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PREFACE

This report was prepared in conjuction with Research Initiative No. 1 of the National Center for Geo-
graphic Information and Analysis. It is being distributed as an aid to research.

The report consists of a review of a body of literature focusing on the issue of spatial database accu-
racy. The error taxonomy developed in the report organizes different dimensions of accuracy into a
practical, user-oriented structure that reflects the interests of those conducting both pure and applied
research.

Approximately one-half of the articles reviewed in this report have been published in the prefessional
literature. Conference papers account for the largest share of the remainder, which also includes
technical reports, chapters of books and unpublished manuscripts. A less detailed discussion of this
same body of literature is provided in NCGIA Technical Paper 89-9, entitled Accuracy of spatial data-
bases: Annotated bibliography.



1. INTRODUCTION

The issue of spatial database accuracy is critical to the successful implementation and long-term viabil-
ity of GIS technology. The value of GIS as a decision-making tool is dependent on the ability of
decision-makers to evaluate the reliability of the information on which their decisions are based. Users
of GIS technology must therefore be able to assess the nature and degree of error in spatial databases,
track this error through GIS operations and estimate accuracy for both tabular and graphic output pro-
ducts.

Evaluation of spatial database accuracy in a GIS environment encompasses a variety of concepts,
methods and models. To make matters more complex, the significance of different dimensions of accu-
racy is a function of data type, application and the sources of error deemed to be important in a partic-
ular context. This report consists of a review of a body of literature focusing on various dimensions of
spatial database accuracy. The error taxonomy developed in the report organizes these dimensions into
a practical, user-oriented structure that reflects the interests of those conducting both pure and applied
research. The taxonomy recognizes that different classes of spatial data exhibit different types of error,
that error may be introduced during various stages of data compilation and that error may be pro-
pagated through spatial operations to appear in modified form in output products.

The exact structure of the taxonomy is revealed in the sections and sub-sections of the report. On the
broadest level, the taxonomy identifies five main dimensions of spatial database accuracy — measure-
ment of error in spatial databases (§ 2), accuracy of cartometric estimates (§ 3), errors introduced dur-
ing data compilation (§ 4), propagation of error through GIS operations (§ 5) and general issues of spa-
tial database accuracy (§ 6). These dimensions are further broken down into secondary and tertiary
levels in the report. The relationships between different dimensions in the taxonomy are explicitly
identified at appropriate junctures in the text.

The literature review presented in this report is intended as a general overview of the concepts,
methods and models developed for evaluating spatial database accuracy in a variety of contexts.
Interested readers are referred to the specific articles cited in the text for a more detailed and thorough
discussion. Readers will no doubt find that certain dimensions of accuracy have not been dealt with
comprehensively in the report. Due to the usual constraints, it has been impossible to compile a
thoroughly exhaustive review of all relevant articles and issues. Although incomplete, the report will
hopefully serve as a valuable starting point for future research.



2. MEASUREMENT OF ERROR IN SPATIAL DATABASES

This section is concerned with methods for detecting and measuring errors in spatial databases. Vari-
ous aspects of attribute error are discussed in § 2.1 and § 2.2. The discussion in § 2.1 focuses on clas-
sification error in a remote sensing context, or error in databases depicting a categorical attribute
derived by classifying remotely sensed imagery. The nature of attribute error in soil maps arising from
spatial variations in measured soil properties is discussed in § 2.2. The remaining sub-sections focus
primarily on positional error in spatial databases. Data quality standards and methods of evaluating
horizontal and vertical error in topographic maps are reviewed in § 2.3. The issue of horizontal accu-
racy for large-scale planimetric and cadastral maps is discussed in § 2.4. General data quality standards
for multi-purpose digital geographic base files are examined in § 2.5. Finally, § 2.6 is concerned with
methods for classifying and correcting vertical errors in digital elevation models.

2.1. Classification Accuracy

In remote sensing, classification is often performed by assigning each pixel in an image to one of a set
of classes based on the spectral response of the pixel in one or more spectral bands. The resulting
map, or classified image, contains a set of polygons defined as groups of contiguous pixels of the same
class. Various methods then exist for assessing the accuracy of the classification procedure. For exam-
ple, one might compare the areas of a sample of polygons on the classified image to their actual areas
as determined by ground survey. Alternatively, one could compute the positional error in the boun-
daries of a sample of polygons with reference to more accurate data. However, the most common
approach in assessing classification accuracy is to select a sample of pixels from the image and compare
their assigned and actual classes, the latter being determined from ground survey or some data source
of higher accuracy. The resulting cross-tabulation is variously referred to as a “classification error
matrix,”” a ‘“confusion matrix”’ or a “‘contingency table.”” The classification error matrix, denoted as
C, is a kxk matrix where k is the number of classes and c;; is the number of sample pixels assigned to
class i that actually belong to true class j. The number of pixels in the sample that belong to true class
J» tj, is given by the column sum

k
i=

The number of pixels in the sample assigned to class i on the map, m;, is given by the row sum
k
m = E cij (22)
=1
The total number of pixels in the sample, n, is given by
k&
n = 2 CU (23)
i=1 j=1

Early research on classification accuracy focuses on the proportion of pixels correctly classified (or
PCC) as an index of classification accuracy. The sample PCC, usually denoted p, is defined as the
trace of C divided by the number of pixels in the sample. That is,

1 k
p = o > S (2.4)
i=1

(The parameters defined in equations (1) through (4) are used throughout the remainder of this sec-
tion.) When the sample is error-free, p will equal 1, its maximum value, since in this case C 1s a diago-
nal matrix (i.e., the only non-zero elements are on the main diagonal). Many of the earliest studies of
classification accuracy focus on the formulation of statistical tests for making inferences about the
population PCC based on the sample PCC. Particularly when using small samples, there is a relatively



high probability of finding only a few misclassifications in the sample even if accuracy is quite low for
the classified image as a whole. Typically, these tests are based on the binomial distribution or the
normal approximation to this distribution, although a number of other tests have also been proposed.
These tests are often formulated in terms of simple random sampling, although it is generally agreed
that stratified random sampling is a more appropriate sampling methodology. In stratified random
sampling, pixels are selected randomly from each of the k classes, such that each row total of C is suffi-
ciently large to permit statistical testing. Further research has identified several problems with PCC as
an index of classification accuracy and a number of alternate indices have been proposed. An example
is the k statistic, which, in contrast to PCC, accounts for the fact that correct pixel assignments can
occur by chance.

2.1.1. PCC as an Index of Classification Accuracy

Fitzpatrick-Lins [82] used a classification error matrix to evaluate classification accuracy for a set of
1:100000 and 1:24 000-scale land use/land cover maps. A sample of points was selected by stratified
systematic unaligned sampling, in which points were selected randomly within a set of grid cells. Fol-
lowing the construction of the classification error matrix, the sample PCC was computed. Confidence
limits were then computed for the sample PCC using the normal approximation to the binomial distri-
bution,

12
p = [ZM [P_(l____R)_] +$] (2.5)
n n
where: z,, = the quantile from the standard normal distribution corresponding to a two-tailed confi-
dence level of 1—a; and
50/n = a correction factor to account for the discrete nature of the binomial distribution.
The interpretation of the confidence limits is that there is a probability of 1—« that the population
PCC falls within the range defined by the upper and lower confidence limits. Equation (2.5) may also
be used to compute the minimum sample size required to attain a certain level of accuracy with a cer-
tain confidence. Manipulation of the equation (ignoring the correction factor) gives a minimum sam-
ple size, n_;,, of

Nmin = p(1—p)/¢ (2.6)

where: p = the desired population PCC; and
s = the desired standard error for the population PCC.

Fitzpatrick-Lins [83] used a similar approach to evaluate the accuracy of a 1:250 000-scale land use/land
cover map. A sample of points was selected by stratified systematic unaligned sampling followed by
random sampling within each land use/land cover class to obtain a sufficiently large sample of points for
each class. Unlike simple random sampling, application of this sampling scheme implies that the
number of points selected from each class is not proportional to the incidence of that class on the map.
Hence in calculating the sample PCC, the PCC for each class must be weighted by the relative area of
the class as estimated from the map. That is,

k
P = 2ba 2.7
i=1

where: p; = the sample PCC for class i (i.e., ¢;/m;); and

a; = the relative area of class i on the map (i.e., the area assigned to class i on the map,
expressed as a proportion of total map area).



The confidence limits for p are then given as

p = (2., v? + 50/n) (2.8)
where:
Kk 225 (1 — b
yo 3 A pi (1 - p) 2.9)
i=1 my

Rosenfield er al [193] present a similar set of equations.

Thomas & Alicock [206] present a similar approach for calculating confidence limits for the number of
correctly classified pixels rather than the sample PCC. The confidence limits are defined as

12
X* Z,p [1_(“_—_§l] —e (2.10)

n

i

where: x = the number of correctly classified pixels in the sample; and

e = a measure of human error in counting the number of sample pixels correctly classified.

The interpretation of the confidence limits is that there is a probability of 1—a that the number of
correctly classified pixels in the entire image falls within the range defined by the upper and lower con-
fidence limits.

Minimum sample size and confidence limits for the sample PCC may also be derived from the binomial
distribution, as shown by van Genderen & Lock [89]. According to the binomial distribution, the pro-
bability of observing exactly x correctly classified points in a sample of size n, P[x], is given by

P = g P (.11)

where: p = the unknown population PCC.
When x = n (i.e., no misclassifications are observed in the sample), equation (2.11) reduces to

P[x] = p° (2.12)

Using this equation the authors were able to compile a table showing the value of P[x] for different
values of p and n. The table indicates that, particularly for small samples, the probability of observing
no misclassifications can be quite high, even when the population PCC is relatively low. Given a
desired population PCC, equation (2.12) can be used to calculate the minimum sample size required to
achieve a specified confidence level. (The cumulative binomial distribution is actually more appropri-
ate, as discussed below.) This is achieved by substituting the desired population PCC for p and com-
puting the minimum n for which P[x] = 1—a, where a is the specified confidence level. For example,
if the desired PCC is 0.85 and the specified confidence level is 0.05 then the minimum sample size is
19, since 0.85'% = 0.046 while 0.85!8 = 0.054.

This method must be extended to account for situations in which one or more misclassifications are
observed in the sample (van Genderen et al [90]). Having determined the appropriate sample size
according to the method described above, it is then possible to calculate the probability of observing
exactly x correctly classified points in a sample of size n for a given population PCC of p. Taking the
preceding example, if n =19, p = 0.85 and 1 misclassification is observed in the sample (i.e., x = 18),
then by equation (2.11), P[x] = 0.153. This forms the basis for a statistical test that employs the cumu-
lative binomial distribution. Consider a situation in which one wishes to infer whether the population
PCC is at least as high as some specified value, py (e.g., a minimum accuracy standard). Thus the null
hypothesis states that p = pg, while the alternate hypothesis states that p<p,. The cumulative proba-
bility of observing x or fewer correctly classified points in a sample of size n drawn from a population
with an accuracy of py is given by



Plrsx] = 3 P pi (1 - po (2.13)

If this probability is higher than some specified level, a, then the test indicates that the null hypothesis
that p = p, should not be rejected. Typically, a = 0.05, representing a confidence level of 0.95. How-
ever, if the probability is less than «, the null hypothesis should be rejected, since there is a very low
probability that only as many as x correct classifications will be observed in the sample if the popula-
tion PCC is actually p,. The value of  gives the probability that the null hypothesis will be rejected
when it is true. Hence a represents the “producer’s risk,”” or the probability that an accurate map will
fail the accuracy test and thus be rejected as insufficiently accurate.

