows: the depth d, the dip angle δ

and the elementary dislocation Ui. The elementary dislocations U1, U2 and U3 are the

strike-slip, dip-slip and tensile components of the fault slip, respectively. We only use the

surface deformation of shear faults in our models so we will limit our discussion to those

equations in particular. The surface deformation equations and their dependence on the

above-mentioned parameters are shown in Equations 3.1-3.6.

u0
x = −U1

2π

[
3x2q

R5
+ I01sin(δ)

]
∆Σ (3.1)

u0
y = −U1

2π

[
3xyq

R5
+ I02sin(δ)

]
∆Σ (3.2)

u0
z = −U1

2π

[
3xdq

R5
+ I04sin(δ)

]
∆Σ (3.3)
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Figure 3.1. Geometry of the source model as defined in [5]. The fault of length L
and width W is located at a depth d. The fault slips according to the elementary
dislocations U1, U2 and U3.

u0
x = −U2

2π

[
3xpq

R5
− I03sin(δ)cos(δ)

]
∆Σ (3.4)

u0
y = −U2

2π

[
3ypq

R5
− I01sin(δ)cos(δ)

]
∆Σ (3.5)

u0
z = −U2

2π

[
3dpq

R5
− I05sin(δ)cos(δ)

]
∆Σ (3.6)

Equations 3.1-3.6 represent the x, y and z components of the displacement at the point (x,

y, 0) caused by a point source located at (0, 0, -d). U1 and U2 indicate the strike-slip and

dip-slip components of an arbitrary dislocation, respectively. Therefore, Equations 3.1-3.3

are the displacement components of a pure strike-slip source while Equations 3.4-3.6 are

the displacement components of a pure dip-slip source. The variables in Equations 3.1-3.6

are defined by:

p = ycos(δ) + dsin(δ)

q = ysin(δ)− dcos(δ)

R2 = x2 + y2 + d2
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I01 =
µ

λ+ µ
y

[
1

R(R + d)2
− x2 3R + d

R3(R + d)3

]
I02 =

µ

λ+ µ
x

[
1

R(R + d)2
− y2

3R + d

R3(R + d)3

]
I03 =

µ

λ+ µ
x

[
x

R3

]
− I02

I04 =
µ

λ+ µ

[
− xy

2R + d

R3(R + d)2

]
I05 =

µ

λ+ µ

[
1

R(R + d)
− x2 2R + d

R3(R + d)2

]

where µ and λ are the Lamé parameters. The Lamé parameters define the elastic behavior

of homogeneous, isotropic media—more specifically, the relationship between the compo-

nents of the elastic stress and the components of the deformation. For our purposes, we

slightly alter the equations to be written in terms of seismic moment, defined in [5] to be

M1 = µU1∆Σ and M2 = µU2∆Σ for strike-slip and dip-slip sources, respectively. So in

Equations 3.1-3.6, Ui∆Σ is replaced with Mi

µ
of the appropriate i value for each equation.

In order to represent a wider variety of earthquake sources our model needs a few

additional parameters—horizontal position, strike angle, and rake angle. These don’t

show up in the simplest forms of Okada’s equations because each one can be added

through a coordinate transformation or by finding the components of the slip in terms of

the elementary dislocations. The horizontal position of a source can be changed through

a translation of the x and y coordinates. Strike angle can be added as a rotation about

the z axis. Since rake angle tells us the direction of slip along the fault itself, it is

included through a combination of the elementary dislocations U1 and U2 for a shear

fault. Figure 3.2 shows the geometry of the point source model with the addition of these

new parameters. δ still refers to the dip angle as before, while ϕ and λ were added to show

the strike angle and rake angle, respectively. The point source is located at the center of

the dark grey rectangle, which we added to allow easier visualization of the parameters.

The strike angle ϕ is measured relative to the x axis and the rake angle λ is measured

relative to the strike direction. A strike angle of 0° would therefore be parallel to the x

axis. A rake angle of 0° or 180° yields a fully strike-slip fault (entirely in the direction of
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Figure 3.2. Geometry of the point source model after extending it to include strike
angle (ϕ) and rake angle (λ).

elementary dislocation U1) while a rake angle of 90° or 270° yields a fully dip-slip fault

(entirely in the direction of elementary dislocation U2). If the rake angle is any other

value, the fault is oblique: a combination of strike-slip and dip-slip components.

There are a few caveats to keep in mind when using the parameters as defined in

Figure 3.2. While the strike angle ϕ is measured from the x axis in Okada’s convention

(i.e., a strike angle of zero means the fault strike is parallel to the x axis), it is typically

measured from north for actual faults. Since Okada’s original equations do not include

rake angle, they allow negative dip angles to reverse the direction of slip on the fault. The

most common convention of dip angle restricts it to the range 0 < δ < 90◦ measured from

the horizontal and the rake angle is what determines both the type and direction of fault

slip.

Figure 3.3 shows the three components of the ground displacement caused by a purely

strike-slip point source. Each component is viewed from a position on the positive z axis

such that the area of the plot represents an area of the earth’s surface in the Cartesian

coordinate system where x is horizontal, y is vertical and z is into/out of the page. The

colors of each plot represent the magnitude of the displacement of each point on the

ground in the direction indicated by the title of each plot. In other words, the colors

of the dx plot indicate the displacement along the x axis, the dy plot the displacement
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Figure 3.3. The components of the ground displacement caused by a strike-slip point
source. Each component is designated by the title above each plot. Positive displace-
ment is indicated in red, while negative displacement is indicated in blue.

along the y axis and the dz plot the displacement along the z axis. Positive displacements

are blue, zero displacements are white and negative displacements are red. Darker colors

indicate greater magnitude of displacement. The source used to generate the displacement

in Figure 3.3 was placed at a depth of 10 km with a strike angle of 0°, dip angle of 90°, and

rake angle of 0°. This means that the source is similar to an east-west striking left-lateral

strike-slip fault. However, recall that since the displacement patterns are not unique, the

same displacements could result from a north-south striking right-lateral strike-slip fault.

Each part of the figure covers a 60 km x 60 km area and the point source is located

directly in the center of each plot.

Figure 3.4 shows the three components of the ground displacement caused by a purely

dip-slip point source. The only parameter that differs from the strike-slip example is the

rake angle, which is set to a value of 90°. To get the ground deformation of a shear fault

that is not purely strike-slip or dip-slip you combine the deformation in Figures 3.3 and

3.4, scaled by the appropriate components of the slip vector.
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Figure 3.4. The components of the ground displacement caused by a dip-slip point
source. Each component is designated by the title above each plot. Positive displace-
ment is indicated in red, while negative displacement is indicated in blue.
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Chapter 4

Interferometric Synthetic Aperture

Radar (InSAR)

Interferometric synthetic aperture radar (InSAR) is a remote sensing method that utilizes

multiple synthetic aperture radar (SAR) images to produce maps of the surface deforma-

tion of the earth. SAR is an active sensing technique which means that it produces the

radiation used to illuminate its target. The SAR emits radiation which is scattered back

to the radar by the earth’s surface and then the SAR records both the amplitude and

phase of the returning signal. All data recorded by the SAR is reported in the form of

images. Each image is separated into pixels, and each pixel represents a small area of

the earth’s surface. The amplitude and phase of a given pixel’s signal is determined by

the scatterers that are present within the area of that pixel. A scatterer is anything that

can reflect the SAR’s radiation, including but not limited to: buildings, vegetation, and

rocks. To allow a SAR to image any area of interest, it is generally attached to an aerial

platform. The SAR looks to one side of the platform and scans an area of the ground

as the platform flies by. An example of a SAR attached to an earth orbiting satellite is

shown in Figure 4.1. The satellite flies along its flight path (also known as the azimuth

or along-track direction) with the SAR looking to the right. The swath—the area the

SAR is recording—extends in the range direction which is perpendicular to the azimuth

direction. The width of the swath (as indicated in Figure 4.1) is determined by the size

of the SAR antenna and the geometry of the flight path relative to the ground. The
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Swath

Azimuth direction

Range direction

Flight path

Figure 4.1. A right-looking SAR mounted on a satellite. As the satellite flies along
its flight path, the SAR scans the area of the ground indicated by the gray oval.
The direction of the flight path is also known as the azimuth direction and the range
direction is perpendicular to it. The resulting SAR image would have the same width
as the swath and its length in the azimuth direction would be determined by how long
the SAR illuminated the ground as it flew by. Figure adapted from an image courtesy
of NASA/JPL-Caltech.

length of the swath is determined by how long the SAR sends and receives pulses as it

flies by its target area. The “synthetic” aperture of a SAR results from the motion of the

platform as it illuminates its target. Because the SAR continuously sends radar pulses to

the target as it moves, each pulse views the target from a different position, improving

the resolution of the SAR image in the azimuth direction [43].
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Phase 
difference

Initial pass Second pass

Figure 4.2. Two different SAR passes of the same area. In the initial pass, the SAR
records the phase of each point on the ground. In between the passes the right half of
the “ground” has subsided away from the satellite. During the second pass, the SAR
again records the phase of each point on the ground, but measures a different phase
for all points that shifted away from the satellite. When the phases of each image
are subtracted, the result is the phase difference in the time between the two images,
which can be converted to the distance that each point moved away from the satellite.
Image adapted from a figure courtesy of NASA/JPL-Caltech [6].

If two SAR images of the same area are properly co-located (i.e. their pixels cover

the same areas), a map of the phase difference between the two images can be produced.

Since the wavelength of the radiation produced by the SAR is known, the phase differences

can be converted to distances. These distances are the deformation of the ground in the

line-of-sight direction of the SAR that occurred in the time between when the images

were taken. Figure 4.2 shows an example in which the ground moves away from the SAR

in between two different satellite passes and the phase difference that is measured as a

result. Figure 4.3 shows two typical SAR images and the InSAR image that shows the

phase differences between them. The leftmost SAR image was taken on November 13th,

2009 and the middle image taken on November 18th, 2010. Therefore, the interferogram

on the right shows the deformation of the ground in the line-of-sight of the satellite that

occurred in the year between the SAR image acquisition dates. Negative pixel values

indicate motion toward the satellite and positive pixel values indicate motion away from

the satellite.

Multiple InSAR images of the same area from different viewing angles are required
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Figure 4.3. Two SAR images and their resulting interferogram. Since the images were
taken at the listed dates, the interferogram shows the ground motion that occurred
between those dates. The horizontal line at the sudden shift from pink to yellow
indicates the San Andreas fault which slipped during this time period. Image courtesy
of NASA/JPL-Caltech [6].

to determine the 3D (up-down, north-south, and east-west) components of the ground

deformation. Since SARs are commonly mounted on polar-orbiting satellites, they are

able to measure the same ground area with their ascending and descending tracks. The

ascending track refers to the portion of the satellite’s orbit when it is traveling from

the south pole to the north pole while descending refers to the north pole to south pole

portion of the orbit. The rotation of the earth allows the SAR to image the same area

of the ground during both tracks. Figure 4.4 shows a SAR imaging the same area of the

earth’s surface during separate ascending and descending passes. To get estimates of the

3D ground deformation components, it would require a total of four passes: two in the

ascending orbit and two in the descending orbit. Both ascending orbit SAR images are

used to generate an InSAR image where each pixel represents the ground deformation

in the line-of-sight of the satellite during the time period that elapsed between when the

SAR images were taken. A descending orbit InSAR image is generated in the same way.

