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Abstract

How cellular and organismal complexity emerges from combinatorial expression of genes is a 

central question in biology. High-content phenotyping approaches such as Perturb-seq (single-cell 

RNA-seq pooled CRISPR screens) present an opportunity for exploring such genetic interactions 

(GIs) at scale. Here, we present an analytical framework for interpreting high-dimensional 

landscapes of cell states (manifolds) constructed from transcriptional phenotypes. We applied this 

approach to Perturb-seq profiling of strong GIs mined from a growth-based, gain-of-function GI 

map. Exploration of this manifold enabled ordering of regulatory pathways, principled 

classification of GIs (e.g. identifying suppressors), and mechanistic elucidation of synergistic 

interactions, including an unexpected synergy between CBL and CNN1 driving erythroid 

differentiation. Finally, we apply recommender system machine learning to predict interactions, 

facilitating exploration of vastly larger GI manifolds.
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One Sentence Summary:

Rich phenotyping using single-cell RNA sequencing reveals principles and mechanisms of genetic 

interactions.

Introduction

The complexity of cell types in multicellular organisms is driven not by a large increase in 

gene number but instead by the combinatorial expression of a surprisingly small number of 

components. Specific combinations of genes exhibit emergent properties when expressed 

together, enabling the generation of many diverse cell types and behaviors. Searching for 

such emergent properties is enabled by the quantitative study of genetic interactions (GIs), 

which compare the phenotypic consequences of perturbing a pair of genes alone or in 

combination, typically by measuring growth (although other phenotypic readouts such as 

reporter gene expression and transcriptional responses have been explored) (1, 2). GIs can 

reveal synthetic lethal vulnerabilities in tumors, identify suppressors of inherited and 

acquired disorders, and guide the design of cocktails of genes to drive differentiation 

between cell types (3, 4). Pioneering efforts in yeast to construct systematic GI maps 

between all gene pairs have enabled systematic determination of gene function, 

identification of protein complexes and definition of gene regulatory networks in a 

principled and unbiased manner (1, 2).

Recent studies have extended such approaches to mammalian and other metazoan systems, 

but these efforts face two major challenges: scale and information content (1, 2). For 

example, mapping pairwise interactions among the ~10,000 transcribed genes in a human 

cell would require measuring ~50 million double mutants. This scale has necessitated the 

use of highly parallelizable readouts of phenotype, such as growth rate, that obscure the 

mechanistic or molecular basis for any particular interaction. Put simply, there are many 

ways for cells to appear equally “unfit”: the reprogramming of a pluripotent cell to a 

terminally differentiated neuron may affect growth as much as induction of apoptosis or cell 

cycle arrest. Furthermore, many metazoan cell types are quiescent or post-mitotic, and as 

such are not amenable to growth-based screens. Finally, bulk measures of their properties 

may obscure important cell-to-cell variability.

Emerging high-throughput approaches for monitoring rich phenotypes of individual cells 

(e.g. imaging or droplet single-cell transcriptomics) present a potential solution to these 

problems. For example, Perturb-seq pairs CRISPR-based screens with single-cell RNA 

sequencing (5–8). Each individual cell is in effect an independent experiment connecting a 

genetic perturbation to its transcriptional consequences, allowing hundreds of thousands of 

parallel measurements (9, 10). It has been suggested that the rich phenotypes enabled by 

Perturb-seq can be used to better interpret the impact of genetic interactions (7).

Here we exploit the scalability and rich transcriptome readout of Perturb-seq to implement a 

principled approach for systematically studying mammalian GIs. Each transcriptional 

measurement, and effectively each genetic perturbation (single or combinatorial), can be 

viewed as defining a point in high-dimensional space. By measuring many GIs, we therefore 
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effectively map out a surface—a manifold in mathematical terminology—that describes the 

transcriptional states a cell can occupy upon perturbation (Fig. 1A). We argue that this GI 

manifold carries much more information about interactions than a traditional GI map, and is 

intrinsically more interpretable in several ways, including the ability to resolve the distinct 

outcomes underlying GIs and to model the different ways genetic perturbations combine to 

yield new phenotypes.

