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ABSTRACT OF THE DISSERTATION

Large-scale and Deep Spatiotemporal Point-Process Models

by

Baichuan Yuan

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2020

Professor Andrea Bertozzi, Chair

Many accurate spatiotemporal data sets have recently become available for research. Real-

world applications create strong demands for a better multivariate point-process modeling.

In this thesis, we develop new multivariate models with generalization ability and scalability.

The first two chapters provide a research background, real-world problems and a math-

ematical introduction to point-process models.

In chapter 3, we develop a nonparametric method for multivariate spatiotemporal Hawkes

processes with applications on network reconstruction. In contrast to prior work, which has

often focused on exclusively temporal information, our approach uses spatiotemporal in-

formation and does not assume a specific parametric form. Our results demonstrate that,

in comparison to using only temporal data, our approach yields improved network recon-

struction, providing a basis for meaningful subsequent analysis—such as examinations of

community structure and motifs—of the reconstructed networks.

In chapter 4, we present a fast and accurate estimation method for multivariate Hawkes

processes. Our method, with guaranteed consistency, combines two estimation approaches.

Extensive numerical experiments, with synthetic data and real-world social network data,

show that our method improves the accuracy, scalability and computational efficiency of

prevailing estimation approaches. Moreover, it greatly boosts the performance of Hawkes

process-based models on social network reconstruction and helps to understand the spa-

tiotemporal triggering dynamics over social media.
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In chapter 5, we focus on multivariate spatial point processes, which can describe het-

erotopic data over space. However, highly multivariate intensities are computationally chal-

lenging due to the curse of dimensionality. To bridge this gap, we introduce a declustering-

based hidden-variable model that leads to an efficient inference via a variational autoencoder

(VAE). We also prove that this model is a generalization of the VAE-based model for col-

laborative filtering. This leads to an interesting application of spatial point-process models

to recommender systems. Experimental results show the method’s utility on both synthetic

data and real-world data.

Finally, in chapter 6, we show how multivariate point processes can be applied to opioid

overdose events and real-time prediction of the hourly crime rate. In chapter 7, we discuss

future directions and conclude the thesis.
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CHAPTER 1

Introduction

Spatiotemporal (ST) point processes, especially ST-Hawkes processes (also known as “self-

exciting point processes”1) have been widely used to model and forecast clustered point-

process data in the study of earthquakes [Oga98], crimes [MSB11], invasive species [BSM12],

terrorist attacks [PW12], infectious diseases [Sch18], and financial markets [BMM15]. These

models, which are characterized by a triggering density describing how the occurrence of

one event may spark future events nearby, have real-world impacts on the crime rate in Los

Angeles [MSM15].

Recently, digital devices such as smartphones and tablets generate a massive amount of

spatiotemporal data on human activities, providing a wonderful opportunity for researchers

to gain insight into human dynamics through our “digital footprints”. A wide variety of

human activities are now analyzed using such data, creating new disciplines such as com-

putational social science and digital humanities [LPA09]. Examples of such activities in-

clude online check-ins in large cities [CML11], human mobility [BCG09] and currency flow

[BHG06], online communications during Occupy Wall Street[CDF13], crime reports in Los

Angeles county [KBB17], and many others. Spatiotemporal point processes [SBG14], as a

class of generative models, can detect and explain lots of clustering effects from structural

differences in space and time. In fig. 1.1, we visualize some examples of spatiotemporal clus-

ters from the Twitter data in [LMY16]. To further incorporate accompanying information

on each event such as the type of crime or the magnitude of an earthquake, multivariate

point processes have been the subject of significant research in the areas of criminology

[Moh14], finance [BMM15], neuroscience [CSS17], and text analysis [DFA15]. Applications

1We use these terms interchangeably in this thesis.
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Figure 1.1: Spatiotemporal Twitter events in Los Angeles (LA) about the topic “outlets”

and topic “Christmas”. The spatial and temporal clustering effects are clearly presented:

events about “outlets” are spatially clustered around the location of the outlets and events

about “Christmas” are temporally clustering around the Christmas day.

include network reconstruction [LA14, FSS16, HW16, YLB19, MRW18], causal inference

[ABG17, EDD17, BYS18] and social-media cascade modeling [LMY16, FWR15]. The focus

of this thesis is to provide a detailed review of current methods for multivariate ST point

processes and their challenges when facing these new applications. Then we develop a set of

approaches to bridge the gap between real-world applications and current methods.
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1.1 Motivation

1.1.1 Social Networks

Network analysis is a powerful approach for representing and analyzing complex systems

of interacting components [New18], and network-based methods can provide considerable

insights into the structure and dynamics of complex spatiotemporal data [Bar18]. It has

been valuable for studies of both digital human footprints and human mobility [BBG18]. To

give one recent example, Noulas et al. [NSL12] studied geographic online social networks to

illustrate similarities and heterogeneities in human mobility patterns.

Suppose that each node in a network represents an entity, and that the edges (which

can be either undirected or directed, and can be either unweighted or weighted) represent

spatiotemporal connections between pairs of entities. For instance, in a data set of check-

ins on a social-media platform, one can model each user as a node, which has associated

check-in time and locations. In this case, one can suppose that an edge exists between a

pair of users if they follow each other on the platform. One can use edge weights to quantify

the amount of “influence” between users, where a larger weight signifies a larger impact. In

our investigation, we assume that the relationships between nodes are time-independent.2

Here we illustrate this idea via a fictional example in fig. 1.2, where nodes are users in a

social-media network and an edge from node A to node B presents the influence of user A

on user B. We further visualize the impact between users when they share posts over time

on social media. In some cases, the entities and relationships are both known, and one

can investigate the structure and dynamics of the associated networks. However, in many

situations, network data are incomplete — with potentially a large amount of missing data,

in the form of missing entities, interactions, and/or metadata [SSB11] — and it may not be

possible to directly observe the relationships between nodes [SNM11]. For example, social-

media companies attempt to infer friendship relationships between their users to provide

accurate friendship recommendations for online social networks.

2Depending on the relative time scales between spatiotemporal processes and network dynamics, it may
be important to consider time-dependent edges [PG16, Hol15].
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Figure 1.2: Top: a social network represents the influence between users in a fictional social

media. Note that user E is not affected by any user. Bottom: Post-sharing timeline for each

user. Here the line edge represents the triggering effect of one user’s sharing on other users

and the curved edge represents the self-excitation within each user. User E, not influenced

by other users, displays an almost uniform distribution of sharing events.
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In the last few years, there has been a considerable effort on inferring missing data (both

the structure and weight) in networks. A basic approach for inferring relationships among

entities is to calculate cross-correlations of their associated time series [Lau96]. Another ap-

proach is to use coefficients from a generalized linear model (GLM) [NW72], a generalization

of linear regression that allows response variables to have a non-Gaussian error-distribution.

Recently, researchers have begun to use point-process methods [SJ10] in network recon-

struction. For example, Perry and Wolfe [PW13] modeled networks as multivariate point

processes and then inferred covariate-based edges (both their existence and their weights).

As a well-studied family of point-process models, Hawkes processes have been employed of-

ten for studying human dynamics [LA14, FSS16]. Hawkes-process models are characterized

by mutual “triggering” among events [Oga88], as one event may increase the probability

for subsequent events to occur. Such models can capture inhomogeneous inter-event times

and causal (temporal) correlations, which are important considerations for human dynamics

[KP15]. These properties illustrate the relevance of using Hawkes processes in social-network

applications [KJK18]. It thus seems promising to employ such processes for network infer-

ence on dynamic human data, such as crime events and online social media. For example,

Linderman and Adams [LA14] proposed a fully Bayesian Hawkes model that they reported

to be more accurate at inferring missing edges for their data than GLMs, cross-correlations,

and a simple self-exciting point process with an exponential kernel. However, the aforemen-

tioned temporal point-process models are not without limitations. For example, most of

these models do not use spatial information, even when it plays a significant role in a sys-

tem’s dynamics. Furthermore, many studies assume an a priori model [LA14] or a specific

parametrization [CGB14] for their point processes.

1.1.2 Crime Forecasting

Recent years have seen a surge of complete criminal records and related information collected

by law enforcement. In Los Angeles, for example, there are nearly half-million criminal

records collected by the Los Angeles Police Department (LAPD). The volume of data com-

bined with the development of quantitative techniques has boosted crime forecasting, which
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helps to prevent crime and evaluate police intervention. Mohler et al. [MSM15] reported

a 7.4% reduction in crime when the police department used their point-process model for

daily patrol.

Current models on crime prediction usually focus on certain desired properties of pre-

dictive policing models. Crime hotspots describe crimes’ spatial distribution using kernel

density estimation or using spatial point processes. These models are easy to compute and

can incorporate covariates such as demographics [WB12]. As a result, they are scalable to

multivariate data. However, the standard model for crime hotspots is static in time and

multiple timescales are usually not reflected [Moh14].

To model the dynamics of hotspots, self-exciting point-process models adapted from seis-

mology [MSB11] assume near-repeats of crimes [HR12] and the decay of risk along time and

spatial neighborhood. In fig. 1.3, we illustrate the near-repeat phenomenon via visualizing

recent burglaries. The decay functions over time and space estimated via the point-process

model in [YSB19] are showed in fig. 1.4. This model is extended as a marked point-process

model to include covariates, such as crime type [Moh14] and spatial features [RG18]. Marked

point-process models, especially multivariate models, are able to reveal the mutual-triggering

effects between different crime types as showed in fig. 1.5. The inference of these models is

based on maximizing the log-likelihood function using off-the-shelf optimization techniques

such as BFGS, or expectation maximization (EM) algorithm [VS08]. In terms of algorithm

complexity, each evaluation of the log-likelihood function is O(N2) and the overall complex-

ity for EM is O(N3) where N is the number of crime events. This is not ideal when handling

millions of crimes in the data set

Accurate spatiotemporal events forecasting is also one of the important tasks for artificial

intelligence. Recent developments in the deep neural network provide multiple tools for crime

forecasting. Kang et al. [KK17] utilized a convolutional neural network (CNN) to extract

the features from historical crime data, and then used a support vector machine (SVM) to

classify whether there will be a crime or not at the next time slot. CNN-based approaches

are scalable for large data sets and have good generalization ability. The data at a certain

timescale are represented by the spatial distribution histogram on the grid and a CNN is used
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Figure 1.3: Recent burglary crimes from LAPD’s Crime Mapping in part of Santa Monica

from 08/14/2019 to 02/09/2020. Here the red number represents the count of repetitive

crimes at the same location. The underlying map is from OpenStreetMap.
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Figure 1.4: Temporal (top) and spatial (bottom) triggering effects’ decay functions for all

crimes in Los Angeles from 2009 to 2014. Here r is distance (in degrees) and t is time

(in days). The decay functions are estimated using the multivariate spatiotemporal Hawkes

process in [YSB19] with nonparametric kernels. Note that the drop in f(r) when r is between

0.001 and 0.01 might be due to the artifact of our model such as the choice of the support.
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Figure 1.5: Mutual-triggering effects between different kinds of crimes estimated via the

model in [YSB19]. Lighter color represents a stronger trigger effect. The crime types are

(from 0 to 11) other, theft, grand theft auto, vandalism, burglary/theft from motor vehicle,

robbery, burglary, aggravation, homicide, grand theft person, arson, and kidnap.
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to predict the future histogram. This CNN-based approach is sub-optimal from two aspects.

First, the geometry of a city is usually highly irregular, resulting in the city’s configuration

taking up only a small portion of its bounding box. This introduces unnecessary redundancy

into the algorithm. Second, spatial sparsity can be exacerbated by the spatial grid structure.

Directly applying a CNN to fit the extreme sparse data will lead to all zero weights due to the

weight sharing of CNNs [WYB19]. This can be alleviated by using spatial super-resolution,

with an increased computational cost. Moreover, this lattice-based data representation omits

geographical information and spatial correlations within the data itself.

1.2 Directions for Improvement

To improve the effectiveness of ST point processes, a natural question to ask is what makes

a good point-process model for applications above. Given the size of the data, scalable

methods are essential for real-time forecasting and evaluation. Moreover, real-world data

sets contain rich information aside from spatiotemporal stamps. For example, for criminal

records, we want to use information such as gang involvement, a brief description of the

crime, and intervention attempts. As a result, a multivariate representation of the events

is useful in modeling and can utilize additional data. Finally, in forecasting problems, the

ability to generalize the algorithm is ideal since we are more interested in events that we have

not seen yet. In summary, a better point-process model should be able to handle large-scale

multivariate data in real-time and achieve reliable results in new data. Current methods all

have limits in some respects. In this thesis, we propose new approaches to achieve these three

properties, including scalability, generalization ability as well as the use of the multivariate

model. Multivariate models will be able to analyze millions of data in linear time O(n) to

achieve real-time prediction.

Our models relieve the computational burden of point-process models and make it pos-

sible to apply them on multiple large-scale problems such as network reconstruction, rec-

ommendation systems and predictive policing. For example, a real-time and accurate crime

forecasting model will improve the design of police patrol. Applications of our model are not
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limited to these directions. Retaliation has been long featured in the discussion of gangs,

rising almost to one of de facto definitive characteristics [Pap09]. During the collabora-

tion with the City of Los Angeles Mayor’s Office of Gang Reduction & Youth Development

(GRYD), we discovered a promising application [BSY17] of multivariate point processes on

the evaluation of GRYD’s gang intervention program in terms of causal effects. In the case of

missing data in crime records, our multivariate approach has been applied to crime network

inference [YLB19] and gang retaliatory dynamics [BYS18].
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CHAPTER 2

Background

2.1 A Brief Review of Point Processes

Given a complete, separable metric space, a point process S is a random measure that values

in {0, 1, 2, . . .} ∪ {∞} [SBG14]. While the definitions and results below can be extended

quite readily to other metric spaces, we will assume for simplicity that the metric space is a

bounded interval [0, T ] in time or a bounded area R× [0, T ] in space-time.

We first consider a temporal point process, which consists of a list {t1, t2, . . . , tN} of N

time points, with corresponding events 1, 2, . . . , N . Let S[a, b) denote the number of points

(i.e. events) that occur in a finite time interval [a, b), with a < b. One typically models

the behavior of a simple temporal point process (multiple events cannot occur at the same

time) by specifying its conditional intensity function λ(t), which represents the rate at which

events are expected to occur around a particular time t, conditional on the prior history of

the point process before time t. Specifically, when Ht = {ti|ti < t} is the history of the

process up to time t, one defines the conditional intensity function

λ(t) = lim
∆t↓0

E[S[t, t+ ∆t)|Ht]

∆t
.

One important point-process model is a Poisson process, in which the number of points

in any time interval follows a Poisson distribution and numbers of points in disjoint sets

are independent of each other. A Poisson process is called homogeneous if λ(t) ≡ constant,

and it is thus characterized by a constant rate at which events are expected to occur per

unit time. It is called inhomogeneous if the conditional intensity function λ(t) depends on

the time t (e.g. λ(t) = e−t). In both situations, numbers of points (i.e. events) in disjoint

intervals are independent random variables.
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We now discuss self-exciting point processes, which allow one to examine a notion of

causality in point-process models. If we consider a list {t1, t2, . . . , tN} of time stamps, we

say that a point process is self-exciting if

Cov [S(tk−1, tk), S(tk, tk+1)] > 0 , with tk−1 < tk < tk+1 ,

where k is a positive integer. In a self-exciting point process, if an event occurs, another

event becomes more likely to occur locally in time.

A univariate temporal Hawkes process, which we express using the common cluster rep-

resentation [HO74], has the following conditional intensity function:

λ(t) = µ(t) +K
∑
tk<t

g(t− tk) , (2.1)

where the background rate µ(t) > 0 can either be a constant or a time-dependent function

that describes how the likelihood of some processes (crimes, e-mails, tweets, and so on)

evolves in time. For example, violent crimes are more likely to occur at night than during the

day, and business e-mails are less likely to be sent during the weekend than on a weekday.

One can construe the rate µ(t) as a process that designates the likelihood of an event to

occur, independent of the other events. The summation term in eq. (2.1) describes the self-

excitation: past events increase the current conditional intensity. The function g(t) ≥ 0 is

called the triggering density or triggering kernel satisfying
∫∞

0
g(v)dv = 1, which describes

the conductivity of events, and the productivity parameter K denotes the mean number of

events that are triggered by an event, which is typically required to satisfy 0 ≤ K < 1 in

order to ensure stationarity and subcriticality [Haw71]. One standard example is a Hawkes

process with an exponential kernel g(t) = ωe−ωt, where the constant decay rate ω for the

triggering kernel controls how fast the rate λ(t) returns to its baseline level µ(t) after an

event occurs.

We fit the Hawkes process above to gang aggravated assaults and homicides in South Los

Angeles from 2014–2015 in fig. 2.1 (A). Two cycles of gang violent crimes occur within a

period of eighteen days. The conditional intensity λ reflects the instantaneous rate of gang

crime. The background rate µ is the expected rate of gang crime in the absence of retaliation.
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A crime causes λ to jump by an amount Kω, increasing the risk of retaliation. The risk of

retaliation following a single crime decays exponentially with a rate ω and a mean lifetime

of 1/ω. We expect violence interruption deployed in the aftermath of a crime to cause the

conditional intensity to fall and therefore future crimes to be less likely to occur than in the

absence of intervention.

2.1.1 Multivariate Temporal Models

In a multivariate temporal point process, there are U different point processes (Su)u=1,...,U ;

and the corresponding conditional intensity functions are (λu(t))u=1,...,U . We seek to infer the

intensity functions from observed data (tj, uj)j=1,...,N in a time window [0, T ], where tj and

uj, respectively, are the time and point-process indices of event j. There are numerous ap-

plications of temporal multivariate point processes; they include financial markets [BMM15],

real-time crime forecasting [WLZ18], and neuronal spike trains [BKM04].

Let’s first consider two examples of multivariate processes that are not self-exciting. A

trivial example of a multivariate point process is the multivariate Poisson process, in which

each point process is a univariate Poisson process. Another example is the multivariate Cox

process, which consists of doubly stochastic Poisson processes (so the conditional intensity

itself is a stochastic process). Perry and Wolfe [PW13] used a Cox process to model e-mail

interactions (edges) among a set of users (nodes).

Instead of modeling edges as Cox processes, Fox et al. [FSS16] used multivariate Hawkes

processes to model people (nodes) communicating with each other via e-mail. Their condi-

tional intensity function has an exponential kernel and a nonparametric background function

µu(t) ≥ 0 for each person (process) u. It is written as

λu(t) = µu(t) +
∑
ti<t

Kuiuωe
−ω(t−ti) , (2.2)

where Kuv ≥ 0 is the expected number of events of person v that are triggered by one event

of person u.

A (linear) multivariate temporal Hawkes process can be conveniently viewed as a sequence
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of temporal point processes indexed by u = 1, ..., U , where each subprocessNu has conditional

intensity

λu(t) = µu +
∑
tk<t

Kuk,u guk(t− tk) . (2.3)

The idea behind this formula is that the triggering density guk and productivity Kuk,u may

depend on the index of the point tk. Here µu is the background rate, indicating the rate at

which points of mark u occur, absent any other prior events. For simplicity, one traditionally

assumes a uniform background rate in time. K ∈ RU×U is the triggering matrix, where Ku,v

is the expected number of events of index v that are triggered by one event of index u. This

triggering effect, in this temporal-only case, is closely related to Granger causality [Gra69].

In fact, subprocess u does not Granger-cause subprocess v if and only if Ku,v = 0 [EDD17].

Similarly, for stationarity and subcriticality, K needs to satisfy ‖K‖ < 1, where ‖K‖ is

the spectral norm of K. We show an example of fitting the gang crime data above to

this multivariate model in fig. 2.1 (B). Gang crimes assigned to two different intervention

conditions are modeled as two interacting point processes.