This results in two overlapping InSAR images that were taken from different viewing
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Figure 4.4. An ascending and descending pass of the same ground area by a single
satellite mounted SAR. Since the SAR is always right-looking relative to the flight
path, it views the area from different sides during each pass.

geometries, giving each pixel two vectors that describe the ground deformation of that

pixel. The 3D components of the ground deformation can then be estimated using the

constraints provided by the line-of-sight vectors. In general, more overlapping images with

different line-of-sight geometries means better estimates of the 3D ground deformation.
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Chapter 5

First Iteration: The Genetic

Algorithm

As their name implies, genetic algorithms borrow their method of solving problems from

genetics. A population of solutions to the problem is randomly generated, and these

solutions are allowed to crossover and mutate until an ideal solution is found. A crossover

operator is the genetic algorithm equivalent of parents giving birth to offspring that inherit

their genes. In a traditional genetic algorithm, a solution is represented as an array of bits,

and the crossover operator might be defined to swap certain bits between two “parent”

solutions. The mutation operator randomly changes the value of one or more bits in a

solution array, similar to what occurs during a long period of a species’ evolution. A

genetic algorithm also requires some form of “survival of the fittest,” which allows better

solutions to be chosen to move forward during the execution of the algorithm. This is

included in the algorithm as a fitness function—more “fit” solutions to the problem are

those who maximize the fitness function or some other desired measure of fitness [44].

In this chapter, we utilize what is known as a real-coded genetic algorithm, in which

the solutions are instead represented by a list of real-valued parameters. This change

in the form of the solutions necessitates a change in the genetic operators, which will

be explained in Section 5.1. Our goal is to use this algorithm to determine the best-fit

parameters of our point source model from InSAR data.
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5.1 Genetic Algorithms

We begin by describing our genetic algorithm in more detail. As stated in the previous

section, the solutions in a real-coded genetic algorithm are represented as lists of real-

valued parameters. For the genetic algorithm used in this chapter, the solutions are a list

of parameters that describe the locations and orientations of a number of seismic point

sources. In particular, every point source has a parameter for each of the following: x

coordinate, y coordinate, z coordinate, strike angle, dip angle, and seismic moment. The x,

y, and z coordinate parameters define the location of the point source in three-dimensional

space—where z = 0 defines the ground’s surface in the case of zero deformation. The strike

angle and dip angle determine the orientation of the slipping fault represented by the point

source. Strike angle determines the direction of the line created by the intersection of the

fault plane and the ground’s surface. The dip angle is the angle between the fault plane

and the ground’s surface. A diagram of the geometric parameters can be seen in Figure

2.6. In Okada’s convention, the dip angle is restricted to lie within the range −π
2
< δ < π

2

[5]. The seismic moment of a point source represents a combination of the fault area

and the amount that it slips. A solution will have 6n parameters total, where n is the

number of point sources the solution is composed of. These point sources give rise to

surface deformation as defined by Okada’s expressions for deformation due to shear and

tensile faults in a half-space [5]. Our analysis utilizes these equations, which are included

in Chapter 3. The total deformation—the superposition of the deformation from all point

sources—is compared to a desired surface deformation (the data), and the goal of the

algorithm is to move and reorient the point sources until the model’s surface deformation

approximates that of the data. The specifics of the algorithm are discussed in the following

paragraphs.

Given some ground deformation data in the form of ground coordinates and their cor-

responding deformations, the algorithm first determines the minimum and maximum x-

and y-values to use as limits when generating possible source distributions to fit the data.

This restricts the allowed locations of the point sources to an area below the ground de-

formation. Then the algorithm generates a population of a user-defined number of source

31



distributions (models) containing a user-defined number of sources with random locations

and orientations within specified limits. It calculates each model’s displacement field,

which is the ground deformation resulting from a superposition of the ground deforma-

tion due to individual point sources in the model. Each model is compared to the input

data, and the chi-squared value of each model is recorded. In this chapter, the chi-squared

value for a given model is defined as:

χ2 =
n∑

i=1

(zi − f(xi, yi))
2 (5.1)

where zi is the data value for the elevation of the ground at the point (xi, yi), f(xi, yi) is

the model value for the elevation of the ground at the point (xi, yi), and i runs over all

data points.

After the chi-squared of each model has been determined, pairs of models are selected

to use as parents in the creation of the next generation of models. The models with lower

χ2 are more likely to be selected as parents. Note that the same model cannot be both

members of a pair, but can be present in more than one pair with another model. As

each pair is selected, the member models are crossed to yield two more next-generation

models.

This chapter uses what is called a simulated binary crossover operator to generate

new solutions based on the parent solutions [45]. We choose simulated binary crossover

because it provides improved performance compared to the typical random crossover of

basic genetic algorithms. It is the real-coded equivalent of the single-point crossover

operator of a binary genetic algorithm. The single-point crossover operator crosses the

parent solutions by picking a random point in one solution’s bit array, and swaps the bits

after that point between the two solutions. Simulated binary crossover uses a probability

density function to imitate single-point crossover for use in a real-coded genetic algorithm.

Simulated binary crossover works as follows:

1. Choose two parents x1 and x2

2. Generate a random number r ∈ [0, 1)
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3. Calculate the parameter β

β =

 (2r)
1

ηc+1 if r ≤ 0.5(
1

2(1−r)

) 1
ηc+1 otherwise

where ηc is the distribution index.

4. Compute the child solutions using

xnew
1 = 0.5[(1 + β)x1 + (1− β)x2]

xnew
2 = 0.5[(1− β)x1 + (1 + β)x2]

The distribution index determines the width of the distribution used for generating chil-

dren. Large values of ηc tend to generate solutions closer to the parents, while smaller

values generate solutions further away. The recommended value for ηc, and the one used

in this chapter, is ηc = 2 [45]. Pairs are selected and crossed until the next generation

becomes equal in size to the original population of models.

Once the next generation has been created, there is a user-defined chance for each

model in the new generation to be mutated. The mutation operator—when applied to

a model—gives each source in the model a user-defined chance to be shifted from its

original position, orientation, and seismic moment. The amount of translation or rotation

is determined by a Gaussian random number generator centered at the original value of

the coordinate. For example, if the original strike angle of a source is π/2, the Gaussian

distribution used to select the new value has a mean value of π/2. The amount of shift in

the location and seismic moment is selected in a similar manner. The process of crossing

to create new generations and mutation of the new generations is repeated until the

user-defined number of generations is reached. In general, the ”user-defined” parameters

represent a trade-off between computation time and accuracy. There is no one correct

value, and appropriate values can vary widely between applications.
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5.2 Applying the Genetic Algorithm to Randomly

Generated Data

To generate the synthetic data for testing the algorithm, an interferogram was generated

by placing 10 point sources at random positions and orientations. The positions are

restricted within a cuboid defined by the limits 0 < x < 30 km, 0 < y < 10 km and

−10 < z < −3 km. The data points at which the generated data and models are

compared lie within the same x and y bounds. 30 data samples were taken in the x-

direction and 10 data samples in the y-direction, yielding a total of 300 data points—each

a square with a side length of 1km. The sources were placed with random strike and dip

angles in the ranges 0 < ϕ < 2π and 0 < δ < π
2
, respectively, as well as random seismic

moment in the range 108 < M0 < 1012 Nm. The total ground deformation was calculated

as a result of the superposition of the ground deformation of all placed sources—with each

point source causing a ground deformation according to Okada’s equation for the vertical

displacement of a strike-slip seismic source. Horizontal deformation was not considered

in this example.

The generated interferogram was fit using 10 point sources. The starting values of the

parameters in the initial population of solutions were chosen from uniform distributions

for each parameter. As stated before, the x and y coordinates of the initial population

of sources lie within the range of the data points. The initial depth of the sources and

their initial strike and dip angles were restricted to the same ranges used to generate

the interferogram. The algorithm ran for 10000 generations with the spreads in Table

5.1 used to mutate each parameter. In Table 5.1, the half order of magnitude spread

for seismic moment means that a Gaussian distribution was used to generate a power of

10 that was used as the new seismic moment. For example, if the original value of the

seismic moment was 2.4 × 105, a Gaussian distribution centered at log10(2.4 × 105) with

a standard deviation of 0.5 was used to generate a random number r. The new value

of the seismic moment is then 10r. The chance for a model to be chosen to mutate in

a given generation was 20%. If chosen to mutate, each source point in the model had

a 10% chance to have its location, strike angle, dip angle, and seismic moment changed
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Parameter Amount of Spread

x 2 km

y 2 km

z 0.5 km

Strike angle π/6

Dip angle π/24

Seismic moment Half order of magnitude

Table 5.1. The standard deviations of the Gaussian distributions used to mutate the
parameters.

according to the above values of spread in each parameter. During the execution of the

algorithm, the only restriction on the evolution of the sources is that their dip angles

must remain in the range 0 < δ < π
2
as in Okada’s convention—every other parameter is

allowed to evolve freely according to the rules of the crossover and mutation operators.

The model resulting from the fit is compared to the data in Figure 5.1.

5.3 Applying the Genetic Algorithm to ALOS-2 Data

The InSAR interferogram that is fit in this chapter was processed by [46] and was down-

loaded from the Nepal Earthquake ALOS-2 InSAR website [9]. The particular inter-

ferogram used is the sum of the ALOS2040533050-150222 and ALOS2050883050-150517

products, yielding an interferogram containing ground displacement between February

22nd, 2015 and May 17th, 2015. This interferogram was chosen because it exhibits de-

formation due to two seismic events—in this case, the magnitude 7.8 earthquake that

occurred on April 25th, 2015, 36 km east of Khudi, Nepal, and its magnitude 7.3 after-

shock that occurred on May 12th, 2015. The interferogram is a collection of points, each

defined by their latitude, longitude, and line-of-sight ground displacement. The line-of-

sight displacement is converted to vertical displacement using the reported look angle of

the satellite for each data point. To fit this interferogram, the data are binned into a 30-

by-30 two-dimensional histogram to reduce the amount of computation time. The value
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Figure 5.1. (a) Azimuthal view of the synthetic ground deformation data. (b) Az-
imuthal view of the model generated by the algorithm. (c) Top view of the synthetic
ground deformation data. (d) Top view of the model generated by the algorithm.

36



of each bin is calculated as the average vertical displacement of each data point contained

in that bin. After binning, the resulting pixels in latitude and longitude are mapped to

the x-y plane, in units of km, to allow comparison to the results of the algorithm. To

further reduce computation time, the area of the interferogram being fit is reduced to

pixels in the range 40 < x < 240 km and 70 < y < 200 km, which contains the ground

deformation of interest.