An overexpression strategy identifies strong genetic interactions

Most previous studies of GIs have focused on loss-of-function perturbations, but many 

important cellular processes like differentiation are also associated with the expression of 

new genes (e.g. MYOD1 in muscle cells). Genes that exhibit phenotypes when expressed 

alone have a higher rate of genetic interactions with other genes (1, 2). To identify 

mechanistically diverse GIs arising from gene activation, we therefore selected 112 “hit” 

genes whose activation enhances or retards growth of K562 cells (Fig. 1A, Table S1) (11), 

including cell cycle regulators, transcription factors, kinases, phosphatases, as well as genes 

of unknown function.

To systematically measure gain-of-function (overexpression) GIs, we adapted a technology 

developed for constructing fitness GI maps in human cells using CRISPRi (12) (Fig. 1A–B 

and fig. S1). Each candidate interaction was probed by constructing a library of vectors 

containing pairs of sgRNAs (Table S2). As we included two distinct sgRNAs targeting each 

gene, a total of 28,680 unique sgRNA pairs were tested. K562 cells stably expressing the 

SunTag CRISPRa system (11) were transduced with the CRISPRa GI library, and sgRNA 

pair abundance was compared at the start of the screen and after ten days of growth to 

measure fitness phenotypes. GI scores were assigned by measuring deviation between the 

observed fitness of overexpressing both genes from the expected fitness based on the 

average impact of each single gene ((12); see Methods; fig. S2, Table S3). Independent 

replicate experiments showed high levels of concordance for sgRNA-level GI scores and GI 

profile correlations, and independent sgRNAs targeting the same gene were much more 

similar than the background of all sgRNA GI correlations (median R=0.50 compared to 

0.04; Fig. 1C,D and fig. S3A, Table S4). The gene-level GI scores obtained by averaging 

sgRNAs targeting the same gene were also well correlated between replicates (gene-level GI 

R=0.80, p<10−300; Fig. 1E, S3A, Table S5) and followed a bell-shaped distribution but with 

GIs ranging well beyond the expectation from negative control sgRNAs (Fig. 1F and fig. 

S3B).

We then clustered genes according to the similarity of their GI profiles to produce a GI map 

(Fig. 1B; larger version with gene labels provided in fig. S4). Highly correlated genes were 

enriched for genes with the same DAVID term annotations (13), allowing for unbiased 

annotation of clusters (Fig. 1B and fig. S5A–B, Table S6). In addition, the map contained 

fewer clusters than would be expected in a random map (fig. S5C–D), consistent with the 

typical low-rank structure of GI maps (i.e. groups of genes interact similarly so that there are 

fewer overall degrees of freedom than total genes). Thus the structure of the CRISPRa GI 

map, like past efforts based on loss-of-function alleles, can assign function to individual 

genes by the similarity of GI profiles (1, 2). However, though the GI map robustly identified 
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many strong GIs, the origins of specific interactions were difficult to deduce as each GI was 

characterized only by a single scalar value (i.e. deviation from expected growth rate).

A Perturb-seq platform for measuring GIs

We reasoned that Perturb-seq, which allows single-cell, pooled transcriptional profiling of 

CRISPR-mediated perturbations (5–8), would enable us to better resolve the mechanisms 

underlying GIs. We picked 132 gene pairs from the GI map, chosen both within and between 

blocks of genes with similar interaction profiles, and targeted each with CRISPRa sgRNA 

pairs (Fig. 1A, fig. S6A, Table S2, Methods). Given the low-rank structure of the fitness GI 

map, we reasoned that we could broadly sample the biological processes represented without 

measuring all gene pairs, as many GIs that fell into the “blocks” in the GI map were likely 

explained by similar mechanisms (Methods). We also profiled all single gene perturbations 

to enable direct comparison of individual and combined perturbations (i.e. single gene A, 

single gene B, and pair AB). In total, we obtained transcriptional readouts for 287 

perturbations measured across ~110,000 single cells (median 273 cells per condition, 

Methods, fig S1, and Table S7) in one pooled experiment.