2.1.2 Spatial Point Processes

While the major theory of point processes centers around the temporal dynamics, spatial

point process (SPP) models [Dig83] are established in forestry and seismology, focusing on

the stationary and isotropic case. We define the (first-order) intensity function λ(x), which

is the expected rate of the accumulation of points around a particular spatial location x. We

write

λ(x) = lim
|∆x|↓0

E [S(∆x)]

|∆x| , (2.4)

where ∆x is a small ball in the metric space, e.g. the Euclidean space Rn, with the centre x

and measure |∆x|. The second-order intensity function is naturally defined as

λ(2)(x, y) = lim
|∆x|,|∆y|↓0

E [S(∆x)S(∆y)]

|∆x||∆y| , (2.5)

measuring the chance of points co-occurring in both ∆x and ∆y. Normalizing this leads to

the pair-correlation function g(x, y) = λ(2)(x, y)/λ(x)λ(y). Then g(x, y) > 1 indicates that

points are more likely to form clusters than the simple Poisson process where g(x, y) = 1.
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Figure 2.1: Self-exciting point-process models capture the dynamics of gang violent crime

events. A temporal self-exciting point-process model λ(t) = µ+
∑

ti<t
Kg(t− ti) with expo-

nential kernel g(t) = ωe−ωt (Top). Non-retaliatory gang crimes assigned to each condition

arise spontaneously at rate µj. Retaliations assigned to each condition may be triggered

through separate pathways (Bottom). The parameter kij is an estimate of the average num-

ber of retaliations of type j triggered by a single crime of type i. The parameters k11 and

k01 link previous crimes assigned to the treatment and baseline interventions, respectively,

to retaliations subsequently assigned to the treatment intervention. The parameters k00 and

k10 link previous crimes assigned to the baseline and treatment interventions, respectively,

to retaliations subsequently assigned to the baseline intervention. If treatment interventions

(red events) reduce the risk of gang retaliation, then we expect k11 < k01 and k10 < k00.
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Common models in SPPs include the Poisson process with a non-stationary rate λ(x), and

the Cox process with a nonnegative-valued intensity process Λ(x), which is also a stochastic

process. Cox processes conditional on a realization of the intensity process Λ(x) = λ(x) are

Poisson processes with intensity λ(x). To model the aggregated points patterns, Poisson

cluster (Neyman–Scott) processes generate parent events from a Poisson process. Then each

parent independently generates a random number of offspring. The relative positions of these

offspring to the parent are distributed according to some p.d.f Kσ(x) in space [Dig83]. Many

point-process models, including most Cox processes, are in fact Poisson cluster processes.

The duality between Cox processes and cluster processes is widely used to construct Cox

process models. For example, the kernel-based intensity process Λ(x) =
∑∞

i=1Kσ(x−xi) with

xi from a Poisson process, is essentially a Poisson cluster process. The number of offspring

is from a Poisson distribution with λ = 1 and the relative position distribution is Kσ(x).

Repulsive SPPs, on the other hand, model that nearby points of the process tend to repel

each other. Higher-order intensities are often considered in this case, such as determinantal

point processes.

Alternatively, if we are more interested in the realization intensity λ(x) than the mechan-

ical interpretation, the trans-Gaussian Cox process provides a tractable way to construct the

Cox process using a nonlinear transformation on a Gaussian process. Popular choices for

Λ(x) include the log-Gaussian Cox process (LGCP) and the permanental process. Recent pa-

pers on Cox processes have been extensively focused on the cases that are modulated via the

Gaussian random field, due to its capability in modeling the intensity and pair-correlations

between subprocesses. We aim to develop a more explicit approach to model interactions for

fast inference and the generalization ability for new subprocesses.

2.1.3 Spatiotemporal Point Processes

Many real-world data sets include not only timestamps but also accompanying spatial infor-

mation, which can be particularly important for correctly inferring and understanding the

dynamics associated with such data [Bar18]. In earthquakes, for example, most aftershocks
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usually occur geographically near the mainshock [Oga98]. In online social media, if two peo-

ple often check-in at the same location at closely proximate times, there is more likely to be

a connection between them than if such “joint check-ins” occur rarely [CML11]. These sit-

uations suggest that it is important to examine spatiotemporal point processes, rather than

just temporal ones. Indeed, there are myriad applications of spatiotemporal Hawkes pro-

cesses, including crime forecasting [MSB11], the detection of anomalous seismicity [Oga98],

and inference of Twitter topics [LMY16].

We characterize a spatiotemporal point process S(t, x, y) via its conditional intensity

λ(t, x, y), which is the expected rate of the accumulation of points around a particular

spatiotemporal location. Given the history Ht of all points up to time t, we write

λ(t, x, y) = lim
∆t,∆x,∆y↓0

(
E [S{(t, t+ ∆t)× (x, x+ ∆x)× (y, y + ∆y)}|Ht]

∆t∆x∆y

)
.

For the purpose of modeling earthquakes, Ogata [Oga98] used a self-exciting point process

with a conditional intensity of the form

λ(t, x, y) = µ(x, y) +K
∑
t>ti

g(x− xi, y − yi, t− ti) .

In this setting, if an earthquake occurs, aftershocks are more likely to occur locally in time

and space. The choice of the triggering kernel g(t, x, y) is inspired by physical properties

of earthquakes. For example, Ogata [Oga98] used a modified Omori formula (a power law)

[Oga88] to describe the frequency of aftershocks per unit time. In sociological applications,

there is no direct theory to indicate appropriate choices for the kernel function. Some re-

searchers have chosen specific kernels (e.g. exponential kernels) that are easy to compute.

For example, Tita et al. [CGB14] used a spatiotemporal point process to infer missing infor-

mation about event participants. They modeled interactions between event participants as

a combination of a spatial Gaussian mixture model and a temporal Hawkes process with an

exponential kernel. A key problem is how to justify kernel choices in specific applications.

Another benefit of point-process modeling is that we can distinguish the clustering effects

from the background or triggering via declustering. See section 3.3.4 for more details on

declustering. We fit the spatiotemporal point process above to gang crimes in South Los

Angeles in fig. 2.2 and show the declustering result.
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Figure 2.2: Spatiotemporal point process intensities of gang crimes in South Los Angeles.

(A). The log of background intensity function µ for gang violent crimes mapped over space.

(B) Contour plot of the density of background gang aggravated assaults and homicides

determined by declustering. (C) Point locations of background gang aggravated assaults

and homicides determined by declustering. (D) The log of spatiotemporal self-excitation

of retaliation λ − µ mapped over space. (E) Contour plot of the density of retaliatory

gang aggravated assaults and homicides determined by declustering. (F) Point locations of

retaliatory gang aggravated assaults and homicides determined by declustering. Boundaries

for ten GRYD IR Zones [BSY17] in South Los Angeles are outlined in black.
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2.1.4 Model Inference

Inference methods for point processes are mainly based on the order statistics or likelihood

function. The order statistics are often estimated nonparametrically, such as the kernel

estimator [Dig85] of the intensity function. For the likelihood-based inference, we assume

that one observes events X = {ti}Ni=1 of the underlying point process over the area R. The

log-likelihood for the point process with intensity λ(t) over a certain space R is

log p(X|Θ) =
N∑
i=1

log(λ(ti))−
∫
R

λ(t) dt . (2.6)

The integration term is the log void probability and can be viewed as a normalization term

for the likelihood.

In the multivariate temporal point process case, one can estimate the set of parameters

Θ by minimizing the negative log-likelihood function

− log(L(Θ)) = −
N∑
k=1

log(λuk(tk)) +
U∑
u=1

∫ T

0

λu(t)dt , (2.7)

where log(x) denotes the natural logarithm of x. Recall that uk is the point process associated

with event k. There are several variants of the MLE for the multivariate Hawkes process.

One is to add regularization terms to Equation eq. (2.7) to improve the accuracy of parameter

estimation. Lewis and Mohler [LM11] used maximum-penalized likelihood estimation, which

enforces some regularity on the model parameters, to infer Hawkes processes. Linderman

et al. [LA14] added random-graph priors on K and developed a fully Bayesian multivariate

Hawkes model. See [MRW18] for theoretical guarantees on inferring Hawkes processes with

a regularizer. Another research direction is to speed up the parameter estimation of point-

process models. For example, Hall et al. [HW16] tried to learn the triggering matrix K

via an online learning framework for streaming data. In a very recent paper, Achab et al.

[ABG17] developed a fast moment-matching method (instead of using a likelihood-based

method) to estimate the matrix K.

For Cox processes, the likelihood is the expectation over the Poisson likelihood above. It

is difficult to directly integrate over the distribution of Λ. Monte Carlo methods [AMM09]
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are commonly used to approximate the expectation. To improve the scalability of the expen-

sive sampling, many methods such as variational inference [LGO15], Laplace approximation

[WR06] and reproducing kernel Hilbert spaces [FTS17] are proposed.

2.2 Point Processes on Real-world Problems

Multivariate point-process models have a wide range of applications. In network recon-

struction, for example, one seeks to infer the relationships (i.e. edges) and the strengths of

such relationships (i.e. edge weights) among a set of entities (i.e. nodes). When modeling

the relationships in a network, it is more appropriate to use a multivariate point process

than a univariate one. To utilize covariates in a criminal record, we need to extend the

univariate self-exciting point-process model [MSB11] to the multivariate setting. For crime

applications, each process could represent different gangs, crime types, zip code areas or

police intervention attempts. Via defining subprocesses as different entities, the multivariate

model can be applied to crime forecasting, gang network inference as well as causality es-

timation. Multivariate Hawkes processes are closely related to Granger causality (Granger,

1969). As a result, one can hypothesize that the mutual effect parameters Kuv can reflect

real-world connections among different processes. For example, if each gang is a single point

process, Kuv > 0 implies crimes in gang u will lead to crimes in gang v.

In a previous point-process model of crime [RG18], every crime increases a local crime

risk that decays exponentially in time and diffuses as a Gaussian distribution in space.

To increase the generalization ability, one can use a model-independent approach [ML08]

to avoid the selection of a specific decay function (kernel) for different applications. In

this setting, the kernel is assumed to be a stepwise constant function and the values will

be learned from real-world data. EM-type algorithms are widely used in the inference of

point-process models. However, this approach is far from satisfying [Sch18]. A specific

limit is computation complexity. EM has a O(N3) time complexity and a O(N2) storage

requirement, which is not acceptable for larger data sets. It is important to improve the

scalability of the multivariate point-process model.
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Table 2.1: Notation.

Notation Definition or Descriptions

S(x) counting measure on a metric space R

Nu the number of events of subprocess u

λu(x) intensity function of a subprocess u

Λu(x) intensity process of a subprocess u

Kσ(x) kernel function

U the number of subprocesses on the space

Ub a set subprocesses with index in b

X events set

Xu observed events of subprocess u

Xb all the observed events in a batch of sub-

processes

xi embedding/location of the ith event

Y ui hidden variables indicate whether the sub-

process u includes the ith event

zu a hidden variable represents subprocess u

pui probability of the ith event occurs in sub-

process u

φ, θ neural network parameters

hu(x) normalized density
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Another application of multivariate models is the evaluation of a gang intervention pro-

gram. Retaliation propels gang violence. Spontaneous attacks resulting from chance encoun-

ters between rivals, or situational interactions that challenge gang territory or reputation can

trigger cycles of tit-for-tat reprisals. Yet it has been difficult to determine if interventions

that seek to reduce the likelihood of retaliation translate into lower rates of gang crime. One

can use a multivariate spatiotemporal point process to quantify the magnitude of retaliation

arising from gang crimes given two distinct types of post-event interventions. The methods

are well-suited to the analysis of real-world interventions where there is an interaction be-

tween outcomes. Our preliminary analysis [BSY17] of interventions in Los Angeles indicates

that efforts to control rumors and engage impacted families, undertaken in the immediate

aftermath of gang violent crimes, reduce the contagious spread of violence. These findings

[BYS18, Wan18] have important implications for the design, implementation, and evaluation

of gang violence prevention programs.

Finally, we want to clarify the difference between point-process models and time-series

approaches. Point processes are generative models that are continuous in time. For time

series analysis, however, it first discretizes the events into time bins and aggregates them

together. We focus on the point-process models due to its convenient and natural represen-

tation of crime and social media events with precise spatiotemporal stamps. We also worked

on specific problems in seismology [YTM19] and medical imaging [YCI17, DGQ18], which

are more appropriate for time-series methods.
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CHAPTER 3

Multivariate Hawkes Processes and Network

Reconstruction

There is often latent network structure in spatial and temporal data, and the tools of net-

work analysis can yield fascinating insights into such data. In this chapter, we propose a

nonparametric and multivariate version of a spatiotemporal Hawkes process. Spatiotempo-

ral Hawkes processes have been used previously to study numerous topics, including crime

[MSB11], social media [LMY16], and earthquake forecasting [FSG16]. In our model, each

node in a network is associated with a spatiotemporal Hawkes process. The nodes can

“trigger” each other, so events that are associated with one node increase the probability

that there will be events associated with the other nodes. We measure the extent of such

mutual-triggering effects using a U × U “triggering matrix” K, where U is the number of

nodes. If one considers an exclusively temporal scenario, a point process u does not “cause”

(in the Granger sense [Gra69]) a point process v if and only if K(u, v) = 0 [EDD17]. Be-

cause triggering between point processes reflects an underlying connection, one can try to

recover latent relationships in a network from K. Such triggering should decrease with both

distance and time according to some spatial and temporal kernels. In this work, instead of

assuming exponential decay [FSS16] or some other distribution [LA14, CGB14], we adopt

a nonparametric approach [ML08] to learn both spatial and temporal kernels from data us-

ing an expectation-maximization-type (EM-type) algorithm [VS08]. Recently, Chen et al.

[CSS17] also studied Hawkes processes with a nonparametric approach, although they only

considered exclusively temporal kernels.

This model helps fill a gap in the literature on incorporating spatial information into

multivariate self-exciting point processes [Rei18a]. To our knowledge, it is the first method
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that uses a multivariate spatiotemporal Hawkes process with a nonparametric method to

estimate a triggering kernel. Inspired by the successful employment of spatiotemporal uni-

variate Hawkes processes in earthquake forecasting [FSG16, ML08] and predictive policing

[MSM15], our work extends these ideas to multivariate Hawkes processes and uses these ideas

in an application to network reconstruction. We illustrate our approach using both syn-

thetic networks and networks that we construct from real-world data sets (a location-based

social-media network, a narrative of crime events, and violent gang crimes). Our approach

outperforms other recent point-process network-reconstruction methods [FSS16, LA14] on

both synthetic and real-world data sets with spatial information. Additionally, our results

illustrate the importance both of incorporating spatial information and of using nonparamet-

ric kernels. Although we assume that the relationships between nodes are time-independent,

our model still recovers a causal structure among events in synthetic data sets. Based on this

information, we build event-causality networks on data sets about violent crimes of gangs

and examine gang-retaliation patterns using motif analysis.

This chapter proceeds as follows. In section 2.1, we review self-exciting point processes

and recent point-process methods for network reconstruction. In section 3.1, we introduce

our nonparametric spatiotemporal model and our approaches for model estimation and sim-

ulations. In section 3.3, we compare our model with others on both synthetic and real-world

data sets. We construct our two examples of the latter from (1) a location-based social-media

platform and (2) crime topics. We conclude in section 3.4.

3.1 Spatiotemporal Models for Network Reconstruction

Many network-reconstruction methods, such as the ones in [LA14, FSS16, CSS17], have used

self-exciting point processes to infer time-independent relationships (i.e. edges) between

entities (i.e. nodes) with corresponding (exclusively) temporal point processes. Entity (i.e.

process) u is adjacent to entity v if K(u, v) > 0, where one estimates the triggering matrix

K from the data. Entity u is not adjacent to v if the former’s point process does not cause

the latter’s point process in time (in the Granger sense [EDD17]). For many problems, it is
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desirable (or even crucial) to incorporate spatial information [Cre15, Bar18]. For example,

spatial information is an important part of online fingerprints in human activity, and it

has a significant impact on most other social networks. In crime modeling, for instance,

there is a “near repeat” phenomenon in crime locations, indicating the necessity of including

spatial information. Specifically, the spatial neighborhood of an initial burglary has a higher

risk of repeat victimization than more-distant locations [SBB10]. In our work, we propose

multivariate spatiotemporal Hawkes processes to infer relationships in networks and provide

a novel approach for analyzing spatiotemporal dynamics.

It is also important to consider the assumptions on triggering kernels for Hawkes pro-

cesses. In seismology, for example, researchers attempt to use an underlying physical model

to help determine a good kernel. However, it is much more difficult to validate such models

in social networks than for physical or even biological phenomena [PH17]. The content of

social data is often unclear, and typically there is little understanding of the underlying

mechanisms that produce them. With less direct knowledge of possible triggering kernels, it

is helpful to employ a data-driven approach for kernel selection. Using a kernel with an in-

appropriate decay rate may lead to either underestimation or overestimation of the elements

in the triggering matrix K, which may also include false negatives or false positives in the

inferred relationships between entities.

Therefore, we ultimately choose to use a nonparametric approach to learn triggering ker-

nels in various applications to avoid a priori assumptions about a specific parametrization.

Specifically, we use histogram estimators with EM-type algorithms to maximize the like-

lihood, as has been done in applications in seismology and crime modeling [ML08, VS08,

LM11]. An alternative approach [CSS17] is a penalized regression scheme. With such a

scheme, one can approximate a kernel as a sum of basis functions and minimize the squared-

error loss of the intensity function with a group-lasso penalty. Although some of the goals of

previous Hawkes-process models and our model are similar, there are many key differences.

For example, [CSS17] focused on the theoretical development of Hawkes processes with in-

hibition; they did not consider spatial information. By contrast, the purpose of our model

is to investigate spatiotemporal data sets from social media and crime with a self-exciting
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Hawkes process. The theoretical guarantees of our model arise from the consistency of the

Hawkes process with the non-negative triggering matrix and kernels (which is necessary for

the cluster representation of such processes).

A multivariate spatiotemporal Hawkes process is a sequence {(ti, xi, yi, ui)}Ni=1 with N

events, where ti and (xi, yi) are spatiotemporal stamps and ui is the point-process index of

event i. Each of the U nodes is a marginal process. The conditional intensity function for

node u is

λu(t, x, y) = µu(x, y) +
∑
t>ti

Kuiug(x− xi, y − yi, t− ti) . (3.1)

The above Hawkes process assumes that each node u has a background Poisson process that

is constant in time but inhomogeneous in space with conditional intensity µu(x, y). There is

also self-excitation, as past events increase the likelihood of subsequent events. We quantify

the impact that events associated with node ui have on subsequent events of node uj with

spatiotemporal kernels and the element K(ui, uj) = Kuiuj of the triggering matrix.

3.1.1 A Parametric Model

We first propose a multivariate Hawkes process with a specific parametric form. We use

this model to generate spatiotemporal events on synthetic networks and provide a form of

“ground truth” that we can use later.

The background rate µu and the triggering kernel g for Equation eq. (3.1) are given by

g(x, y, t) = g1(t)× g2(x, y) = ω exp (−ωt)× 1

2πσ2
exp

(
−x

2 + y2

2σ2

)
,

µu(x, y) =
N∑
i=1

βuiu
2πη2T

× exp

(
−(x− xi)2 + (y − yi)2

2η2

)
.

For simplicity, we use exponential decay in time [Oga88] and a Gaussian kernel in space

[Moh14]. We let T denote the time window of a data set; Kuiu denote the mean number

of the events in process u that are triggered by each event in process ui; the quantity βuiu

denote the extent to which events in process ui contribute to the background rate for events

in process u; and σ and η, respectively, denote the standard deviations in the triggering
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kernel and background rate. The value of σ determines the spreading scale of the triggering

in space.

3.1.2 A Nonparametric Model

With the conditional intensity in Equation eq. (3.1), we estimate the triggering kernel

g(x, y, t) = g1(t)×g2(x, y) nonparametrically using histogram estimators [ML08]. We assume

that g2 is isotropic, which entails that g2(x, y) = g2(r), where r =
√
x2 + y2. We let h(r)

be the spatial triggering kernel in the radial coordinate: h(r) = 2πrg2(r). We extend the

background rate that was proposed in [FSG16] to the multivariate case and write

µu(x, y) = γuτ(x, y) =
γu
T

N∑
i=1

pii
2πd2

i

exp

(
−(x− xi)2 + (y − yi)2

2d2
i

)
, (3.2)

where γu is the background intensity of process u and pii is the probability that event i is a

background event (i.e. it is not triggered by any event). We compute di by determining the

radius of the smallest disk centered at (xi, yi) that includes at least np other events and is

at least as large as some small value ε (which represents the error in location).