In addition to producer’s risk, it is also important to consider “‘consumer’s risk,” or the probability that
a map of insufficient accuracy will pass the accuracy test and be accepted as sufficiently accurate. In
this case, the null hypothesis states that p < p,, while the alternate hypothesis states that p=p,. The
cumulative probability of observing more than x correctly classified points in a sample of size n drawn
from a population with an accuracy of pj is given by

n

eod = 3 e e (- py (2.14)
r=x+1 th

If this probability is larger than some specified value, B, then the test indicates that the null hypothesis
that p<p, should not be rejected. However, if the probability is less than B, the null hypothesis
should be rejected, since the test indicates that there is a very low probability that more than x correct
classifications will be observed if the population PCC is actually py. The value of B represents the pro-
bability that the null hypothesis will be rejected when it is true, and hence § is the consumer’s risk.

Producer’s and consumer’s risk may be calculated for the entire sample if simple random sampling is
employed. In the case of stratified random sampling, these probabilities must be weighted to account
for the disproportionate sample size of certain classes. Aronoff [8, 9, 10], Ginevan [94] and Rosenfield
et al [193] describe hypothesis tests for producer’s and consumer’s risk and illustrate how these tests
may be formulated in terms of a critical value of x. (Note that nomenclature varies considerably
among the authors.)

Tests of producer’s and consumer’s risk may be combined to minimize the probability of accepting an
inaccurate map and maximize the probability of accepting an accurate map (Aronoff [8] and Ginevan
[94]). First, one selects the lowest level of acceptable accuracy, p,, the consumer’s risk, B, and an ini-
tial sample size, n. Equation (2.14) is then evaluated using the selected values of n and p, (in place of
Po) to find the smallest value of x such that P[r>x] < B. Next, a selected high level of accuracy, py,, is
inserted into equation (2.13) in place of p,. This equation is then evaluated to yield the producer’s
risk, a = P[r=x]. The value of n can be manipulated such that the values of « and B reflect the conse-
quences of potential errors. Note that when p; = py, a+B = 1.

2.1.2. Alternatives to PCC

While PCC remains a standard index of classification accuracy, a number of authors have proposed
alternative indices that circumvent some of the limitations of PCC. One such limitation is that PCC
does not differentiate between “errors of omission” (i.e., the omission of a point from its true class)
and “errors of commission” (i.e., the assignment of a point to an incorrect class). A second limitation
is that PCC does not account for correct classifications that occur by chance alone. Hence it confuses
the accuracy of a classification procedure with the accuracy of its outcome. PCC is also highly sensi-
tive to the row and column totals of the classification error matrix, such that a high PCC may be
obtained if the incorrectly classified classes represent only a small percentage of the total sample.



Errors of omission and commission can be differentiated by computing the PCC for each row and
column of the classification error matrix (Story & Congalton [202]). “Producer’s accuracy” (not to be
confused with producer’s risk) for a given class is defined as the number of correctly classified points
for that class divided by the corresponding column total. That is, the producer’s accuracy for class j is
defined as c;;/t;. This value represents the probability that a point actually belonging to class j has
been correctly assigned to this class. A value less than 1 is indicative of omission error (i.e., the omis-
sion of one or more points from their true classes). ‘“‘User’s accuracy’ for a given class is defined as
the number of correctly classified points for that class divided by the corresponding row total. That is,
user’s accuracy for a given class i is defined as c;/m;. This value represents the probability that a point
assigned to class i actually belongs to that class. A value less than 1 is indicative of commission error
(i.e., the assignment of one or more points to an incorrect class). These indices have been employed
in an operational setting by Robinson et al [185] and Kenk er al [134].

Consumer’s risk may also be extended to individual classes (Aronoff [9, 11]). The ‘““minimum accuracy
value” is defined as the highest value of pg in equation (2.14) for which the inequality P[c>x] < B still
holds for an observed number of correct classifications x in a sample of size n. This may be computed
for the sample as a whole or for individual classes. In the latter case, the result is referred to as the
“minimum class accuracy.” The minimum class accuracy may also be used to calculate a “‘loss func-
tion” for each class as

L= 1-g)wm (2.15)

where: L; = the maximum expected loss for class i;

q; = the minimum class accuracy for class i; and

It

w; = a weight describing the cost of misclassification for class i.

The maximum expected loss for the whole map is equal to the sum of the maximum expected losses for
each class. The maximum expected loss can be used to compare the relative costs of different classifi-
cation procedures. Aronoff [10] illustrates how the costs of different misclassifications can be com-

puted and describes a classification algorithm that minimizes the loss function for each class.

Another alternative to PCC is the k (or KHAT) statistic. Unlike PCC, & accounts for correct classifi-
cations that occur by chance alone. The formulation of & is given by Hudson & Ramm [125] as

. _ p—-06
K 1= (2.16)
where:
1 k
0 = ? ig:l m; 4 2.17)

The & statistic thus represents the ratio of beyond-random agreement to expected disagreement in a
random case. The value of k is equal to O for random agreement and 1 for perfect agreement. It is
negative when agreement is less than that expected in a random case. Experiments performed by
Rosenfield & Fitzpatrick-Lins [192] show that, relative to &, PCC gives an inflated estimate of classifi-
cation accuracy by ignoring chance agreement. Congalton et al [55] and Hudson & Ramm [125] give
the approximate large sample variance of k. (Note that there is a small typographical error in the for-
mula given by Hudson & Ramm.)

The & statistic may also be computed for individual classes in the classification error matrix. For a
given class i, R; is defined as
ne; — mig

= 2% 7 Wik (2.18)

Ki
nm; — m;t



Experimental results obtained by Rosenfield & Fitzpatrick-Lins [192] indicate that, relative to k;, the
user’s accuracy gives an inflated estimate of accuracy. A pumber of authors have employed the &
statistic in conjunction with other indices of classification accuracy described above (e.g., Robinson ez
al [185] and Dicks & Lo [71]).

Congalton & Mead [54] and Congalton er al [55] describe how k may be used to compare alternate
classification methods. (Note that the formulation of of k given by the authors is incorrect.) Values of
K are computed from the classification error matrix associated with each method. The confidence
interval for each value is then calculated based on the variance of k. If any two confidence intervals
overlap, the difference between the accuracies of the two classification methods is assumed to be sta-
tistically insignificant.

Carstensen [40] demonstrates how the Rk statistic may be used to quantify the level of agreement
between different maps depicting nominal attributes (e.g., soil classes). The approach consists in
superimposing two maps and constructing a classification error matrix based on the areas of agreement
and disagreement. The value of K is then computed from the classification error matrix. In the case of
ordinal attributes the approach must be modified by calculating a weighted & statistic. Various weight-
ing schemes are described by Greenland er al [105]. For example, the elements of the two minor diag-
onals adjacent to the main diagonal of the classification error matrix can be assigned weights of 0.5. In
this case, a disagreement of one ordinal class may be envisaged as half an error. Alternatively, the ele-
ments of each minor diagonal in the classification error matrix can be assigned weights inversely pro-
portional to the distance between the minor diagonal and the main diagonal. Hence, the greater the
disagreement in the number of ordinal classes, the greater the significance of the error.

The *“GT index” (i.e., the ground truth index) developed by Turk [212] is an index of classification
accuracy similar to the k statistic. Like &, the GT index is the ratio of beyond-chance agreement to
expected agreement. For a given true class j in the classification error matrix, the GT index, g, is
defined as

ci/t — i
g = _»1_;_*1 (2.19)
—

The value of p; represents random agreement and is derived by an iterative transformation of the clas-
sification error matrix. An experiment conducted by Turk shows that, relative to g;, the producer’s
accuracy for a given class j gives an inflated estimate of classification accuracy.

Other transformations of the classification error matrix may also be used in classification accuracy

assessment. Card [39] demonstrates how knowledge of the mapped areas of each class can be used to

improve estimates of classification accuracy. The classification error matrix is transformed to produce

a matrix © in which

Oij = g Cij / m; (220)

where: a; = the relative area of class i (i.e., the area assigned to class i on the map, expressed as a pro-
portion of total map area).

Next, estimates of the relative area of each true class j, m;, are calculated as
k
i=1

Estimates of the proportion of correct classifications for each true class j, ¢, are computed as

b; = 8/, (2.22)



Estimates of the proportion of correctly classifications for each assigned class i, \;, are computed from
the untransformed classification error matrix as

)\i = Cj / my (2.23)

An overall estimate of the proportion of correct classifications, n, is computed as
k
n=T 6 (2.24)
i=1

Approximate confidence limits for vy can be computed as

N % Zep [V()]V2 (2.25)
where: z,, = the quantile from the standard normal distribution corresponding to a confidence level of

1—a;and

V(m) = the variance of 1.

Similar confidence limits can be computed for 6, ;, &; and \;. The asymptotic variances of these
estimators under simple random and stratified random sampling are presented by the author.

Accuracy assessments based on the classification error matrix may be adversely affected by the pres-
ence of zeros in the matrix (Maxim & Harrington {157]). Use of a sampling zero in place of the
correct non-zero population probability can affect statistical testing. The presence of zeros may also
produce biased estimates of the conditional and unconditional probabilities derived from the classifica-
tion error matrix. The conditional probability {;; is defined as

The unconditional probability §; is defined as
gij = Cij /n (227)

To circumvent the problems posed by sampling zeros, smoothed estimates of the conditional and
unconditional probabilities can be calculated using a pseudo-Bayesian approach. First, the prior
unconditional probability is computed for each element of the classification error matrix. The prior
unconditional probability {s; may be estimated in terms of the number of classes as

In this case, the estimate of y; is the same for all elements of the matrix. However, a unique estimate
for each element may be obtained if some level of prior knowledge exists. The estimates given by
equation (2.28) are consistent with the notion of a high level of entropy in the prior unconditional pro-
babilities relative to the unconditional probabilities &;. The entropy of the prior unconditional proba-
bilities, E,,, is defined as

ko Kk
E, = =3 X &;jin(¥y) (2.29)
i=1j=1
The entropy of the unconditional probabilities, E;, is defined in an analogous manner.

A weighting factor is next defined as the pseudo-sample size associated with the prior unconditional
probabilities. Some ad hoc estimates for this weighting factor, w, include k%2 and 1/n®. A smoothed
classification error matrix, C, is then constructed such that

L n

T — (cj + wiy) (2.30)



must equal 1. A value greater than 1 indicates that the two classes exhibit beyond-random locational
agreement. Hence the value of r is directly proportional to the level of classification accuracy. This
approach accounts for agreement attributable to chance alone in a manner analogous to the R statistic.

Two maps of the same area can also be compared using “equivalent isopleths,” or isopleths defined
such that the area between successive isopleths is identical (Court [58]). (As described in § 4.5, iso-
pleths are non-intersecting lines joining points of equal value for some phenomena distributed over
space.) By superimposing the two maps containing the same number of equivalent isopleths, it is possi-
ble to construct a “‘resemblance matrix”’ showing the area of agreement and disagreement between the
maps. The *‘coefficient of quantile correlation” can be computed from this matrix as an index of
agreement between the two maps.

2.1.4. Other Issues Pertaining to Classification Accuracy

Some of the implications of spatial autocorrelation for classification accuracy have been examined by
Congalton [52]. In the context of remotely sensed data, spatial autocorrelation in classification errors
can be estimated from a “‘difference image”, computed by superimposing a classified image and an
image in which each pixel has been assigned to its true class. Pixels that agree on the two images are
assigned a value of 0 on the difference image, while pixels that disagree are assigned a value of 1. The
autocorrelation on the difference image, p, is computed as the number of 0-1 joins. That is,

s 8 (z — z))? (2.39)
1j=1

=]

-1
P

where: 8;; = 1 if pixels i and j are neighbors and 0 otherwise;
z; = the value (1 or 0) of pixel i on the difference image;
%
n = the total number of pixels.