The Perturb-seq profiles also allowed us to directly assess the performance of our CRISPRa 

reagents (Table S7). Levels of target gene activation spanned a broad range (Fig. 1G and fig. 

S6B–C), with a general trend that poorly expressed targets were more highly induced. The A 

and B positions of the sgRNA cassette performed similarly (Fig. 1G, fig. S6D–E), and 

expression of genes neighboring the target was generally unperturbed except when 

transcripts shared promoter regions (Methods; fig. S7A–B, Table S8). Finally, there was 

minimal correlation between fold activation and the number of differentially expressed 

genes, implying that even small increases in the mRNA abundance of some genes can 

strongly alter a cell’s state (R=0.07; Fig. 1H). The degree of fitness defect was related to the 

number of differentially expressed genes (fig. S7C).

Constructing a GI manifold reveals biological processes driving GIs

While GI maps assign a scalar score to each GI, our Perturb-seq approach instead associates 

a transcriptional phenotype. We viewed this ensemble of measurements as defining a high-

dimensional analogue of a GI map, here termed a GI manifold. In our manifold analogy, 

each possible cellular transcriptional state defines a point on a high-dimensional surface. By 

applying a diverse set of perturbations and measuring the resulting states (as we have), it 

becomes possible to infer the shape of this surface (Fig. 1A). Moreover, as each GI is 

characterized by a rich phenotype, we envisioned that this perspective would allow us to 

organize GIs by common features and globally examine their mechanistic underpinnings.

To visualize this GI manifold, we used UMAP (uniform manifold approximation and 

projection, (14)) to project the mean expression profiles for our 287 perturbations into a two-

dimensional plane (Fig. 2A–B, single-cell version in fig. S8). This algorithm approximates 

the shape of a high-dimensional surface in two dimensions by trying to conserve nearest 

neighbor relationships. Perturbations that induced similar transcriptional changes then 

naturally clustered close to each other; we defined stable clusters using the HDBSCAN 
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algorithm ((15), Methods). Both fitness and GI scores were distributed throughout the GI 

manifold (Fig. 2C–D), in accordance with the idea that scalar fitness measurements collapse 

the much larger landscape of transcriptional states (Fig. 1A). In contrast, by overlaying 

markers derived from the underlying transcriptional data, we could gain insight into 

mechanism by looking at common features of perturbations within each cluster. For 

example, one cluster of mean expression profiles (“G1 cell cycle arrest”) contained 

canonical regulators of the cell cycle. In this case, the underlying single-cell data confirmed 

that these perturbations induced cell cycle arrest in the expected cell cycle stages (Fig. 2E–

F), explaining the growth defect.

Interestingly, we observed clusters of perturbations that caused cells to induce erythroid, 

granulocyte or megakaryocyte markers, which is consistent with the known multilineage 

potential of the K562 model (Fig. 2B, 3A–B and fig. S9) (16, 17). These results suggested 

that cell differentiation/priming and a concomitant decrease in proliferation explained some 

of the structure of the GI manifold. For example, many interactions surrounding CBL, its 

regulators UBASH3A/B, and several multi-substrate tyrosine phosphatases (e.g. PTPN9/12) 

induced erythroid markers, suggesting a common mechanism in regulation of receptor 

tyrosine kinase signaling (18). By contrast, the granulocyte cluster mostly contained 

perturbations of canonical regulators such as C/EBP-α, -β, -ε (CEBPA/B/E) and PU.1 

(SPI1). Finally, a cluster of perturbations induced expression of the canonical 

megakaryocyte marker CD41, but these cells did not adopt the characteristic morphological 

features of megakaryocytes by microscopy (fig. S9G), suggesting that they are at best 

primed towards megakaryocytic differentiation (16, 17).