Once we fit the model to spatiotemporal data, the triggering matrix K gives our inferences

for the underlying relationships between entities. For two entities u and v, the matrix element

K(u, v) indicates a mixture of temporal causality and spatial dependence between them. In

inferring latent relationships in a network, we assume that entity u is not related to v if

K(u, v) = 0. We threshold the matrix K at a certain level: we set elements that are smaller

than the threshold value to 0; and we either maintain the values of larger or equal elements

to obtain a weighted network, or we set them to 1 to produce an unweighted network. We

use K̃ to denote the thresholded matrix K. We interpret that there is no relation between

two nodes u and v if K̃(u, v) = K̃(v, u) = 0.

3.2 Model Estimation

We use an EM-type algorithm [VS08] to estimate the parameters and kernel functions of

our model. This EM-type algorithm gives an iterative method to find maximum-likelihood
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estimates of the parameters. We assume that the original model depends on unobservable

latent variables. Suppose that we have data X and want to estimate parameters Θ. One

can view the likelihood function L(Θ;X) as the marginal likelihood function of L(Θ;Y,X),

where Y is a latent variable. We call L(Θ;Y,X) the “complete-data likelihood function”

and L(Θ;X) the “incomplete-data likelihood function”. Because both Y and L(Θ;Y,X) are

random variables, we cannot estimate them directly. Therefore, we consider the following

expectation function:

Q(Θ,Θi−1) = E
[
log(L(Θ;Y,X))|X,Θi−1

]
=

∫
log(L(Θ;Y,X))f(Y |X,Θi−1)dY , (3.3)

where f(Y |X,Θi−1) is the probability density function of Y , given the data X and Θi−1. We

update parameters by solving the following equation:

Θ̂i = arg max
Θ

Q(Θ,Θi−1) .

3.2.1 Parametric Model

The log-likelihood for the parametric model defined in Equation eq. (3.1) in a spatial region

R and time window [0, T ] is

log(L(Θ;X)) =
N∑
k=1

log(λuk(tk))−
U∑
u=1

∫∫
R

∫ T

0

λu(t) dt dx dy . (3.4)

We define random variables Yij and Y b
ij using the approach from [Moh14]. If event j

triggers event i via the kernel g, then Yij = 1; otherwise, Yij = 0. The equality Y b
ij = 1

indicates that event i is triggered by event j at a background rate of µ. We define two

expectation matrices: P(i, j) = pij = E[Yij] and Pb(i, j) = pbij = E[Y b
ij]. We convert the

incomplete-data log-likelihood function in eq. (3.4) into the following complete-data log-

likelihood function:

log(L(Θ;X, Y )) =
∑
j<i

Yij log
(
Kujuig(ti − tj, xi − xj, yi − yj)

)
−

U∑
u=1

N∑
i=1

βuiu

−
U∑
u=1

N∑
i=1

Kuiu

(
1− e−w(T−ti)

)
+

N∑
i=1

N∑
j=1

Y b
ij log(µui) .
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We then calculate the expectation function using eq. (3.3) to obtain

Q(Θ) =
N∑
i=1

N∑
j=1

pbij log

(
βujui

2πη2T
exp

(
−(xi − xj)2 + (yi − yj)2

2η2

))
−

U∑
u=1

N∑
i=1

βuiu

+
∑
j<i

pij log

(
ωKujuie

−ω(ti−tj) 1

2πσ2
exp

(
−(xi − xj)2 + (yi − yj)2

2σ2

))

−
U∑
u=1

N∑
i=1

Kuiu

(
1− e−w(T−ti)

)
.

We perform the maximization step of the EM-type algorithm (a projected gradient ascent)

[LM11] directly by taking derivatives with respect to the parameters and setting them to 0.

For the expectation step, we use the “optimal” parameter values from the prior maximization

step to update the probabilities pij and pbij. By (alternately) iterating the expectation and

maximization steps, we obtain algorithm 1 for the parametric model. For initialization, we

sample Θ0, pij, and pbij uniformly at random. Note, additionally that pij = 0 for i > j.

3.2.2 Nonparametric Model

The log-likelihood function of the nonparametric model is the same as that for the parametric

model in eq. (3.4). We use a similar approach as before to derive an EM-type algorithm for

the nonparametric model. The main differences are that (1) only Yij are latent variables

and Yii = 1 signifies that event i is a background event, whereas Yji = 1 signifies that

event i is triggered by event j; and (2) we assume that the triggering kernels g1(t) and

g2(r) are piecewise constant functions. Note that the elements of the expectation matrix are

E[Yij] = P(i, j) = pij. We discretize space and time into nbins
t temporal bins and nbins

r spatial

bins, and the kernel takes a constant value in each spatiotemporal bin.

To formally present our EM-type algorithm (see algorithm 2), we borrow notation from

[FSG16]. Let Ck denote the set of event pairs (i, j) for which tj − ti belongs to the kth

temporal bin, Dk denote the set of event pairs (i, j) for which rij (the distance between

nodes i and j) belongs to the kth spatial bin, Nu denote the number of events that include

node u, the parameter ∆tk denote the size of the kth temporal bin, and ∆rk denote the size

of the kth spatial bin.
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Algorithm 1 EM-type Algorithm for the Parametric Spatiotemporal Hawkes Model

1: Inputs: point process: {(ui, ti, xi, yi)}Ni=1; initial guesses for parameters: Θ(0) =(
{K(0)

uv }Uu,v=1, {β(0)
uv }Uu,v=1, σ

(0), ω(0)
)

and {p(0)
ij }Ni,j=1, {pb,(0)

ij }Ni,j=1; termination threshold: ε.

2: Outputs: model parameters Θ =
(
{Kuv}Uu,v=1, {βuv}Uu,v=1, σ, ω

)
.

3: Initialize δ = 1 and k = 0.

4: while δ > ε do

5: Let η2,(k) and σ2,(k) be the value of η2 and σ2 at the kth iteration.

6: Expectation step: for i, j ∈ {1, 2, · · · , N},
7: p

(k)
ij =

(
Kujuig (ti − tj, xi − xj, yi − yj)

) /
λ (xi, yi, ti) .

8: p
b,(k)
ij = β

(k)
ujui exp

(
− (xj−xi)2+(yj−yi)2

2η2,(k)

)/(
2πη2,(k)Tλ(xi, yi, ti)

)
.

9: Maximization step: for u, û ∈ {1, 2, · · · , U},

10: ω(k+1) =

∑
j<i p

(k)
ij∑

j<i p
(k)
ij (ti − tj) +

∑U
u=1

∑N
i=1Kuiu(T − ti)e−ω(T−ti)

,

11: Let Nu denote the number of events in point process u; and let iul , with l ∈ {1, . . . , Nu},
index the events for process u.

12: We update

K
(k+1)
ûu =

∑Nu
l=1

∑
t
iû
l̂

<tiu
l

p
(k)

iul i
û
l̂

/∑Nû
l=1

(
1− exp

[
−w

(
T − tiû

l̂

)])
,

13: β
(k+1)
ûu =

∑Nu
l=1

∑Nû
l̂=1

p
b,(k)

iul i
û
l̂

/
Nû .

14: σ2,(k+1) =
∑N

i,j=1

(
p
b,(k)
ij + p

(k)
ij

) (
(xi − xj)2 + (yi − yj)2

)/∑N
i,j=1 2

(
p
b,(k)
ij + p

(k)
ij

)
.

15: η2,(k+1) = σ2,(k+1) .

16: δ = ‖Θ(k) −Θ(k+1)‖ .

17: k = k + 1.

18: end while
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Algorithm 2 EM-type Algorithm for the Nonparametric Spatiotemporal Hawkes Model

1: Inputs: point process: {(ui, ti, xi, yi)}Ni=1; initial guesses of parameters: {K(0)
uv }Uu,v=1 and

{p(0)
ij }Ni,j=1; termination threshold: ε.

2: Outputs: model parameters: {Kuv}Uu,v=1; triggering probability between events:

{pij}Ni,j=1; temporal triggering kernel: g1; spatial triggering kernel: g2.

3: Initialize δ = 1 and η = 0 .

4: while δ > ε do

5: Update τ η(x, y) using eq. (3.2)

6: γ
(η)
u =

∑
ui=u

p
(η)
ii

/
Z(η) , where Z(η) satisfies

∫ T
0

∫∫
R
τ η(x, y)ds dt = Z(η) on a bounded

spatial domain R for u ∈ {1, . . . , U}.
7: K

(η)
uv =

∑
ui=u

∑
uj=v

p
(η)
ij

/
Nu for u, v ∈ {1, . . . , U}.

8: g
(η)
1 (t) =

∑
i,j∈Ck p

(η)
ij

/
[∆tk

∑
i<j p

(η)
ij ] for t in the kth temporal bin.

9: h(η)(r) =
∑

i,j∈Dk p
(η)
ij

/
[∆rk

∑
i<j p

(η)
ij ] for r in the kth spatial bin. Set g

(η)
2 (r) =

h(η)(r)
/

(2πr) .

10: p
(η+1)
ij = K

(η)
uiujg

(η)
1 (tj − ti)g(η)

2 (rij) for i < j and p
(η+1)
jj = µ

(η)
uj (xj, yj).

11: Normalize p
(η+1)
ij so that

∑N
i=1 p

(η+1)
ij = 1 for any j.

12: δ = maxi,j ‖p(η+1)
ij − p(η)

ij ‖ and η = η + 1.

13: end while
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3.2.3 Simulations

To generate synthetic data for model comparisons, we need to simulate self-exciting point

processes with the conditional intensity in eq. (3.1) for each process u. We use the branching

structures [ZOV04] of self-exciting point processes to develop algorithm 3 for our simulations.

3.3 Numerical Experiments and Results

We apply our algorithms to both synthetic and real-world data sets to demonstrate the

usefulness of (1) incorporating spatial information and (2) our nonparametric approach.

We consider a synthetic data set in section 3.3.1, a social-media data set from Gowalla in

section 3.3.2, a crime-topic network data set in section 3.3.3, and a violent gang-crime data

set in section 3.3.4. Using the first three of these data sets, we compare our nonparametric

spatiotemporal Hawkes model (“Nonparametric Hawkes”) with the Bayesian Hawkes model1

from [LA14] (“Bayesian Hawkes”), the exclusively temporal Hawkes model with kernel g(t) =

ω exp(−ωt) from [FSS16] (“Temporal Hawkes”), and the parametric spatiotemporal Hawkes

model that we detailed in section 3.1.1 (“Parametric Hawkes”). We make comparisons by

examining how well the following properties are recovered when we infer a triggering matrix:

(1) symmetry and reciprocity; (2) existence of edges; and (3) community structure. We also

demonstrate the ability of both our parametric and nonparametric algorithms to infer the

triggering kernel g. Using the fourth data set (see section 3.3.4), we study a network of crime

events using a violent gang-crime data set. We examine relations between crime events and

repeated triggering patterns.

1Linderman and Adams [LA14] used a sparse log-Gaussian Cox process to model the background rate, a
logistic-normal density for the temporal kernel, an Aldous–Hoover graph prior for the existence of entries in
K, and gamma prior for the weights of those entries. In all of our experiments, we use the default hyper-
parameters and priors that come with the published code at https://github.com/slinderman/pyhawkes.
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Algorithm 3 Simulation of a Multivariate Spatiotemporal Hawkes Process

1: Inputs: time-window size: T ; spatial region: R ⊂ R2; background rate: {γu}Uu=1;

triggering matrix: {Kuv}Uu,v=1; temporal and spatial triggering kernels: g1(t), g2(x, y) .

2: Output: point process: C = {(ui, ti, xi, yi)}Ni=1 .

3: Initialize an empty set C and an empty stack Q.

4: Generate background events:

5: Draw N b
u, the number of background events of type u, from a Poisson distribution

with parameter λ = γuT for each u ≤ U .

6: Add each background event i ≤ ∑U
u=1 N

b
u, with its associated tuple (xi, yi, ti, ui), to

the set C and the stack Q, where we draw (xi, yi, ti) from the uniform spatiotemporal

distribution over the time interval [0, T ] and a bounded spatial region R.

7: Generate triggered events:

8: while Q is not empty do

9: Remove the most recently added element (xi, yi, ti, ui) from the stack Q.

10: Draw ni, the number of events triggered by event i, from a Poisson distribution with

parameter λi =
∑U

u′=1 Kuiu′ .

11: Generate events (xk, yk, tk, uk) for each k ≤ ni as follows:

12: Sample tk, (xk, yk), and uk according to g1(t− ti), g2(x− xi, y − yi), and P (uk =

ũ) =
Kuiũ∑U
v=1Kuiv

, respectively.

13: Add (xk, yk, tk, uk) to the set C.

14: if tk ≤ T then

15: Add the element (xk, yk, tk, uk) to the stack Q.

16: end if

17: end while

34



3.3.1 Synthetic Data

We first generate synthetic triggering matrices K using a weighted stochastic block model

(WSBM) [AJC14, Pei19]. We assign a network’s nodes to four sets (called “communities”)

and assign edges to adjacency-matrix blocks based on the set memberships of the nodes. Two

of the communities consist of ten nodes each, and the other two communities consist of five

nodes each. For each edge, we first draw a Bernoulli random variable to determine whether

it exists, and we then draw an exponential random variable to determine the weight of the

edge (if it exists). An edge between nodes from the same community exists with probability

0.68, and an edge between nodes from different communities exists with probability 0.2. The

decay-rate parameter for the exponential random variable in these two situations is 0.1 and

0.01, respectively. By construction, our triggering matrices are symmetric.

The triggering matrices that we generate in this way are not guaranteed to satisfy the

stability condition for Hawkes processes; this condition is that the largest-magnitude eigen-

value of K is smaller than one [DV07]. When this condition is satisfied, it is almost surely

true that each event has finitely many subsequent events as “offspring”. In our work, we

discard any simulated adjacency matrices that do not satisfy the stability condition, and we

generate a new one to replace it. (With our choices of the parameters, we discard about 65%

of the generated adjacency matrices.)

With each triggering matrix K, we use algorithm 3 to simulate a multivariate spatiotem-

poral Hawkes process with our parametric model in section 3.1.1 with ω = 0.6, σ2 = 0.3,

T = 250, S = [0, 1] × [0, 1], and a homogeneous value γu = 0.2 for all nodes u. We then

reconstruct the underlying networks and the triggering kernels from the simulated data. As

a result, Parametric Hawkes serves as a “ground-truth model”, and we expect it to have the

best performance for synthetic data, given that we use the same model to produce the data.

Symmetry and Reciprocity

As we noted in section 3.3.1, our simulated triggering matrices are symmetric, but our recon-

structed adjacency matrices generally are not symmetric. Without prior information about
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symmetry, measuring deviation from symmetry gives one way to evaluate the performance

of our inference methods. We use various reciprocity measures to quantify such deviation.

We conduct two sets of experiments. In the first set, we fix a single synthetic triggering

matrix and simulate ten multivariate spatiotemporal Hawkes point processes. We then

estimate the triggering matrix K from each point process using various methods, which

we thereby compare with each other. In the second set of experiments, instead of fixing a

single triggering matrix, we generate ten different triggering matrices using the same WSBM

model and parameters; and we simulate one point process for each triggering matrix.

There is no standard way of measuring reciprocity in a weighted network. In our cal-

culations, we use diagnostics that were proposed in [SPR13] and [AMF12]. First, as in

[SPR13], we compute the reciprocated edge weight K↔uv = min{Kuv, Kvu}, and we then

calculate a network-level reciprocity score R1 as the ratio between the total reciprocated

weight W↔ =
∑

u6=vK
↔
uv and the total weight W =

∑
u6=vKuv. That is, the “reciprocity”

is R1 := W↔/W . Second, Akoglu et al. [AMF12] proposed three edge-level measures

of reciprocity: (1) the “ratio” Rratio := min{Kuv, Kvu}/max{Kuv, Kvu}; (2) “coherence”

Rcoher = 2
√
KuvKvu/(Kuv+Kvu); and (3) “entropy” Rentropy := −ruv log2(ruv)−rvu log2(rvu),

where ruv = Kuv/(Kuv +Kvu). These last three measures of reciprocity are measured at an

edge level (as they are defined for a pair of nodes), whereas R1 is a network-level measure.

For each edge-level measure, we obtain a network-level measure by calculating the score

for each pair of nodes and then taking a mean over all pairs of nodes. Each of the above

quantities gives a score between 0 and 1, where a larger value indicates a stronger tendency

for the nodes in a network to reciprocate. In a perfectly symmetric and reciprocal network,

each of the four methods gives a value of 1.

In table 3.1, we report the mean reciprocity and the standard deviation over ten simu-

lations with the same triggering matrix. In table 3.2, we report the mean results from ten

different triggering matrices. Both spatiotemporal models give higher scores than the exclu-

sively temporal models, which is what we expected, as the temporal models discard spatial

information. According to these measures of success, the nonparametric model has the best

performance, even over the ground-truth (parametric) model that generated the data.
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Table 3.1: Reciprocity of the triggering matrices that we infer using different methods:

a nonparametric spatiotemporal Hawkes model, a temporal Hawkes model, a parametric

spatiotemporal Hawkes model, and a fully Bayesian Hawkes model. We report the mean

and standard deviation (in parentheses) over ten simulations that use the same (ground-

truth) triggering matrix.

Nonparametric Temporal Parametric Bayesian

R1 0.59 (0.05) 0.29 (0.06) 0.54 (0.03) 0.36 (0.03)

Correlation 0.84 (0.05) 0.36 (0.16) 0.79 (0.05) 0.30 (0.14)

Ratio 0.55 (0.02) 0.37 (0.11) 0.58 (0.02) 0.32 (0.02)

Coherence 0.75 (0.01) 0.63 (0.03) 0.71 (0.02) 0.68 (0.02)

Entropy 0.71 (0.01) 0.59 (0.03) 0.68 (0.02) 0.60 (0.02)

Table 3.2: Reciprocity of the triggering matrices that we infer using different methods:

a nonparametric spatiotemporal Hawkes model, a temporal Hawkes model, a parametric

spatiotemporal Hawkes model, and a fully Bayesian Hawkes model. We report the mean

and standard deviation (in parentheses) over ten simulations, each with a different (ground-

truth) triggering matrix.

Nonparametric Temporal Parametric Bayesian

R1 0.61 (0.12) 0.36 (0.12) 0.55 (0.10) 0.40 (0.05)

Correlation 0.81 (0.16) 0.48 (0.27) 0.76 (0.15) 0.23 (0.14)

Ratio 0.63 (0.04) 0.43 (0.06) 0.62 (0.03) 0.33 (0.03)

Coherence 0.78 (0.04) 0.62 (0.03) 0.72 (0.03) 0.70 (0.03)

Entropy 0.75 (0.05) 0.58 (0.03) 0.69 (0.03) 0.62 (0.04)
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Edge Reconstruction

We also evaluate the reconstruction methods based on their ability to recover the existence

of edges. This is particularly relevant if we want to know whether there is a connection

between two entities. We will discuss this application in detail using the Gowalla data set

(see section 3.3.2).

We consider an edge to exist if the corresponding weighted entry in an inferred triggering

matrix exceeds a certain threshold. For different threshold levels, we compute the numbers

of true positives (TP), false positives (FP), true negatives (TN), and false negatives (FN)

for a given ground-truth triggering matrix. We summarize our results in a receiver operating

characteristic (ROC) plot (see fig. 3.1), in which we plot the true-positive rate (TPR) (where

TPR = TP/(TP+FN)) versus the false-positive rate (FPR) (where FPR = FP/(FP+TN)).

A better inference of a triggering matrix gives a larger value of TPR for a fixed FPR.

Based on the ROC plot in fig. 3.1, we conclude that the spatiotemporal models — both the

parametric and nonparametric Hawkes models that we proposed in section 3.1 — outperform

the exclusively temporal ones. Therefore, incorporating spatial information improves the

quality of our reconstructed unweighted (i.e. binary) networks, at least according to this

measure of success. Unsurprisingly, the best results are from our parametric (ground-truth)

model. The performance of our nonparametric model is very close to that of the parametric

model, confirming its effectiveness at inferring the existence of edges.

Inferred Kernels

We report inferred kernels for our synthetic networks of the nonparametric spatiotemporal

Hawkes model, parametric spatiotemporal Hawkes model, and temporal Hawkes model in

fig. 3.2. Recall that the ground-truth kernels that we use to simulate point processes are

g1(t) = ω exp (−ωt) and h(r) = 2πrg2(r) = r
σ2 exp

(
− r2

2σ2

)
, where r2 = x2 + y2, ω = 0.6, and

σ2 = 0.3. Let ĝ1 and ĥ denote the inferred temporal and spatial kernels, respectively.