When fitting this interferogram, the algorithm is set to use a population size of 500,

with each solution in the population containing 15 seismic point sources. The earthquake

was a result of thrust faulting [47], and so Okada’s equations for dip-slip faulting were

used to calculate the ground deformation caused by the point sources. For this example,

only the vertical displacement of the ground was calculated—the horizontal displacement

was not considered. After running for 15000 generations, taking about 7400s to run, the

algorithm returned the model visible in Figure 5.2. The distribution of the point sources

can be seen in Figure 5.3. The residuals between the model and data can be seen in

Figure 5.4. This run of the algorithm used the same parameters for spread and mutation

probability as outlined in Table 5.1 and Section 5.2, respectively. The initial values of the

point source parameters in the starting population are chosen from uniform distributions.

The ranges of the x and y coordinates are limited to the dimensions of the interferogram

area above and the depth ranged from −30 < z < −20 km. The strike and dip angles

ranged from 0 < ϕ < 2π and 0 < δ < π
2
, respectively. The seismic moments are pulled

from the range 109 < M < 1012 Nm. The parameters found by the algorithm for each

point source can be seen in Table 5.2. These parameters are included for the sake of

completeness; however, the goal of the current algorithm is to recreate the input ground

deformation data, rather than to claim that it yields more accurate fault parameters than

other inversion methods.
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Figure 5.2. (a) Azimuthal view of the ALOS-2 ground deformation data. (b) Azimuthal
view of the model generated by the algorithm. (c) Top view of the ALOS-2 ground
deformation data. (d) Top view of the model generated by the algorithm.
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x y z strike dip moment

1 69.8468 177.091 -29.9032 -0.45963 1.0839 0.13784

2 106.367 97.4588 -32.8588 6.61252 0.479722 168801

3 150.058 78.0384 -33.6847 19.0313 0.307234 1.23221e+09

4 140.425 191.588 -28.8003 5.79284 0.27404 1.90518e+10

5 202.588 127.159 -22.7864 0.111355 1.51411 2.05646e+10

6 72.8359 123.785 -17.2656 12.2768 1.4786 1894.74

7 131.227 132.126 -21.8409 6.72117 1.14697 1.06253e+10

8 143.966 118.57 -23.2668 3.75185 1.28514 1.53379e+10

9 73.7351 144.747 -21.1349 2.96139 1.4699 9.02219e+09

10 163.803 108.866 -29.3693 6.3945 0.352603 1.93104e+10

11 102.768 151.892 -22.8624 3.53234 0.0142592 2.29585e+10

12 181.87 89.2093 -36.7044 4.76648 0.0305045 4.18498e+09

13 126.37 151.843 -27.464 0.494327 1.51399 2.4217e+10

14 237.313 230.565 -26.7075 0.469047 1.12608 5.72458e+09

15 143.542 133.469 -26.0931 6.43808 1.21437 626.352

Table 5.2. The parameters found by the algorithm for each point source in the ALOS-
2 data fit. The strike and dip angles are recorded in radians and seismic moment in
Nm. Recall that these parameters use Okada’s convention, where a strike angle of
zero means the strike is parallel to the x axis.
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Figure 5.3. An azimuthal (left) and top-down (right) view of the 3D distribution of
point sources resulting from the genetic algorithm fit. The parameters of the sources
are outlined in Table 5.2. The points are colored according to their seismic mo-
ment—darker points have a higher seismic moment, while lighter points have lower
seismic moment.

5.4 Performance of the Algorithm On a Single-Source

Interferogram

To quantify the performance of the algorithm, a third interferogram was generated so that

multiple fits could be performed and to investigate the effect of changing the parameters

on the error of the model. The interferogram was generated from a single point source

whose parameters were selected at random from reasonable uniform distributions in each

parameter. The parameter values used to generate the interferogram, referred to as the

true values in the following text, were 48.5774, 43.6555, -10.4041, 5.25892, 0.523487, and

8.29375e+09 for x, y, z, strike angle, dip angle, and seismic moment, respectively. After

50 fits of the aforementioned interferogram, the standard deviations of the parameters

were 0.695, 0.6, 0.329, 0.099, 0.184, and 5.36e+09 for x, y, z, strike angle, dip angle, and
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Figure 5.4. (a) Azimuthal view of the residuals between the synthetic ground defor-
mation data and the corresponding model. (b) Top view of the residuals between the
synthetic ground deformation data and the corresponding model. (c) Azimuthal view
of the residuals between the ALOS-2 ground deformation data and the corresponding
model. (d) Top view of the residuals between the ALOS-2 ground deformation data
and the corresponding model.
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Figure 5.5. Histograms of the final parameter values found from 50 different fits of the
same single-source interferogram.

seismic moment, respectively. Histograms of the values for each parameter resulting from

the different fits can be seen in Figure 5.5. For all parameters, the mean of all fits lies

within a single standard deviation of the true value.

The seismic moment standard deviation, however, is comparable in magnitude to the

true value. This is likely due to the wide range of possible values allowed for the seismic

moment in the algorithm, which spans over 3 orders of magnitude to allow a wide search

space. Seismic moment also contains one of the most significant outliers due to its large

range of possible values, so this could perhaps be improved by limiting the parameter

space of the model.

In order to further characterize the relationships between the parameters of the model,

we varied different pairs of parameters to see how the error in the displacement map was

affected. We use a simple definition of error here: the sum of the squared residuals between

the model and data. The “error maps” are displayed in Figure 5.6. As an example, the

top left plot (in a landscape view) shows the error as a function of both x and y, with all

other parameters fixed at the true values listed above. The purpose of these plots is to

search for correlations that may exist between the parameters. One that can be clearly
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seen is the inverse relationship between seismic moment and depth z. Another observation

is that dip angle greatly affects the error of the fit regardless of which other parameter

is being varied. In the dip angle v. strike angle plot, strike angle varies over a range of

over 120° and the error slowly increases as it moves away from the true value. However,

changes in the dip angle, which varies only around 40°, rapidly move toward higher error.

5.5 Changes to the Algorithm

One of the biggest problems with this algorithm is that there is a huge amount of freedom

in the final model. Each point source has six possible parameters with very few restrictions

placed upon them, so every fit yields different model parameters that all approximate the

same ground deformation. There are two ways to easily impose restrictions that reduce

the number of possible solutions. One is to increase the amount of data used in the fit,

especially the inclusion of data with more components of the deformation. We are limited

by the data itself and computation time so such an improvement is not viable for this

case. We can only get accurate estimates of the z component of the deformation from

the interferograms we have and if we increase the number of data points we increase the

computational complexity of the problem. Instead, we can narrow our parameter space by

utilizing previous fits of the same event and fixing the values of some of our parameters.

This will both reduce the computational complexity of the problem and simultaneously

reduce the parameter space.

To implement these changes into the algorithm, we fix every parameter of the point

sources except for their seismic moment and place them into a grid that lies below the

ground deformation. The idea behind these changes is that the distribution of seismic

moment will show where the slip that caused the deformation occurred and therefore trace

out the faults that slipped during the earthquake.

5.6 Applying the New Algorithm to ALOS-2 Data

The InSAR interferogram that we fit was processed by [46] and was downloaded from

the Nepal Earthquake ALOS-2 InSAR website [9]. The particular one used is the combi-

nation of the ALOS2040533050-150222 and ALOS2050883050-150503 products, yielding
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Figure 5.6. 2D heatmaps resulting from comparison of a single-source model to the
single-source interferogram for every possible pairing of parameters. For each diagram,
the listed parameters are varied from their true values (indicated by the blue dot at
the center of each) and the error of the resulting model is calculated according to
Equation 5.1. Black represents low error, while the progression toward white represents
increasing error. The figure is rotated 90°counterclockwise to allow it to fit on the page.

44



an interferogram containing ground displacement between February 22nd, 2015 and May

3rd, 2015. This interferogram is different than the one we fit before—it includes only the

deformation caused by the magnitude 7.8 earthquake that occurred on April 25th, 2015,

36 km east of Khudi, Nepal. We removed the additional aftershock from the deforma-

tion because it occurred on a different fault with a different orientation and we are now

keeping the parameters fixed to those of the mainshock. With the parameters fixed to

the mainshock, the model could not appropriately represent the aftershock. Otherwise,

we follow the same data preparation steps outlined in Section 5.3: we bin the data, set

limits on its extent, and convert it to vertical displacement.

When fitting this interferogram, we use the same genetic algorithm outlined in Section

5.1. The genetic algorithm was set to use a population size of 2000, with each solution

in the population containing 513 seismic point sources arranged in a single-layer 27 x 19

grid. The grid size is chosen such that point sources are placed in a square grid with

∼5km side length below the significant ground deformation in the interferogram. Since

the earthquake was a result of thrust faulting [47], Okada’s equations for dip-slip faulting

were used to calculate the ground deformation caused by each point source. For this run

of the algorithm only the seismic moment of each point source was allowed to vary to

reduce the computational complexity—each point source kept its location and orientation

fixed during fitting. The strike angle, dip angle, and depth of the point sources were

chosen to be averages of the 5 sets of earthquake parameters reported in [48] for the 2015

earthquake, held fixed at the values of 288.2°, 6.06°, and 18.8km, respectively. The initial

values of the point source seismic moments in the starting population are chosen from

a uniform distribution in the range 106 < M < 108 Nm. The chance for a model to be

chosen to mutate in a given generation was 20%. If chosen to mutate, each point source

in the model had a 10% chance to have its seismic moment shifted up or down. After

running until 500 successive generations passed with no improvement to the error between

the best model and the data, the algorithm returned the model visible in Figure 5.7. The

model is fully defined by its 513 values for each point source’s seismic moment in Figure

5.8. The residuals between the model and data can be seen in Figure 5.9.
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Figure 5.7. The z component of the ground deformation for the data (left) and model
(right). The axes are in the Universal Transverse Mercator (UTM) coordinate system.
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Figure 5.8. The point sources of the final genetic algorithm fit model shown in Figure
5.7. Each dot represents a point source and its color indicates the seismic moment of
the source. Darker colors indicate higher seismic moment with the color moving toward
white as seismic moment decreases. The axes are in the UTM coordinate system.
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Figure 5.9. The residuals between the data and model shown in Figure 5.7 (left) and
a histogram of the residuals (right).

5.7 Discussion and Conclusion

When comparing simulated or actual data to the resulting model, you can see that the

basic shape of the data has been captured, but discrepancies exist if individual data points

are compared. This is most likely a problem with the spread used when crossing and

mutating the fit models. Since the spread of the parameters never changes, there comes

a point where the error plateaus—further increases in fit accuracy require a decrease in

the spread of the mutated parameters. A larger initial spread is useful to widely search

the parameter space for the appropriate fit and to prevent falling into a local minimum.