= the value (1 or 0) of pixel j on the difference image; and

In an empirical test, Congalton computed the spatial autocorrelation for three images of varying com-
plexity, using spatial lags of between 1 and 30 pixels. (The lag is determined by the definition of 8ij-)
Positive spatial autocorrelation was observed for all three images, but a decrease in positive spatial
autocorrelation was observed as the lag increased.

This approach can be used to assess the effects of different sampling schemes on estimates of classifica-
tion accuracy (Congalton [53]). For each of the three difference images described above, the propor-
tion of misclassified pixels (i.e., the number of pixels assigned a value of 1, divided by the total number
of pixels in the image) and the variance of this proportion were calculated. These served as the popu-
lation parameters of interest. Sample estimates of these parameters were obtained by sampling each
difference image according to five different schemes (simple random, stratified random, cluster, sys-
tematic and stratified systematic unaligned sampling). Simple and stratified random sampling provided
consistently accurate sample estimates of the population parameters. For less complex difference
images, systematic and stratified systematic unaligned sampling greatly over-estimated the population
parameters. Cluster sampling performed adequately as long as clusters were relatively small. These
results indicate that different sampling schemes vary in terms of the bias and precision of sample esti-
mates of PCC as a function of the level of spatial autocorrelation in misclassifications.

Sampling methodology is also of importance in devising standards for classification accuracy assessment
procedures. Mead & Szajgin [159] argue that procedures and reporting formats should be standardized
to permit comparison across studies. Sampled points should be well-distributed over space and
between assigned classes. The appropriateness of a given sampling scheme depends on sample size, the
number of assigned classes, the confidence level desired and the relative significance of different types
of misclassification. Loelkes [146] provides some guidelines for assessing classification accuracy by
ground survey. In assessing classification accuracy, it must be recognized that many apparent



discrepancies between ground and mapped data are attributable to the effects of cartographic generali-
zation (see § 4.2).

Curran & Williamson [66] also focus on the accuracy of ground survey data. Empirical results indicate
that the errors associated with remote sensing (i.e., sensor calibration, signal digitizing error and varia-
bility associated with the sensor and the scene) may be outweighed by the errors in ground survey data.
Errors in ground data are associated primarily with the spatial variability of the scene, as well as sam-
ple processing error and variations in ground personnel performance. In order to ensure that accuracy
assessments are meaningful, the ground survey should be designed to attain high levels of accuracy for a
relatively small number of ground observations, rather than attempting to obtain a large number of
observations.

Havens ez al [112] describe two methods for assessing classification accuracy for situations in which
ground survey data are unavailable. The first method estimates the probability of error analytically,
using an a posteriori density function. The second method, called the majority-rule method, is based on
estimation of the dominant class in an area.

Star [199] identifies a number of other sources of classification error in a remote sensing context. Clas-
sification procedures in remote sensing are often performed without regard to the underlying frequency
distribution of pixel values. The assumption of a normal distribution is typically not verified empiri-
cally and it is unclear how deviations from normality affect classification accuracy. Simulation studies
are needed that examine the effects of deviations from normality, random noise in the input data, train-
ing field selection criteria and alternate classification algorithms.

Estes [78] maintains that for some remote sensing products, especially those that have been transformed
by some GIS operation, the degree of accuracy is unestimable using standard statistical techniques.
While modeling the effects of error propagation may be useful, it may be more cost-effective to evalu-
ate the accuracy of the output products directly. The efficiency of any method of accuracy assessment
must be balanced against its cost and ease of application.

2.2, Soil Properties

Soil maps exemplify a type of spatial data known as a ‘‘categorical coverage” (Chrisman [49]). The
delineation of mapping units on soil maps is typically achieved by transforming a set of soil properties,
measured for a sample of profiles, into a set of mutually exclusive classes. Hence the boundaries
between mapping units are not defined a priori, as in the case of enumeration districts for collecting
census data, but a posteriori as a function of the assignment of soil classes. Goodchild & Dubuc [100]
(see § 4.3.2) provide a succinct description of categorical coverages based on a ‘‘phase-space’”’ model.
If m continuous variables (i.e., soil properties), z; through z_, are distributed in two-dimensional
space, then the m-dimensional space defined by these variables is denoted as the phase-space. Categor-
ical coverages are constructed by partitioning the phase-space into k domains, each of which
corresponds to a particular class. These domains therefore define the transformation of a set of m con-
tinuous variables into a set of k classes. The phase-space model clearly illustrates the interdependence
between the taxonomic definitions that prescribe the partitioning of phase-space and the structure of
the resulting map.

Like soil maps, maps derived by classifying remotely sensed imagery are also categorical coverages.
However, many of the models of error assessment described in § 2.1 are of limited utility in the context
of soil mapping. Moreso than many other phenomena distributed over space, soil properties exhibit
relatively high-frequency spatial variations, or large fluctuations in values over relatively short dis-
tances. Even at relatively large map scales, it is generally not feasible to delineate mapping units
within which soil properties are strictly homogeneous. The degree of internal or within-unit variation
depends on the minimum mapping unit size, which is constrained by the limits on cartographic fidelity



Smoothed conditional probabilities, gi} are computed as
K
Cij = Cij / E cij (231)
i=1

Smoothed unconditional probabilities, &;, are computed as
gi} = Ci} /n (232)

These estimators may be useful when the classification error matrix is sparse.

A further alternative to PCC involves “matrix normalization,” as described by Congalton et a! [55] and
Kenk et al [134]. Matrix normalization is an iterative procedure in which the rows and columns of the
classification error matrix are balanced until each row and column sums to 1. The PCC for the nor-
malized matrix is computed as in equation (2.4). The purpose of matrix normalization is to eliminate
the effects of sample size and account for both errors of omission and commission. Hence the PCCs
for any two normalized matrices can be directly compared.

The classification error matrix may also be employed to correct estimates of polygon area derived by
counts of pixels on a classified image. This approach generally involves pre-multiplication of the vector
of area estimates for each class by the inverse of a transformed classification error matrix (Hay [114]).
Bauer et al [16] and Hixson [116] describe an alternate method based on the relative area of each class.
Maxim et al [158] describe a second variant that accounts for “‘detection error,” or error in identifying
objects of interest. Chrisman [44] and Prisley & Smith [180] describe another variant in which matrix
inversion is not required. These techniques are discussed in greater detail in § 3.2.2.

Analysis of variance (ANOVA) may also be used as an alternative to PCC in evaluating classification
accuracy (Fitzpatrick-Lins [81], Rosenfield [190] and Rosenfield & Melley [194]). The analysis is
based on an arcsin or logit transformation of producer’s accuracy for each class in the classification
error matrix. These transformations are designed to produce a more normal probability distribution.
Hypothesis testing is based on the F-ratio calculated for each factor in the ANOVA model, or on
multiple-range tests, which permit within-factor comparisons. This approach has been used to com-
pare accuracies across classes and between maps of different scales.

Differences in classification accuracy across classes and between maps has also been assessed with log-
linear analysis (Rosenfield [191]). In the simplest case, the logit function is computed for the user’s
accuracy associated with each class on each map and an additive model is developed that assumes no
interactions between class and map effects. More complex models have been developed that consider
multi-factor interactions between classes, classification algorithms and image enhancement techniques
in the context of remotely sensed imagery (Congalton et al [55]). In such models, the relative impor-
tance of different factors and factor interactions is evaluated by systematically searching all possible
combinations of factors and interactions. The optimal model combines a simple combination with a
good fit to the observed data.

Differences in classification accuracy between maps has also been evaluated with a standard t-test
(Rosenfield & Melley [194]). The test is based on the deviations in producer’s accuracy for each class
between pairs of maps. These deviations are summed and divided by the number of classes to obtain
the mean deviation. When divided by the standard error of the mean, the mean deviation is assumed
to follow a t-distribution. A t-test may then be applied to determine whether the maps exhibit evi-
dence of a significant difference in accuracy.



It is also possible to test whether the misclassifications along any row of the classification error matrix
are distributed uniformly across all classes (Hay [113]). The cumulative binomial probability distribu-
tion (equation (2.14)) is employed in this test. For a given row of the classification error matrix, the
values of n, x and p, in equation (2.14) are defined as follows:

k
=1

x = max(c;) i#] (2.34)

po = 1/7(k—-1) (2.35)

Thus n is the number of misclassifications in row i of the matrix, x is the maximum number of misclas-
sifications for a given class in row i and p, is the probability of selecting a given incorrect class in row
i. Equation (2.14) is evaluated using these values and the result, P[r>x], is compared to some proba-
bility threshold (e.g., 0.05). If P[r>x] is less than this threshold, then one may conclude that the mis-
classifications along row i are not distributed uniformly across all classes.

2.1.3. Alternatives to the Classification Error Matrix

Other indices of classification accuracy have been developed that are not based on the classification
error matrix. For example, classification accuracy may be calculated in terms of the disagreement
between the mapped areas of all classes and their actual areas as derived from a survey of higher accu-
racy (Fitzpatrick-Lins [81]). The total area of disagreement is given by

k
d = %2 la — & (2.36)
i=1

where: a; = the actual area of class i; and
4; = the area of class i estimated from the map.

(Alternatively, a; and & may represent the area of class i on two different maps.) A low value of d
indicates that the estimated and actual areas are similar. However, the value of d may approach 0 even
if the map is highly inaccurate, since the index depends only on the total area of each class and not the
locational agreement between each class.

Locational agreement may be defined for any pair of classes on two different maps (Adejuwon [1]). In
the context of classification accuracy, one of these maps might represent the accuracy standard. In a
random case, the probability of any two classes occurring at the same location, q;j, is defined as

where: a; = the area of class i on map 1;

a; = the area of class j on map 2; and

A = the total map area.
The observed area of locational agreement between classes i and j, a5, can be computed planimetrically
by superimposing the two maps. If randomness holds, then the ratio

2
r = —— (2.38)
Aq;



as a function of map scale. Maps of larger scale are capable of depicting higher-frequency variations
in soil properties, but must balance this increase in map complexity against an inevitable decrease in
map interpretability (see Jenks & Caspall [131], § 4.3.1). Internal variation in soil properties is there-
fore normally accepted as an inevitable feature of soil maps. The adequacy of a given set of mapping
units is defined in relative terms, such as the ratio of within-unit variance to the between-unit variance.
As internal variation cannot be wholly eliminated, the crucial issue is the manner in which variation is
documented, such that the map user is cognizant of the limitations of the map.

As a further consequence of internal variations in soil properties, the boundaries between mapping
units on soil maps are inherently indeterminate. As Burrough [34] notes, such boundaries are statistical
constructs rather than actual physical features of the environment. Boundaries have no absolute or pre-
cise location, but rather reflect the manner in which soil properties vary over space and the degree to
which such variations may be resolved as a function of map scale. In certain cases, boundaries may
coincide with abrupt changes in soil properties, but these boundaries may prove to be less distinct
when examined at a finer spatial scale. In regions of continuous variation, boundaries are often
masked by high-frequency variations superimposed upon the regional trend. Boundaries may also be
artifactual when soil properties are sampled at a distance greater than the wavelength of the high-
frequency component of variation. Hence boundaries between mapping units should be viewed in the
sense of “‘edges,” or locations where the average rate of change in soil properties is at a maximum.

As a result of the presence of high-frequency variations in soil properties, the reliability of soil maps
cannot be modeled solely in terms of classification accuracy (see § 2.1). Reliability is only partially
defined by the number of correctly and incorrectly classified points within each mapping unit (i.e.,
mapping unit “‘purity””). It also depends on the variation in soil properties within mapping units (i.e.,
mapping unit ‘‘homogeneity” or “‘uniformity’”). It is necessary to develop models that account for the
existence of variation at different spatial scales. Some models of this type are described below, follow-
ing a brief review of studies describing the nature of variation in soil properties.