We calculate the L1 errors
∫
|g1(t)−ĝ1(t)| dt and

∫
|h(r)−ĥ(r)| dr . We report these errors

in table 3.3 and present visualizations of the inferred kernels in fig. 3.2. As expected, the
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Figure 3.1: Model comparison using synthetic networks. We show the mean ROC curves with

error bars (averaged over ten simulations, each with a different triggering matrix) on edge

reconstruction. The ROC curve of a better reconstruction should be closer to 1 for a larger

range of horizontal-axis values, such that it has a larger area under the curve (AUC), which

is equal to the probability that a uniformly-randomly chosen existing edge in a ground-truth

network has a larger weight than a uniformly-randomly chosen missing edge in the inferred

network.
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Table 3.3: The L1 errors of the inferred spatial and temporal kernels. We simulate ten point

processes with the same triggering matrix and triggering kernel. We report the mean and

standard deviation (in parentheses) of the L1 errors averaged over ten simulations that use

the same triggering kernel and matrix. Note that the exclusively temporal model does not

estimate a spatial kernel.

Nonparametric Temporal Parametric

Temporal kernel 0.07 (0.02) 0.20 (0.06) 0.02 (0.02)

Spatial kernel 0.06 (0.02) - 0.12 (0.02)

two spatiotemporal Hawkes models give more accurate kernel inference than the exclusively

temporal model. The nonparametric Hawkes model does not use any information about the

ground-truth kernels. Surprisingly, it is more accurate (in terms of the L1 error) at inferring

the spatial trigger kernel than the parametric model, whose kernel has the same parametric

form as the ground-truth kernel.

Community-Structure Recovery

We also evaluate the quality of the inferred networks based on their community structure,

in which dense sets of nodes in a network are connected sparsely to other dense sets of nodes

[POM09, FH16]. Recall that we planted a four-community structure in the synthetic trigger-

ing matrices (see section 3.3.1). We apply the community-detection methods from [AJC14]

(an inference method for a WSBM), [KDP12] (symmetric non-negative matrix factorization;

NMF), and [JBJ19, NG04, New06, MRM10] (modularity maximization2). The WSBM that

we infer for community detection is the same one that we use to construct the synthetic

adjacency matrices (see section 3.3.1). To evaluate our inferred community structure, we

use the square-root variant of normalized mutual information (NMI) [SG02] between the in-

ferred community assignment and “ground-truth” community labels. Specifically, let S1 and

2For modularity maximization, we use the implementation of a (locally greedy) Louvain-like method
(called GenLouvain) from [JBJ19] with the default resolution-parameter value of 1 and the Newman–Girvan
null model.
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Figure 3.2: Model comparison using synthetic networks: Inferred (left) temporal and (right)

spatial kernels using three different methods: Temporal Hawkes, Parametric Hawkes, and

Nonparametric Hawkes. The dashed curves are (ground-truth) kernels that we used to

generate the synthetic data.

S2 be community assignments of the U nodes to C1 and C2 communities, respectively; and

let S`k, with ` ∈ {1, 2} and k ∈ {1, 2, · · · , C`}, denote the set of nodes in the kth community

in assignment S`. The NMI between S1 and S2 is

NMI(S1, S2) =
I(S1, S2)√
H(S1)H(S2)

∈ [0, 1] ,

where I(S1, S2) =
∑C1

i=1

∑C2

j=1
|S1i∩S2j |

U
log
(
|S1i∩S2j |/U
|S1i||S2j |/U2

)
(where |J | denotes the cardinality of

the set J) and the entropy is H(S`) = −∑N`
i=1

|S`i|
N

log
(
|S`i|
N

)
(with ` ∈ {1, 2}). Intuitively,

NMI measures the amount of information that is shared by two community assignments.

If they are the same after permuting community labels, the NMI is equal to 1. A larger

NMI score implies that the inferred community assignment shares more information with

the ground-truth labels. See [TKM11] for a discussion of other approaches for comparing

different community assignments in networks.

There are numerous approaches for detecting communities in networks [FH16, POM09,

Pei19], and we use methods with readily-available code. As we show in table 3.4, all of these

community-detection methods perform better when we infer triggering matrices using both

spatial and temporal information than with exclusively temporal information. One can, of
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Table 3.4: Normalized mutual information (NMI) between the outputs of different

community-detection methods applied to the inferred networks (from four different types

of Hawkes models) and the ground-truth community structure (averaged over ten simula-

tions, each with a different triggering matrix).

Nonparametric Temporal Parametric Bayesian

Weighted SBM 0.80 0.38 0.83 0.36

Symmetric NMF 0.62 0.31 0.66 0.19

Modularity Maximization 0.64 0.47 0.71 0.28

course, repeat our experiments using other methods.

3.3.2 Gowalla Friendship Network

Gowalla is a location-based social-media platform in which users share their locations by

checking in. We use a Gowalla data set — collected in [CML11] using Gowalla’s public

API — of a “friendship” network with 196,591 users, 950,327 edges, and a total of 6,442,890

check-ins of these users between February 2009 and October 2010. The data set also includes

the latitude and longitude coordinates and the time (with a precision of one second) of each

check-in. Similar to a Facebook “friendship” network, the Gowalla friendship network is

undirected. The mean number of friends per user is 9.7, the median is 3, and the maximum

is 14, 730. We study several subnetworks in the Gowalla data set; see the end of this section

for details. We view the spatiotemporal check-ins of Gowalla users within each subnetwork

as events in a multivariate point process and infer relationships between these users.

We compare our Nonparametric Hawkes method with the Bayesian Hawkes and the

exclusively Temporal Hawkes in terms of how well our inferred edges match the Gowalla

friendships. Because a Gowalla “friendship” relationship is undirected in nature, we first

symmetrize the inferred triggering matrix (by calculating K̃ =
(
K + KT

)
/2) to obtain an

undirected network. We then calculate FPRs and TPRs in the same fashion as in section 3.3.1

using K̃’s associated “ground-truth” friendship network and generate the corresponding

ROC curves. In the ROC curves of three different cities in fig. 3.3, we obtain the best
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Figure 3.3: ROC curves of four different Hawkes models for reconstructing three Gowalla

friendship networks. We show results for Nonparametric Hawkes (blue dashed curves), Tem-

poral Hawkes (yellow dash-dotted curves), Bayesian Hawkes (red solid curves), and Para-

metric Hawkes (dotted purple curves).

results when using our nonparametric model that incorporates spatial information. In the

examined subnetworks, the mean AUCs are 0.4277 (with a standard deviation of 0.1042) for

the Temporal Hawkes method; 0.5301 (with a standard deviation of 0.0585) for the Bayesian

Hawkes method; 0.5816 (with a standard deviation of 0.0525) for the Parametric Hawkes

method; and 0.6692 (with a standard deviation of 0.0421) for our Nonparametric Hawkes

method.

Now we detail how we preprocess the Gowalla data that were collected and studied

in [CML11]. We examine data from three cities: New York City, Los Angeles, and San

Francisco. In fig. 3.4, we visualize the networks that we use in this paper.

New York City (NYC)

We study check-ins in New York City (NYC) during the period of April–October 2010. We

use a bounding box (with a north latitude of 40.92, a south latitude of 40.48, an east longitude
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of −73.70, and a west longitude of −74.26)3 to locate check-ins in NYC. We consider “active”

users, who have at least 100 check-ins during the period. To alleviate our computational

burden, we also only consider users who have at most 500 check-ins during the period to

reduce the number of users and the total number of check-ins. Our inference process requires

computing a triggering probability for each pair of events (i.e. check-ins); this results in a

full upper-triangular matrix. The number of nonzero entries in this matrix scales with the

square of the total number of events, so the memory requirement also scales quadratically

with the number of events. We perform experiments only for cases in which the total number

of events is at most 10, 000 to be able to store triggering probabilities for all pairs of events in

4-gigabyte memory. There are 5, 801 unique users with at least one check-in in NYC during

the period, and there are 101, 329check − ins in total. After removing “inactive” users (i.e.

those with strictly fewer than 100 check-ins) and overly active users (i.e. those with strictly

more than 500 check-ins), we are left with 160 users and a total of 29, 118 check-ins. We also

restrict ourselves to users in the largest connected component (LCC) of the network. This

yields 46 users and 8, 495 check-ins, on which we apply our inference methodology.

Los Angeles (LA)

We apply the same procedure as in section 3.3.2 on the check-in data for Los Angeles (LA).

The bounding box that we use for LA has a north latitude of 34.34, a south latitude of 33.70,

an east longitude of −118.16, and a west longitude of −118.67. We restrict the area of LA

to be the same as that of NYC, although LA’s geographic area is much larger than that

of NYC. After selecting only users in the LCC of the Gowalla network among active users

(with at least 150 check-ins) but not overly active (with at most 1000 check-ins) users, we

are left with 23 users and 6, 203 check-ins.

3We obtain latitude and longitude coordinates from http://www.mapdevelopers.com/geocode_

bounding_box.php.
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San Francisco (SF)

To look at a different type of example, we also examine the 1-ego network of the most popular

user (who has 14 friends) in San Francisco (SF). (A 1-ego network [UKB11] of a node is an

induced subgraph that includes a focal node — the ego — and its direct neighbors.) The

bounding box that we use for SF has a north latitude of 37.93, a south latitude of 37.64, an

east longitude of −122.28, and a west longitude of −123.17. In this 1-ego network, there are

9, 887 check-ins.

3.3.3 Crime-Topic Network

In a recent paper on crime classification, Kuang et al. [KBB17] performed topic modeling

(see [KCP15] for a review) on short narrative (i.e. text) descriptions of all crimes, with

spatial coordinates and timestamps (with a precision of one minute), that were reported to

and officially recorded by the Los Angeles Police Department (LAPD) between 1 January

2009 and 19 July 2014. The premise in their work was that crime topics, sets of words that

co-occur frequently in the same crime narrative, better reflect the ecological circumstances

of crime than official crime classifications based on legal codes. Targeting discovery of up to

twenty topics, they found six topics related to violent crime, eight topics related to property

crime, and six topics that seem to be related to deception-based crime. This classifies the

twenty crime topics into three types.

In the present case study, we extend this work by modeling the above data set as a

crime-topic network. We associate each crime topic with a node, and we infer edges based

on whether crime events of one topic trigger events of other topics. That is, we discover latent

relationships between different crime topics based on associated crime events. Inspired by

previous research on point-process models of crime events [MSB11], we model crime events

of different topics via a multivariate point process and infer connections between the crime

topics using our Nonparametric Hawkes method. To evaluate our approach, we compare

the communities that we detect in the reconstructed network with the three crime classes in

[KBB17].
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Figure 3.4: Three different friendships networks in the Gowalla data set. We compare

different network-reconstruction methods for these networks.
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Figure 3.5: Crime-topic networks generated by the Nonparametric Hawkes and Temporal

Hawkes methods colored by community assignments from modularity maximization (from

left to right): Nonparametric Hawkes in Westwood, Temporal Hawkes in Westwood, Non-

parametric Hawkes in Wingfoot, and Temporal Hawkes in Wingfoot.

Community Detection

We infer crime-topic networks directly from crime events within individual Los Angeles

neighborhoods4 using our Nonparametric Hawkes method, the Parametric Hawkes method,

and the exclusively temporal Hawkes method. We investigate the 100 neighborhoods with

the most reported crime events among all 296 neighborhoods of Los Angeles (LA). On aver-

age, there are 4, 140 crime events in the top-100 neighborhoods and 8, 750 such events in the

top-10 neighborhoods. We then apply the community-detection methods that we mentioned

in section 3.3.1 to the reconstructed networks; this assigns crime topics to communities. We

quantify the difference between these community assignments and the crime-topic classifi-

cations from [KBB17] by calculating NMI. We also visualize the crime-topic networks of

the Westwood and Wingfoot neighborhoods in fig. 3.5; they are located in West LA and

South LA, respectively. From table 3.5, we see that using spatial information combined

with a nonparametric kernel leads to the best mean NMI score among the methods that we

examine.

4We use the Zillow neighborhood boundaries from https://www.zillow.com.
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Table 3.5: Mean NMI (with one standard deviation reported in parentheses) between com-

munity assignments from several community-detection methods and the classifications from

[KBB17] in the 100 neighborhoods in Los Angeles with the most recorded crime events

between 1 January 2009 and 19 July 2014.

Nonparametric Temporal Parametric Bayesian

Symmetric NMF 0.25 (0.11) 0.12 (0.084) 0.084 (0.12) 0.12 (0.080)

Weighted SBM 0.24 (0.12) 0.085 (0.086) 0.078 (0.079) 0.076 (0.075)

3.3.4 Network of Crime Events

In the previous sections, we studied relationships between entities based on spatiotemporal

events associated with them. To examine connections between events, we now define an

event network, which is both weighted and directed, in which each event is a node and A

denotes the adjacency matrix of this network. That is, A(i, j) is the probability that event

j is triggered by event i, and A(i, i) is the probability that event i is a background event.

From this definition, we see that A is equal to the expectation matrix P from section 3.2.2.

The weight of an edge reflects a triggering effect between two events, and the direction points

from the earlier event to the later one. (Removing weights yields a directed acyclic graph.)

For example, we can build a crime-event network in which each node is a crime incident (i.e.

an event), and we estimate edges between events using our nonparametric model.

Stochastic Declustering

With an event network, a natural question is whether one can differentiate between “true”

background events and triggered events. Such differentiation using the probability pii is

called stochastic declustering [ZOV02]. To determine whether event i is a background event,

we compare pii with a uniformly random sample from the interval (0, 1). If pii is larger

than the random number, we consider this event to be from the background; otherwise, we

consider it to be triggered by other events.

We perform declustering experiments on synthetic data; we simulate ten synthetic point
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processes using a fixed triggering matrix that we generate from a WSBM. (See section 3.3.1

for details.) Recall from algorithm 3 that we retain causality information in the simulations

(i.e. which events cause which others and which events are from the background), giving

a notion of “ground truth” about the ancestors of each event. One way to measure the

quality of declustering is by comparing the inferred branching ratio [SU09] with the one

from the ground-truth data. The branching ratio is defined as 1 − Nb/N , where Nb is the

number of background events. However, the difference in branching ratios itself typically does

not completely reflect reconstruction errors. For example, in an extreme case, stochastic

declustering can erroneously misclassify some number of background events as triggered

ones and the same number of triggered events erroneously as background ones, although

the branching ratio is the same as the true branching ratio in this scenario. To resolve this

problem, we view declustering as a binary classification problem that assigns events to be

either background or triggered events. We use measurements such as recall and precision

to evaluate our declustering results. Recall that “recall” is the ratio between the number of

background events that are correctly recovered by the declustering methods (i.e. the true

positives) to the total number of background events; and “precision” is the ratio between

the number of true positives to the number of events that are labeled as background events

by stochastic declustering. From the results in table 3.6, we see that the Temporal Hawkes

method performs worse than the Nonparametric Hawkes and Parametric Hawkes methods.

Our Nonparametric Hawkes method has the best recall and precision (with the smallest

variations as well), and the Parametric Hawkes method has the smallest branching-ratio

error.

Motif Analysis

Declustering methods can help differentiate between the background and triggered events

in an event network. To further examine spatiotemporal dynamics, we consider causality

information between events. Similar to a relational-event model [But08], one can obtain

causality information from the matrix P, because pij is the probability that event j is trig-

gered by event i. We focus on repeated patterns to obtain information about the local causal
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Table 3.6: Comparison of our stochastic declustering results for the Nonparametric Hawkes,

Parametric Hawkes, and Temporal Hawkes methods using synthetic point-process data with

networks from a WSBM (see section 3.3.1) and background labels from the simulation from

algorithm 3. (We do not include results for Bayesian Hawkes, because it does not provide P

directly.) We report the mean and the standard deviation (in parentheses) of the branching-

ratio error, precision, and recall over ten simulations (which we do for ten point processes

with the same triggering kernels and matrix). For each simulation, each calculation is the

mean over 20 runs of stochastic declustering.

Nonparametric Parametric Temporal

Branching-ratio error 0.039 (0.0050) 0.01 (0.011) 0.022 (0.019)

Recall 0.75 (0.0098) 0.65 (0.027) 0.60 (0.035)

Precision 0.70 (0.0082) 0.64 (0.0093) 0.59 (0.0086)

structure. Specifically, we examine network motifs [MSI02], which are recurrent (and often

statistically significant) patterns in a network.

We find that motif analysis is insightful for studying gang-crime event networks. Gang

crimes are often characterized by retaliations (triggered crime events) between rivalry gangs;

this can lead to a series of tit-for-tat reciprocal crimes. To find significant gang retaliation

patterns, we use a gang-crime data set (provided by the LAPD) from 2014–2015 with 4,158

events in Los Angeles. Using these data, we generate an event network with our Nonpara-

metric Hawkes method. We then threshold the network, by keeping edges whose weight

is at least 0.1 and then binarizing them, so that the edges are unweighted. We use the

motif-detection method and code from [MSI02], including their null model.5

We find, for thresholds ranging from 0.5 to 0.001, that a three-node feedforward-loop

motif [MA03] occurs more significantly than by chance (with z-scores that are larger than

5For each of our networks, we produce 100 “randomized” networks. To produce one such network, we use
the default edge-swapping approach from [MSI02]. This entails making several random swaps equal to about
100–200 times the number of edges. For each node in a network, we require that the randomized network
preserves its numbers of in-edges, out-edges, and bidirectional edges.
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Figure 3.6: All possible three-node motifs for a network of events in the form of a directed

acyclic graph (DAG). The DAG structure arises from the temporal information in the events.

We highlight the nodes in the feedforward-loop motif (D) in red.

2) in both the city-wide data set and in the South LA6 a subset (which consists of 1,912

events) of the data set. Davies and Marchione [DM15] found that the same three-node

motif is significant in networks that they constructed (using different methods from ours

both for network construction and motif detection) using data sets from maritime piracy

and residential burglaries.

We focus on the South LA area because it is the center of a gang intervention program

[BSY17]. Establishing which causal structures are statistically significant has important

implications for countering gang violence, and a fast response to a gang crime may reduce

the potential that it triggers a future retaliation. Knowing that feedforward-loop network

motifs occur at rates that are larger than chance suggests that disrupting retaliation may

require an assessment of trade-offs in how to allocate intervention resources. For example,

in a simple triggering chain (see fig. 3.6 C), one can expect that intervention following an

initial triggering event will have a direct effect on the second event and an indirect effect on

the third event, although the effect on the third event may be attenuated by the intervening

event. By contrast, we expect that intervention following the first event in the feedforward-

loop motif (see fig. 3.6 D) will have a direct effect on the second event and both a direct and

indirect effect on the third event. The third event may be more likely to be disrupted given

6We use the term “South LA” to designate a specific area of Los Angeles that is defined in a recent Gang
Reduction and Youth Development (GRYD) report [BSY17].
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the feedforward structure and intervention following the first event than would be the case

with direct intervention following only the second event.

3.4 Conclusions and Discussion

In this chapter, we studied the role of spatial information and nonparametric techniques in

network reconstruction. We used point-process models to infer latent networks from synthetic

and real-world spatiotemporal data sets. We then applied tools from network analysis to

examine the inferred networks.

As we have illustrated, it is very important to incorporate spatial information in network

reconstruction. However, using such information effectively requires making a good choice

of spatiotemporal triggering kernels. We achieved this using a nonparametric approach.

Through experiments on synthetic data sets, we showed that our nonparametric Hawkes

method is capable of doing a good job of successfully recovering spatial and temporal trig-

gering kernels. Moreover, our approach can infer a network structure that better recovers —

compared to other network-reconstruction methods that we studied — symmetry and reci-

procity, edge reconstruction, and community structure. Through experiments on real-world

data sets, we illustrated that our approach yields meaningful inferred networks, in the sense

that they have large positive correlations with some metadata.

Naturally, our network-reconstruction method is not without limitations. It uses O(U2)

parameters for U nodes. To avoid underfitting, it requires a large number of observed events.