However, a large spread also prevents the fit from settling to a more exact solution. Simply

reducing the spread leads to an increase in the computation time, as more time will be

required for the solutions to search the parameter space in smaller steps. Increasing

the population size can help widen the initial search area, but this also increases the

computation time. A possible fix for this problem is an adaptive algorithm that modifies

the spread during calculation to more efficiently search the parameter space and reduce

the spread when close to the optimum solution. One such algorithm is outlined in [49].

The advantage of the method outlined in this chapter lies in its ability to invert the

parameters of many seismic sources at a time. Inversions of fault geometry are typically

calculated for a single rectangular fault plane, which limits their effectiveness in scenarios

that are not well modeled by a single fault plane. One example is an interferogram that
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contains deformation from more than one significant seismic event, such as the one fit

in Section 5.3, which contains deformation from both a magnitude 7.8 mainshock and

a magnitude 7.3 aftershock. Another capability of point sources is modeling of faults

that cannot be accurately portrayed by planar surfaces. The point sources move inde-

pendently, so in theory they can model any possible fault shape if an appropriate number

of sources are used. The cost of this increased flexibility is an increase in the amount of

computational complexity. The deformation caused by each source in a model must be

calculated at every desired data point and their individual contributions must be summed

to produce the total deformation field. This deformation field must be calculated for every

model in the population for every generation that the algorithm runs. For example, if

you desire for a population of 500 models containing 15 sources each to run for 10,000

generations, that is 75,000,000 function evaluations for each data point you are fitting.

To reduce this computational complexity, it is possible to set a fixed value for any of the

parameters or to use a more informative prior than a uniform distribution–both of which

would reduce the size of the parameter space and therefore increase the speed of the fit.

This was not done in this section to showcase the ability of the algorithm to fully explore

the search space and arrive at a solution even with a vague starting point.

Future work with the genetic algorithm could include a first-pass fit to get general

parameter values using a wide spread for a large search area, which could then be fed

back into the algorithm with smaller spread values to fine-tune the parameters to provide

the most accurate fit possible. Another possibility is to perform several fits using a

different number of point sources in each model, to shed light on how it affects the

overall fit. This would also help to combat overfitting by allowing adjustment of the total

number of parameters compared to the total number of data points. The likely greatest

improvement to the algorithm would be the inclusion of data from multiple sources; for

example, the joint inversion of GPS and InSAR data or a combination of ascending and

descending InSAR images that provide both horizontal and vertical displacements. This

would reduce the overall freedom of the solution and provide more reliable results. Again,

this chapter is meant more as a proof-of-concept for the method and the algorithm will
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be expanded in the following iterations to include the above-mentioned improvements.
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Chapter 6

Multiple Linear Regression Model

One of the main problems of the genetic algorithm is that it is slow to reach a solution.

The main reason for this is because it relies on random-but-informed steps through the

parameter space to move toward the final solution. However, we can instead utilize a

multiple linear regression to estimate our parameters due to the simplifications outlined

in Section 5.6—such as reducing the number of parameters and fitting only a single

earthquake.

6.1 A Simpler But Faster Model

Since we are now only fitting for the seismic moment of each point source, the inversion

problem becomes linear. This is because Equations 3.1-3.6 are linear in the seismic mo-

ment of the point source (after replacing Ui∆Σ in each equation with Mi

µ
). Therefore, we

can set up the equations to calculate the displacement of the model as a matrix equation

as shown in Equation 6.1. Here yi is the ground displacement of the model at point i, Gij

is the Green’s function value for the displacement at point i due to source j, and Mj is

the seismic moment of source j. Because we hold the position, strike, dip, and rake angles

of the sources constant, the Green’s matrix values Gij are constant for a given model.

The ground displacement yi of point i is then given by
∑

j GijMj. We are now left with

a matrix inversion problem, which can be solved much more quickly than the nonlinear

system of equations we dealt with before.

50




y1

y2
...

yi

 =


G11 G12 . . . G1j

G21 G22 . . . G2j

...
...

. . .
...

Gi1 Gi2 . . . Gij




M1

M2

...

Mj

 (6.1)

6.2 Applying the Multiple Linear Regression Inver-

sion Model to ALOS-2 Data

For this inversion we use the data as prepared in Section 5.6 with one change: the data

are instead binned into a 75x75 histogram during processing. To summarize, it contains

only the deformation of the Mw 7.8 mainshock, is downsampled and limited to a specified

area around the earthquake. The model also remains the same: it is composed of a 27x19

grid of point sources, spans the area below the ground deformation data, and only the

seismic moment of each source is allowed to vary. A comparison between the data and

model obtained from the inversion is shown in Figure 6.1. The residuals between the data

and model, as well as a histogram of the residuals, can be seen in Figure 6.2. Finally, the

distribution of point sources in the model are plotted in Figure 6.3.

6.3 Discussion and Conclusions

On first glance, this inversion appears to have improved the overall fit compared to the

previous genetic algorithm inversion in Figure 5.7, most notably at the “tails” that pro-

trude from the area of positive displacement at the left and upper right sides. The tails

are absent in the genetic algorithm fit, though they are less defined even in the data

due to the coarser binning used for that inversion. However, upon closer inspection, the

multiple linear regression model generally overestimates the amount of displacement. The

overestimation can most easily be seen in Figure 6.2, in both the residual map and his-

togram of residuals. The mean of the residuals is -14.6cm, meaning that, on average,

the model overestimates the amount of displacement by 14.6cm. Compared to the 2.8cm
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Figure 6.1. The z component of the ground deformation for the data (left) and model
(right) for the multiple linear regression inversion model. The axes are in the UTM
coordinate system.

Figure 6.2. The residuals between the data and model shown in Figure 6.1 (left) and
a histogram of the residuals (right).

average residual of the genetic algorithm inversion, the multiple linear regression inversion

performs worse. The large shift in the mean indicates a bias in the inversion. The most

likely source of the bias is due to one of the rules of multiple linear regression being vio-

lated—the independent variables shouldn’t be correlated with one another. In this case,

the sources are spatially correlated with their nearest neighbors since their deformation

falls off over a distance of approximately 50 km and they are spaced approximately 5-7

km apart.

One improvement over the genetic algorithm inversion is in the standard deviation of

the residuals. The distribution of residuals for the multiple linear regression inversion is
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Figure 6.3. The point sources of the final multiple linear regression inversion model
shown in Figure 6.1. Each dot represents a point source and its color indicates the
seismic moment of the source. Darker colors indicate higher seismic moment with the
color moving toward white as seismic moment decreases. The axes are in the UTM
coordinate system.

much narrower with a standard deviation of 4 cm as opposed to the genetic algorithm

inversion’s standard deviation of 11 cm. So while the distribution is biased in one direction,

it is much more compact, meaning that it is more consistent. The strongest positive aspect

of this inversion is that it runs extremely fast compared to the genetic algorithm inversion.

While the genetic algorithm inversion takes several hours on average, the multiple linear

regression inversion runs in under a minute.

The ideal inversion would produce a mean residual near zero and minimize the stan-

dard deviation of the residuals, so neither of the inversions so far are ideal. The genetic

algorithm is slow and has a significant spread in the residuals, while the multiple linear

regression model is fast but produces a biased model. The next logical step forward is

to use a non-linear solver that can account for the correlation between sources to see if

it provides a model that is a happy medium between that of the genetic algorithm and

multiple linear regression. We discuss this approach in the next chapter.
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Chapter 7

LMFit

7.1 The LMFit Solver

While genetic algorithms are adept at searching wide parameter spaces, the time they take

to solve a given problem can vary widely between runs. A compromise between population

size, number of generations, and the parameter mutation spread must be found for a given

problem because each one affects the amount of computation time necessary to reach an

acceptable solution. Though the multiple linear regression inversion was an improvement

in computation time, it suffered from a bias due to the correlation between neighboring

point sources.

To alleviate these issues, we decided to use the Python package LMFit to solve for the

model parameters instead. LMFit uses the Levenberg-Marquardt (LM) algorithm which

is commonly used to solve non-linear least-squares problems so it is useful in a wide variety

of problems. The LM algorithm utilizes gradient descent, so rather than relying on the

stochastic nature of the genetic algorithm to slowly move toward the solution, the LM

algorithm uses the gradients of the parameter space to move there more efficiently. We

chose LMFit specifically because it is highly customizable and simple to use. A parameter

object is defined for each target parameter, and LMFit allows us to set limits on each

parameter if desired. One downside is that the LM algorithm requires an initial guess for

each parameter to help it avoid falling into a local minimum. However, we have a solution

to this problem: the focal mechanism is commonly calculated for any given earthquake,
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which contains all of the necessary earthquake source parameters.

In order to utilize LMFit to solve an inversion problem, we must first define an objec-

tive function. The way in which we define your objective function can have a significant

effect on the time required to solve the problem, so care must be taken when defining it.

The return value of the objective function must be the residual between the target data

and the model we define. To calculate the ground displacement of a given model (which is

used to calculate the residual), we must first calculate the Green’s matrix Gij that defines

how each point source in the model contributes to the total ground deformation. This

requires us to calculate the value of Okada’s equations for every combination of displace-

ment point i and source j. However, as explained in Section 6.1, the Green’s matrix Gij

is constant since we keep the position, strike, dip and rake angles of the sources fixed.

Therefore, we can greatly speed up the residual calculations by using a pre-calculated

Green’s matrix. To get the ground displacement of a model, you simply multiply the

Green’s matrix by the vector of source seismic moments as shown in Equation 6.1.

7.2 Applying the LMFit Algorithm to ALOS-2 Data

For this inversion we use the same data as the multiple linear regression fit. To summarize,

it contains only the deformation of the Mw 7.8 mainshock, it is downsampled, and it is

limited to a specified area around the earthquake. The model also remains the same: it is

composed of a 27x19 grid of point sources, spans the area below the ground deformation

data, and only the seismic moment of each source is allowed to vary. A comparison

between the data and model obtained from the inversion is shown in Figure 7.1. The

residuals between the data and model, as well as a histogram of the residuals, can be seen

in Figure 7.2. Finally, the distribution of point sources in the model are plotted in Figure

7.3.

7.3 Discussion and Conclusions

The LMFit inversion appears to successfully recreate the input deformation data. All of

the main features are visible, including the tails that were missed by the genetic algorithm

inversion. Looking at Figure 7.2, there is no evident bias of the inversion visible in either
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Figure 7.1. The z component of the ground deformation for the data (left) and model
(right) for the LMFit model. The axes are in the UTM coordinate system.

Figure 7.2. The residuals between the data and model shown in Figure 7.1 (left) and
a histogram of the residuals (right).

plot. The histogram appears symmetric and its mean lies at 1.11 cm, meaning the average

error for each data point is 1.11 cm. The standard deviation of the residuals is 6.67 cm.