To test our ability to better resolve specific interactions using Perturb-seq, we examined a 

strong synergistic interaction identified by our fitness GI map between CBL and CNN1 
(calponin) that belonged to the erythroid cluster. CNN1 is a poorly characterized gene that is 

annotated as a smooth-muscle-specific protein, although it is expressed in many cell types 

(19, 20). Overexpressing either gene induced similar transcriptional changes, and single-cell 

analysis revealed an apparent progression of phenotypes from unperturbed through singly-

perturbed to doubly-perturbed CBL/CNN1 cells (Fig. 3C,D). Consistent with an erythroid 

transcriptional program, overexpression of CBL and CNN1 caused strong induction of 

canonical markers: hemoglobin genes (6 – 39-fold), an iron importer involved in heme 

biosynthesis (SLC25A37, 13-fold), and the blood group antigen CD235a (GYPA, 2-fold) 

(Fig. 3C and 3E and fig. S10A–B) (17). Furthermore, overexpression of CBL and CNN1 
transgenes in a human erythroid progenitor model (HUDEP2 cells) individually and in 

combination also induced markers of erythroid differentiation (Fig. 3F–G and fig. S10C–D) 

(21).

This example highlighted how Perturb-seq analysis can directly lead to a hypothesis about 

the biology underlying a GI even when one of the components is poorly understood. More 

generally, because our approach was sensitive to single-cell phenotypes, incomplete 

differentiation and could simultaneously detect signatures of multiple differentiation states, 

it could facilitate higher-order combinatorial perturbation screens aimed at improving 

protocols for driving cells into distinct differentiation states.
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Quantitative modeling of GIs defines mechanisms of interaction

Our large collection of matched single and double overexpression transcriptional phenotypes 

provides us with the opportunity to quantitatively model GIs directly from transcription 

profiles, without appealing to the fitness GI map. We devised an approach based on fitting a 

regression model δab = c1δa + c2δb + ϵ that decomposes the transcriptional changes 

observed in doubly perturbed cells (δab) as a linear combination of the transcriptional 

changes induced by the two single perturbations of gene a and b (c1δa + c2δb) and an error 

term (ϵ) that contains unmodeled or nonlinear effects. The coefficients c1 and c2 then 

effectively measure how much of the phenotype is accounted for by each single perturbation 

(Fig. 4A). This linear model of transcriptional GIs explained more than 70% of the variance 

in gene expression on average (Fig. 4B; mean R2 = 0.71).

GI maps traditionally classify interactions as either buffering (indicating antagonism, GI 

score positive) or synthetic sick/lethal (SSL, indicating synergy, GI score negative). We 

observed a robust anti-correlation (R = −0.72) between the magnitude of the coefficients c1 

and c2 and the fitness-based GI score (Fig. 4C). An intuitive explanation was that buffering 

interactions travel less “far” (smaller coefficients) along the GI manifold while SSL 

interactions travel further (bigger coefficients) (Fig. 4A).

To explore the ability of Perturb-seq to better resolve GIs (by analogy with past efforts in 

other systems, (1, 22, 23)), we examined two strong buffering interactions that each had 

scores of +10.1 in our fitness GI map but appeared to behave differently on a transcriptional 

level. Analysis by Perturb-seq revealed that the GI between KLF1 and CEBPA resulted from 

genetic epistasis (i.e. one single overexpression phenotype masking the other), resulting in 

smaller, asymmetrical coefficients (c1 = 0.19, c2 = 0.72, Fig. 4D and fig. S11A). By contrast, 

the PTPN12/SNAI1 GI resulted from genetic suppression (i.e. when combined 

overexpression of two genes attenuated each other’s individual phenotypes), resulting in two 

smaller coefficients (e.g. PTPN12/SNAI1, c1 = 0.60, c2 = 0.57, Fig. 4E and fig. S11B). 

Finally, as discussed above, synergistic or synthetic lethal interactions tended to result in two 

larger coefficients (e.g. CBL/CNN1, c1 = 1.24, c2 = 0.8, Fig. 3C and fig. S11C).