The computational complexity and memory requirement scale at least quadratically with the

number of events, so the current EM-type algorithm is not ideal for analyzing large data

sets. Therefore, in the next chapter, we develop a novel approach to improve our inference

method for network reconstruction, especially for large data sets.
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CHAPTER 4

Fast Estimation of Multivariate Hawkes Processes

Much of recent research on spatiotemporal (ST) point processes has been fueled by advances

in the nonparametric estimation of Hawkes processes, and in particular by the landmark work

of Marsan and Lengliné [ML08], who detailed a method for estimating the triggering kernel

in a ST-Hawkes process by assuming the triggering density to be a step function and then

estimating the step heights via maximum likelihood estimation (MLE). Such nonparametric

estimation methods allow the triggering density to be estimated without assuming a partic-

ular parametric form which may be subject to misspecification or over-fitting, which can be

very serious problems, especially in social science applications [YLB19]. Instead, the data

drive the estimation of the triggering density, and this is especially attractive to use with the

large data sets that are increasingly becoming available in applications. Unfortunately, how-

ever, a major limitation of current nonparametric estimation methods is their computational

complexity and lack of speed, as existing methods are mainly based on maximum likelihood

estimation (MLE) [Rei18b], or variants such as EM-type algorithms [VS08, ML08], which are

typically non-convex problems without closed-form solutions. For applications to crimes or

to social media, for instance, catalogs of millions of ST events are often the subject of study,

and each calculation of the likelihood function with N events requires at least O(N2) time.

In such situations, the estimation of the triggering density using existing methods can be

infeasible. As a result, it is important to develop better alternatives to current MLE-based

methods [Sch18].

Recent developments in the nonparametric estimation of the Hawkes process provide

new insights for this problem, including an analytic method for computing the MLE of the

triggering density in the special case where the adjacency matrix is invertible [SGH18], and
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generalized moments methods (GMM) for the estimation of the triggering matrix [ABG17].

However, several limitations prevent us from applying them directly to multivariate ST-

Hawkes processes. The analytic MLE method in [SGH18] can only be applied to the uni-

variate case while the GMM method for the temporal process cannot estimate the triggering

kernels. In this chapter, we propose a new, highly computationally efficient, scalable non-

parametric estimator for ST-Hawkes processes, based on a blend of these recent ideas with

modern advances in the regularization and inversion of sparse matrices. There are two ma-

jor ingredients. The first is the analytic derivation of the likelihood-based estimation, which

directly computes the exact maximum likelihood estimation of the nonparametric triggering

density. We develop it for the multivariate case and add regularization to improve stabil-

ity and robustness. The second is the moment-based method for the background rate and

triggering matrix estimation, which is extended here for the spatiotemporal case.

The contributions of this chapter are three-fold. First of all, we extend the analytic

formula for the MLE of the step heights in the triggering density [SGH18] to the multivariate

ST case and greatly improve the stability of the resulting estimator using regularization. We

next extend the cumulant-based estimators of [ABG17] to the multivariate ST case and

derive GMM estimators of the triggering matrix in this context. Finally, we combine the

MLE and GMM estimators to obtain a scalable, consistent and efficient estimator and show

that the proposed estimator has a linear computation complexity in the number of events N ,

allowing one to explore applications to large data sets with millions of events, in which our

method outperforms current state-of-the-art methods in terms of both accuracy in network

reconstruction and computation time.

The structure of this chapter is as follows. We first give a detailed review of inference

methods for Hawkes processes in section 4.1. In section 4.2, we develop the proposed method

and show consistency and computational complexity. The performance of this estimator is

inspected using a variety of synthetic and real social-network data sets in section 4.4. Finally,

we conclude and discuss important directions for future research in section 4.5.
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4.1 Multivariate Hawkes Processes and Nonparametric Estima-

tions

In this section, we review the definition of multivariate Hawkes processes and previous papers

on inference methods, focusing especially on MLE and GMM. Recall that for a multivariate

temporal Hawkes process, each subprocess Nu has conditional intensity

λu(t) = µu +
∑
tk<t

Kuku guk(t− tk) , (4.1)

and the N points of the entire process may conveniently be labeled (tk, uk), for k = 1, ..., N ,

where tk indicates the time of point k, and uk indicates the index dictating to which sub-

process the point belongs.

In the nonparametric estimation of g, one typically assumes that each subprocess has the

same piecewise-constant triggering density guk(t) = g(t) which controls how quickly the rate

λu(t) returns to its baseline level µu after an event occurs. One can estimate the parameters

µ = (µu)u, K, and the triggering densities g via MLE [Oga78] or minimize a regression loss

[CSS17]. Here we focus on the MLE approach. The log-likelihood function of the intensity

function eq. (4.1) becomes

l =
N∑
k=1

log(λuk(tk))−
U∑
u=1

∫ T

0

λudt . (4.2)

One can directly maximize this function using off-the-shelf optimization methods or the

EM-type algorithm proposed in [VS08]. See [YLB19] for details about the derivation of the

EM-type algorithm for ST-Hawkes processes. Another MLE-based approach, based on their

analytic derivation of MLE, is first proposed in [SGH18] for the univariate case (U = 1).

They found that one can solve the MLE problem via solving linear equations in g and two

additional linear equations for the background rate µ and productivity K. However, for the

multivariate case, the coefficients of these equations depend on the triggering matrix K and

it is no longer a linear system. Also, there is the problem of stability when the matrix of the

linear system is singular or nearly singular. The inversion of the matrix is a major problem

[SGH18] in its implementation in practice, and in section 4.3 we present the solution to this

problem via regularization.
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Another kind of estimation method [ABG17, BM16] is based on GMM using cumulants of

Hawkes processes. Define R = (I−KT )−1, where I is the identity matrix. As an alternative

to the moments, the first, second and third cumulant of Hawkes process Λ, C and Γ have

the following relationships [ABG17] with R

Λ(i) = Λi =
U∑

m=1

Rimµm , (4.3)

C(i, j) = Cij =
d∑

m=1

ΛmRimRjm , (4.4)

Γ(i, j, k) = Γijk =
d∑

m=1

(RimRjmCkm +RimCjmRkm + CimRjmRkm − 2ΛmRimRjmRkm) .

(4.5)

Here Rim = R(i,m). Although the definition and numerical estimations of the cumulants

are different for the ST case, the above formulas still hold because the spatial information

can be viewed as “marks” of the temporal point process.

The idea of GMM is to estimate the cumulants numerically from the data and then

obtain the triggering matrix KT = I −R−1 by minimizing the approximation error of the

cumulants with some scaling coefficient κ (see more details in section 4.2.2)

L(R) = (1− κ)‖R�2ĈT + 2(R� (Ĉ −RL̂))RT − Γ̂c‖2
2 + κ‖RL̂RT − Ĉ‖2

2 . (4.6)

Here � is the Hadamard product and Γ̂c = Γ̂(i, i, k). Given the estimated R̃, we also have

µ̃ = R̃−1Λ̃ from the cumulants eq. (4.3). This provides a fast estimation procedure for both

µ and K. But it does not estimate the triggering density, which plays an important role in

the dynamics of the point process. In applications such as stochastic declustering [ZOV02],

it is necessary to estimate triggering densities from the data. Some other moment-based

methods [BM16] can estimate both of them at the cost of high computation time.
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4.2 Proposed Methods for Multivariate ST-Hawkes

In this section, we extend the previous discussion to the case of multivariate ST-Hawkes

processes and derive a fast estimation method via extending and combining the two ap-

proaches (MLE and GMM) discussed above. We recommend interested readers to check

[Rei18b, SBG14] which provide comprehensive reviews of ST point processes. The focus

of our method is to reduce the computational burden of the inference as well as improve

the model estimation accuracy. Our motivation is from the application of network recon-

struction. Previous studies have shown the ability of Hawkes process models to uncover the

underlying connections between nodes (such as social media users [YLB19], neurons [CSS17],

email users [FSS16] and crime [LA14]). It is essential to develop a scalable method because

one often encounters data sets with thousands of nodes (large U) and millions of associated

ST events (very large N).

We consider a simple multivariate ST-Hawkes process with a spatially isotropic triggering

density g(x, y, t) – i.e. g(x, y, t) = g(r, t), r =
√
x2 + y2 (g is only a function of time and

distance). We assume that g(t) is the same for all subprocesses for simplicity. It can be easily

extended to the general case via adding more variables and equations on g like eq. (4.14).

For each subprocess u = 1, ..., U , the conditional intensity characterizing the multivariate

ST-Hawkes process is assumed to have the form

λu(x, y) = µu(x, y) +
∑
tk<t

Kukug(dk, t− tk) , (4.7)

where (tk, xk, yk, uk), for k = 1, ..., N , denotes the N observed events in R × [0, T ] and

dk =
√

(xk − x)2 + (yk − y)2. Current MLE-based methods such as the EM-type algorithm

[VS08, YLB19] are not well-suited for large-scale problems due to its O(N3) computational

complexity [ABG17]. Also, in many applications, it is difficult to determine the appropriate

triggering density g(r, t). Our proposed method has a linear O(N) complexity and learns

triggering densities directly from data. Specifically, we estimate g(r, t) nonparametrically

from MLE andK, µ from GMM. This combined method gives a fast and complete estimation

of the ST-Hawkes process.
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4.2.1 ST Triggering Density Estimation

We extend the analytic method, first proposed in [SGH18] for the univariate temporal case,

to the case of multivariate ST-Hawkes processes.

First, we review the derivation of analytic estimates of the triggering function for the

multivariate temporal Hawkes process eq. (4.1). WE Assume that µ and K are given or

well-estimated by other means, and the only variables here to be estimated are the heights

of the step function comprising the triggering density g(t) =
∑Nt

m=1 gm1t∈(τm,τm+1) with Nt

grids Um = {t | t ∈ (τm, τm+1)},m = 1, ..., Nt dividing the time window [0, T ]. One seeks to

obtain step heights of the triggering density via maximizing the log-likelihood function. The

log-likelihood function (from eq. (4.2))

l =
N∑
k=1

log(λuk(tk))−
U∑
u=1

(µuT +
Nt∑
m=1

gmδm

N∑
k=1

Kuku) (4.8)

is concave with respect to {gm}m. We take the derivative with respect to gm and set it to

zero:

0 =
∂l

∂gm
=

∑
(tj−ti)∈Um

Kuiuj

λuj(tj)
−

U∑
u=1

N∑
i=1

Kuiuδm , (4.9)

where δm = τm+1 − τm. Using the notation λ = {λuj(tj)}j, A(k, j) =
∑

tj−ti∈Uk Kuiuj ,

β = {gm}m and b = {∑U
u=1

∑N
i=1Kuiuδm}m, we obtain a matrix representation of eq. (4.9)

as

0 = A(1/λ)− b . (4.10)

Here 1/λ is the element-wise reciprocal. The solution of eq. (4.10) yields an estimate of λ.

Further, eq. (4.1) can be rewritten as

λ = µ+ATβ . (4.11)

Solving this equation using the estimation of λ from eq. (4.10) provides the maximum like-

lihood estimation of β.

We now focus on the multivariate ST-Hawkes process with a piecewise-constant ST trig-

gering density g(r, t). We simply assume a uniform background rate µu(x, y) = µu. For each
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subprocess u = 1, ..., U , the conditional intensity satisfies

λu(x, y, t) = µu +
∑
tk<t

Kuku

Nt∑
m=1

Nr∑
n=1

gmn1tk−t∈(τm,τm+1)1dk∈(rn,rn+1) . (4.12)

Here dk =
√

(xk − x)2 + (yk − y)2 and g is defined on a 2-D Nr×Nt grids with Vn = {dk | dk ∈
(rn, rn+1)}, n = 1, ..., Nr dividing the space R and Um = {tk − t | tk − t ∈ (τm, τm+1)},m =

1, ..., Nt dividing the time window [0, T ]. The log-likelihood function of this intensity function

is [Sch13]

l =
N∑
k=1

log(λuk(xk, yk, tk))−
U∑
u=1

∫∫
R

∫ T

0

λu(x, y, t)dt dx dy

=
N∑
k=1

log(λuk(xk, yk, tk))−
U∑
u=1

(µu|R|T +
∑
m

∑
n

gmnδm4n

N∑
k=1

Kuku) , (4.13)

where |R| is the area of R, δm = τm+1 − τm and 4n = π(r2
n+1 − r2

n).

Assuming that µ and K are given, the only variables here are {gmn}m,n. Maximizing the

log likelihood function will give us the estimation of the triggering density g. Since eq. (4.13)

is concave, we take the derivative of equation with respect to gmn and set it to zero:

0 =
∂l

∂gmn
=

∑
(tj−ti)∈Um,dij∈Vn

Kuiuj

λuj(xj, yj, tj)
−

U∑
u=1

N∑
i=1

Kuiuδm4n , (4.14)

with dij =
√

(xi − xj)2 + (yi − yj)2. Similar to the temporal case, we define λ = {λuj(xj, yj, tj)}j,
A(k(m,n), j) =

∑
tj−ti∈Um,dij∈Vn Kuiuj , β = (gmn)k(m,n) and b = (

∑U
u=1

∑N
i=1Kuiuδm4n)k(m,n)

with the index k(m,n) = Nr(m − 1) + n. Then we obtain the matrix representation of

eq. (4.14) and eq. (4.12) as

0 = A(1/λ)− b , (4.15)

λ = µ+ATβ . (4.16)

Finally we can estimate β via solving the above linear equations separately.

4.2.2 Triggering Matrix Estimation

In previous sections, we estimate the triggering density with the assumption that both µ

and K are given. In the univariate case, one can remove this assumption by adding two
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additional linear equations [SGH18]. However, in the multivariate case, because matrix A is

depend on the matrix K, solving µ, K and g simultaneously is no longer a linear problem.

In order to solve this problem, we extend the cumulants eqs. (4.3), (4.4) and (4.19) to the

ST case for a fast estimation of µ and K. For a ST-Hawkes process with U sub-processes,

we define its first, second and third cumulant as [DV07]

Λidtdxdy = E(dN i
t,x,y) , (4.17)

Cijdtdxdy =

∫
τ,a,b∈R3

(E(dN i
t,x,ydN

j
t+τ,x+a,y+b − E(dN i

t,x,y)E(dN j
t+τ,x+a,y+b) , (4.18)

Γijkdtdxdy =

∫
τ ′,a′,b′∈R3

∫
τ,a,b∈R3

(E(dN i
t,x,ydN

j
t+τ,x+a,y+bdN

k
t+τ ′,x+a′,y+b′)

+ 2E(dN i
t,x,y)E(dN j

t+τ,x+a,y+b)E(dNk
t+τ ′,x+a′,y+b′)

− E(dN i
t,x,ydN

j
t+τ,x+a,y+b)E(dNk

t+τ ′,x+a′,y+b′)

− E(dN i
t,x,ydN

k
t+τ,x+a,y+b)E(dN j

t+τ ′,x+a′,y+b′)

− E(dN j
t+τ,x+a,y+bdN

k
t+τ ′,x+a′,y+b′)E(dN i

t,x,y)) . (4.19)

Here 1 ≤ i, j, k ≤ U and τ , a and b are the variables of integration corresponding to t, x and

y.

Cumulants can be numerically estimated from the ST events from each subprocess Zi =

(tk, xk, yk)k, i = 1, ..., U on the ST bounded area R × [0, T ]. Here we simply assume that R

is a rectangular with length X and width Y . We obtain the following estimation formulas

for eqs. (4.17) to (4.19),

Λ̂i =
1

TXY

∑
τ,a,b∈Zi

=
N i
T,X,Y

TXY
, (4.20)

Ĉij =
1

TXY

∑
τ,a,b∈Zi

(N j

a+X̃,b+Ỹ ,τ+H
−N j

a−X̃,b−Ỹ ,τ−H − 8X̃Ỹ HΛ̂j) , (4.21)
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Γ̂ijk =
1

TXY

∑
τ,a,b∈Zi

(N j

a+X̃,b+Ỹ ,τ+H
−N j

a−X̃,b−Ỹ ,τ−H − 8X̃Ỹ HΛ̂j)×

(Nk
a+X̃,b+Ỹ ,τ+H

−Nk
a−X̃,b−Ỹ ,τ−H − 8X̃Ỹ HΛ̂k)

− Λ̂i

TXY

∑
τ ′,a′,b′∈Zk

∑
τ,a,b∈Zj

(2H − |τ − τ ′|)+(2X̃ − |a− a′|)+(2Ỹ − |b− b′|)+

+ 64(HX̃Ỹ )2Λ̂iΛ̂jΛ̂k , (4.22)

via numerical integration approximations of the cumulants on [−X̃, X̃]× [−Ỹ , Ỹ ]× [−H,H]

assuming that the support of the triggering density is within this region (see the Appendix

B.3 in [ABG17] for more details). One also needs to symmetrize the approximated cumulants

via (Ĉij + Ĉji)/2 and (2Γ̂iji + Γ̂jii)/3 because cumulants satisfy Γiji = Γiij and Cij = Cji.

Finally, we can plug the approximated cumulants into eq. (4.6) to estimate µ and K. The

error function in eq. (4.6) is a non-convex polynomial and similar to the loss function of a

multilayer neural network. As a result, stochastic gradient descend (SGD) with acceleration

(e.g. Adam [KB15] or AdaGrad [DHS11]) can be used to minimize the error function. The

normalization term κ is κ =
‖Γ̂c‖22

‖Ĉ‖22+‖Γ̂c‖22
based on the theory of GMM [ABG17]. The ratio

between the support of the triggering density and the ST bounded area R× [0, T ] matters for

the consistency of GMM [ABG17]. Usually for specific applications such as social-network

reconstruction, R × [0, T ] is much larger than the square of the support of the triggering

density, which guarantees the consistency of GMM estimation.

4.2.3 Consistency Guarantee

The consistency of MLE [Oga78] or GMM estimates [ABG17] is guaranteed by general

theoretical results. Here we show that our proposed method, as a combination of GMM and

MLE, is also consistent.

First, in [Oga78], Ogata showed the MLE of the full vector of parameters is, under quite

general conditions, consistent. Also, if only some of the parameters are to be estimated and

others, such as in this instanceK and µ, are known exactly, then again one may consider the

parameter vector to be only those parameters being estimated, and again [Oga78] showed
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the estimated ones will be consistent. However, we are considering the case where K and µ

are not known but are estimated consistently via GMM, and then the other parameters are

estimated by MLE. To the best of our knowledge, this case has not been studied previously,

and the result does not immediately follow from the theorems in [Oga78]. We show that β̂

inherits the property of consistency from the MLE and GMM estimators, under the same

assumptions as in [ABG17, Oga78].

Let Θ denote the full vector of parameters, including K and µ. Let Θ0 denote the true

value of Θ. Let U denote a neighborhood of Θ0. Let K ′ and µ′ denote the GMM estimates

of K and µ. Let Θ = (K,µ,β), where β is the vector of other parameters estimated by

MLE. Let K̂, µ̂, and β̂ be the MLEs of these parameters.

Theorem 1. Assuming the same regularity conditions used in the proofs of consistency of

the MLE and GMM estimator in [ABG17] and [Oga78], the combined estimator β̂ → β in

probability as T →∞.

Proof. Let L denote the log-likelihood divided by T . Thus L depends on T but we will

suppress this here. Let Θ1 denote the supremum over U c of L, which is the MLE outside of

U .

We are given that (K ′, µ′)→ (K, µ) in probability as T →∞. Thus, (K ′, µ′) are in U

with probability going to 1 as T →∞.

We have L(Θ1)→ E(L(Θ1)) and L(Θ0)→ E(L(Θ0)), where this convergence is in prob-

ability as T → ∞ and is uniform in Θ. This follows from the same logic as in the proof of

Theorem 2 of [Oga78].

Similarly, following exactly as in the proof on p253 of [Oga78], we have E(L(Θ0)) >

E(L(Θ1)) and for sufficiently large T , there exists ε > 0 such that |E(L(Θ))−supΘ/∈U E(L(Θ))| >
ε/2. This follows from the assumptions in [Oga78], particularly the assumption that λ is

uniformly bounded away from 0.

Therefore, since (K ′, µ′) are in U as T →∞, for sufficiently large T , we have E(L(Θ0))

and therefore L(Θ0) is also maximized within U with probability going to 1. More specifically,
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for any ε > 0, there is δ > 0 and sufficiently large T so that

P (β̂ /∈ U) = P{sup
Uc

L(Θ) ≥ sup
U
L(Θ)}

≤ P{L(Θ1) ≥ L(Θ0)}

≤ P{L(Θ1)− E(L(Θ1)) ≥ δ}+ P{E(L(Θ1))− E(L(Θ0)) > −2δ}

+P{E(L(Θ0))− L(Θ0) ≥ δ}

≤ ε/2 + 0 + ε/2

= ε .