If we look at the seismic moment distributions of each inversion in Figures 5.8, 6.3,

and 7.3 we find that each one places the points of maximum seismic moment in similar

areas. This area corresponds to the line of discontinuity between the positive and negative

displacement lobes, which is expected based on Okada’s deformation equations. If you

look from Figure 5.8 to Figure 6.3 to Figure 7.3 in sequence, they appear to display the

same general distribution with its features becoming more defined as you move through

the sequence. Each distribution has sources of nonzero moment placed at the far edges
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Figure 7.3. The point sources of the final LMFit inversion model shown in Figure 7.1.
Each dot represents a point source and its color indicates the seismic moment of the
source. Darker colors indicate higher seismic moment with the color moving toward
white as seismic moment decreases. The axes are in the UTM coordinate system.

of the area (where displacement should be near zero) which we believe to be due to edge

effects caused by the sources extended all the way to the edge of the data. Edge effects

could be minimized by increasing the area around the deformation which we fit so the

separation between edge effects and true signal is clear.

Since the fault involved in this event has a very small dip angle (about 9°), it is

almost horizontal. Therefore, the seismic moment distribution can also be viewed as the

slip distribution upon the fault. Slip distributions are commonly calculated as part of the

investigation of a seismic event. Future work with our algorithm could include parameters

aside from the seismic moment to see if it is possible to determine both the fault geometry

and slip distribution simultaneously, rather than in two separate inversions as is typically

done. If only the slip distribution is desired and the fault geometry is known, we could

include the rake angle as an additional parameter to more accurately determine the slip

distribution on the fault.

The means and standard deviations of the residuals for each inversion described in the
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Genetic Algorithm Linear Regression LMFit

Mean -2.87cm -14.6cm -1.11cm

σ 11.1cm 4.01cm 6.67cm

Table 7.1. The means and standard deviations of the residuals for each inversion of
the ALOS-2 data.

last few chapters are displayed in Table 7.1. The lowest mean was achieved by the LMFit

inversion and the lowest standard deviation by the multiple linear regression fit. Despite

its slightly higher standard deviation, the model obtained from the LMFit inversion has

the best performance overall because it doesn’t suffer from a visible bias while still keeping

a lower standard deviation. However, this is not to say that the multiple linear regression

inversion is useless—if the bias is always in a certain direction, it could be possible to

account for it and minimize its effect while also benefiting from its high speed. The

same cannot be said for the genetic algorithm inversion. Its main problem is that it

produces a non-Gaussian distribution with a large standard deviation, meaning that it

is the most inconsistent of the models. The most likely solutions to this problem are

either to increase the number of data points to the same level as the other inversions or

to reduce the spread of the mutation operator. Unfortunately, both of these changes will

increase the time required to perform the inversion, which is already the slowest of the

inversion methods. Because of this, the genetic algorithm inversion will be dropped in

favor of the LMFit inversion, since it outperformed the genetic algorithm in both mean

and standard deviation of residuals, as well as in time required to run. Since the multiple

linear regression and LMFit inversions each have their upsides, we will apply both in the

case study to follow in the next chapter.
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Chapter 8

The Ridgecrest Earthquake

Sequence: A Case Study

To test the performance of both the multiple linear regression and LMFit inversions, we

apply them to a common event: the Mw 7.1 mainshock of the Ridgecrest earthquake

sequence in 2019. We chose the Ridgecrest mainshock because it has been extensively

studied since it is the largest earthquake to occur in California since the Mw 7.1 Hector

Mine earthquake in 1999. The mainshock had a large mean slip of 1.2-1.7m [50], giving

it a very clear InSAR signal for our inversions.

8.1 The Ridgecrest Earthquake Sequence

The Ridgecrest earthquake sequence began on July 4th, 2019 when a Mw 6.4 foreshock

occurred southwest of Searles Valley, California. It was followed by the occurrence of the

Mw 7.1 mainshock on July 5th, 2019. The mainshock has since been characterized as

right-lateral slip on a series of northwest-southeast trending faults [51]. An image of the

fault traces is shown in Figure 8.1. A timeline of the aftershocks that occurred as a part

of the Ridgecrest earthquake sequence can be seen in Figure 8.2, while the locations of

the aftershocks are mapped in Figure 8.3. Both figures cover a 21 day time period after

the Mw 6.4 foreshock and contain aftershocks with a Mw greater than 2.5.
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Figure 8.1. The fault traces produced by the Mw 7.1 Ridgecrest mainshock [7].

2019-07-05 2019-07-09 2019-07-13 2019-07-17 2019-07-21 2019-07-25
Date

3

4

5

6

7

M
ag

ni
tu

de

Figure 8.2. Aftershocks (Mw < 2.5) occurring within a 21 day period after the Mw 6.4
foreshock. The earthquakes are plotted according to their UTC time.
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Figure 8.3. A map displaying the locations of the aftershocks (Mw < 2.5) occurring
within a 21 day period after theMw 6.4 foreshock. The axes are in the UTM coordinate
system.

8.2 Data Preparation

Before we can begin our analysis we need to convert the data into a usable format. We

start from the group of interferograms shown in Figure 8.4 which were obtained from [52].

Both sides of Figure 8.4 are the combination of 7 separate interferograms that each cover

a portion of the deformation caused by the earthquake sequence—the left is the east-west

displacement and the right is the north-south displacement. The interferograms show a

clear trace of the faults (the discontinuity between positive and negative displacements)

but also suffer from a significant amount of speckle. Speckle is a fluctuation in the signal

due to inconsistent measurement of the scatterers in a given pixel which can be seen most

clearly on the middle-right portion of each image. Unfortunately, the speckle values vary
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Figure 8.4. The east-west (left) and north-south (right) ground displacement caused by
the Ridgecrest earthquake sequence. Positive deformation indicates movement to the
east/north, while negative deformation indicates movement to the west/south. The
axes are in UTM coordinates and the colorbar is in units of meters.

widely and are difficult to remove in an automated way.

To reduce the computational complexity of the inversions we make several simplifica-

tions. First, we focus on the deformation in a limited area around the northwest-southeast

trending faults, which are attributed to the Mw 7.1 mainshock [7]. By limiting our anal-

ysis to the mainshock, the model only needs to represent right-lateral strike-slip faulting.

Within this limited area the data is downsampled by kriging (interpolating) the value of

the deformation from the interferograms at specified points. We also ignore points with

a magnitude of displacement greater than 2 m (around the maximum measured displace-

ment of the earthquake) to reduce the effect of the speckle in the interferograms (whose

values go as high as 5 m). After downsampling, the data was reduced to 1192 data points

in the specified area. The downsampled data in the east-west and north-south directions

can be seen on the left side of Figures 8.5 and 8.8, respectively.

Our model for the inversions in this chapter is composed of a 20x20, uniformly-spaced

grid of point sources (giving a total of 400) that spans the area below the ground defor-
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Depth 8.0 km

Strike angle 322°

Dip angle 81°

Rake angle -173°

Table 8.1. Parameters reported by USGS for the Mw 7.1 Ridgecrest mainshock [8].

mation data. The depth, strike, dip, and rake angles are held at fixed values obtained

from the USGS event page for the Mw 7.1 Ridgecrest mainshock [8] and are outlined in

Table 8.1. The initial value of the seismic moments are randomly chosen to be in the

range 1.0e6 and 1.0e9 Nm.

8.3 Applying the Multiple Linear Regression Algo-

rithm to Ridgecrest Data

The first inversion scheme we apply to the Ridgecrest interferograms is the multiple linear

regression method that is outlined in Section 6.1. The general method is the same as

outlined before, but it is instead applied to the Ridgecrest data using the model described

in the previous section. In order, we apply the inversion to the east-west deformation

(labeled dx in the figures), the north-south deformation (labeled dy in the figures), and

then simultaneously to both components to see how the results are affected.

8.3.1 Using East-West Deformation Data

We first apply the multiple linear regression inversion to the east-west component of

the Ridgecrest deformation data. The downsampled east-west deformation data and the

resulting model are shown in Figure 8.5. The model clearly overestimates the east-west

deformation across the entire dataset. If we look at Figure 8.6, it appears similar to the

inversion in Section 6.2: the residuals are consistently negative and a bias is apparent

due to the shifted mean. The mean residual is 50.6 cm—almost 1/3 of the average

displacement—so this inversion is not reliable. The standard deviation of the residuals is

37.2 cm. Looking at the seismic moment distribution in Figure 8.7, no apparent structure

is visible.
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Figure 8.5. The x component of the ground deformation for the data (left) and model
(right) for the multiple linear regression model. The axes are in the UTM coordinate
system.

Figure 8.6. The residuals between the data and model shown in Figure 8.5 (left) and
a histogram of the residuals (right).
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Figure 8.7. The point sources of the final multiple linear regression inversion model
shown in Figure 8.5. Each dot represents a point source and its color indicates the
seismic moment of the source. Darker colors indicate higher seismic moment with the
color moving toward white as seismic moment decreases. The axes are in the UTM
coordinate system.

8.3.2 Using North-South Deformation Data

Next we apply the multiple linear regression inversion to the north-south component of the

Ridgecrest deformation data. The downsampled north-south deformation data and the

resulting model are shown in Figure 8.8. This inversion appears more successful than the

east-west inversion, since both the positive and negative lobes can be clearly seen and the

separation between them follows a similar path. One major difference is that the transition

from positive to negative displacement is very abrupt in the data, whereas in the model it is

more gradual. Moving to the residuals in Figure 8.9, we see an area of significant error with

both high positive and negative residuals. Referring back to the right side of Figure 8.4,

in this area there is a very high positive displacement surrounded by a significant amount

of speckle and some missing data. All of these contribute significantly to the discrepancy

between the data and model. From the histogram of residuals we find a mean of 11.0 cm

and standard deviation of 46.6 cm. While the mean is a significant improvement from the
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Figure 8.8. The y component of the ground deformation for the data (left) and model
(right) for the multiple linear regression model. The axes are in the UTM coordinate
system.

Figure 8.9. The residuals between the data and model shown in Figure 8.8 (left) and
a histogram of the residuals (right).

east-west inversion, the standard deviation of the residuals has increased. If we compare

the source distributions of each inversion, the north-south inversion appears to place more

of the significant seismic moment along the trace of the fault and is less diffuse than the

east-west inversion.
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Figure 8.10. The point sources of the final multiple linear regression inversion model
shown in Figure 8.8. Each dot represents a point source and its color indicates the
seismic moment of the source. Darker colors indicate higher seismic moment with the
color moving toward white as seismic moment decreases. The axes are in the UTM
coordinate system.

8.3.3 Using Both East-West and North-South Data

Finally, we apply the multiple linear regression inversion to both the east-west and north-

south deformation data simultaneously. In this inversion, we still develop a single model

but it is compared to both datasets. This doubles the amount of data points used in the

inversion, which correspondingly increases the amount of time the inversion takes. The

goal of this is to improve the constraints on the model parameters to hopefully produce

a more accurate model. The east-west deformation data and the corresponding model

deformation are shown in Figure 8.11 and the north-south deformation and corresponding

model deformation are shown in Figure 8.13. The residuals between the data and model

for the east-west component and north-south component are shown in Figures 8.12 and

8.14, respectively. The east-west deformation of the model is greatly improved from that

shown in Figure 8.5—it no longer suffers from a strong bias and captures the general shape

of the deformation. The means and standard deviations of the residuals in each direction,
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Mean σ

MLR - dx only -50.6cm 37.2cm

MLR - dy only 11.0cm 46.6cm

MLR - both - dx -7.16cm 41.0cm

MLR - both - dy -4.81cm 49.5cm

Table 8.2. The means and standard deviations of the residuals for each multiple linear
regression inversion of the Ridgecrest data.