A central question when considering GIs is how often new or unexpected (neomorphic) 

phenotypes emerge through the combined action of genes. A relatively small number of GIs 

(lower mode in Fig. 4B) deviated from the expectation given by the linear model (which we 

quantified by distance correlation d, Methods, fig. S11D). A common neomorphic behavior, 

similar to one observed in yeast (22), occurred when a perturbation that had little 

transcriptional effect on its own appeared to enhance the effects of a second perturbation 

(e.g. FEV/CBFA2T3, d = 0.74, fig. S11E). We also observed relatively rare instances where 

double phenotypes appeared to be completely unexpected (e.g. the physical interactors 

PLK4/STIL ((24) d = 0.53, fig. S11F)). The model’s parameters thus provided a simple, 

useful summary of how perturbations combine (Table S9).

To look for structure among interactions, we used a two-dimensional visualization and 

clustering technique (25) (Table S9 and Methods). One axis grouped interactions according 

to properties derived from the model coefficients (c1, c2, d), while the other grouped 
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interactions according to how correlated the underlying transcriptional responses were 

(Methods). The resulting figure (Fig. 4F) identified numerous distinct categories of 

interaction, showing that the model can serve as a generalization of the one-dimensional 

“buffering vs. synthetic lethal” paradigm that has typically been used to categorize genetic 

interactions.

Ordering genes into linear pathways using Perturb-seq

The linear GI model allowed us to make hypotheses about gene regulation, as it can identify, 

for example, which single perturbation phenotype better explains the double perturbation 

phenotype. We examined the strong GIs among the genes DUSP9, ETS2, and MAPK1. In 

the DUSP9/ETS2 interaction (Fig. 5A), the DUSP9 phenotype dominated, suggesting that 

DUSP9 overexpression antagonized ETS2. Similarly, DUSP9 and MAPK1 antagonized each 

other’s activities (Fig. 5B). Finally, ETS2 and MAPK1 induced similar phenotypes, and 

ETS2 transcription was activated in all backgrounds (9.3-fold in MAPK1, 9.2-fold in ETS2, 

and 35.8-fold in MAPK1/ETS2 overexpression, Fig. 5C). This type of interaction, in which 

a perturbation (MAPK1) acts at least partly by upregulating its partner (ETS2), was 

uncommon in our dataset (fig. S11G). Taken together, these results suggested a linear 

regulatory pathway in which DUSP9 (a phosphatase) inhibits MAPK1 (a kinase) that 

activates ETS2 (a transcription factor), which is consistent with the known biology of these 

gene families (Fig. 5D) (26). Following similar logic, the model allowed us to orient all the 

buffering interactions in which one perturbation is epistatic to another (Fig. 5E).

Single-cell heterogeneity reveals the trajectory of GIs

The single-cell resolution afforded by Perturb-seq can reveal phenotypic heterogeneity for 

some GIs that we reasoned could yield further insight into mechanism (Fig. 5F and cf. fig 

S8). For example, cells overexpressing both DUSP9 and MAPK1 showed a range of 

phenotypes spanning the transcriptional states observed in cells overexpressing either 

DUSP9 or MAPK1 alone (Fig. 5G). In particular, we observed cells in which DUSP9 and 

MAPK1 appeared to suppress each other’s activity entirely.

We reasoned that we could then identify DUSP9 or MAPK1 regulatory targets that showed 

differing sensitivity to the levels of these proteins by exploiting single-cell data. To order 

cells in an unbiased way by “phenotype,” we computed a principal curve measuring the path 

of maximum variation in the data set ((27); Fig. 5G, Methods). Examining median-filtered 

gene expression (Methods) along this curve revealed distinct classes of transcripts regulated 

by DUSP9 or MAPK1 activity (e.g. GYPA appeared to be more sensitive to DUSP9 activity 

than HBZ, Fig. 5H and fig. S12A). This variation did not appear to be the result of stable 

differences in the expression of MAPK1 and DUSP9 (fig. S12B), suggesting a possible role 

either for historical differences or stochastic gene expression. Perturb-seq can therefore 

reveal graded phenotypes resulting from antagonism between two proteins.
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Predicting GIs using a recommender system

One possible strategy to address the scale of genetic interactions is to pursue a split 

experimental/computational approach, in which only a subset of interactions are sampled 

(either randomly or through “compressed” experimental designs (28)) and the remainder are 

predicted computationally (Fig. 6A) (7, 29, 30). Perturb-seq provides a scalable means of 

constraining these types of searches (7), enabling exploration of the GI landscape.