4.2.4 Computational Complexity

The state-of-the-art cumulants-based method (NPHC) [ABG17] has a complexity ofO(NU2+

NiterU
3), where Niter is the number of iterations for SGD (around 200 for our applications).

Our method has a similar complexity O(NU2 +NiterU
3 +(NrNt)

3) as NPHC since the calcu-

lation time of spatiotemporal cumulants is just a constant multiple of temporal cumulants.

The additional calculation for triggering density estimation is usually neglectable because

Nr, Nt are small constants (we use 50 in experiments) and A is usually sparse. For an EM-

type algorithm (EM) [LM11], the complexity is O(NiterN
3U2) [ABG17]. With some clever

implementation or in some special cases (e.g. temporal Hawkes process with an exponential

triggering density), one can reduce this to O(N2) or better.

Our method outperforms EM when N � U . Moreover, in many cases, we find that our

method is even faster than NPHC. This seems impossible since our method needs to process

spatial data in addition to the timestamp. However, for ST data, many event pairs are close in

time (within the support of the temporal triggering density) while spatially separated from

each other (outside the support of the spatial triggering density). Temporal-only models

such as NPHC will calculate these events pairs during the estimation of cumulants. This

might cause false positives in causal inference. Our method, on the other hand, uses spatial

information to exclude these events. It seems that, for a majority of data sets we examined,
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this effect is very significant and our method can be much faster than NPHC.

4.3 Regularization for Linear System

As noted in [SGH18], in many applications, the matrix A in eqs. (4.15) and (4.16) is often

ill-conditioned or singular, even with a careful selection of the 2-D grids Um and Vn . Further,

even when it can be obtained, the direct inverse A−1b (or pseudo inverse (ATA)−1ATb) can

give unstable results due to overfitting. To solve linear equations stably and robustly, we use

regularization procedures to find meaningful approximate solutions. Regularization methods

are widely used in mathematical inverse problems since many of the inverse problems are

ill-posed. Here one often considers a linear case Ku = f , where K is a linear operator and

the inverse K−1 is unbounded. In this case, it is necessary to change the original problem K

to a more stable one with the help of regularization. The regularization can be both linear

or nonlinear such as total-variation methods [LZO10].

More specifically, we propose the use of the Tikhonov regularization method [Neu98] with

its analytic solution. For example, with the regularization, solving eq. (4.15) becomes this

minimization problem

min
x
‖Ax− b‖2 + ‖Γx‖2 , (4.23)

for a Tikhonov matrix Γ = αI. This is essentially the L2 regularization, giving preference

to solutions with smaller norms. L1 regularization will typically give a sparse solution with

many zero entities. It does not work here due to the fact that each element in x = 1/λ is

positive and nonzero. Further one could use other Tikhonov matrices to guarantee smooth-

ness if the underlying vector is believed to be mostly continuous. Instead of this, for the

estimation of the triggering density, we smooth g with the post-processing approach below.

We assume that the triggering density is separable in space and time [Oga98]. Note that

this assumption is not essential as we can directly obtain the spatiotemporal kernel g(r, t)

from β. It is mainly for comparison with previous methods [FSS16, YLB19] assuming this.

As a result, we can decompose the triggering density g(r, t) into the spatial triggering density

f(r) and temporal triggering density h(t) (i.e. g(r, t) = f(r)h(t)). If we reshape the NrNt-
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by-1 vector β as a Nr-by-Nt matrix B, then estimating the spatial and temporal triggering

density becomes the following unmixing problem (decomposing the triggering density into

densities in space and time):

min
f≥0,h≥0

‖B − fh‖2 . (4.24)

HereB is a nonnegative matrix based on the definition of g(r, t) (triggering density function),

f is a nonnegative Nr-by-1 vector and h is a nonnegative 1-by-Nt vector. This is, in fact,

a rank-one nonnegative matrix factorization (NMF) [LS99] B = fh and we solve it using

singular value decomposition (SVD). Finally, we use a Gaussian moving average filter to

smooth f and h to obtain the estimation of piecewise-constant triggering densities. This is

based on our assumption that g is smooth and it can reduce the variance of our estimation.

Our numerical experiments show that the regularization procedure described above leads to

a stable and robust estimation for synthetic and real-world data sets.

4.4 Numerical Examples

In this section, we compare our method, which is called ST-Hawkes cumulants (STHC)

throughout this section, with other popular estimation methods for multivariate Hawkes

processes on various data sets. We consider both simulation data and real-world social-

network data. First, we simulate multiple synthetic data sets with different sizes, triggering

matrices and triggering densities. These data sets with ground-truth information allow us to

examine different methods in detail. Then for real-world applications, we further evaluate the

performance of these methods on the task of network reconstruction for multiple location-

based social-network check-in data sets. Moreover, our method directly estimates spatial

and temporal triggering densities, which provides a useful tool for the study of ST dynamics

among these check-in events. We conduct all of the experiments on a single machine with a

NVIDIA 970 GPU (4 GB memory), 4-core Intel i7-6700K CPU (4.20 GHz), and 16 GB of

RAM.
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4.4.1 Synthetic Data

Our synthetic data sets are generated using algorithm 3 in chapter 3, which is based on the

clustering representation of the Hawkes process. We simulate various ST-Hawkes processes

and use them to evaluate our method (STHC), the state-of-the-art temporal cumulants

method (NPHC) and the EM-type algorithm (EM). The details about the simulation and

preprocessing are described at the end of this section. Here we define some error measure-

ments used in this section.

• Relative error between the estimated triggering matrix K̂ and the ground-truth matrix

K:

RelErr(K, K̂) =
1

U2

∑
u,v

(
|Kuv − K̂uv|
|Kuv|

1Kuv 6=0 + |K̂uv|1Kuv=0) .

• Mean squared error (MSE) between the estimated triggering densities (temporal ĥ(t),

spatial f̂(r) and combined ĝ(r, t)) and the ground-truth triggering densities (temporal

h(t), spatial f(r) and combined g(r, t)):

MSEr =
1

Nr

Nr∑
i=1

(fi−f̂i)2, MSEt =
1

Nt

Nt∑
i=1

(hi−ĥi)2, MSEβ =
1

NrNt

Nr∑
i=1

Nt∑
j=1

(gij−ĝij)2 .

Here ĝij = B(i, j) is the discrete estimation of the triggering density on a 2-D grid of size

50 × 50 and gij is the ground-truth value of the triggering density on the grid. ĥi = ĥ(i)

and f̂i = f̂(i) are from the NMF decomposition of B, and hi = h(i) and fi = f(i) are

ground-truth values of the temporal and spatial triggering densities on the grid accordingly.

Triggering Density estimation

We first compare our methods with EM in terms of the triggering density estimation accuracy

(NPHC does not estimate triggering densities). The simulation data with 2,587 events are

from a ST-Hawkes process with U = 1, exponential triggering density in time and Gaussian

in space. We get a good estimation of the triggering density f(r) (MSEr ≈ 0.001662),

h(t) (MSEt ≈ 0.02876) in fig. 4.1 and the overall estimation for β = (gmn)k(m,n) (MSEβ ≈
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Figure 4.1: The estimation results of STHC on U = 1 data. Ground-truth spatial triggering

density f(r) as red triangles and estimated triggering density as blue circles (left). Temporal

triggering density h(t) as red triangles and estimated triggering density as blue circles (right).
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0.03400). This is a relatively small data set so that we can use EM for ST-Hawkes (ST-

EM, see [YLB19]) estimation. For ST-EM, we get f(r) (MSEr ≈ 0.01485), h(t) (MSEt ≈
0.004058) and β (MSEβ ≈ 0.2533). Our method is faster (see table 4.1) and overall more

accurate.

Triggering matrix

Then we evaluate the ability of our model to recover the triggering matrix K. This is

important for many applications such as network reconstruction and causal inference. On

our existing architecture, the ST-EM method runs out of memory. Instead, we use EM and

NPHC implementations in the tick package [BBG17] for the following comparisons.

We simulate a ST-Hawkes process with U = 100 and a symmetric K matrix (see fig. 4.2)

because our network reconstruction data sets mainly have undirected social networks. We

achieve a relative error of 0.1080. In the same setting, we get a relative error of 0.1626

for NPHC and 0.1459 for EM. The improvement in computation time (see table 4.1) is

significant.
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Figure 4.2: Ground-truth K matrix, STHC (the first row, from left to right), NPHC and

EM estimation results (the second row, from left to right).
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Table 4.1: The computation time for different methods on synthetic data sets. Here the time

is in seconds.

STHC NPHC EM

U = 1 0.165528 - 4.643132

U = 10 1.073085 1.093068 4.707377

U = 100 2.608996 4.174796 43.781988

Figure 4.3: Ground-truth K matrix, STHC, NPHC and EM estimation results (from left to

right).
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Combined estimation

Now we combine the two steps together and give a complete estimation of ST-Hawkes pro-

cesses. We simulate a ST-Hawkes process with U = 10 and 179,176 events in total. From

the results in fig. 4.3 and table 4.1, STHC gives very fast and also accurate estimations

(RelErr ≈ 0.02901) comparing to NPHC (RelErr ≈ 0.04899) and EM (RelErr ≈ 0.03269).

We then threshold K̂ with ε = 0.01 to remove noise. Using K̂, µ̂, we get a good estimation

of the triggering density f(r) and h(t) in fig. 4.4 with MSEr = 0.002381, MSEt ≈ 0.06664

and MSEβ ≈ 0.1067 while EM has a much worse MSE (MSEt ≈ 0.9512) since it does not

consider spatial information.
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Figure 4.4: The estimation results of STHC on U = 10 data. Ground-truth spatial triggering

density f(r) as red triangles and estimated triggering density as blue circles (left). Temporal

triggering density h(t) as red triangles and estimated triggering density as blue circles (right).
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Table 4.2: Error measures for STHC on U = 10 data sets with different triggering densities.

MSEr MSEt RelErr(K, K̂)

Pareto in time 0.01244 0.0009966 0.02784

Uniform in time 0.01320 1.296× 10−5 0.09306

Power-law in space 0.0003904 0.04463 0.0409

Uniform in space 0.0006231 0.1294 0.04552

Combined estimation with different triggering densities

We modify the U = 10 data set above via replacing the ST triggering density with different

functions. We first get accurate estimations of K̃ and µ̃. Given K̃ and µ̃, we then estimate

the triggering density in space and time (See figs. 4.5 and 4.6). The results are summarized

in table 4.2. Specifically, we consider Pareto triggering density in time, uniform triggering

density in time, power-law triggering density in space and uniform triggering density in

space. See the end of this section for more details on generating these synthetic data sets.

Here we provide more details about simulation data sets used in this section.
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Figure 4.5: The estimation results of STHC on U = 10 data with a Pareto triggering density

in time, a uniform triggering density in time (the first row, from left to right), a power-law

triggering density in space and a uniform triggering density in space (the second row, from

left to right). Ground-truth spatial triggering density f(r) as red triangles and estimated

triggering density as blue circles.
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Figure 4.6: The estimation results of STHC on U = 10 data with a Pareto triggering density

in time, a uniform triggering density in time (the first row, from left to right), a power-law

triggering density in space and a uniform triggering density in space (the second row, from

left to right). Ground-truth temporal triggering density h(t) as red triangles and estimated

triggering density as blue circles.
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U = 1 Data

We simulate a univariate ST-Hawkes process with K = 1/6, µ = 0.01, T = 2.1 × 105,

X, Y ∈ (0, 10), f(r) = 1
2πσ2 exp(−r2/2σ2) (with σ2 = 0.2) and h(t) = ω exp(−ωt) (with

ω = 10). The regularization parameter α = 0.5.

U = 100 Data

Using the same triggering densities, this data set has the following parameters: U = 100,

the background rate µ = (0.01, ..., 0.01). We choose T = 105, X, Y ∈ (0, 10), σ2 = 0.2 and

ω = 10 with 172,943 events. For the triggering matrix in fig. 4.2, each yellow, cyan and dark

pixel represent the value 1/20, 1/40 and 0 separately.

U = 10 Data

With the same densities, the parameters are U = 10, µ = (0.01, ..., 0.01), T = 1e6, X, Y ∈
(0, 10), σ2 = 0.2, ω = 10 and K is shown in fig. 4.3. Here each yellow pixel is 1/6 and dark

pixel is 0. The regularization parameter α = 0.55.

U = 10 Data with a Pareto Triggering Density in Time

We keep the same parameters as the U = 10 above. The changes on densities are the

temporal density h(t) = (p − 1)cp−1/(t + c)p with c = 2 and p = 2.5 and the same spatial

triggering density with σ2 = 0.1. The regularization parameter α = 0.38.

U = 10 Data with a Uniform Triggering Density in Time

Similar to the section above, we change the temporal densities to be uniform h(t) = 0.1 and

the spatial triggering density with σ2 = 0.1. The regularization parameter α = 0.4. We

threshold the estimated K̃ with ε = 0.01 to remove noise.
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U = 10 Data with a Power-law Triggering Density in Space

Similarly, we use the power-law density f(r) = 1
(r2+1)2

in space and the exponential triggering

density in time with ω = 10. The regularization parameter α = 0.28. We threshold the

estimated K̃ with ε = 0.02 to remove noise.

U = 10 Data with a Uniform Triggering Density in Space

Given the same parameters as above, we change the spatial density to f(r) = 0.25 and

keep the exponential triggering density in time with ω = 10. The regularization parameter

α = 0.36. We threshold the estimated K̃ with ε = 0.01 to remove noise.

4.4.2 Location-based Social-Network Reconstruction

In many situations, network data are incomplete and it may not be possible to directly

observe the hidden relationships between nodes. Our task of network reconstruction is

to uncover the ground-truth friendship network among social media users using only the

information of each user’s check-ins.

The Gowalla and Brightkite data sets, collected in [CML11], are both from location-

based social-media websites in which users share their locations by checking in. Gowalla has

a “friendship” network with 196,591 users, 950,327 edges, and a total of 6,442,890 check-ins

of these users between February 2009 and October 2010. Brightkite’s “friendship” network

consists of 58,228 nodes and 214,078 edges, and a total of 4,491,143 check-ins throughout

Apr. 2008 – Oct. 2010. Each check-in record includes the latitude and longitude coordi-

nates, a user ID and the time (with a precision of one second). Similar to the Facebook

“friendship” network, both the Gowalla and Brightkite friendship networks are undirected

and unweighted. We study several subnetworks (Gowalla-SF, Brightkite-LA, Gowalla-CHI,

and Brightkite-SD) within these data sets; see the end of this section for details.

We model the ST check-ins of each user within a subnetwork as events of one subpro-

cess within a multivariate ST-Hawkes process. Then we infer relationships between these
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users (i.e. infer adjacency matrix) from the triggering matrix K, which will uncover the

macro-scale causality between users (each user is viewed as a subprocess). Our assump-

tion here is that this causality information reflects actual friendship connections. We com-

pare our method (STHC) with NPHC and EM in terms of how well the reconstructed

networks match the friendship information from social media. With the prior information

that friendship networks are undirected, we first symmetrize the inferred triggering matrix

(via K̃ =
(
K̂ + K̂T

)
/2) to obtain the estimated weighted adjacency matrix. Then the

network reconstruction becomes a binary classification problem with the probability ∝ K̃.

Given the ground-truth binary adjacency matrix, we calculate the corresponding receiver

operating characteristic (ROC) curves and the area under the curve (AUC) to evaluate the

results.

The performances of different methods are examined on various subnetworks with dif-

ferent sizes. Our STHC method consistently outperforms other methods with more than

20% improvement in terms of the AUC in fig. 4.7. The improvement is mainly from the

ability of our method to exclude false-positive connections. We show an example of network

reconstruction results of Brightkite-SD in fig. 4.8. For the computation time (See table 4.3),

STHC scales better than NPHC in all data sets, as explained in section 4.2.4. EM has the

worst scaling due to its super-linear complexity. Finally, we estimate spatial and temporal

triggering densities with Nr = Nt = 50 for these subnetworks and plot them in figs. 4.9

and 4.10. The spatial triggering densities for different subnetworks have similar shapes with

a cut-off around 10−4. This could come from the fact that the check-in location is usually

fixed for a point of interest (POI, such as shop/cafe/gym). The triggering density also im-

plies that the spatial triggering effects between users have a short radius, which will occur

when they visit the same POI. These temporal triggering densities also share the same trend.

The triggering effects only peak a few hours after the event time. This is also observed in

other data sets, such as the insurgency activity in Iraq [LM11].

In the end, we describe the preprocessing procedure for Gowalla and Brightkite data sets.

We focus on various local friendship subnetworks within different U.S. cities, including San

Diego (SD), Chicago (CHI), Los Angeles (LA) and San Francisco (SF). They have diverse
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Figure 4.7: ROC curves of different methods (STHC, NPHC and EM) on subnetworks in

Gowalla and Brightkite data sets. The dashed line (red) is from random guess.
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Figure 4.8: Friendship network reconstruction using different methods on Brightkite-SD.

Here we zoom in to show a subgraph within the Brightkite-SD network.
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SD data.

0 1 2 3 4 5

0

1

2

3

4

5

(b) Inferred friendship graph using

STHC.
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NPHC.
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(d) Inferred friendship graph using EM.
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Figure 4.9: Estimated spatial triggering densities for Brightkite-SD, Gowalla-CHI (the first

row, from left to right), Brightkite-LA, and Gowalla-SF (the second row, from left to right).

The plot is in the log-log scale and we normalize the triggering density for easy comparison.

Note that the drop in f(r) when r is between 0.0001 and 0.001 might be due to the artifact

of our model such as the choice of the support for triggering densities.
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Table 4.3: The computation time for different methods on Gowalla and Brightkite data sets.

Here the time is in seconds.

STHC NPHC EM

Brightkite-SD 0.271304 2.035561 2.252009

Gowalla-CHI 2.978064 3.869652 15.474624

Brightkite-LA 3.976395 7.001311 36.357789

Gowalla-SF 40.754037 76.514422 180.918273

Figure 4.10: Estimated temporal triggering densities for Brightkite-SD, Gowalla-CHI (the

first row, from left to right), Brightkite-LA, and Gowalla-SF (the second row, from left to

right). The plot is in the log-log scale and we normalize the triggering density for easy

comparison.
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network sizes and ST patterns within the same period.

Brightkite-SD

We study check-ins in SD for the Brightkite data set. We use a bounding box (with a north

latitude of 33.1142, a south latitude of 32.5348, an east longitude of −116.9058, and a west

longitude of −117.2824)1 to locate check-ins in SD. We consider “active” users, who have

at least 301 check-ins during the period. This gives us a small subnetwork with 25 “active”

users and a total of 13,760 check-ins in SD.

Gowalla-CHI

We apply the same procedure as in Brightkite-SD on the Gowalla check-in data for CHI.

The bounding box for CHI has a north latitude of 42.0229, a south latitude of 41.6446, an

east longitude of −87.5245, and a west longitude of −87.9395. After selecting only active

users (with at least 101 check-ins) users, we have a medium-sized subnetwork with 96 users

and 27,326 check-ins.

Brightkite-LA

We apply the same procedure as in Brightkite-SD on the Brightkite check-in data in LA.

The bounding box for LA has a north latitude of 34.34, a south latitude of 33.70, an east

longitude of −118.16, and a west longitude of −118.67. After selecting only active users

(with at least 151 check-ins) users, we have a medium-sized subnetwork with 168 users and

89,127 check-ins.

Gowalla-SF

We apply the same procedure as in Brightkite-SD on the Gowalla check-in data in SF. The

bounding box for SF has a north latitude of 37.93, a south latitude of 37.64, an east longitude

1We obtain latitude and longitude coordinates from https://www.flickr.com/places/info.
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of −122.28, and a west longitude of −123.17. After selecting only active users (with at least

66 check-ins) users, we have a large subnetwork with 515 users and 102,673 check-ins.

4.5 Conclusion

We present a novel inference approach of ST-Hawkes processes; it is the most efficient and

accurate method in comparison to other popular estimation methods. Moreover, this ap-

proach is successfully applied to network reconstruction problems and leads to promising

applications for the inference of causal relationships and social interactions.

A point that should be stressed is that we make a few model assumptions to simplify the

estimation procedure. To recapitulate (see section 4.2.1 for details), we assume a constant

background rate in space and no boundary effect for events outside the area that we studied.

For a more general spatial background (inhomogeneous) distribution, one can approximate it

using a piece-wise constant function in space by dividing events into spatial grids. Essentially,

for each grid, we still have a uniform background for estimation and then combine them.