2.2.1. Variations in Soil Properties

Bascomb & Jarvis [14] examined the variations in soil properties for profiles within a set of mapping
units depicting a single soil series. Mapping unit purity was calculated as the percentage of profiles
meeting all of the criteria of the soil series. Purity was observed to be on the order of 60 percent, a
value in agreement with previous research. Low mapping unit purity was observed to result from the
rigidity of taxonomic definitions. This suggests that an increase in purity might be achieved by allow-
ing for flexibility in the assignment of classes. Within-unit variation was also observed to differ widely
for different soil properties. In a decision-making context, mapping units are intended to delineate
areas within which similar management practices may be applied. Hence internal variations in soil
properties are important in assessing the confidence with which different management practices may
safely be applied.

Beckett & Burrough [20, 21] compared the utility of a number of single-property and general-purpose
soil maps produced by free and grid survey at scales ranging from 1:20000 to 1:70000. On single-
property maps, soil classes were defined along specific ranges of the property. (In the terminology of
Goodchild & Dubuc [100], the phase-space is one-dimensional.) Map utility was defined as the capa-
city of the map to predict soil conditions at any point, which depends on the variability of the property
within mapping units. Mapping units on general-purpose soil maps were defined in terms of a set of
consistent profile classes, or a group of profiles with a particular set of properties. For general-purpose
soil maps, utility can be defined variously as the completeness and stability of the profile classes, the
ability of the map to predict the correct mapping unit or profile class at any point, the uniformity of
soil properties within each mapping unit or profile class, or the mean or modal values of the soil pro-
perties within each mapping unit or profile class. The uniformity of soil properties within all mapping
units can be measured by the ratio of the within- or between-unit variance to the total map variance.
For individual mapping units, the coefficient of variation gives the within-unit variation in a property as



a proportion of the unit mean. Empirical results indicate that coefficients of variation tend to be
higher for mapping units than profile classes, since it is not possible to reduce the variance for mapping
units below that of the profile classes from which the mapping units are derived. Reducing within-unit
variance is more difficult for general-purpose than single-property maps. Substantial reduction is possi-
ble only by producing single-property maps at a relatively large scale.

Webster & Beckett [223] examined soil map quality in the context of variations in soil properties within
and between mapping units. The adequacy of a given set of mapping units is defined by the intraclass
correlation coefficient, or the ratio of the variance between mapping units to the total map variance.
If a given soil property is absolutely uniform within each mapping unit, the coefficient takes a max-
imum value of 1. The within-unit variance measures the uniformity of soil properties within each map-
ping unit and is therefore more useful than the intraclass correlation when soil maps are employed for
decision-making purposes. The ability of a given set of mapping units to minimize within-unit variance
depends on the coefficient of variation for each mapping unit. For soil properties with high coeffi-
cients of variation, only a small reduction in within-unit variance is possible and the intraclass correla-
tion coefficient will be relatively low. Although within-unit variation can be reduced by increasing
map scale, the minimum size of the mapping unit should reflect the minimum size of the area normally
considered in a decision-making context. It is necessary to document the degree and character of
within-unit variation, since this variation provides information about the applicability of different
management practices in mapping units.

Nichols [174] examined the reliability of a set of computerized soil maps constructed by mapping the
dominant soil class within each of a set of grid cells. Reliability was estimated as the percentage agree-
ment in the area of each soil class relative to the original map. An inverse relationship was observed
between accuracy and cell size and between accuracy and the number of classes within each grid cell.
These relationships arise from sampling effects associated with grid cell size and are discussed in
greater detail in § 3.2.1 and § 5.2.1.

Empirical results suggest that it is often difficult to derive meaningful mapping units on the basis of tax-
onomic definitions alone (Crosson & Protz [65]). Observed differences in soil properties between map-
ping units indicate that many properties do not exhibit significant differences in modal values between
units. Hence soil properties do not always provide an unequivocal set of criteria for defining the boun-
daries between adjacent mapping units. Spatial variables, such as landscape position, may be needed
to delineate more meaningful mapping units.

The effects of taxonomic definitions on the reliability of mapping units have been examined in greater
detail by Webster [222]. Uncertainty in class assignments is inherent in any soil taxonomy, due to error
in measuring soil properties and vagueness in class definitions. Attempts to eliminate this uncertainty
(e.g., the 7* Approximation, a US Department of Agriculture soil taxonomy) demand an unattainable
level of precision that results in internal inconsistency in class assignments. For single-purpose maps, a
modicum of vagueness must be tolerated in class assignments to accommodate uncertainty and the
effects of local conditions. Mapping units on general-purpose soil maps are often derived by hierarchi-
cal subdivision of profiles to reach the required level of generalization. This approach is problematic
because it is based on the assumption that soil properties exhibit a nested structure. That is, at any
level in the hierarchy, the variations within groups are assumed to be less than the variations between
groups. To the degree that this structure does not exist, profiles with similar properties will be
separated into different mapping units. This approach assumes that soil classes may be defined
monothetically. A more appropriate model is a polythetic one in which no single property is essential
or sufficient and membership depends on the possession of a set of common attributes. Soil taxonomies
also need to consider the limitations of pedogenesis as a criterion for defining classes. The identifica-
tion of genetically significant properties as the basis for soil classification is problematic because signifi-
cance can only be assessed after classification has been performed.



The relationship between the taxonomic definitions of soil classes and the delineation of mapping units
has been explored further by Campbell & Edmonds [38]. The authors compared observed soil varia-
tions with the types of variations that can be described with the Soil Taxonomy (devised by the US Soil
Conservation Service). The Soil Taxonomy defines three kinds of pedological units. *Taxonomic
units” are specific soil classes (e.g., orders, suborders, series, etc.) with no constraint as to their spa-
tial manifestation. “‘Genetic units” are separate areas of the earth’s surface subjected to uniform
pedogenesis and exist wholly in the spatial domain. ‘‘Mapping units”” are legend items on a soil map
and, like genetic units, exist in the spatial domain. Within mapping units, soil properties exhibit con-
tinuous variation associated with natural variations and discontinuous or abrupt changes associated with
non-soil formations. Theoretically, a mapping unit is equivalent to a taxonomic or genetic unit, but
this equivalence cannot be achieved in practice due to limits on cartographic fidelity. Hence the user
is often unaware of the amount, character and pattern of variation on soil maps. These variations may
be reduced by increasing map scale, but a limit of map complexity is reached beyond which an addi-
tional increase in scale is unjustified. Hence most mapping units do not conform to the most basic
notions of uniformity and the critical issue is the manner in which within-unit variations are communi-
cated to the map user. Communication may be achieved through verbal descriptions of mapping unit
variability, a method applied in older (pre-1935) US soil surveys and modern surveys in some European
countries.

Alternate mapping units can also be defined that account for complex pedological patterns and provide
a means of depicting spatial variability. For example, “‘elementary soil areals” delineate soils belong-
ing to a single class of the lowest rank and are bordered by other areals or non-soil formations. This
creates a soil cover that describes the continuous and abrupt variations between neighboring units.
Other mapping units, including the “‘genon” and “‘pedotop,” delineate areas with similar pedological
attributes resulting from the same pedogenesis. That is, they define areas of uniform ecology and struc-
ture rather than areas of uniform composition. The communicative power of these mapping units lies
in their ability to depict spatial variations without requiring additional cartographic detail. In contrast,
the Soil Taxonomy is biased towards taxonomic distinctions between soil classes, such that the map user
receives little information about variations within mapping units.

2.2.2. Models of Soil Property Variation

Variations in soil properties may be modeled as a set of superimposed processes operating at different
spatial scales that give rise to definitive soil patterns (Burrough [32]). Variation is commonly viewed as
a composite of functional or systematic variation that can be explained and random variation or noise
that is unresolvable. However, this distinction is scale-dependent, since an increase in the scale of
analysis often reveals structure in random variation. This scale-dependence can be accounted for using
the geostatistical concept of a regionalized variable. A regionalized variable is a function that takes a
value at any point in two-dimensional space and incorporates both a general structural component and
a local random component of variation. The observed values of a regionalized variable are viewed as a
realization of a spatial random function with a certain probability distribution. An estimate of the
semivariance of the regionalized variable, §(h), is given by

90 = 5 3 ) - o+ b2 (2.40)

where: z(x;) = the observed value at point i;

b = the spatial lag; and

n = the number of points separated by the spatial lag.
The plot of 9(h) against h is referred to as the semivariogram. Semivariograms of soil tend to exhibit a
non-zero value of y(h) as the lag approaches 0. This value is referred to as the *“‘nugget variance” and
corresponds to random variation. This random component is the result of high-frequency variation

associated with processes acting a spatial scales finer than that resolvable by the minimum lag defined
in the semivariogram.



The spatial lag defined in equation (2.40) closely resembles the notion of “‘step-size” used in computing
the fractional Hausdorff-Besicovitch dimension, D (see equation (3.12)). The value of D can be
estimated from a double-log plot of the semivariogram using regression techniques. For a one-
dimensional transect, the value of D is estimated from the slope of the regression line, b, by the equa-
tion

D = (4—-1b)/2 (2.41)

In contrast to other geographical and geological phenomena, soil properties tend to have a relatively
high value of D. This is attributable to high-frequency variations in soil properties, since the value of
D tends to decline as lower-frequency processes begin to dominate.

Variations in soil properties can be approximated as a stochastic fractal process in which the value of D
is an index of the relative balance between high- and low-frequency variations. This stochastic process
may be represented by a random walk or Brownian motion function. When D = 1.5, this function has
the property that for any series of equally spaced lags, the function [z(x;) — z(X; + h)] is normally distri-
buted with a mean of 0 and a variance proportional to h. In accordance with the notion of self-
similarity (see § 3.1.2), a change in the lag results in a rescaled function that has a probability distribu-
tion identical to the original. That is, the Brownian functions at all scales are statistically equivalent.
A family of self-similar scaled functions can be defined by using different values of D as the rescaling
parameter.

Application of this model to soil property data indicates that these properties do not behave as ideal
Brownian functions. Although finer scales of analysis clearly reveal finer levels of detail, soil properties
exhibit self-similarity over only limited ranges of the spatial lag. The semivariance does not always
increase monotonically with the spatial lag, but rises in a series of steps associated with abrupt changes
as finer scales of variation are encountered. Moreover the distribution of [z(x) — z(X; + h)] for soil
properties is different from that of a Brownian function, in that a greater proportion of values occur at
the lower end of the range of the function. The Brownian function is approximated only for relatively
large spatial lags, where the structure of variation is no longer resolvable and is perceived as random
noise.

An alternate, non-Brownian nested model of superimposed processes operating at different spatial
scales is described by Burrough [33, 35]. The model is an extension of the notion that the value of a
property at a point is a combination of systematic and random components of variation. The value at
point x, z(x), is defined as

z(x) = g: fi(x) + € (2.42)
i=1

where: f(x) = an independent spatial random function;
m = the number of functions; and
€ = the random noise component.

The scales and weights associated with each function can be derived from the semivariogram. Empiri-
cal results suggest that, for one-dimensional transects, variations in soil properties are consistent with
this model, particularly when abrupt changes occur.