There is substantial similarity between this problem and that of predicting a person’s 

shopping preferences based on past buying behavior, which is commonly addressed via 

“recommender system” algorithms. Many of these approaches can exploit low-rank structure 

like that seen in GI maps and leverage additional side information obtained by other means 

to improve predictive power. We examined the Perturb-seq profiles of single gene 

overexpression (fig. S13A) and found that there was a modest concordance between GI 

profile and Perturb-seq profile correlations (R=0.29, p<10−103; fig. S13B), suggesting that 

the transcriptional data provided a complementary, scalable means of comparing genes that 

might inform GI prediction.

We constructed a matrix factorization model for fitness GIs and then constrained this model 

to encourage similar interaction profiles among genes that induced similar transcriptional 

changes (fig. S14A and materials and methods) (30, 31). We then predicted unobserved GIs 

using this model trained on different fractions of randomly subsampled interactions (Fig. 6A 

and materials and methods). The end result (Fig. 6B–D) preserved much of the large–scale 

structure of the map as seen through block averaging of GI scores (Fig. 6C–D; fig. S14B and 

materials and methods). Our approach was also substantially better than random sampling at 

predicting the top 10% of interactions and reasonably preserved both the rank order of all 

interactions (Spearman ρ ≈ 0.5 at 10% sampling; Fig. 6D–E and fig S14C) and the pairwise 

similarities between GI profiles (Fig. 6F). Notably, the use of Perturb–seq–derived single 

perturbation profiles as side information substantially improved performance (fig. S14D). 

These results suggest that the hybrid approach can nominate blocks of GIs for in-depth 

study.

Finally, we used our data to model the minimum number of cells that would be required to 

perform larger experiments. By down-sampling our measured perturbations and re-

performing our analyses, we observed that as few as 50 cells per perturbation could be 

sufficient, meaning ~106 cells to collect side information for the entire set of protein coding 

sequences (Fig. 6G).

Discussion

A central goal of genetics is to understand the relationship between the set of genes a cell 

expresses and its phenotype. However, this relationship is challenging to study because 

many phenotypes emerge only through the coordinated action of multiple genes. Here, we 

used Perturb-seq to manipulate a large number of gene pairs and then measure the resulting 

changes in cell state. This ensemble of measurements described a high-dimensional surface 
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called a GI manifold. By interpreting and modeling the GI manifold, we can gain several 

insights into how complex phenotypes emerge.

First, the transcriptional profiles can distinguish distinct outcomes such as cell death, slow 

growth, and differentiation to a variety of cell states that would appear equivalent at fitness 

level. We also identified both canonical (e.g. KLF1, GATA1) and unexpected genes (e.g. 

CNN1) that interacted to promote differentiation to a specific cell state (erythrogenesis). As 

our single-cell approach is sensitive to multiple outcomes or perturbations with incomplete 

penetrance, it is a natural strategy to pursue combinatorial searches for factors driving 

(trans)differentiation (4). Second, the shape of the GI manifold can reveal how GIs arise. We 

derived a simple, geometric GI model and used it to identify the different ways in which 

genetic perturbations combine to yield new phenotypes, for example allowing us to order 

genes into linear pathways. We and others have established that functionally related genes 

interact similarly—in geometric terms the GI manifold is therefore highly constrained, 

enabling imputation strategies (1, 2, 7, 12, 29). Our results provide a strategy for exploring 

large spaces of combinatorial genetic interactions by measuring only a subset of fitness-level 