Figure 8.11. The x component of the ground deformation for the data (left) and model
(right) for the multiple linear regression model utilizing both deformation components.
The axes are in the UTM coordinate system.

as well as those of the previous inversions, are displayed in Table 8.2. The simultaneous

inversion reduced the mean residuals in both directions—from -50.6 cm to -7.16 cm in the

east-west direction and from 11.0 cm to -4.81 cm in the north-south direction. However,

the standard deviation of the residuals in both directions increased slightly, to 41.0 cm

in the east-west direction and to 49.5 cm in the north-south direction. One significant

improvement over the single-dataset inversions can be seen in the source distribution in

Figure 8.15. A much more defined trace of the fault line is visible, which is the expected

location of most of the earthquake moment.
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Figure 8.12. The residuals between the data and model utilizing both deformation
components shown in Figure 8.11 (left) and a histogram of the residuals (right).

Figure 8.13. The y component of the ground deformation for the data (left) and model
(right) for the multiple linear regression model utilizing both deformation components.
The axes are in the UTM coordinate system.
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Figure 8.14. The residuals between the data and model utilizing both deformation
components shown in Figure 8.13 (left) and a histogram of the residuals (right).
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Figure 8.15. The point sources of the final multiple linear regression fit model utilizing
both deformation components shown in Figures 8.11 and 8.13. Each dot represents a
point source and its color indicates the seismic moment of the source. Darker colors
indicate higher seismic moment with the color moving toward white as seismic moment
decreases. The axes are in the UTM coordinate system.
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8.4 Applying the LMFit Algorithm to Ridgecrest Data

The next inversion scheme we apply to the Ridgecrest interferograms is the LMFit in-

version method that is outlined in Section 7.1. We follow the same method and use the

model outlined at the beginning of this chapter. As before, we apply the inversion to the

east-west deformation (labeled dx in the figures), the north-south deformation (labeled

dy in the figures), and then simultaneously to both components to see how the results are

affected.

8.4.1 Inverting for Seismic Moment

In the first set of inversions, we leave every parameter fixed except for seismic moment.

Since LMFit is a nonlinear solver, we are not limited to linear inversions like we are with

multiple linear regression. This makes the LMFit inversion much more flexible at the cost

of increased computation time. If we find that the inversion could benefit from allowing

more parameters to vary, we can redefine the objective function to do so.

8.4.1.1 Using East-West Deformation Data

We first apply the LMFit inversion to the east-west component of the Ridgecrest defor-

mation data. The downsampled east-west deformation data and the resulting model are

shown in Figure 8.16. The model captures the general shape of the deformation but the

discontinuity between positive and negative displacement is blurred and follows a roughly

straight line as opposed to the irregular shape of the true fault trace. No significant bias

is apparent from the residuals in Figure 8.17 with a mean of -1.34 cm and standard devi-

ation of 38.8 cm. The seismic moment distribution in Figure 8.18 overlaps the fault trace

along its entire length but unexpectedly places the highest seismic moment at the top

left corner. This could be caused by edge effects, which can be explored by running the

same inversion with a dataset that covers a larger area. The distribution also has a few

areas where the seismic moment extends away from the fault trace by as much as a few

kilometers. An ideal distribution, for our purposes, would be compact and closely follow

the path of the fault trace.
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Figure 8.16. The x component of the ground deformation for the data (left) and model
(right) for the LMFit inversion model. The axes are in the UTM coordinate system.

Figure 8.17. The residuals between the data and model shown in Figure 8.16 (left)
and a histogram of the residuals (right).
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Figure 8.18. The point sources of the final LMFit inversion model shown in Figure
8.16. Each dot represents a point source and its color indicates the seismic moment of
the source. Darker colors indicate higher seismic moment with the color moving toward
white as seismic moment decreases. The axes are in the UTM coordinate system.

8.4.1.2 Using North-South Deformation Data

Next we apply the LMFit inversion to the north-south component of the Ridgecrest data.

The data and corresponding model deformation are compared in Figure 8.19. This model

better captures the shape of the fault trace though it still transitions from positive to

negative displacement over a larger distance. The area of large positive displacement is

also noticeably absent. Looking at the residuals we find a mean of 2.04 cm and standard

deviation of 48.2 cm. Both values have increased compared to the east-west inversion.

The source distribution also covers the fault trace but stretches farther away than that of

the east-west inversion. Also of note is that the highest seismic moment is again placed

at the top left of the distribution.

8.4.1.3 Using Both East-West and North-South Data

Finally, we apply the LMFit inversion to both the east-west and north-south deformation

data simultaneously. The east-west deformation data and the corresponding model de-

formation are shown in Figure 8.22 and the north-south deformation and corresponding
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Figure 8.19. The y component of the ground deformation for the data (left) and model
(right) for the LMFit inversion model. The axes are in the UTM coordinate system.

Figure 8.20. The residuals between the data and model shown in Figure 8.19 (left)
and a histogram of the residuals (right).
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Figure 8.21. The point sources of the final LMFit inversion model shown in Figure
8.19. Each dot represents a point source and its color indicates the seismic moment of
the source. Darker colors indicate higher seismic moment with the color moving toward
white as seismic moment decreases. The axes are in the UTM coordinate system.

model deformation are shown in Figure 8.24. The residuals in the east-west and north-

south directions can be seen in Figures 8.23 and 8.25, respectively. The mean and standard

deviation for all of the LMFit inversions are listed in Table 8.3. In the east-west direction

the mean residual increased from -1.34 cm to -3.85 cm, so it performs slightly worse while

the mean residual in the north-south direction improved, decreasing from 2.04 cm to 0.057

cm. The standard deviation of the residuals increased slightly in both directions, similar

to the multiple linear regression inversions. Looking at the source distribution in Figure

8.26 we see that it is much more compact than either of the single-direction inversions

and still places the highest seismic moment at the top left corner.

8.4.2 Inverting for Seismic Moment and Strike Angle

One problem that arises frequently in our inversions for the seismic moment distribu-

tion of the Ridgecrest data is that it misses some of the details of the fault trace, most

importantly, the meandering path. Some of the inversions ended on a fairly straight

path for the fault, whereas the real fault trace is more complex. To more appropriately

75



Figure 8.22. The x component of the ground deformation for the data (left) and model
(right) for the LMFit inversion model utilizing both deformation components. The
axes are in the UTM coordinate system.

Figure 8.23. The residuals between the data and model utilizing both deformation
components shown in Figure 8.22 (left) and a histogram of the residuals (right).
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Figure 8.24. The y component of the ground deformation for the data (left) and model
(right) for the LMFit inversion model utilizing both deformation components. The
axes are in the UTM coordinate system.

Figure 8.25. The residuals between the data and model utilizing both deformation
components shown in Figure 8.24 (left) and a histogram of the residuals (right).
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Mean σ

LM - dx only -1.34cm 38.8cm

LM - dy only 2.04cm 48.2cm

LM - both - dx -3.85cm 41.8cm

LM - both - dy 0.057cm 50.3cm

Table 8.3. The means and standard deviations of the residuals for each LMFit inversion
of the Ridgecrest data.
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Figure 8.26. The point sources of the final LMFit inversion model utilizing both de-
formation components shown in Figures 8.22 and 8.24. Each dot represents a point
source and its color indicates the seismic moment of the source. Darker colors indi-
cate higher seismic moment with the color moving toward white as seismic moment
decreases. The axes are in the UTM coordinate system.
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capture these features, we expanded the inversion to include both seismic moment and

strike angle. Adding strike angle as a parameter requires us to alter our definition of

the objective function. We can no longer use the same Green’s matrix for each source

because the deformation equations non-linearly depend on strike angle. However, we can

still simplify the deformation calculations. A single Green’s matrix is calculated using a

specified depth, dip angle, and rake angle. To get the deformation field for a source with

a different strike angle or that is located at a different position, we perform a coordinate

transformation and interpolate the new source deformation field from the precalculated

field. After calculating the model deformation, the objective function finds the residual

between the data and model for each pixel, and its goal is to minimize the residuals by

adjusting the target parameters.

8.4.3 Inversion With No Limit On Strike Angle

Our first set of inversions for strike angle and seismic moment do not place any constraints

on the parameters. We continue to use LMFit to perform the inversion with the same

Ridgecrest datasets as before, using the objective function redefined to include strike angle

as a parameter.

8.4.3.1 Using East-West Deformation Data

We first apply the LMFit strike inversion to the east-west component of the Ridgecrest

deformation data. Figure 8.27 shows the downsampled east-west deformation data and

the resulting model. The model is able to capture the turns in the fault trace and does so

while reducing the width of the transition from positive to negative displacement. Figure

8.28 shows the residuals between the data and model. The mean of the residuals is -

0.022 cm and the standard deviation is 32.0 cm, both the lowest values of any inversion

performed so far. Both the seismic moments and strike angles of the model sources are

shown in Figure 8.29. Seismic moments are plotted on the left and strike angle are plotted

on the right. Each source on the left plot has a corresponding arrow that indicates its

strike direction. The seismic moment distribution spans most of the area in question, so

no clear fault trace is evident. There is also no apparent fault path that can be seen from

the strike angles. The goal of including strike angle was that the inversion would reveal
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Figure 8.27. The x component of the ground deformation for the data (left) and model
(right) for the LMFit inversion model. The axes are in the UTM coordinate system.

Figure 8.28. The residuals between the data and model shown in Figure 8.27 (left)
and a histogram of the residuals (right).

a somewhat continuous path that represents the local strike of the fault as it turns.

8.4.3.2 Using North-South Deformation Data

Next we apply the LMFit strike inversion to the north-south component of the Ridge-

crest data. The data and corresponding model deformation are compared in Figure 8.30.

The residuals between the data and model are shown in Figure 8.31. This model also
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Figure 8.29. The point sources of the final LMFit inversion model shown in Figure 8.27.
Each dot in the left half of the figure represents a point source and its color indicates
the seismic moment of the source. Darker colors indicate higher seismic moment with
the color moving toward white as seismic moment decreases. Each arrow in the right
half of the figure indicates the strike direction of the corresponding point source on the
left. The axes are in the UTM coordinate system.

captures the shape of the fault trace and narrows the separation between positive and

negative displacement. The area of large positive displacement is also noticeably absent.

Looking at the residuals we find a mean of 0.026 cm and standard deviation of 40.1 cm.