Several models of mapping unit boundaries are described by Campbell [37]. These models define the
form of variation in soil properties at the interface between two mapping units. The random model
assumes that no coherent structure exists in soil property variation. For a given property, the value at
any point is defined as the mean value of the property plus a random component. The gradual transi-
tion model defines variations in soil properties as a n'-order polynomial trend surface in the x and y
dimensions. The abrupt change model assumes that a sharp break in soil properties occurs at mapping
unit boundaries. For a given property, the value at any point in a particular mapping unit is defined as



the mean value of the property in the mapping unit plus a random component. Empirical results indi-
cate that pH and silt content are most adequately represented by a 37- and 4%-order trend surface,
respectively. For sand content, the abrupt boundary model is more appropriate. These results indicate
that different models of spatial variation may be required for different properties and, in accordance
with Burrough’s findings, suggest that variations in soil properties occur at different spatial scales.

Fisher [80] presents a technique analogous to the dasymetric mapping method to account for the effects
of variations in soil properties on mapping unit homogeneity. In dasymetric mapping, a variable of
interest is available for a set of areal units, but is assumed to be distributed non-uniformly within these
units. Knowledge of “‘limiting variables,” or variables that affect the spatial distribution of the variable
of interest, are used to derive a map that more accurately depicts the distribution of the variable.
(Flowerdew [84], § 5.1, describes an analogous application of the dasymetric method in the context of
areal interpolation.) In the case of soil maps, knowledge of the relationships between soil classes and
other environmental variables (e.g., slope) may be used to assess the accuracy of a given set of map-
ping units and suggest how mapping units might more reliably be delineated. Such relationships can be
elicited through knowledge engineering to define a set of rules for mapping the distribution of soil
classes. These rules will often be specific to a particular set of classes, although more general rules
might also be developed. Reliability will be enhanced by increasing the number of limiting variables
examined, particularly if these variables represent independent sources of evidence (see Tikunov
[209)).

2.3. Topographic Maps

This section reviews topographic map accuracy standards developed by different mapping agencies, as
well as various techniques that have been proposed as the basis for developing alternate standards. In
the United States, the definitive accuracy standard for topographic maps is the National Map Accuracy
Standard (NMAS), adopted by the Bureau of the Budget in 1947 and currently applied to the US Geo-
logical Survey (USGS) topographic map series. This standard is based on compliance with a horizontal
and a vertical accuracy standard which define the limit of acceptable error in the horizontal and verti-
cal map dimensions. Compliance testing is based on a comparison of at least 20 well-defined map
points relative to a survey of higher accuracy. Horizontal error is defined in terms of the horizontal
distance between each map and survey point (i.e., the discrepancy between the x- and y-coordinate
values). Vertical error is defined in terms of the discrepancy between the z-coordinates of the map and
survey points. The horizontal accuracy standard states that at most 10 percent of the map points may
bave a horizontal error greater than 1/30 in. for map scales greater than 1:20000, or 1/50 in. for scales
of 1:20000 or less. The vertical accuracy standard states that at most 10 percent of the map points may
have a vertical error greater than one-half of the contour interval of the map. The discrepancies in the
vertical dimension may be reduced by shifting the location of points by an amount equal to the allow-
able horizontal error.

Since NMAS is simply a statement of compliance with an accuracy standard, it provides no accuracy
information and ignores the magnitude of horizontal and vertical error at points. A number of alterna-
tives to NMAS have been proposed that address these shortcomings by defining statistical expressions
of topographic map accuracy. Defenders of NMAS (e.g., Blakney [29]) argue that such alternatives
add to the cost of accuracy assessment without substantially enhancing the reliability of the assessment.
Other authors maintain that quantitative expressions of accuracy are preferable, but caution that no
single statistical method of assessing accuracy exists that is universally applicable (Thompson [207,
208]). All statistical methods rely on a set of assumptions about the reliability of the data obtained for
accuracy testing and the statistical distribution of error. Quantitative expressions of map accuracy also
ignore factual or qualitative map errors.



The American Society of Civil Engineers [3] has proposed the Engineering Map Accuracy Standard
(EMAS) as an alternative to NMAS for large-scale maps. EMAS is considered to be more flexible
than NMAS, in that it is applicable to maps prepared for a variety of applications. The level of
acceptable error is permitted to vary as a function of this application. EMAS is a statistical expression
of map accuracy based on errors in the x-, y- and z-coordinates of at least 20 well-defined and well-
distributed sample points. The error in the x-coordinate of sample point i, By, is defined as

d, = & — x (2.43)

where: %; = the x-coordinate at sample point i on the map; and

x; = the x-coordinate at sample point i as determined from a survey of higher accuracy.

The mean error in x, §,, is defined as

n
5, = L35, (2.44)
niey
where: n = the number of sample points.
The standard error in the x dimension, s, is defined as

12 .
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Analogous calculations are also performed in the y and z dimensions. All variables are expressed in
terms of ground distance. The standard error as defined in equation (2.45) is similar, but not identical,
to the root mean squared error (RMSE) as defined in equation (2.52). The standard error will be
equal to the RMSE only when the mean error (equation (2.44)) is equal to 0. Thus in contrast to the
RMSE, systematic bias associated with the mean error has been removed in the calculation of the stan-
dard error.

Compliance testing for EMAS is performed by comparing the computed mean errors and standard
errors in the x, y and z dimensions to their respective maximum acceptable limits (referred to as the
“limiting” errors). A test for bias in the x dimension is performed as

(181 — & )n'?

t, = . (2.46)

where: §, = the limiting mean error in x.

The degree of bias is considered to be statistically insignificant if
Gl < g, (2.47)

where: t,_, = the percentile from the t-distribution with n—1 degrees of freedom and corresponding
to a 1—a, one-tailed confidence limit.

A test for precision in the x dimension is performed as

2
sx (n—1)
Xs = — (2.48)
S5,
where: s, = the limiting standard error in the x dimension.

The degree of imprecision is assumed to be statistically insignificant if

X)% < Xg—l,a (249)



where: xg_l,a = the percentile from the x? distribution with n—1 degrees of freedom and correspond-
ing to a 1—a, one-tailed confidence limit.

An analogous set of tests are performed in the y and z dimensions.

Specific values for &, and Sy, are not provided in the EMAS statement. As EMAS is intended to facili-

tate accuracy testing for a variety of special-purpose maps, these values are assumed to be application-
specific. However, the limiting horizontal and vertical standard errors can be computed from the hor-
izontal and vertical map accuracy standards of NMAS. The limiting vertical standard error is defined
by

s, = 0.608 VMAS (2.50)

where: VMAS = the vertical map accuracy standard (i.e., one-half the contour interval).
The limiting horizontal standard error is defined by

Sy, = 8, = 0.466 CMAS (2.51)

where: CMAS = the circular (or horizontal) accuracy standard expressed at full scale (i.e., the
appropriate fraction, 1/30 or 1/50, weighted by the denominator of the scale representative
fraction).

The constants in equations (2.50) and (2.51) are derived from the 90% percentile of a univariate and
bivariate normal distribution, respectively (Rosenfield [189]).

These relationships are exploited to define three classes of map accuracy by the American Society of
Photogrammetry [4], whose proposed accuracy standard for large-scale maps is similar to EMAS. 1
Merchant [160] gives a more detailed discussion of the American Society of Photogrammetry standard.
The limiting vertical standard error for class 1 maps is defined in accordance with the NMAS vertical
accuracy standard (i.e., one-half the contour interval). The limiting horizontal standard error is more
stringent than the NMAS horizontal accuracy standard, and corresponds to 1/47 in. expressed at full
scale. The limiting standard errors for class 2 and 3 maps are defined by multiplying the class 1 limit-
ing standard errors by a factor equal to the accuracy class. Hypothesis testing for precision (equations
(2.48) and (2.49)) is performed for a given accuracy class using the limiting horizontal standard error in
place of sy, and s, , and the limiting vertical error in place of S, As in the case of NMAS, points may
be shifted by an amount equal to the limiting horizontal standard error for the corresponding accuracy
class when assessing vertical error. Points exhibiting errors in excess of three times the limiting stan-
dard error in the x, y or z dimensions for the corresponding accuracy class are interpreted as gross
errors and are subject to correction. Hypothesis testing for bias (equations (2.46) and (2.47)) is per-
formed using a value of O for the limiting mean errors, 5y, 8, and 3, .

Merchant [161] presents a revised version of the American Society of Photogrammetry standard, which
is referred to as the American Society of Photogrammetry and Remote Sensing spatial accuracy specifi-
cation for large scale topographic maps. The revised standard expresses accuracy in terms of a limiting
RMSE, rather than a limiting standard error. Hence the test for bias (equations (2.46) and (2.47)) is
discarded and systematic bias associated with the mean error is not removed in computing map accu-
racy. The RMSE in the x dimension is defined as

1 & 12
RMSE, = [; s 5,3] (2.52)
i=1

t As noted in the American Society of Civil Engineers [3], EMAS was conceived by a joint committee of the
American Society of Civil Engineers, the American Congress on Surveying and Mapping and the American Society
of Photogrammetry.



This is identical to equation (2.45) when the mean error, 5,, is equal to 0. RMSEs in the y and z
dimensions are defined in analogous manner. Hypothesis testing for precision is performed by compar-
ing the calculated RMSEs to the limiting horizontal and vertical RMSEs. The limiting horizontal
RMSE is computed in the same fashion as the limiting standard errors in the American Society of Pho-
togrammetry standard. However, the limiting vertical RMSE is somewhat more stringent, and is
defined as one-third of the contour interval of the map. Spot heights depicted on the map have a limit-
ing RMSE of one-sixth of the contour interval. Merchant also stipulates the requirements for the selec-
tion of sample points against which the coordinate values of the mapped points are compared. The
sampling method is intended to ensure a dispersed distribution of sample points. However, Kellie &
Bryan [133] have demonstrated empirically that sample points selected randomly or along profiles pro-
vide equally as efficient estimates of accuracy. Random methods may be preferred due to their simpli-
city and relatively low cost.

Another alternative to NMAS is provided by Koppe’s formula, which accounts for the effects of ter-
rain slope on mean vertical error. Based on empirical observations, Koppe observed a high correlation
between mean vertical error, &,, and terrain slope, a, according to an equation of the form

5, = = (A + Btana) (2.53)

Coefficients A and B are empirically-derived constants for a particular map, where A represents the
vertical error when the terrain slope is zero and B is related to the horizontal error at a given point.
The equation shows that a given degree of horizontal error will produce a greater degree of vertical
error as the terrain slope rises. Hence any increase in the terrain slope is associated with an increase in
vertical error (Imhof [126]).

Gustafson & Loon [109] show that the NMAS horizontal and vertical map accuracy standards may be
combined into a single expression using Koppe's formula. Coefficient A is defined as the constant
vertical error and is equivalent to s, as given in equation (2.50). Coefficient B is the allowable hor-

izontal shift in a point when assessing vertical accuracy, expressed at full scale. It is related to Sy, OF Sy

in equation (2.51), but assumes a univariate rather than a bivariate distribution. Regression analysis
can also be used to estimate coefficients A and B based on the observed vertical error and terrain slope
associated with a sample of points. Regression results for a set of USGS 1:24 000-scale topographic
maps show that coefficients A and B are lower than the NMAS requirements, indicating compliance
with the accuracy standard. However, coefficient B is higher for US maps than European maps of
comparable scale, as a consequence of more stringent horizontal accuracy standards in the latter case.

Koppe’s formula affords a number of advantages over NMAS as a statement of map accuracy. In con-
trast to Koppe’s formula, NMAS is simply a statement of compliance with an accuracy test rather than
a statistical expression of accuracy. Hence NMAS does not facilitate comparison of map accuracy
with other countries, provides no accuracy information and ignores the magnitude of error at sample
points. More importantly, NMAS ignores the effects of terrain slope on vertical accuracy. Indeed, the
effect of the allowable horizontal shift in NMAS is to produce a vertical accuracy standard that is less
stringent as terrain slope increases (Gustafson [108]).