For applications on large areas with an inhomogeneous background, we expect a piece-wise

constant or covariate-based background rate to achieve even better results [SGH18]; and

incorporating boundary effects helps remove bias in the estimation of the background rate

and triggering densities [Rei18b].

Finally, while we are focusing on the general case of multivariate ST-Hawkes processes,

the current method can be very useful for the estimation of univariate models. The regu-

larization improves the stability and robustness of the analytic method in [SGH18]. This

makes it possible to apply univariate models to the study of large data sets in areas such as

seismology, epidemiology, and criminology.
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CHAPTER 5

Variational Autoencoders for Highly Multivariate

Point Processes

As we discussed in the introduction and background chapters, multivariate point processes

are widely used to model events of multiple types occurring in a nonempty compact connected

metric space. This chapter focuses on the special case of multivariate spatial point processes

(SPP), which can uncover hidden connections between subprocesses based on the correlations

of their spatial point patterns. Often we encounter missing data problems, where some

subprocesses are not fully observable. The underlying connections could further contribute

to the prediction of these subprocesses over the unobserved areas. [MAA18] has shown the

effectiveness of this joint model for Gaussian processes with heterotopic data. Multi-output

models in [LHR15] such as coregionalization and cokriging can outperform independent

predictions. However, there is limited literature on the statistical methodology of the highly

multivariate spatial point processes, according to the very recent paper [CCC19].

Inference for multivariate spatial point processes is still a challenging problem [TDR15],

especially with a large number of subprocesses. For popular Gaussian processes-based ap-

proaches [WR06], the multivariate intensity often consists of independent and multi-output

Gaussian processes. The complexity of models and the curse of dimensionality hinder this

approach for highly multivariate data, such as friendship networks and recommender sys-

tems with millions of users. In these problems, we only partially observe the events (e.g.

users interact with items and/or locations) for each user, which is viewed as a subprocess.

It is necessary to jointly infer the preference of each user based on their hidden correlations.

For example, a common approach in recommender systems, collaborative filtering [HLZ17],

predicts the item interests of each user with the help of the collection of item preferences for
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a large number of users.

To address these problems, we propose a multivariate spatial point-process model with a

nonparametric intensity. We extend the well-known kernel estimator in [Dig85] to the mul-

tivariate case. This generalization is achieved through the introduction of hidden variables

inspired by stochastic declustering [ZOV02]. The latent variables naturally lead to a varia-

tional Bayesian inference approach, which is different from the frequentist point estimation

in the kernel estimator. To reduce the complexity in the highly multivariate case, we consider

an alternative set of hidden variables that are designed to work well as latent variables for

a variational autoencoder (VAE) [KW14]. This amortized inference [GG14] approach leads

to fast inference once the model is fully trained. Further, we show the equivalence for these

two different settings of hidden variables using the properties of spatial point processes. This

efficient approach makes it possible to apply multivariate spatial point processes in many

areas, including location-based social networks and recommender systems with many users.

Moreover, the nonparametric method for analyzing spatial point data patterns is not related

to specific parametric families of models, which only requires the intensity to be well-defined.

Our approach is not a direct replacement for current inference methods on few-variate

spatial point processes [JGM15]. In contrast to the classical methodology, VAE requires a

large number of training data. The highly multivariate data that are widely available in

social networks and recommender systems can be ideal applications for our approach. In

fact, it can be shown that our model is a generalization of a state-of-the-art VAE-based

collaborative filtering model [LKH18]. Our model nonparametrically fits the underlying

intensity function. Compared with the multinomial distribution used in [LKH18], this leads

to not only a smoother intensity over space but also better predictions in terms of ranking-

based losses. Compared to a univariate model, such as trans-Gaussian Cox processes [WR06],

our multivariate model enhances the predictive ability on missing or unobserved areas, which

is consistent with the results of heterogeneous multi-output Gaussian processes [MAA18].

The contributions of this chapter are three-fold. We first build a novel multivariate

spatial point-process model and find a direct connection with the VAE-based collaborative

filtering through detailed theoretical analysis. Secondly, this connection introduces amor-
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tized inference for an efficient multivariate point process estimation. Finally, point processes

generalize the discrete distribution used in [LKH18] and lead to a better modeling of spatial

heterogeneity. We validate these benefits through experiments with multiple multivariate

data sets, showing improvement over classic SPP methods and potentials on collaborative

filtering applications.

5.1 Variational Autoencoders

As a stochastic variational inference algorithm, VAE [KW14] is maximizing the evidence

lower bound (ELBO) of the log-likelihood function

log p(X|Θ) ≥ Eqφ(z|X)[log(pθ(X|z)]−KL(qφ(z|X)|p(z)) . (5.1)

The hidden variables z have a simple multivariate Gaussian prior p(z) = N (z; 0, I). The true

posterior, which is often intractable as in the Cox process, is approximated via a multivariate

Gaussian qφ(z|X) = N (z;µφ(X), σφ(X)). The KL divergence term in the ELBO can be

calculated analytically. VAE uses a multilayer perceptron (MLP) to learn the mean and

variance of the approximated posterior directly from the data. The most related work here

is a recent VAE-based model for collaborative filtering (VAE-CF) [LKH18]. They assume

that each user is a multinomial distribution over items with the log-likelihood log pθ(Xu|zu) =∑N
i=1 Xiu log πi(zu) for each user u. Here Xu is the observed data of user clicking items, πi(zu)

is the probability that user u clicks the item i and Xiu is an indicator function on whether

the user u clicked the item i.

5.2 Multivariate Spatial Point Processes

Here we consider a multivariate case of the SPP introduced in chapter 2, with U interdepen-

dent univariate point processes in the sample space R. The intensity function is measured in

a similar way as the univariate case via λu(x) = lim|∆x|↓0 (E [Su(∆x)] /|∆x|) , where Su(∆x)

is the number of events within a set ∆x for the subprocess u.
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5.2.1 A Nonparametric Model

The observed data of multivariate SPP include the location of Nu events Xu = {xui }Nui=1

associated with each subprocess u. For each u, the observed event locations follow a Poisson

process with spatial intensity λu(x), which is a realization of the random intensity Λu(x).

Using the nonparametric kernel estimator, the intensity of the subprocess u is estimated by

λu(x) =
Nu∑
i=1

Kσ(x− xui ) . (5.2)

Here Kσ(x) is a kernel function and we usually adopt the radial basis function kernel (RBF)

where Kσ(x) = exp(−‖x‖2/2σ2). We ignore the end-correction [Dig85] in this work.

In real-world applications, however, one often encounters the missing data problem, where

we cannot directly observe points in certain areas for some subprocesses. Instead, we seek

to infer the hidden data from other fully observed subprocesses. Note that N =
∑U

u=1Nu is

the total number of events. We introduce hidden variables Y u
i for each event xi = 1, ..., N

and subprocess u = 1, ..., U , where Y u
i = 1 if the subprocess u includes event xi and Y u

i = 0

otherwise. EY u
i = pui is the probability that event xi is from the subprocess u. Then the

intensity process for our multivariate SPP model is

Λu(x) =
N∑
i=1

Y u
i Kσ(x− xi) , (5.3)

for each subprocess u. This model generalizes the kernel density-based intensity to the

missing data case. Similarly to the original method, it can be applied to estimate the intensity

for both cluster processes such as Cox processes and repulsive ones like determinantal PPs. In

order to incorporate prior information and model the data uncertainty, we adopt a variational

inference approach for the hidden variables.

5.2.2 Variational Inference

A major drawback of current inference methods for SPP is the introduction of a large number

of parameters in the highly multivariate case. For our model, we use an amortized inference

approach called VAE [KW14], to avoid the computational complexity of directly estimating

the posterior for each subprocess u.
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The generative process of our model can be described as follows: For each subprocess u,

it has a K-dimensional hidden variable zu with a multivariate normal prior zu ∼ N (0, IK).

Here we use a low-dimensional representation and then a nonlinear mapping fθ(zu) = {pui }Ni=1

transforms zu so that it has the same dimension as the number of events N . Finally, spatial

points of the subprocess u are sampled according to the intensity λu(x) =
∑N

i=1 p
u
iKσ(x −

xi). We approximate p(z|X), which is the intractable posterior distribution of z, with a

multivariate Gaussian qφ(z|X) ∼ N (µφ(X), σφ(X)). As in [LKH18], we use MLPs to learn

the nonlinear function fθ(z) with parameters θ and the mean and variance with parameters

φ. The variational bound of our multivariate Cox process model is then

log p(Xu|Θ) ≥ Eqφ(zu|Xu)[log(pθ(Xu|zu)]−KL(qφ(zu|Xu)|p(zu)) = L . (5.4)

The first term in L is essentially a complete likelihood function. For each subprocess u, it

has the following (expected) intensity function

Eqφ(zu|Xu)Λu(x) =
Nu∑
i=1

puiKσ(x− xui ) (5.5)

and a Poisson process log-likelihood function from eqs. (2.6) and (5.5))

Eqφ(zu|Xu) log pθ(Xu|zu) =
Nu∑
i=1

log

(
Nu∑
i=1

puiKσ(x− xui )
)
−
∫
R

Nu∑
i=1

puiKσ(x− xui )dx . (5.6)

For applications without explicit spatial information, we embed each event into a latent

space as a vector. First, we obtain a similarity graph for all events. Then the embedding xi

of ith event in this graph is obtained via graph neural networks (GNNs) such as GraphSAGE

[HYL17]. See fig. 5.1 for an illustration of our framework.

5.2.3 Alternative Model

Recall that the hidden variables Y u
i describe whether the event xi is from the subprocess

u. By definition, we have
∑U

u=1 Y
u
i = 1 and

∑U
u=1 p

u
i = 1 for any i. During the training

process, it is difficult to normalize the probability pui over all subprocesses (have to use the

full data). Moreover, this constraint leads to guv < 1 for u 6= v, implying mutual-inhibition

behaviors between subprocesses. Instead, we consider an alternative model where pui is the
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Figure 5.1: Visual illustration of our spatial point-process model via VAE. The spatial events

or embeddingsX are fed into a neural network with parameter φ to get the mean and variance

for the approximate posterior qφ(z|X), which is then used to calculate the KL divergence

term. We can generate samples from the posterior using the reparameterization trick with

ε from a standard normal distribution. Then the sample z is fed into a neural network with

parameter θ to obtain f(z), which combining with the events X and kernel Kσ yields the

intensity function λ. Finally, we get the loss function from the KL term and the likelihood

function from λ.

probability that the subprocess u generates an event xi. Then we have
∑Nu

i=1 p
u
i = 1 for each

u. During the training, the total number of events Nu is not viewed as a hidden variable

for each subprocess. Thus the alternative model essentially normalizes λu by a constant.

With the reparameterization trick in [KW14], we sample the log-likelihood function using

all events within a mini user batch and compute the gradient. This approach incorporates

all information about the user so that negative sampling is not needed. See algorithm 4

for our training procedure. For the model prediction, the normalized intensity of a new

subprocess can be efficiently calculated in O(N) using the approximated posterior qφ(z|Xnew)

and nonlinear function fθ(z) with parameters θ, φ inferred from data. We can further reduce

the computational challenge [LKH18] for large N due to fθ(z) by discretizing the space.

Now we show the equivalence of our multivariate model and the alternative one. There

are two probabilities to consider. The first one is the conditional probability of observing
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events Xu in the subprocess u with an intensity function λu(x), given that there are Nu

events within the metric space R. The second one is the probability of sampling Xu of size

Nu from the normalized density hu(x) = λu(x)/
∫
R
λu(s)ds. For general SPPs data, we have

Theorem 2. A spatial point process on a measurable set R ⊂ Rn with an intensity function

λu(x) is equivalent to Nu independent and identically distributed (i.i.d) samples within R

with a probability density function (p.d.f) hu(x) = λu(x)/
∫
R
λu(s)ds, given we know Nu =∫

λu(s)ds, which is the number of points within R for the point-process model.

Proof. We define our model as a point process on R with the intensity function λu(x).

The alternative model consists of Nu i.i.d samples within R with the p.d.f hu(x), given

that we know that Nu =
∫
λu(s)ds is the number of points within the point-process model.

(1) Our model has the following probability generating functional:

G(v) = exp

(
−
∫

Rd

[1− v(x)] Λ(dx)

)
. (5.7)

(2) Given Nu, we have that

p(x1, ..., xNu |Nu) =
Nu∏
i=1

hu(xi) . (5.8)

(3) Our alternative model (a counting random variable N(x) with locations according to

hu(x)) has the following characteristic functional

Gc(v) =
∞∑
n=0

p(N(R) = n)E
[
exp(

∫
R

log(v(s))N(ds))|N(R) = n

]
. (5.9)

Using (2), we can evaluate this conditional probability

E
[
exp(

∫
R

log(v(s))N(ds))|N(R) = n

]
=

(∫
R
λu(s)v(s)ds

λu(s)ds

)n
. (5.10)

Using (2) again and because the point process observation probability is

p(ω) = p(N(R) = Nu)p(x1, ..., xNu |Nu) =
1

n!

[
n∏
i=1

λu(xi)

]
exp

(
−
∫
R

λ(x)dx

)
, (5.11)
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we have

Gc(v) = exp

(
−
∫
R

λ(x)dx

)(
1 +

∞∑
n=1

1

n!
(

∫
R

λ(s)v(s)ds)n

)
= exp

(∫
R

λ(s)(v(s)− 1)ds

)
.

(5.12)

The theorem follows from Gc(v) = G(v) as the probability generating functional completely

determines the probability structure of the point process.

We show that VAE-CF is a special case of our alternative model in the following corollary.

Corollary 2.1.

Eqφ(zu|Xu) log p(Xu|zu) =
Nu∑
i=1

log(hu(x
u
i )) + C . (5.13)

Proof. Define λu(x) = Eqφ(zu|Xu)Λu(x) . Then we have

Eqφ(zu|Xu) log p(Xu|zu) = log
(
p(N(R) = Nu)p(x

u
1 , ..., x

u
Nu |Nu)

)
(5.14)

=
Nu∑
i=1

log (hu(x
u
i )) + log(p(N(R) = Nu)) , (5.15)

where

log(p(N(R) = Nu)) = Nu log(

∫
R

λ(x)dx)− log(Nu!)−
∫
R

λ(x)dx (5.16)

is a constant given Nu.

According to this corollary, we can replace the log-likelihood function eq. (5.6) in the

ELBO with

Eqφ(zu|Xu) log pθ(Xu|zu) =
Nu∑
i=1

log(hu(x
u
i )) + C . (5.17)

Here C is related to the log-likelihood on the number of eventsNu, which is a constant because∫
R
λu(s)ds = Nu is observed. One drawback of this approach is that, for the prediction of

actual missing data, we cannot infer the number of missing points. Instead, our VAE-based

model generates the normalized intensity predicting the possible locations for the missing

events. We use the alternative definition of pui from now on.

This result shows that VAE-CF is a special case of this multivariate SPP model over a

discrete space X of events. In fact, VAE-CF is the alternative model with a delta function
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as the kernel (hu(xi) = λu(xi)/
∫
X
λu(s)ds = pui ), which is equivalent to the SPP model

according to the theorem. To better model the spatial heterogeneity of events, one can

replace the delta function with other kernels or use more advanced SPP intensities. We

simply use a RBF kernel here, resulting in hu(x) =
∑N

i=1 p
u
i exp(‖x− xi‖2/2σ2).

Algorithm 4 Training VAE SPP with stochastic gradient descent.

1: Training subprocesses u ∈ UT with their point locations Xu

2: Inputs: Parameters θ and φ.Initialize θ and φ randomly.

3: while not converged do

4: Sample a subprocesses batch Ub from UT and their points Xb =
⋃
u∈Ub

Xu.

5: for u ∈ Ub do

6: Sample zu ∼ N (µφ(Xu), σφ(Xu)) with reparameterization trick.

7: Compute fθ(zu) = {pui }xi∈Xb .
8: for x ∈ Xu do

9: Compute sampled normalized intensity hu(x) ≈∑xi∈Xb p
u
iKσ(x− xi)..

10: end for

11: Compute noisy gradients of the ELBO L w.r.t θ and φ

12: end for

13: Average noisy gradients over batch.

14: Update θ and φ with the Adam optimizer [KB15].

15: end while

One benefit of this alternative model is its resulted consistency. The nonparametric kernel

estimation for the point process intensity is unbiased. To see this, for any measurable set

R, we take the expectation of the estimated intensity λ(x) over the Poisson point process

distribution

E
∫
R

λ(x)dx =

∫
R

E
N∑
i=1

Kσ(x− xi)dx =

∫
R

∫
R

Kσ(x− y)ρ(y)dydx =

∫
R

ρ(y)dy , (5.18)

where ρ(y) is the true intensity function. Then Eλ(x) = ρ(x) under mild conditions, e.g.

a spatially continuous assumption on ρ. But it is inconsistent due to the non-vanishing

variance without normalization. For our alternative model, the normalized intensity function
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hu(x) is still unbiased. And according to the standard theory of the multivariate kernel

density estimation (KDE), the consistency of hu(x) is also guaranteed. Another benefit of

using this alternative form can be seen from the cross pair-correlation function. For the

alternative model, we remove the undesirable restriction of negative correlations between all

users (guv < 1 for u 6= v) and can incorporate more diverse relationships between users. To

see this, we first consider the auto and cross pair-correlation function

gu,v(x, y) =
E[Λu(x)Λv(x)]

EΛu(x)EΛv(x)
. (5.19)

For our original model, it is straightforward to prove that guu > 1 and guv < 1, u 6= v (see

below). The auto pair-correlation functions show that our model is more clustered than the

simple Poisson process.

Now we show that gu,v(x, y) > 1 for u = v and gu,v(x, y) < 1 for u 6= v for our original

model. We have

EΛu(x)Λv(x) = E

[(
N∑
i=1

Y u
i Kh(x− xi)

)(
N∑
j=1

Y v
j Kh(y − xj)

)]
(5.20)

=
N∑
i=1

N∑
j=1

E[Y u
i Y

v
j ]Kh(x− xi)Kh(y − xj) . (5.21)

Similarly,

EΛu(x)EΛv(x) =

(
E

N∑
i=1

Y u
i Kh(x− xi)

)(
E

N∑
j=1

Y v
j Kh(y − xj)

)
(5.22)

=
N∑
i=1

N∑
j=1

pui p
v
jKh(x− xi)Kh(y − xj) . (5.23)

Note that
∑U

u=1 Y
u
i = 1 and

∑U
u=1 p

u
i = 1. When i 6= j, we have E[Y u

i Y
v
j ] = pui p

v
j for any u,

v. When i = j, E[Y u
i Y

u
i ] = pui > (pui )

2 for u = v and E[Y u
i Y

v
i ] = 0 < pui p

v
i . Then it is easy

to see gu,v(x, y) > 1 for u = v and gu,v(x, y) < 1 for u 6= v.

5.3 Experiments

We compare our model (with the RBF kernel, VAE-SPP) with both VAE-CF [LKH18] and

univariate spatial point-process models using a standard KDE [Dig85] or TGCP [WR06]

91



as intensity functions. We adopt the experiment setting in VAE-CF. We split the data

into training, validation and testing sets. For the multivariate model, the training data is

used to learn the parameters θ and φ. For KDE and TGCP models, we omit the training

data because different subprocesses are assumed to be independent and also because of the

computational complexity of fitting a highly multivariate TGCP. We assume that only 80%

of the events in the validation and test sets are observed. The remaining 20% are viewed

as missing data to be inferred by different models. Hyperparameters are selected on the

validation data as in [LKH18]. Finally, we compare the prediction performance of different

models on the missing data given the partially-observed events. We use standard ranking

losses such as NDCG@K and Recall@K defined below.

The ranking performance is evaluated through recall at K (Recall@K) and normalized

discounted cumulative gain at K (NDCG@K). In our VAE-SPP model, the predicted rank

of the held-out items Iu for each user u is obtained from sorting the intensity function λu(x).

Here we keep the definition in [LKH18]. Recall@K is defined as

Recall@K =

∑K
i=1 1(ri ∈ Iu)
|Iu|

. (5.24)

NDCG@K is calculated by normalizing discounted cumulative gain (DCG@K) with ideal

DCG@K (IDCG@K). The definition are as follows:

DCG@K =
K∑
i=1

21(ri∈Iu) − 1

log2(i+ 1)
, NDCG@K =

DCG@K

IDCG@K
, (5.25)

where 1 is the indicator function and ri is the ith item among held-out items; IDCG@K is

the ideal DCG@K when the ranked list is perfectly ranked.