GIs. This provides a complementary approach to efforts based on composite measurements, 

compressed sensing, and rich readouts to predict unmeasured GIs (7, 28). By intelligently 

measuring and exploring the GI manifold, one can start to create a global view of the 

nonlinear mapping between genotype and phenotype. Such approaches should enable large-

scale searches for synthetic lethal interactions in cancer, the discovery of gene targets that 

lessen the severity of genetic disease, and, more generally, the understanding of how 

complex, multigenic interactions govern biological traits and disease risk.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. A CRISPRa fitness-level genetic interaction (GI) map.
(A) Experimental strategy. Pairs of genes were systematically co-activated using dual 

sgRNA CRISPRa libraries and a GI map was generated from the fitness measurements. A 

subset of GIs were then profiled transcriptionally using Perturb-seq. These high-dimensional 

measurements define a surface called a GI manifold. Distinct GIs that lie in markedly 

different parts of the GI manifold may result in similar outcomes when viewed only at the 

level of fitness. (B) CRISPRa fitness-level GI map. Gene-level GI profiles were clustered by 

average linkage hierarchical clustering based on Pearson correlation. Clusters were 

annotated by assigning DAVID annotations if a DAVID term was significantly enriched in 

that cluster (hypergeometric ln(p) ≤ −7.5; see Methods). (C-D) GI profile correlation 
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between pairs of sgRNAs targeting any genes (black) or the same gene (green). Data is 

displayed as scatter plot of replicates (C) and histogram of replicate-averaged GIs (D). (E-F) 
Gene-level GI scores generated by averaging all sgRNA-level GIs for each gene pair. (E) 

Scatter plot of replicates. Red points indicate non-targeting control sgRNA pairs and dashed 

line indicates a radius of 6 standard deviations from non-targeting controls. (F) Histogram of 

gene-level GI scores with estimated empirical 5% FDR threshold. (G) Comparison of fold 

activation of target gene measured by Perturb-seq when the targeting sgRNA is in the A or B 

position in the dual sgRNA expression cassette. (H) Fold activation of the target gene 

compared with the total number of differentially expressed genes.
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Figure 2. Visualization of the GI manifold.
(A) Using diverse genetic perturbations, the structure of the GI manifold can be inferred and 

then visualized by dimensionality reduction to a plane. (B) UMAP projection of all single 

gene and gene pair Perturb-seq profiles. Each dot represents a genetic perturbation 

characterized by its mean expression profile. Clusters of transcriptionally similar 

perturbations are colored identically, while grey dots are perturbations that do not fall within 

stable clusters. (C) Fitness measurements from the GI map, expressed as gene pair growth 

phenotypes (γ). (D) GI scores from the fitness-level GI map. Single gene perturbations are 
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not included. (E) Cell cycle deviation scores. Stronger scores indicate alteration from the 

distribution of cell cycle positions observed in unperturbed cells. (F) Relative enrichment or 

depletion of cell cycle phases relative to unperturbed cells induced by selected genetic 

perturbations.
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Figure 3. Dissecting a genetic interaction using Perturb-seq.
(A) Expression of marker genes for different hematopoietic cell types in GI manifold UMAP 

projection. Color is scaled by mean expression Z-score of a marker gene panel. (B) 
Hematopoietic differentiation hierarchy. K562 cells are a poorly differentiated erythroid-like 

cancer cell line. (C) Perturb-seq profiling of the CBL/CNN1 GI. Average transcriptional 

profiles for the two constituent single perturbations are compared to the double perturbation. 

Heatmaps show deviation in gene expression relative to unperturbed cells. (D) UMAP 

projection of single-cell Perturb-seq data in the CBL/CNN1 interaction. Each dot is a cell 

colored according to genetic background. (E) ARCHS4 (35) cell type term enrichment for 

genes showing large expression changes in CBL/CNN1 doubly-perturbed cells. (F) 
Expression of hemoglobin in HUDEP2 cells upon cDNA overexpression of CBL or CNN1. 