The mean horizontal error, &, can also be computed by transposing the coefficients of Koppe's for-
mula and reversing the slope function. That is,

5, = =(B+ Acota) (2.54)
Hence, once the coefficients in Koppe’s formula have been estimated for a particular map, the hor-

izontal errors in points or contour lines can easily be determined. This equation indicates that horizon-
tal error is inversely related to terrain slope.



Equation (2.54) may be used to derive bands of horizontal error around digitally-encoded contour lines
(Yoeli [229]). Coefficients A and B are estimated empirically from a sample of points drawn from the
map. The value of &, is calculated for each digitized point on the contour lines based on the terrain
slope at that point. A new point is then located on either side of each digitized point as a function of
the value of &, and the direction of the terrain slope at the point. Finally, the error bands are created
by joining these new points by straight line segments. The resulting error bands each represent a zone
of uncertainty within which the true contour line is located. The technique provides a convenient tool
for representing and evaluating topographic map accuracy. It is analogous to the epsilon band concept
(see § 4.1.1), in which the value of epsilon has been replaced by the mean horizontal error.

This error band technique is attributed to Imhof [126], who has shown that an increase in terrain slope
often results in overlapping of adjacent error bands. Hence the positions of contours on steep slopes
may be anywhere within a zone of uncertainty whose width is greater than the horizontal distance
between contours. While the error bands tend to widen as terrain slope decreases, the tendency for the
bands to overlap is much diminished.

A variety of other techniques have also been proposed for assessing horizontal and vertical accuracy for
topographic maps. Unfortunately, it impossible to provide a detailed review of these methods as many
are described only in general terms.

Rosenfield [189] presents a method for evaluating horizontal map accuracy for topographic maps.
First, the latitude-longitude graticule is transformed to any desired plane-rectangular coordinate system.
An affine transformation is then applied to fit the mapped graticule to the same coordinate system.
The discrepancies between the locations of the actual and mapped graticule points on the coordinate
system define the horizontal error in the graticule. The coefficients from the affine transformation are
then applied to fit a sample of mapped test points to the coordinate system. The discrepancies between
the assumed positions of these points and their positions on the coordinate system define the horizontal
error in the points. The total horizontal error in the map is calculated as the square root of the sum of
the squared horizontal errors in the graticule and the points.

Cook [57] presents two general methods for evaluating horizontal map accuracy for topographic maps.
The first is based on an explicit mathematical expression of the errors introduced at each phase of map
compilation and the propagation of these errors through to the finished map product. The second is
based on controlled sampling in which a random control net containing points of known value and
accuracy is carried through each phase of map compilation. Deformations of the net are computed
after each phase is complete and a statistical appraisal of accuracy is performed to evaluate the accu-
racy of the finished map product.

Lee [142] presents two methods for assessing the horizontal accuracy of contour lines on topographic
maps. Both are based on the superimposition of the mapped contour with a control contour of higher
accuracy. The first method is based on the calculation of the area of the polygon or polygons encom-
passed by the two contours. Horizontal error is defined as the area of the polygon divided by the
length of the control contour. The second method is based on the assumption that the end points of the
two contours coincide. The deviations are then measured between points generated along the lengths
of the contours. This method is analogous to that employed by Honeycutt [118] to evaluate digitizing
error (see § 4.1.1).

Robinson [184] argues that error analysis for topographic maps may be more easily carried out in the
frequency domain and therefore advocates the application of Fourier analysis to map profiles. Errors
arise from imprecision in measured elevation values on the map and the measurement of these values at
discrete sample locations. The first source of error is assumed to be distributed normally such that it is
possible to compute the amplitude spectrum for any sample by taking the transform of a series of ran-
dom normal numbers whose standard deviation is equal to the presumed standard error of the sample.



Measurement error therefore contributes a statistically constant value to the absolute amplitude spec-
trum over the entire profile. Reliance on discrete sample point locations, the second source of error,
results in aliasing error in the absolute amplitude spectrum. That is, frequencies higher than that
detectable by the sample may be aliased as additions to the amplitudes of lower frequencies. This
error can only be reduced by additional sampling. Aliasing error is shown to be additive such that the
absolute amplitude is increased as the distance between sample points rises, particularly at low frequen-
cies. The sum of the constant measurement error and aliasing error defines the total error contained in
the profile.

2.4. Planimetric Accuracy

This section reviews standards and evaluation methods for planimetric accuracy, or positional accuracy
for planimetric and cadastral maps. Planimetric accuracy is closely allied to accuracy in surveying,
which is not addressed in great depth in this report due to the volume of literature on this issue. To
some extent, planimetric accuracy also parallels the issue of horizontal accuracy for topographic maps,
as discussed in § 2.3. A number of mapping agencies have developed topographic map accuracy stan-
dards that define acceptable limits of horizontal error. Various standards are discussed by Merchant
[160, 161], the American Society of Photogrammetry [4] and The American Society of Civil Engineers
[3]. These standards include the National Map Accuracy Standard, the Engineering Map Accuracy
Standard and the American Society of Photogrammetry and Remote Sensing spatial accuracy specifica-
tion. Many of the issues addressed in § 2.5, including lineage and logical consistency, are also per-
tinent in evaluating planimetric accuracy.

In the literature on planimetric accuracy it is generally recognized that, if land information are to be
utilized effectively, they must comply with a rigorous set of accuracy standards. In the case of maps
and other graphical products, these standards should encompass not only positional accuracy, but map
scale, format, data type and symbolization (Bennett [25] and Loelkes [146]). Much of the literature on
cadastral systems focuses on the trade-off between the desirability of rigorous standards and the cost of
acquiring data that are compatible with these standards. Burtch & Thapa [36], for example, argue that
accuracy standards for multipurpose cadastral systems must be designed to meet the needs of the most
demanding normal application of the system, while accounting for the fiscal capabilities of the agency
responsible for system development. Applications such as planning, routing and facility mapping have
much less stringent accuracy requirements than engineering applications and property boundary del-
ineation. Due to the high cost of acquiring accurate data, the accuracy requirement of all potential
applications of a multipurpose cadastral system must be realistically evaluated prior to the development
of the system.

Donahue [73] maintains that the trade-off between accuracy and cost should be phrased in terms of the
short- and long-term compatibility of the data with a set of accuracy standards. Long-term compatibil-
ity requires accurate geodetic control, which carries a large initial cost burden in system development.
Short-term compatibility can be achieved without geodetic control by upgrading compatibility on a
continual basis, but may eventually prove to be more costly.

The varying accuracy requirements of different applications of cadastral systems can be modeled in the
framework of a hierarchical tesselation. Locational precision is an implicit attribute of any level of the
hierarchy, such that features can be encoded and retrieved at any level of required precision. This
framework might improve the efficiency of error tracking methods and formalize the occurrence of
error in accordance with liability concerns (Smyth {198]). Dutton [77] explores the properties of a glo-
bal hierarchical tesselation scheme based on recursive subdivision of spherical triangles.



Dahlberg [67] examines accuracy requirements in the context of cadastral systems designed to support
legal property rights. The author asserts that the high positional accuracies demanded by such systems
cannot realistically be achieved using data derived from existing maps and legal documents. This asser-
tion has been verified empirically by Vonderohe [219], who observed high levels of positional error in
existing cadastral maps and legal descriptions of property boundaries.

Dahlberg [67, 68] also examines the merging of parcel data with natural resource and socio-economic
data to facilitate spatial analysis. Merging is problematic because of the discrepancy in the level of tax-
onomic and spatial resolution between these two types of data. Merging might be facilitated by aggre-
gating parcel data, but a more promising solution lies in the acquisition of natural resource and socio-
economic data that comply with a general set of accuracy standards. The application of accuracy stan-
dards to natural resource data is examined by Hsu [123]. The author argues that natural resource maps
derived from remotely sensed satellite data can easily achieve the horizontal accuracy requirements
established in the National Map Accuracy Standard (see § 2.3). Digital and photographic techniques
may be applied to minimize positional error in polygon boundaries associated with geometric distor-
tions and imprecision resulting from pixel size effects. Socio-economic data are often collected for a
set of enumeration units whose boundaries may exhibit some degree of positional error (e.g., LaMac-
chia [138]). Guptill [107] suggests that indices of positional accuracy may be assigned to these boun-
daries or any other spatial object in a feature-based data model.

The boundaries between polygons on natural resource maps are often not defined independently of the
thematic attribute itself. Rather, the boundaries are derived implicitly by assigning each point on the
map to a class or category. On such “categorical coverages” (see § 2.2), errors in boundary location
are attributable in part to classification error. Hord & Brooner [120] describe a method for assessing
error that accounts for classification error, boundary line error and control point Jocation error. Clas-
sification error is assessed with the normal approximation to the binomial distribution, as described in §
2.1.1. Boundary line error, or positional error in boundaries between polygons, is assessed by superim-
posing two classified images and calculating an index of agreement between the polygon boundary
representations. (A polygon is defined as a set of adjacent pixels of the same class.) Control point
location error refers to the geometric discrepancies between the map and a universal frame of refer-
ence, such as the latitude-longitude graticule. The test for control point location error is based on the
normal approximation to the binomial distribution, by measuring control point error as a dichotomous
variable (i.e., correct vs. incorrect). The authors maintain that map accuracy may be summarized by
computing the mean of the lower 95 percent confidence limit of the three error measures. This
approach is also reviewed by Dozier & Strahler [75].

Planimetric accuracy is also closely associated with distortions introduced by map projections. As
described in many standard cartography texts, map projections introduce varying degrees of distortion
in angles, areas and other characteristics. “Conformality” and *‘equivalence” refer respectively to the
retention of correct angular and areal relationships by the map projection. In general a projection can-
not simultaneously be both conformal and equivalent. Angular and areal distortions may give rise to
planimetric errors that are particularly problematic when maps based on different projections are
merged by some spatial operation. For example, in map overlay (see § 5.3), the use of different pro-
jections is frequently cited as a cause of positional discrepancies between features on different data
layers. The degree of angular and areal distortion associated with a given map projection can be
evaluated using Tissot’s indicatrix. The indicatrix defines each point on the globe as a circle of unit
radius. Angular distortion causes these circles to become ellipses on the map, while areal distortion
results in changes in circle area. Angular and areal distortion can theoretically be measured at any
point on a map using this approach. Laskowski [139, 140] presents an efficient method of computing
Tissot’s indicatrix based on the singular value decomposition of the appropriately scaled Jacobian
matrix of the transformation equations. This approach requires linearization of the projection equa-
tions, but provides a simple one-step method of computing the distortion parameters. Various coordi-
nate transformation methods may also be applied to reduce projection-related planimetric discrepancies
between maps. Simple affine transformations or more complex ‘“‘rubber-sheeting” functions are



frequently applied in remote sensing to facilitate the merging of remotely sensed imagery with ancillary
spatial data (Pearson [177]).

2.5. Geographic Base File Standards

This section discusses some general issues of importance in developing standards and evaluating accu-
racy for multi-purpose, digitally-encoded geographic base files (GBFs). The discussion derives mainly
from the data quality components identified by Chrisman [46] and in the Draft Proposed Standard for
Digital Cartographic Data [72]. 1 This standard is designed to facilitate the documentation of data qual-
ity by the GBF producer and the transference of this documentation to the user along with the GBF
itself. The standards are couched in terms of ‘““truth in labeling” rather than simple expressions of
accuracy or tests of compliance with accuracy standards (see § 2.3). As data quality requirements are
application-specific (see § 2.4), it is the responsibility of the producer to document data quality but the
responsibility of the data user to interpret this documentation and evaluate the fitness of the data for a
particular application. Thus uncertainty is absorbed by the user rather than the producer of the data
(see Bedard [23], § 4.6).