5.3.1 Multivariate SPP on Spatial Data

Synthetic Data Sets We simulate two different data sets using multiexponential and

multisine models. For the multiexponential data set, we simulate 5,000 Poisson processes

with λk(x) = ake
−bkx, k = 1, ..., 5,000, x ∈ [0, 30] as training data. Here ak and bk are uni-

formly sampled between [5, 10] and [0.1, 0.2] separately. We generate 500 validation and 500

test subprocesses in the same way with parameters sampled from ak and bk. The multisine
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data set is generated via replacing the intensity function with λk(x) = max(ak sin(bkx), 5)

and sampling ak and bk uniformly between [5, 10] and [1, 2] separately. Each realization of

the spatial point process is discretized using a uniform grid over x with grid spacing 0.01.

Table 5.1: Testing results on the simulation data sets. Both the mean and standard deriva-

tion (in parentheses) are percentages.

Multiexp Multisine

Name NDCG@100 Recall@50 Recall@100 NDCG@100 Recall@50 Recall@100

VAE-CF 6.78(0.28) 7.25(0.40) 14.5(0.52) 3.30(0.15) 2.49(0.13) 4.64(0.18)

VAE-SPP 7.11(0.31) 7.34(0.40) 14.9(0.54) 3.53(0.15) 2.58(0.13) 4.90(0.18)

KDE 5.27(0.15) 5.85(0.12) 11.8(0.17) 3.23(0.15) 2.29(0.12) 4.55(0.27)

TGCP 3.11(0.14) 3.32(0.11) 6.44(0.11) 3.77(0.14) 1.88(0.11) 3.92(0.17)

Location-based Social Network. We consider the Gowalla data set [CML11] in New

York City (NYC) and California (CA). We use a bounding box of −124.4096, 32.5343,

−114.1308, 42.0095 for CA and −74.0479, 40.6829, −73.9067, 40.8820 for NYC (both from

flickr1). Each user with at least 20 events (check-ins) is viewed as a subprocess. There

are 673,183 events and 6,728 users for Gowalla-CA. We uniformly select 500 users as the

validation set and 500 users as the testing set. We use the remaining users for training. For

Gowalla NYC, there are 86,703 events from 1,171 users. We set the size of both validation

and testing sets to 100. For the spatial tessellation, we use uniform grids (32× 32 for NYC

and 64 × 64 for CA). Both our model and VAE-CF can work without grids. We further

compare the performance of our model with VAE-CF by viewing each location as an item.

In table 5.1, we summarize the performance of both multivariate and univariate models

on the simulation data sets. It is clear that multivariate models outperform univariate ones.

Moreover, testing on multivariate models takes less time because it only evaluates the pos-

terior probability and intensity function. This illustrates the power of multivariate models

using amortized inference. Within the multivariate models, our continuous model further

1The bounding boxes are from https://www.flickr.com/places/info/.
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Table 5.2: Testing results on the Gowalla data sets with uniform grids. Both the mean and

standard derivation (in parentheses) are percentages.

CA NYC

Name NDCG@100 Recall@50 Recall@100 NDCG@100 Recall@50 Recall@100

VAE-CF 41.8(1.5) 64.8(2.0) 70.0(2.0) 43.6(2.3) 73.9(2.9) 86.2(2.2)

VAE-SPP 42.3(1.5) 65.2(2.0) 70.2(1.9) 44.8(2.4) 74.5(2.9) 86.2(2.2)

KDE 34.5(1.5) 59.2(2.0) 64.0(2.0) 41.2(1.5) 69.9(2.0) 83.6(2.0)

TCGP 31.8(1.3) 56.5(2.0) 60.9(2.0) 37.3(2.3) 59.9(3.3) 75.9(2.8)

Table 5.3: Testing results on the Gowalla data sets without discretization. Both the mean

and standard derivation (in parentheses) are percentages.

CA NYC

Name NDCG@100 Recall@20 Recall@100 NDCG@100 Recall@20 Recall@100

VAE-CF 21.3(0.77) 16.6(0.74) 32.8(0.97) 16.0(1.7) 13.2(1.7) 26.3(2.4)

VAE-SPP 21.6(0.77) 17.0(0.80) 33.5(0.76) 16.1(1.7) 13.7(1.8) 27.1(2.5)

improves upon the discrete VAE-CF. This is due to the fact that these simulation intensi-

ties are continuous over R. For real-world applications, the results on the location-based

social network prediction and recommender systems with and without grids are presented

in tables 5.2 and 5.3. We observe the same pattern in both NYC and CA. We stop using

univariate models from now on due to their inferior performances, especially for collabo-

rative filtering applications. Moreover, our model improves discrete VAE-CF regardless of

the choice of spatial grids. For visualization purposes, in fig. 5.2, we plot a user’s check-in

locations in Gowalla-NYC and intensities estimated via different methods. Comparing with

VAE-CF, our model generates a continuous intensity. The univariate models overfit the

training data and lead to inferior predictions of the missing data.
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Figure 5.2: Estimated density functions for a Gowalla user in NYC (log scale). The first row

from left to right: observed check-in locations (in red), held-out check-in locations (in blue,

as missing data) and the estimated intensity from VAE-SPP. The second row from left to

right: the estimated intensity (or density) from VAE-CF, KDE and TGCP.

5.3.2 Multivariate SPP with a Latent Space

The MovieLens data sets (ML-100K and ML-1M) include the movie (item) rating by users

and we binarize the rating with a threshold of 4. In the spatial point process setting,

we view each user as a subprocess over the latent space of item embeddings. Here the

item embedding is generated via a GNN. This framework is a natural generalization of the

multimodal distribution over items. The item-item graph is constructed based on item-item

similarities. We use the Jaccard distance to measure the similarities between items, which

are further viewed as the sampling probabilities for GNN. The cosine similarity can also

be used here. We choose the Jaccard index because it usually leads to better performance
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when we measure similarities between users’ behavior in the application within e-commerce

platforms such as Alibaba. Currently, we only consider 1-hop connections. Both GNN

and VAE are trained jointly, which is more expensive than VAE-CF but leads to better

performance compared to separate training (see section 5.3.4 for more details). For movie

recommendation tasks, we compare the discrete VAE-CF to our joint model with GNN. The

results in table 5.4 show again the improvement of our model over the baseline.

Table 5.4: Testing results on the MovieLens data sets.

ML100K ML1M

Name NDCG@100 Recall@20 Recall@100 NDCG@100 Recall@20 Recall@100

VAE-CF 40.8(2.8) 32.3(2.8) 57.6(3.3) 41.6(0.76) 33.1(0.81) 56.8(0.88)

VAE-SPP 41.5(2.9) 31.3(2.7) 59.0(3.5) 42.3(0.77) 33.9(0.82) 57.6(0.88)

5.3.3 Hyperparameters

We implement our models in Tensorflow based on VAE-CF2. We keep the same MLP ar-

chitecture and hyperparameters for both of them. We use β-VAE as suggested. The only

additional hyperparameter for our model is the σ2 in the kernel function, which is determined

using a grid search on the validation set. We conducted experiments on a single GTX 1080

TI 11GB GPU.

For simulation data, we train both models for 200 epochs using Adam optimizer with

β = 0.2 and lr = 5 × 10−5. We use mini-batches of size 20. Our architectures consist of a

one layer MLP with K = 50. For VAE-SPP, σ2 = 0.001. For Gowalla-NYC data, we train

both models for 200 epochs using Adam optimizer with β = 0.2 and lr = 5 × 10−4. We

use mini-batches of size 20. Our architectures consist of a one layer MLP with K = 50.

For VAE-SPP, σ2 = 1 × 10−5. For Gowalla-LA data, we train both models for 200 epochs

using Adam optimizer with β = 0.2 and lr = 1 × 10−3. We use mini-batches of size 20.

Our architectures consist of a one layer MLP with K = 50. For VAE-SPP, σ2 = 0.001. For

2The code is available at https://github.com/dawenl/vae_cf.
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ML-1M data, we train both models for 100 epochs using Adam optimizer with β = 0.2 and

lr = 1× 10−3. We use mini-batches of size 5. Our architectures consist of a one layer MLP

with K = 200. For VAE-SPP, σ2 = 1 × 10−5. For ML-100K data, we train both models

for 100 epochs using Adam optimizer with β = 0.2 and lr = 1× 10−3. We use mini-batches

of size 5. Our architectures consist of a one-layer MLP with K = 200. For VAE-SPP,

σ2 = 1× 10−5. The one-layer GNN in ML data is trained using GraphSAGE, for which the

embedding dimension is 32 and the number of the neighborhood is 10 for items and 5 for

users. The graph consists of the edges between users and items as well as the edges between

items based on their Jaccard similarity.

We use python statsmodel for the KDE and GPy for TGCP. The bandwidth h for KDE

is selected automatically in the statsmodel package. The hyperparameters for TGCP are

determined with a grid search on the validation set. For simulation data sets, we set an

RBF kernel with variance 1, lengthscale 0.1 for TGCP. For Gowalla-CA data sets, we set

a Matern32 kernel with variance 0.001, lengthscale 0.1 for TGCP. For Gowalla-NYC data

sets, we set a Matern32 kernel with variance 0.0001, lengthscale 0.01 for TGCP.

5.3.4 Additional Experiments

On the training of VAE and GNN, we tried different training settings (separately or jointly)

and choose to train them jointly. We also tested the point estimate version of the VAE-

CF called DAE-CF (Mult-DAE in Liang et al., (2018), with the same setting), which can

improve the result under certain metrics. One can easily extend our work to a DAE-SPP to

obtain a point estimation for the SPP intensity.
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Table 5.5: Testing results on MovieLens-100K. These methods share the same network

and are trained with 100 epochs. The test data are used to evaluate the model with the

best performance during the validation. VAE-SPP-Separate means that GNN is trained

separately with VAE-SPP.

NDCG@100 Recall@20 Recall@100

VAE-CF 40.88 32.32 57.63

DAE-CF 40.98 29.29 58.80

VAE-SPP 41.50 31.34 58.99

VAE-SPP-Separate 41.43 31.15 58.82

We also did experiments on the MLPs for VAE. For Movie Lens 1M, the larger network

in VAE-CF leads to a 40.3 NDCG@100 for VAE-CF and 41.9 for VAE-SPP. As a result, we

use the smaller one instead.

5.4 Conclusions

In this chapter, we introduce a novel spatial point-process model for efficient inference on

the highly multivariate case. Through amortized inference, our model makes it possible

to investigate correlations between a myriad of point patterns based on a large number of

training data, and the theoretical analysis builds the connection between our model and

VAE-CF. There are many promising directions for future work including the extension for

spatiotemporal PPs [MSB11] and using features as covariates. Another interesting applica-

tion is to handle real-world recommender systems via improving the joint training efficiency

and comparing thoroughly with simpler algorithms as in [DCJ19].
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CHAPTER 6

Novel Applications of Our Methods

In this chapter, we discuss two specific applications of point-process models on real-world

problems. The first part is a direct application of the model in chapter 3 on the opioid

overdose data. Via clustering different overdose types from the drug structure, we use the

multivariate spatiotemporal Hawkes process to model overdoses’ dynamics and predict the

future outbreaks. The second part is a combination of point-process models with a deep

learning approach for time series applications, especially focusing on the real-time crime

forecasting.

6.1 Drug Movers’ Distance-based Hawkes Processes for Overdose

Spike Early Warning

Opioid addictions and overdoses have increased across the U.S. and internationally over

the past decade. In urban environments, overdoses cluster in space and time, with 50% of

overdoses occurring in less than 5% of the city and dozens of calls for emergency medical

services being made within a 48-hour period [CMR19]. In this work, we introduce a system

for early detection of opioid overdose clusters based upon the toxicology report of an initial

event. We first use drug SMILES, one hot encoded molecular substructures, to generate

a bag of drug vectors corresponding to each overdose (overdoses are often characterized by

multiple drugs taken at the same time). We then use spectral clustering to generate overdose

categories and estimate multivariate spatiotemporal Hawkes processes for the space-time

intensity of overdoses following an initial event. As the productivity parameter of the process

depends on the overdose category, this allows us to estimate the magnitude of an overdose
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Figure 6.1: Overview of the system for early warning of opioid spikes. The initial overdose

toxicology report shows fentanyl, benzodiazepine, and heroin present. Each drug is vectorized

using SMILES and the event belongs to an overdose category using spectral clustering based

on earth mover’s distance of the drug vectors (“drug movers’ distance”). The increase in the

intensity of the Hawkes process is determined by the category and it allows for the prediction

of an opioid overdose spike, triggered in the branching process by the initial overdose.

spike based on the substances present (e.g. fentanyl leads to more subsequent overdoses

compared to Oxycontin). In fig. 6.1, we visualize the workflow of our model for an initial

overdose event.

We validate the model using opioid overdose deaths in Indianapolis and show that the

model outperforms several Hawkes-process models based on Dirichlet processes. See [CYL19]

for the details about the results. Here in fig. 6.2 we show an example of triggered events

followed from an initial spike. Our system could be used in combination with drug test strips

to alert drug-using populations of risky batches on the market or to more efficiently allocate

naloxone to users and health/social workers.

6.2 Graph-based Deep Modeling and Real-time Forecasting of

Sparse Spatiotemporal Data

In crime forecasting, we develop a generic framework to model unstructured crime data.

We combine the multivariate model with a deep neural network (DNN) to improve the
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Initial Event
Alcohols, Ethanol, Benzodiazepine, Fentanyl

Triggered Events
1. Benzodiazepine, 6_MAM, Heroin_from_combo, 
Morphine, Codeine, Hydrocodone, Hydromorphone

2. Alcohols, Ethanol, Benzodiazepine, 6_MAM, 
Heroin_from_combo, Morphine, Codeine, 
Oxycodone, Oxymorphone

3. THC, Carboxy_THC, Oxycodone, Oxymorphone, 
Hydromorphone

4. Benzodiazepine, 6_MAM, Heroin_from_combo, 
Cocaine, Morphine, Codeine, Fentanyl, Oxycodone, 
Oxymorphone

Figure 6.2: An illustration for an initial event and its triggered events in one of the categories

(i.e. one of the Hawkes processes). The initial overdose event marked in triangle symbol

consists of four drug substances and it triggered four neighboring events consisting of different

drug substances.

generalization ability. Compared to previous ad hoc spatial partitioning, we build a ST

weighted graph (STWG) from the multivariate model to represent the data. This STWG

carries spatial cohesion and temporal evolution of the data in different spatial regions over

time. STWG is inferred in real-time via our linear and fast algorithm. For crime forecasting,

we associate each graph node with a spatiotemporal point process of crime intensity in a zip

code region, where each zip code is a node of the graph. The inferred STWG incorporates

the macroscale evolution of the crime over space and time and is much more flexible than

the lattice representation. To perform micro-scale forecasting of the ST data, we build a

scalable graph-structured RNN (GSRNN) on the inferred graph based on the structural-

RNN (SRNN) architecture [JZS16]. SRNN is built by arranging RNNs in a feed-forward

manner: first, assign a cascaded long short-term memory (LSTM) to fit the time series on

each node of the graph. Simultaneously, we associate each edge of the graph with a cascaded

LSTM that receives the output from neighboring nodes. Then feed the tensors learned by

these edge LSTMs to their terminal nodes. This arrangement of edge and node LSTMs gives

a native feed-forward structure that is different from the classical multilayer perceptron. A
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Figure 6.3: Flow chart of the algorithm. The spatiotemporal events are fed into a multivariate

Hawkes process to obtain the graph of zip codes. The graph is then used in GSRNN with

two LSTM networks and a fully connected layer.

Figure 6.4: Inferred versus exact hourly crime rates for Chicago (left) and Los Angeles (right)

data. The unit of time is in hours.

neuron is the basic building block of the latter, while SRNN is built with LSTMs as basic

units. The STWG representation together with the feed-forward arranged LSTMs builds

the framework for ST data forecasting. The flowchart of our framework is shown in fig. 6.3.

This approach is applied to hourly crime predictions for events from Chicago and Los

Angeles. The results (see [WLZ18] for more details) are very accurate in real-time prediction,

outperforming the state-of-the-art methods for spatiotemporal forecasting. Here we show

examples of the model predictions in fig. 6.4. There are a few difficulties that require future

attention. The first question is how to incorporate more spatial covariates in the multivariate

model and DNN. This can be solved by adjusting the current DNN structure. Moreover, our

multivariate model represents crime connections as a static graph. A temporal graph that

can model the changing mutual influence between neighboring nodes could be incorporated

in our framework.
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CHAPTER 7

Conclusions

Scalability, generalization, and multivariate modeling play important roles in spatiotemporal

data modeling. This thesis focuses on developing such methods for the spatiotemporal point

processes, providing both nonparametric and deep learning models for real-world applica-

tions.

In chapter 3, we bridged the gap of current research by introducing multivariate spa-

tiotemporal Hawkes processes and apply them to many network-related problems in crime

and social media. We first derive the EM-type inference method for the Hawkes process and

a cluster-based method for simulation. As a generative model, our model can generate new

data similar to existing data for forecasting. The model benefits from using nonparametric

modeling and spatial information. As a result, we see our method performs competitively

in applications such as network reconstruction and declustering for both synthetic and real-

world data. We point out its computational drawbacks. Specifically, we note that the

computational complexity of the EM algorithm is at least quadratic due to the calculation

of log-likelihood.

In chapter 4, we focus on improving the scalability for the point-process model. We im-

prove its computational capability to linear time, making it possible to apply it to millions

of events. The key idea involves deriving an analytic formula for the likelihood estimator

combined with the moment-based method for productivity and background rate estimation.

This approach ameliorates the scale-limitation of our model, leading to substantial improve-

ments of point-process models on social network reconstruction. However, large-scale data

often contains complicated dynamics over space and time that the simple linear Hawkes pro-

cess may not have enough model capacity to capture. This could hinder the spatiotemporal
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model’s generalization ability under certain circumstances.

In chapter 5, we propose the use of deep generative models such as variational autoen-

coders to improve its generalization ability when there are complex dynamics within point

process data. The key theorem here proposes an intensity-free inference for point process

data, which simply uses a density estimator for the estimation of point-process models.

With the rich literature in density estimation, we adopt the concept of amortized infer-

ence and propose an efficient model for multivariate spatial point processes using variational

autoencoders. Our approach greatly outperforms the classic point process methods when

generalizing on unseen data. The improved performance allows us to apply point-process

models to recommendation systems. We then show how our approach relates to another

popular collaborative filtering approach.

In addition to creating more general, scalable and multivariate spatiotemporal point-

process models, we also applied these models to real-world problems. In chapter 6, we

demonstrate the use of the multivariate model on predicting opioid overdoses and the com-

bination of fast network reconstruction with graph-structured recurrent neural networks for

real-time crime forecasting. Besides these applications, we claim our models have potential

uses for other fields. For example, our model is directly related the network reconstruction

and causal inference. Another application is recommendation systems, where point-process

models can be used to model human dynamics.

There are many interesting directions to extend our methods. For example, the cur-

rent regularization method can be extended to a more general case to utilize the smooth-

ness properties of triggering densities. Another direction considers extending the density

estimation-based method in chapter 5 to more point-process models, which could provide

a better alternative to deep point-process models comparing to the conditional intensity

function. Our approaches are not limited to the Euclidean distance (for the spatial vari-

ables) that has been used commonly in seismology [Oga98] and crime applications [MSB11].

In other words, although the spatial triggering kernel is a function of Euclidean distance,

one can potentially use embeddings, such as those from graph neural networks in chapter

5, or any notion of “distance” between two entities. For example, in a network, one can
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measure a distance between two entities based on the length of the shortest path between

them. In a recent paper, Green et al. [GHP17] proposed a social-contagion model in which

they assumed, using a parametric form, that the strength of triggering in a Hawkes-process

model depends on the shortest-path distance. With our nonparametric approach in chapter

3, we can nonparametrically estimate such dependence. Another example considers point

processes where each event is associated with textual information. For instance, in a Twitter

data set, one can consider each tweet (a time-stamped body of text) as an event in a point

process. One can measure a distance between two tweets based on their text. It will be

interesting to apply our nonparametric approach to these and other applications.

105



REFERENCES

[ABG17] Massil Achab, Emmanuel Bacry, Stéphane Gäıffas, Iacopo Mastromatteo, and
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