Hemoglobin was labeled with anti-HbF antibody and measured by flow cytometry. (G) 
Pelleted HUDEP2 cells. Hemoglobin expression appears red.
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Figure 4. A quantitative model for high-dimensional GIs.
(A) Model of transcriptional genetic interactions. Different transcriptional states define 

points on the surface of the GI manifold and genetic perturbations define vectors of travel. 

The model decomposes double perturbations as a linear combination of the two constituent 

single perturbations. (B) Model fit across all GIs measured with Perturb-seq. (C) Magnitude 

of model coefficients compared to GI score from the fitness-level GI map. (D-E) 
Application of the model to selected GIs. For each GI, transcriptional profiles for the two 

constituent single perturbations are compared to the double perturbation and the model fit. 
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Heatmaps show deviation in gene expression relative to unperturbed cells. (F) Visualization 

of all measured GIs in Perturb-seq experiment. Each GI was characterized using features 

derived from the model (x-axis) and by measures of similarity among the transcriptional 

profiles (y-axis). These two viewpoints were each clustered and collapsed to a single 

dimension using UMAP to define the two axes. The features defining the two axes are 

plotted next to them. Categories of GIs are annotated based on features shared within the 

clusters.
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Figure 5. Inferring gene regulatory logic underlying GIs.
(A)-(C) Application of linear genetic interaction model to GIs among DUSP9, MAPK1, and 

ETS2. (D) Order of pathway inferred from model fits. (E) Epistatic buffering interactions 

oriented using the genetic interaction model. Each arrow denotes a genetic interaction, 

originating in the gene that dominates when the two genes are simultaneously perturbed. 

Arrow size denotes the degree of dominance as measured by asymmetry of model 

coefficients. Genetic perturbations with similar transcriptional profiles are colored 

identically. (F) Stochastic heterogeneity can cause individual cells (dots) bearing a given 

genetic perturbation to explore the space on the GI manifold surrounding the average 

direction of travel (arrows). (G) UMAP projection of single cells with overexpression of 

DUSP9 and/or MAPK1. Black line represents the principal curve, which tracks the primary 

direction of variation in the dataset that can be used to order all cells. (H) Gene expression 

averaged along the principal curve. Each row denotes a cell ordered according to position 

along the principal curve. The left three columns indicate that cell’s genetic background. At 

each point, cells that are close on the principal curve are averaged to produce a local 

estimate of median gene expression. The heatmap shows normalized expression of 

differentially expressed genes. The DUSP9 and MAPK1 expression columns show the same 

data for the targeted genes.
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Figure 6. A recommender system for exploring the GI landscape.
(A) Schematic of prediction strategy. Fitness phenotypes of a limited subset of GIs are 

measured. Each gene is characterized by its Perturb-seq transcriptional profile, and 

similarity among these profiles is used as side information to constrain a recommender 

system model to impute remaining fitness GI scores and highlight regions of interest. (B) 
True vs. predicted GI map obtained by prediction from 10% of randomly sampled fitness-

level GIs. (C) Block-averaged true and predicted GI maps obtained by averaging GI scores 

within clusters. (D) Scatter plot of true and predicted GI scores (blue dots) from (B). The 

dashed lines show 5% and 95% quantiles, used to designate strong GIs. Orange dots show 

equivalent scatter for block-averaged GI scores in (C). (E) Spearman correlation between 

true and predicted GI scores at different levels of random sampling. Fifty random subsets 

were measured for each sampling level. Blue and orange denote individual and block-

averaged GIs. (F) Cophenetic correlation of GI profiles as a function of sampling level, 

measuring the similarity of correlation structure in the true and predicted GI maps. (G) To 

assess scaling ability, the representation of each perturbation in the Perturb-seq experiment 

was randomly downsampled to different levels of representation. Plot shows cophenetic 

correlation between downsampled and true transcriptional profiles used to construct the GI 

manifold visualization of Figure 2.
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