According to the proposed standard, documentation of data quality is achieved in the form of a quality
report. If quality is known to vary over the area encompassed by the GBF, the quality report may take
the form of a quality overlay, which is registered to the GBF (see Chrisman [46]). The quality report
is composed of sections documenting five components of quality — data lineage, positional accuracy,
attribute accuracy, logical consistency and completeness.

Data lineage refers to the data sources, methods of deriving and encoding the data and all transforma-
tions applied to the data. It includes the dates of all source and ancillary data, geodetic control infor-
mation and the specific characteristics of the transformations applied at each step of database develop-
ment. Documentation of transformations includes a listing of control point locations and a description
of the transformation algorithm, including the nature of the computational steps and the numerical
values of coefficients for a sample of computations.

Positional accuracy refers to the accuracy of feature locations after transformations have been applied.
Possible tests of positional accuracy include deductive estimates, internal evidence checks, comparison
to the source document and reference to an independent source of higher accuracy. Deductive esti-
mates are based on knowledge and assumptions about the propagation of errors introduced at each step
in database development. Internal evidence checks are based on standard methods of evaluating sur-
veying accuracy, including repeated measurements and the computation of residuals from adjustments
applied to the coordinate system. Comparison to the source document constitutes a visual inspection of
the discrepancies between the encoded database and the document from which it was derived. Refer-
ence to an independent source of higher accuracy is the preferred method of testing positional accuracy
and is based on the standards proposed by the American Society of Photogrammetry and Remote Sens-
ing (Merchant [161]). Numerical test results are presented in ground units and the locations of test
points are provided in the data quality documentation.

Attribute accuracy refers to the accuracy of the thematic attribute portrayed in the database. Methods
of testing attribute accuracy include deductive estimates, tests based on independent samples of points
and tests based on polygon overlay. Deductive estimates are qualitative evaluations based on prior
experience and assumptions about the propagation of error through the various steps in database
development. Tests based on independent samples rely on the construction of a classification error
matrix (see § 2.1) to assess classification error in a sample of points relative to a source of higher

+ This proposed standard was developed by a joint committee of the National Committee for Digital Cartographic
Data Standards, the Federal Interagency Coordinating Committee on Digital Cartography and the Digital
Cartographic Data Standards Task Force (Moellering [162]).



accuracy. The location of sample points is given in the data quality documentation. Tests based on
polygon or map overlay (see § 5.3) use a classification error matrix showing the areas of agreement and
disagreement in classification between the database and a source of higher accuracy.

Logical consistency refers to the fidelity of the relationships encoded in the data structure. Consistency
checks include tests of the validity of assigned values to identify gross errors and tests of topological
consistency (see Chrisman [47], § 4.1.3).

Completeness refers to the selection criteria, definitions and other relevant rules used in developing the
database. Completeness describes the relationship between objects in the database and the abstract
universe of all objects. Tests of completeness include checks of how consistently features have been
assigned to classes and how exhaustive the classes are in an actual context.

Grady [104] provides a detailed description of a method of tracing data lineage based on techniques
applied in auditing transactions in a management information system. In a management information
system, documentation of lineage is achieved through an ‘“‘audit trail,” whereby transactions that
modify a database are recorded in a “transaction history file.”” This file describes the data processing
steps applied to the database, such that the effects of a given transaction can be traced through to the
final product. In order to maintain the referential integrity of the data, a ‘‘data dictionary”’ is used that
specifies the database contents and constraints that apply to each feature in the database. The data dic-
tionary applies rules to transactions before new data are encoded or existing data are transformed, thus
preventing conflicts between the original and transformed databases. This approach is thorough but
may significantly increase the time and cost requirements for database development. Alternatively,
“deferred checking” may be performed on the transformed database to check for compliance with
rules defined by the data dictionary. Deferred checking resolves inconsistencies in the transformed
database and therefore does not impede database development.

Grady also argues that the mandate of the data producer is an important component of data quality and
should be incorporated in the lineage documentation. The mandate defines the reason for collecting
data and therefore influences the nature of the data. Following Chrisman [46], the author also argues
that as many apparent errors in a database are attributable to changes occurring over time, documenta-
tion of data quality must account for temporal changes in objects encoded in the database. This might
be achieved by assigning temporal codes to all objects as the basis for performing tests of historical
validity. The authors also discuss the importance of geodetic control in data quality. Geodetic control
is the foundation for achieving positional accuracy, but the data structure requires the flexibility to
accept changes in the coordinate values assigned to points resulting from temporal changes or improve-
ments in the accuracy of geodetic control. In accordance with the suggestion made by White [227]
(see § 6.3), this flexibility might be achieved by separating the locations of points from their code or
identifier. Hudson [124] maintains that the management of lineage documentation might prove to be
cumbersome and costly, and suggests instead that the computer system summarize data quality at each
processing step and propagate these summary measures through subsequent steps.

2.6. Digital Elevation Models

Digital elevation models, or DEMs, are digital representations of topographic elevations for a part of
the earth’s surface. The most common form of DEM produced by the US Geological Survey (USGS),
the main producer of DEMs in the US, consists of a gridded array of elevation values conforming to
the latitude-longitude graticule or the Universal Transverse Mercator (UTM) grid system. The former
type of DEM is referred to as the “‘arc-second” format and is produced by the USGS at 3-arc-second
and l-arc-second grids. The 3-arc-second grid conforms to the USGS 1:250 000-scale topographic map
series, while the 1-arc-second grid conforms to the standard 7 1/2-minute quadrangles used in the USGS
1:24 000 topographic map series. The arc-second format DEMs are non-rectangular due to the conver-
gence of meridians in a poleward direction. In contrast, “‘planar” format DEMs conforming to the



UTM grid system consist of a rectangular array of elevation values.

Caruso [42] discusses the standards employed by the USGS to evaluate the accuracy of 71/2-minute
arc-second DEMs. The USGS classifies errors in DEMs into three categories. ‘‘Blunders” are gross
errors that are easily detected and are therefore usually edited from the DEM prior to general release.
““Systematic errors” are non-random errors associated with specific procedures that introduce biases
and artifacts into the DEM. An example is ‘“‘striping,”” an artificially high level of spatial autocorrela-
tion in elevation values along one axis of the DEM. Striping is associated with the practice of resam-
pling elevation values along one axis at a higher spatial resolution (i.e., a smaller sampling interval)
than that used to originally acquire the elevation data. Although such systematic errors are often easily
detected, they are not always correctable. ‘“Random errors,” the third error category, result from
measurement error and, unlike systematic errors, reduce precision but do not introduce bias.

Accuracy testing of DEMs by the USGS consists of comparing the known elevations of at least twenty
control points to the elevations of these points as interpolated from the DEM. The RMSE is then cal-
culated in the z dimension (see equation (2.52)). Based in part on the RMSE calculation, the USGS
identifies three levels of DEM quality. Level I DEMs contain no points whose elevations are in error
by more than 50 m. The maximum RMSE permitted is 15 m. DEMs acquired by manual profiling or
the Gestalt Photo Mapper II (GPM2) typically fall within this level. Level II DEMs have a maximum
RMSE of 7 m and contain no points whose elevations are in error by more than twice the contour
interval of the source map. DEMs acquired by contour digitizing typically fall within this level. Level
III DEMs have a maximum RMSE of 7 m and contain no points whose elevations are in error by more
than the contour interval. Digital Line Graph (DLG) DEMSs, which incorporate hypsographic and
hydrographic data, fall within this level.

Carter [41] presents an alternate taxonomy of error for DEMs that distinguishes between *‘relative’ and
“global” errors. Relative error refers to a situation in which a number of elevation values are obvi-
ously inconsistent relative to neighboring elevation values which, as a group, give an adequate represen-
tation of the surface. Global error, in contrast, refers to a situation in which the DEM as a whole
gives an adequate representation of the surface, but the total model departs significantly from the
source document or the actual surface. Global errors are particularly problematic when concatenating
adjacent DEMs, since overlaps can occur and the differences in elevation values across the ‘‘seam”
may be unrealistically large. Global errors can often be corrected by applying a translation, scaling or
non-linear transformation. The author provides numerous examples of relative errors in DEMs and
demonstrates how these are often difficult to detect and correct.

Theobald [205] views DEM accuracy as a function of two distinct issues. First, accuracy is limited by
the quality of the source document and the methods used to acquire elevation values from them. For
example, DEMs acquired with the GPM2 often contain errors due to the inability to discern the actual
ground surface, particularly in areas of dense tree cover. Semi-automatic profiling methods, in con-
trast, may produce striping on DEMs when the sampling interval is different in the x and y dimensions.
The second issue affecting DEM accuracy pertains to the size of the sampling interval and its interac-
tion with terrain surface variability. Sampling implies a certain level of generalization of the source
document in order to create a DEM of manageable size while preserving a reasonable surface
representation. The appropriateness of a given sampling interval depends on the variability of the ter-
rain surface, but it is also dictated by the requirements of different applications of DEMs. Other
important issues of DEM accuracy include the spatial distribution of systematic error and the propaga-
tion of error into products derived from DEMs, including measures of slope, aspect and curvature.

Bethel & Mikhail [26] present a method for detecting gross errors, or blunders, in DEMs based on
mathematical modeling of the terrain surface by tensor-product B-splines. The authors view this pro-
cedure as the first stage of an on-line quality assessment system for DEMs. The procedure is based on
fitting the tensor-product of two one-dimensional B-splines locally over the DEM. Residuals are then
computed and a statistical test is performed to yield an overall assessment of the presence of outliers



(i.e., gross errors) in the DEM. This constitutes the detection phase of quality assessment. Specific
outliers are then identified in a candidate subgroup of the residuals and flagged as gross errors. Tests
performed on a set of synthetic and actual DEM:s reveal that this approach is especially effective in the
case of multiple blunders of relatively large magnitude.

Hannah [111] also presents a method for detecting and correcting gross errors in DEMs. The method
is based on the calculation of slope and change-in-slope values for each grid point in the DEM. Error
detection is performed in three phases. First, for each grid point, change-in-slope values across the
point are computed in four directions corresponding to eight local neighbors and in eight directions
corresponding to sixteen distant neighbors. Each of the resulting twelve change-in-slope values is thres-
holded by assigning it a value indicating whether or not it exceeds the maximum allowable change-in-
slope. The mean of these threshold values is then calculated for each point as an index of change-in-
slope reliability. The change-in-slope reliability indices for each point are further transformed via a
“voting’’ procedure that assumes that a given point can be no more reliable than the least reliable of its
local and distant neighbors. The voting procedure is applied iteratively until reliability indices con-
verge.

The second phase of error detection involves calculation of the slope between each point and its eight
local neighbors. Each of these slope values is thresholded by assigning it a value indicating whether or
not it exceeds the maximum allowable slope. The mean of these thresholded values is then calculated
for each point as an index of slope reliability. In the final phase of error detection, a composite relia-
bility index is computed for each point as the minimum of its slope and change-in-slope reliability
indices.

Error correction is based on change-in-slope analysis. A point is considered to be compatible with its
neighbors when its elevation causes minimal changes in the slope surrounding and across the point.
The surface is smoothed by assigning new elevation values that minimize changes in slope, using a
weighting procedure in which the weights reflect the composite reliability index of each point. Experi-
mental tests show that this method succeeds in identifying and correcting gross errors. However, prob-
lems may be encountered along steep ridge lines and an extreme level of surface smoothing sometimes
occurs.



3. ACCURACY OF CARTOMETRIC ESTIMATES

This section focuses on the accuracy of cartometric estimates, or estimates of lengths and areas derived
from maps. The effects of cartographic generalization on cartometric line length estimates are exam-
ined in § 3.1. In § 3.2, the accuracy of cartometric area estimates are discussed in the context of clas-
sification error and the method employed in area estimation.