Both values have increased compared to the east-west inversion. The source distribution

covers the entire area of interest, though the highest seismic moment is no longer entirely

concentrated in the far top left corner, but extended across the diagonal near the fault

trace. The distribution of strike angles reveals no obvious fault trace.

8.4.3.3 Using Both East-West and North-South Data

Finally, we apply the LMFit strike inversion to both the east-west and north-south de-

formation data simultaneously. The east-west deformation data and the corresponding

model deformation are shown in Figure 8.33 and the north-south deformation and cor-
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Figure 8.30. The y component of the ground deformation for the data (left) and model
(right) for the LMFit inversion model. The axes are in the UTM coordinate system.

Figure 8.31. The residuals between the data and model shown in Figure 8.30 (left)
and a histogram of the residuals (right).
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Figure 8.32. The point sources of the final LMFit inversion model shown in Figure 8.30.
Each dot in the left half of the figure represents a point source and its color indicates
the seismic moment of the source. Darker colors indicate higher seismic moment with
the color moving toward white as seismic moment decreases. Each arrow in the right
half of the figure indicates the strike direction of the corresponding point source on the
left. The axes are in the UTM coordinate system.

responding model deformation are shown in Figure 8.35. The residuals in the east-west

and north-south directions can be seen in Figures 8.34 and 8.36, respectively. The mean

and standard deviation for all of the LMFit strike inversions are listed in Table 8.4. In

both directions the mean residual remained roughly constant. The standard deviation of

the residuals also changed very little. Looking at the source distribution in Figure 8.37,

it places the highest seismic moment along the diagonal as we saw in Figures 8.29 and

8.32. However, there does appear to be a continuous path of sources whose strike points

from the bottom right corner to the top left corner.

8.4.4 Inversion With a 40° Limit On Strike Angle

The final set of inversions we perform on the Ridgecrest data impose a limit of 40° on the

strike angle. What this means is that we limit the value of the strike angle to a range
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Figure 8.33. The x component of the ground deformation for the data (left) and model
(right) for the LMFit inversion model. The axes are in the UTM coordinate system.

Figure 8.34. The residuals between the data and model shown in Figure 8.33 (left)
and a histogram of the residuals (right).
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Figure 8.35. The y component of the ground deformation for the data (left) and model
(right) for the LMFit inversion model. The axes are in the UTM coordinate system.

Figure 8.36. The residuals between the data and model shown in Figure 8.35 (left)
and a histogram of the residuals (right).
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Mean σ

LM - dx only -0.022 cm 32.0 cm

LM - dy only 0.026 cm 40.1 cm

LM - both - dx -0.101 cm 32.1 cm

LM - both - dy 0.027 cm 40.4 cm

Table 8.4. The means and standard deviations of the residuals for each LMFit strike
inversion of the Ridgecrest data.
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Figure 8.37. The point sources of the final LMFit inversion model shown in Figures
8.33 and 8.35. Each dot in the left half of the figure represents a point source and its
color indicates the seismic moment of the source. Darker colors indicate higher seismic
moment with the color moving toward white as seismic moment decreases. Each arrow
in the right half of the figure indicates the strike direction of the corresponding point
source on the left. The axes are in the UTM coordinate system.
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of 80°, centered at the starting value of the strike angle. Our goal with this change is to

force the solver to use the seismic moment of a source to control its strength rather than

lowering the deformation in an area by flipping a source 180° relative to its neighbors

(which is the same as multiplying the source’s seismic moment by -1). Flipping a source’s

strike angle by 180° would essentially cause the source to destructively interfere with its

neighbors. So ideally, in an area of no deformation, the seismic moments of the sources

in that area are zero rather than sources with nonzero moments and opposing strike

directions.

8.4.4.1 Using East-West Deformation Data

We first apply the LMFit strike inversion to the east-west component of the Ridgecrest

deformation data. Figure 8.38 shows the downsampled east-west deformation data and

the resulting model. The model somewhat captures the turns in the fault trace but the

transition is wider than that of the inversions with no limit on the strike angle. Figure

8.39 shows the residuals between the data and model. The mean of the residuals is -0.235

cm and the standard deviation is 36.2 cm. Both the seismic moments and strike angles of

the model sources are shown in Figure 8.40. The seismic moment distribution no longer

spans the entire area—many of the sources away from the area of the fault trace have had

their seismic moments reduced. No clear fault trace is apparent from the strike angles of

the sources. Many of the sources appear to have the same strike angle—these sources had

their strike angles stopped at either the upper or lower limit. Therefore, these values are

not valid estimates of the strike angle if the seismic moment of the source was nonzero.

8.4.4.2 Using North-South Deformation Data

Next we apply the LMFit strike inversion to the north-south component of the Ridgecrest

data. The data and corresponding model deformation are compared in Figure 8.41. This

model also captures the shape of the fault trace with a slightly blurred transition between

positive and negative displacement. Looking at the residuals we find a mean of 0.092

cm and standard deviation of 45.6 cm. The source distribution covers the entire area of

interest, though the highest seismic moment is no longer all concentrated in the far top

left corner, but extended across the diagonal near the fault trace. The seismic moment has
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Figure 8.38. The x component of the ground deformation for the data (left) and model
(right) for the LMFit inversion model. The axes are in the UTM coordinate system.

Figure 8.39. The residuals between the data and model shown in Figure 8.38 (left)
and a histogram of the residuals (right).
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Figure 8.40. The point sources of the final LMFit inversion model shown in Figure 8.38.
Each dot in the left half of the figure represents a point source and its color indicates
the seismic moment of the source. Darker colors indicate higher seismic moment with
the color moving toward white as seismic moment decreases. Each arrow in the right
half of the figure indicates the strike direction of the corresponding point source on the
left. The axes are in the UTM coordinate system.

been reduced in isolated patches but does not reveal a clear fault trace. The distribution

of strike angles also reveals no obvious fault trace and suffers the same problem as the

east-west inversion—many of the strike angles are stuck at the limits.

8.4.4.3 Using Both East-West and North-South Data

Finally, we apply the LMFit strike inversion to both the east-west and north-south de-

formation data simultaneously. The east-west deformation data and the corresponding

model deformation are shown in Figure 8.44 and the north-south deformation and corre-

sponding model deformation are shown in Figure 8.46. The residuals in the east-west and

north-south directions can be seen in Figures 8.45 and 8.47, respectively. The mean and

standard deviation for all of the LMFit limited strike inversions are listed in Table 8.5. In

both directions the mean residual remains below 1.0 cm. The standard deviation of the
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Figure 8.41. The y component of the ground deformation for the data (left) and model
(right) for the LMFit inversion model. The axes are in the UTM coordinate system.

Figure 8.42. The residuals between the data and model shown in Figure 8.41 (left)
and a histogram of the residuals (right).
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Figure 8.43. The point sources of the final LMFit inversion model shown in Figure 8.41.
Each dot in the left half of the figure represents a point source and its color indicates
the seismic moment of the source. Darker colors indicate higher seismic moment with
the color moving toward white as seismic moment decreases. Each arrow in the right
half of the figure indicates the strike direction of the corresponding point source on the
left. The axes are in the UTM coordinate system.

residuals also changed very little. Compared to the previous limited strike inversions, the

seismic moment distribution in Figure 8.48 is much more compact. However, it still has

several branches extending from the fault trace line as well as some nonzero sources in

the top right corner. There does appear to be a continuous path of sources whose strike

points from the bottom right corner to the top left corner, though this could be biased

by the limits placed on the strike angle.

8.5 Discussion and Conclusions

Since the fault involved in this event has a dip angle close to 90° (about 81°), it is almost

vertical. Therefore, the seismic moment distribution should follow the strike of the fault.

For an ideal inversion, the seismic moment distribution would follow the fault strike, with
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Figure 8.44. The x component of the ground deformation for the data (left) and model
(right) for the LMFit inversion model. The axes are in the UTM coordinate system.

Figure 8.45. The residuals between the data and model shown in Figure 8.44 (left)
and a histogram of the residuals (right).
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Figure 8.46. The y component of the ground deformation for the data (left) and model
(right) for the LMFit inversion model. The axes are in the UTM coordinate system.

Figure 8.47. The residuals between the data and model shown in Figure 8.46 (left)
and a histogram of the residuals (right).
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Mean σ

LM Strike limit - dx only -0.235 cm 36.2 cm

LM Strike limit - dy only 0.092 cm 45.6 cm

LM Strike limit - both - dx 0.110 cm 37.5 cm

LM Strike limit - both - dy 0.61 cm 46.8 cm

Table 8.5. The means and standard deviations of the residuals for each LMFit limited
strike inversion of the Ridgecrest data.
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Figure 8.48. The point sources of the final LMFit inversion model shown in Figures
8.44 and 8.46. Each dot in the left half of the figure represents a point source and its
color indicates the seismic moment of the source. Darker colors indicate higher seismic
moment with the color moving toward white as seismic moment decreases. Each arrow
in the right half of the figure indicates the strike direction of the corresponding point
source on the left. The axes are in the UTM coordinate system.
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Mean σ

MLR - dx only -50.6 cm 37.2 cm

MLR - dy only 11.0 cm 46.6 cm

MLR - both - dx -7.16 cm 41.0 cm

MLR - both - dy -4.81 cm 49.5 cm

LM - dx only -1.34 cm 38.8 cm

LM - dy only 2.04 cm 48.2 cm

LM - both - dx -3.85 cm 41.8 cm

LM - both - dy -0.057 cm 50.3 cm

LM Strike - dx only -0.022 cm 32.0 cm

LM Strike - dy only 0.026 cm 40.1 cm

LM Strike - both - dx -0.101 cm 32.1 cm

LM Strike - both - dy 0.027 cm 40.4 cm

LM Strike limit - dx only -0.235 cm 36.2 cm

LM Strike limit - dy only 0.092 cm 45.6 cm

LM Strike limit - both - dx 0.110 cm 37.5 cm

LM Strike limit - both - dy 0.61 cm 46.8 cm

Table 8.6. The means and standard deviations of the residuals for each inversion of
the Ridgecrest data. MLR refers to the multiple linear regression inversion. LM refers
to the LMFit inversions for seismic moment. LM Strike refers to the LMFit inversions
for seismic moment and strike angle. LM Strike limit refers to the LMFit inversions
for seismic moment and strike angle, with a limit of 40° placed on the strike angle.

higher seismic moment sources being placed at points along the strike where the highest

slip occurred.

The means and standard deviations of the residuals for every inversion performed in

this chapter are collected in Table 8.6. Of all of the inversions, the lowest mean residuals

were achieved by the LMFit inversion for the strike angle and seismic moment, with no

limit placed on the strike angle. This is expected, as it is the inversion with the largest

amount of freedom in its parameters and all of the inversions rely on the same set of

equations. While the mean residuals frequently fell below 1.0 cm, the standard deviation
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of the residuals only fell as low as 32.0 cm. We believe this to be due to the speckle present

in the interferograms. The maximum value of some of the error pixels reaches as high as

6 m, whereas the maximum displacement of the earthquake is known to be around 2 m.

While we placed a limit of 2 m when downsampling the data, this doesn’t affect any of

the pixels that lie below that limit. Therefore, the speckle’s effect cannot be completely

removed when it overlaps the data of interest. This happens near the peak displacement

in the north-south deformation data, where the speckle overlaps the fault trace. Since

the speckle rapidly changes from maximum to minimum displacement across a single

pixel boundary, it contributes greatly to the standard deviation of the residuals since

the models produce smooth, continuous deformation. Future inversions could validate

the results presented in this thesis using either a different set of interferograms for the

Ridgecrest mainshock or by applying a filter that is able to remove or minimize the effect

of the speckle.

Despite the large standard deviation of each inversion, two stand out that were able

to provide a trace of the major fault line associated with the Ridgecrest mainshock,

the multiple linear regression inversion of both datasets in Figure 8.15 and the LMFit

moment inversion of both datasets in Figure 8.26. Both place the highest seismic moment

in the upper left corner and the distribution extends toward the bottom right along the

path of the fault. Each distribution follows the true fault line which is visible in both

interferograms in Figure 8.4. The source distribution in Figure 8.26 is more diffuse, which

could possibly be improved by increasing the number of sources in the model. Currently,

the sources are spaced several kilometers apart, heavily limiting the resolution of the

model.

Thus far, our analysis has discussed the ability of our inversions to model ground de-

formation data. To extract further information about the trace of the fault we mentioned

previously, we require a method that allows us to quantify the structure of the traces so

that we don’t rely solely on by-eye comparisons. This leads us to our next step: fractal

analysis.
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Chapter 9

Fractal Analysis

A fractal is an object that exhibits self-similarity at all scales. What this means is that

the object appears the same no matter how far you zoom in to look at it (i.e. it looks

the same at all scales). The most well-known example of a fractal—the length of a

coastline—comes from Mandelbrot’s original paper which also introduced the idea of a

non-integer dimension (also called a fractal dimension) [53]. Since then, fractal dimensions

have been used to quantify the characteristics of fractal objects in a wide variety of

contexts from river networks [54] to human physiology [55] to the paintings of Jackson

Pollock [56].

Fractal patterns occur frequently during fracture processes, having been found in the

fracturing of: steel under plane strain [57], concrete by wedge-splitting [58] and natural

rock [59], as well as many other materials. As a result, fractals are also common in earth-

quake processes. The fractal dimension of earthquake epicenters has been investigated by

many groups including, but not limited to the authors of [60], [61] and [62]. The authors

of [63] extended this type of analysis by also estimating the fractal dimension of active

faults in Japan.

To extend our analysis of the point source distributions from our inversions of the Mw

7.1 Ridgecrest mainshock, we calculate their fractal dimensions. This allows us to quantify

their structure in a systematic way so that we have a reliable method to compare the fractal

dimensions of the inversion results, the aftershock distribution and the fault traces. The

goal of this comparison is to determine whether the seismic moment distribution from the

97



inversions tells us more about the area of possible aftershocks or the specific faults upon

which the earthquake occurred.

9.1 Box-Counting

We use a technique called the box-counting method to estimate the fractal dimensions

we report in this chapter. The basic idea of the box-counting method is to overlay a

series of square grids of decreasing box sizes over the system in question and count how

many of the boxes are required to completely cover the system for each grid. The fractal

dimension is then defined by the equation:

D = lim
ϵ→∞

− logN(ϵ)

log(ϵ)
(9.1)

where N(ϵ) is the number of boxes required to cover the system for a grid composed of

squares of side length ϵ. The fractal dimension is generally estimated by plotting N(ϵ)

vs ϵ on a log-log plot and fitting a line to the resulting distribution. In practice it is not

possible to reduce the grid sizes to arbitrarily small lengths, so the minimum ϵ is generally

chosen to be low enough to capture the fractal nature of the system in question without

introducing numerical errors.

To estimate the fractal dimension of our point source distributions, we first apply

a filter which removes sources from the distribution if their seismic moment is below a

specified threshold value. We then estimate the fractal dimension of the remaining sources

using box counting. The fractal dimension is estimated at multiple threshold values and

we produce a plot of the fractal dimension as a function of the applied threshold. The

results of this analysis on the Ridgecrest inversions are shown in Figures 9.3 and 9.4 for the

cases with no limit on the strike angle and with a limit on the strike angle, respectively.

Estimating the fractal dimension of the fault traces works slightly differently from

that of the point source estimates. Since we have an image of the traces we perform a

pixel-based fractal analysis. The points of the system we’re trying to cover with the boxes

are now represented by black pixels, while the empty space is represented by white pixels.

Otherwise, the idea remains the same—we count how many boxes are required to cover

the system for a series of grids with decreasing box sizes.

98



0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
log 

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

lo
g 

N

1.0483372084538782 ± 0.009950401493853832

Figure 9.1. The linear fit used to estimate the fractal dimension of the fault trace
image in Figure 8.1. The fractal dimension is listed in the title.

9.2 Results

The fractal dimension of the fault traces will be the basis of our analysis since the traces

are well constrained by multiple sources. The linear fit used to estimate the value of

their fractal dimension can be seen in Figure 9.1. This estimate is the result of pixel box

counting on the image in Figure 8.1. The grid sizes used range from 1 pixel to 63 pixels

and are applied on the image which is 515 x 389 pixels. With these parameters, the fractal

dimension is estimated to be 1.048337 ± 0.009950.

The fractal dimension of the aftershock locations is estimated using point-based box

counting. The linear fit used to estimate the fractal dimension is shown in Figure 9.2.

The grid sizes used in this estimate range from 1km to 10km.

The inversion results are displayed in Figures 8.33-8.37 for the case where the strike

angle has no limit. We focus specifically on the left side of Figure 8.37 for our fractal

analysis. The fractal dimension of the point sources as a function of the applied threshold

is shown in Figure 9.3.

The inversion results are displayed in Figures 8.44-8.48 for the case where the strike
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Figure 9.2. The linear fit used to estimate the fractal dimension of the aftershock
locations in Figure 8.3. The fractal dimension is listed in the title.
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Figure 9.3. The estimated fractal dimension of the system of point sources (with no
limit on strike angle) as a function of the seismic moment threshold. The threshold
axis is in units of the maximum seismic moment of the distribution.
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Figure 9.4. The estimated fractal dimension of the system of point sources (with a
limit of 40° on the strike angle) as a function of the seismic moment threshold. The
threshold axis is in units of the maximum seismic moment of the distribution.

angle is limited to be within 40° on either side of the starting value. The fractal dimension

of the point sources as a function of the applied threshold is shown in Figure 9.4.

We also use point-based box counting to estimate the fractal dimension of the distri-

bution of point sources resulting from the inversion. The distribution starts as a 20 x 20

grid of sources for a total of 400 points. A threshold is applied to the distribution which

removes points from the distribution if their seismic moment is below the threshold. For

example, a threshold of 0.2 indicates that the points with seismic moment below 20%

of the maximum value of the distribution were removed and not considered in the box

counting analysis. The estimated fractal dimension as a function of the threshold can be

seen in Figures 9.3 and 9.4 for the cases without and with a limit on the strike angle,

respectively.

9.3 Discussion and Conclusion

For both cases (with and without a limit on the strike angle) there exists a threshold at

which the estimated fractal dimension of the model is approximately equal to the fractal
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Distribution Fractal dimension

Fault traces 1.048337 ± 0.009950

Point sources (no limit) 1.049246 ± 0.033324

Point sources (with limit) 1.028219 ± 0.081766

Table 9.1. Comparison of the fractal dimension of the fault traces to the fractal
dimension of the point source distributions after applying a threshold on their seismic
moment.

Distribution Fractal dimension

Aftershocks 1.587052 ± 0.034302

Point sources (no limit) 1.583604 ± 0.037285

Point sources (with limit) 1.582805 ± 0.063705

Table 9.2. Comparison of the fractal dimension of the aftershock distribution to the
fractal dimension of the point source distributions after applying a threshold on their
seismic moment.

dimension of the fault traces and the aftershock distribution. The results of each case

are compared to the fractal dimension of the fault traces in Table 9.1 and to the fractal

dimension of the aftershock distribution in Table 9.2. Figures showing the point source

distributions with the thresholds applied can be seen in Figures 9.5-9.8.

The total number of aftershocks is fairly low–only 1,430. Due to the low number of

aftershocks the accuracy of the fractal dimension estimate is reduced. Ideally the range

of grid sizes spans several orders of magnitude, while the analysis in Figure 9.2 spans only

one. The accuracy is therefore limited by the minimum possible grid spacing, which must

lie above the minimum separation distance of the points to avoid introducing numerical

errors. Similar errors are present in the box counting of the point source distributions

since they start with only 400 points and are reduced further by the applied thresholds.

The most obvious solution is to increase the number of points in the model used in

the inversion. However, this will greatly increase the computational complexity of the

problem. Another possible solution is to upscale the current distribution to a larger

number of points using interpolation; however, preliminary tests to this end showed a

significant change to the fractal dimension estimates. Whether they are moving toward
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Figure 9.5. The distribution of point sources with no limit on strike angle after applying
the threshold that yields a fractal dimension close to that of the fault traces.

the true value or the change occurs because the distribution is not truly scale invariant

will be investigated in the future.

9.4 Concluding Remarks

Our point source inversion method has been shown to be effective in recreating the ground

deformation caused by significant earthquakes. Armed with the information from a tra-

ditional rectangular fault inversion, our method can provide further information about

either the slip distribution on the fault or the trace of the fault, depending on the fault

geometry. Our method would be of particular usefulness in scenarios where the trace of

the fault is not known beforehand, known as a “blind thrust” event. Current inversions

for the slip distributions on complicated faults require the manual definition of multiple

connected rectangular segments that follow along the fault. A point source inversion does

not require a definition of the geometry before the inversion—we only require a focal

mechanism, one of the first calculations performed upon detecting an earthquake.

Another benefit to our method is that it has not been fully explored. Our inversions
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Figure 9.6. The distribution of point sources with a limit on strike angle after applying
the threshold that yields a fractal dimension close to that of the fault traces.
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Figure 9.7. The distribution of point sources with no limit on strike angle after applying
the threshold that yields a fractal dimension close to that of the aftershock distribution.
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Figure 9.8. The distribution of point sources with a limit on strike angle after applying
the threshold that yields a fractal dimension close to that of the aftershock distribution.

thus far have only included seismic moment and strike angle because they can be included

with limited computational power. The other parameters could still be explored with a

similar computational demand as the current version. The locations of the sources could

be included as a parameter through a translation of a pre-calculated deformation field.

The inclusion of rake angle would only expand the requirements to two pre-calculated

Green’s matrices, which would be combined using the appropriate components of the slip

vector. Source depth or dip angle would require the complete recalculation of Okada’s

equations for each change in the source parameters and so would require much greater

computational resources. The future of our inversion method remains open and waiting

to be explored.
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