3.1. Length Estimation

Estimates of the length of linear map features, including roads, political boundaries and coastlines, are
inherently dependent on the level of cartographic generalization present in the map. As the level of
generalization rises, lines become increasingly smooth and minor deviations from the general trend of
the line are eliminated. Hence estimates of line length tend to decrease as the level of generalization
rises. As cartographic generalization is a function of the limits on cartographic fidelity associated with
map scale, the level of generalization is inversely related to scale. Estimates of line length therefore
tend to decrease as map scale declines. Analogously, length estimates are dependent on the spatial
resolution of the instrument used for estimating line length. For example, if length is estimated by
stepping a pair of dividers along the line, then the resolution is defined by the divider “‘step-size,” or
the distance between the two divider points. For a given cartographic line, the estimate of line length
decreases as step-size increases, since the line is in effect being defined at an increasing level of gen-
eralization. The discussion that follows reviews the empirical evidence supporting these assertions and
then elucidates the relevance of fractal theory in exploring the relationship between length estimation
and cartographic generalization.

3.1.1. Sources of Error

Baugh & Boreham [17] examined the effects of three sources of error on estimates of coastline length.
The first source of error is the definition of the coastline itself, and in particular how far up-river the
coast is assumed to extend. The second source arises from the digital representation of coastlines as
sets of digitized points joined by straight line segments. This error source includes aspects of digitizing
and generalization error (see § 4.1 and § 4.2). The third source of error is associated with map scale
and the resulting level of cartographic generalization. The effects of these error sources were examined
by comparing estimates of the length of different segments of the Scottish coastline. Lengths were
estimated from maps of different scales using an opisometer (i.e., a calibrated wheel) and by summing
the straight line distances between successive digitized points. Length estimates were observed to
increase with map scale for both opisometer and digitizer methods, due to a decrease in the level of
cartographic generalization. For maps of the same scale, the digitizer method yielded larger estimates,
due mainly to instrumental error in opisometer estimates at coastline segment termini. The digitizer
method was assumed to be the more accurate of the two methods. Comparison of different coastline
segments revealed that discrepancies in length estimates associated with both map scale and estimation
method were greatest for highly indented coastlines.

With reference to estimates of the length of the Australian coastline, Galloway & Bahr [88] examined
the effects of map scale, method of estimating length, coastline smoothness and definition of the coast-
line. Coastline definitions differed in terms of the inclusion or exclusion of small inlets and islands.
Coastline smoothness was examined by comparing the length estimates for coastline segments that exhi-
bited varying degrees of indentation. Coastline lengths were estimated with divider, opisometer and
flexible wire methods. Divider step-sizes varied between 0.1 and 1000 km ground distance. The
effects of map scale were explored by estimating coastline lengths from maps with scales between
1:250 000 and 1:15 000 000.



The exclusion of small inlets and islands in the coastline definition was observed to reduce the estimate
of coastline length. For the 1:250 000-scale map, this reduction was on the order of 12 percent. Coast-
line length estimates were also observed to decline as divider step-size increased and as map scale
decreased, due to an effective rise in the level of cartographic generalization. Both the divider and
flexible wire methods yielded accurate and consistent length estimates at a given scale, while the
opisometer method showed considerable variability. The effects of step-size and map scale were
observed to be more significant for highly indented coastlines. The authors calculated the relationship
between coastline length estimates and divider step-size for the 1:2500000 scale map for step-sizes
ranging from 10 to 1500 km as

L = 250005012 (3.1)

where: L = the coastline length estimate (in km); and
s = the divider step-size (in km).

Maling [154] provides a review of previous research on the effects of map scale and divider step-size on
line length estimates and presents some equations that can be used to correct for these effects. The
correction for step-size is based on the theoretical line length estimate when step-size is equal to O.
This theoretical line length should equal the “true” line length, since the divider points are infinitely
close. Given L; and L,, two estimates of line length derived with step-sizes of s; and s,, respectively,
then the true line length, L, can be estimated as

L' = L + k(L; - L) (3.2)

An estimate of parameter k is given by

s
k = (3.3)
s§ — sf

Parameter b is a measure of line sinuosity. It takes a value of 2 for a smooth line and a value of 0.5 for
a sinuous line. Experiments show that this correction works well, although it may be difficult to empir-
ically establish a reasonable value for parameter b.

The correction factor given in equation (3.2) is inconsistent the Steinhaus paradox, which states that as
a line is measured with increasing accuracy (i.e., as step-size decreases to 0), the line length estimate
increases to infinity. Maling’s argument, however, is that the only solution to this paradox is to define
some order of measurement that represents the lower limit of the size of meaningful geographical
features. This lower limit may be defined in terms of the epsilon band concept (see § 4.1.1). The
epsilon band for a given cartographic line may be delineated by joining the center points of a circle of
radius e as it is “‘rolled” along both sides of the line. The value of € determines the minimum size of
cartographic features that may be resolved. Line length may be estimated by dividing the area of the
band by its width (i.e., 2€) and correcting for the area associated with the rounded ends of the band
extending beyond the line segment termini. Experiments show, however, that this method tends to
underestimate line length by about 2 percent.

The author also presents an equation that may be used to correct for variations in the level of carto-
graphic generalization associated with map scale. Given a line length estimate of L derived from a
map of scale 1:R, the corrected line length estimate, L', is given by

.

L" = L+ aR” (3.4)

The parameter o depends on line sinuosity. Maling suggests that a mean value of o can be estimated
empirically using a collection of maps of different scales.



Beckett [19] provides an alternate form of equation (3.5),
L/L" = BRY (3.5)

where: " = the actual length of the line;
L = the length of the line as estimated from a map; and
R = the scale (i.e., representative fraction denominator) of the map.

For a perfectly straight line, coefficient B should be equal to 1 and coefficient «y should be equal to 0.
In this case the estimated length is identical to the actual length. If two length estimates are derived
from maps of different scales then

L R, |"
L _ B [_1] (3.6)
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where: L; = the length of the line as estimated from map i; and
R; = the scale (i.e., representative fraction denominator) of map i.

Estimates of B8,/f, and y may be derived from the regression of In (L;/1,) on In(R,/R;). The author
performed regressions on five sets of data, where each set was composed of opisometer length estimates
for several roads derived from British road maps of different scales. Map scales ranged from 1:2 500 to
1:2000000, although the range of scales within any one set of data was considerably smaller. For all
five sets of data the ratio B;/f, was approximately equal to 1, indicating that it is independent of map
scale. The value of v varied between 0.031 and —0.019 and the author suggests a mean value of
-0.017.

Regressions were also performed on two sets of coastline length estimates derived from maps with
scales of 1:25000 to 1:6000000 using dividers with step-sizes ranging from 2 to 15 mm. The ratio
B,/B, was again observed to be approximately equal to 1 and invariant over different step-sizes. Coef-
ficient y showed no consistent trend over different step-sizes, although it was considerably larger (in
absolute value) than for the road map data. The value of vy varied from —0.051 to —0.031 and the
author suggests a mean value of —0.04.

Hakanson [110] examined the effects of map scale and line sinuosity on estimates of shoreline length
for a set of Swedish lakes. Lakes varied in size from approximately 1 to 6000 km?. Shoreline lengths
were estimated from maps with scales ranging from 1:10000 to 1:1000000, using an estimation method
based on counting the number of intersections of the shoreline with the axes of a regular grid. A meas-
ure of ‘‘shoreline development,” F, is defined as

F- L (3.7)

2ml2 A2
where: L. = shoreline length; and

A = lake area.

The equation yields an index of lake shape representing the ratio of the length of the shoreline of a lake
of area A to the circumference of a circle of the same area. Lake area is assumed to be independent
of map scale since positive and negative errors in the cartographic representation of the shoreline will
be cancelled out. Empirical curve-fitting showed that shoreline development at a scale of 1:1 (i.e.,
“normalized” shoreline development) was related to shoreline development at a given map scale of
interest by the equation

F(K; - Ky)

T K, - log(s + a) (3.8)




where: F* = normalized shoreline development;
F = shoreline development at a given map scale, s;
K, = log(s+a) for s = 6000000 (where 6000000 is the “‘scale constant’);
K; = log(s+a) for s = 1 (where 1 is the “‘reference scale’);
a = 10°log(A) (where 10° is the ‘‘area constant’’); and
A = lake area in km?.
Alternatively, for shoreline length,

. LK -K)
L= K, — log(s + a) (3-9)

where: L° = normalized shoreline length; and
L = shoreline length at a given map scale, s.

These equations were found to yield accurate results when A was held constant as F~ varied and when
F’ was held constant as A varied.

3.1.2. Fractal Theory

The relationship between length estimation and cartographic generalization may be examined in light of
fractal theory (Mandelbrot [155]). Consider a straight line segment of length L, for which the dimen-
sionality, D, is equal to 1. For every positive integer n, the segment can be exactly decomposed into n
nonoverlapping segments whose end points will be (x—1)L/n and xL/n, where x ranges from 1 to n.
Thus the length of each segment, L', is equal to L/n. Each of the n segments can further be decom-
posed into n nonoverlapping segments of length L'’, where L'’ = L'/n. This process may be repeated
and at each step the length of the n new segments is equal to 1/n of the length of the next-largest seg-
ment. At each iteration, the sum of the lengths of all segments will equal the length of the original,
undecomposed line.

Analogously, consider a D-dimensional geometric figure (1 < D < 2) of length L consisting of n straight
line segments of length s, where s=L/n. Each of these segments may be replaced by a geometric fig-
ure identical to the original and consisting of n straight line segments whose length, s’, is equal to 1/nV/P
of s, or ¥nP. The geometric figure is said to be “self-similar’’ since each segment is a reduced-scale
image of the whole. The total length of each of the n new figures, L', is equal to ns’ and their com-
bined length is equal to n(ns’), or n%’. In contrast to the one-dimensional case discussed above, note
that L' > L. That is, at each iteration, the sum of the lengths of each segment is greater than the sum
of the lengths of each segment at the previous iteration and, in the limit, the length is infinite.

Since the length of a segment at a given iteration is equal to 1/nY/P of the length at the previous itera-
tion, the fractional dimensionality, D, is defined by

D = log(n) / log(1/s) (3.10)

Self-similarity may not hold for cartographic lines, but a statistical form is often encountered. That is,
each portion of a cartographic line can be considered to approximate a reduced-scale image of the
whole line. For a given cartographic line for which the length is to be estimated, variable s represents
the step-size, or spatial resolution, of the length estimation method employed, while n represents the
number of segments or “‘steps’’ that will be counted. A decrease in the value of s represents a decrease
in the step-size and hence an increase in the amount of geographical detail that can be resolved. For
lines for which D =1, a given decrease in s will result in a proportional increase in n, such that the line
length estimate, L, will remain the same (since L =sn). For cartographic lines, in contrast, a given
decrease in s will result in a proportionally larger increase in n, such that D will tend to some limit as s
approaches 0.



Goodchild [96] argues that for geographical lines, the limit to D is 2, which represents a line that com-
pletely fills two-dimensional space. If the length of a given line is measured using two different step-
sizes, s; and s,, and the line is found to contain n; and n, such segments, respectively, then the frac-
tional dimensionality of the line, D, can be estimated as

D = log(n,/ ny) / log(s; / s;) (3.11)

This is known as the ‘‘Hausdorff-Besicovitch dimension.”” The relationship between step-size, s, and
the length estimate, L (where L = sn), is given by

log(L) = a+ (1 — D)log(s) (3.12)

Coefficients a and 1—D may be interpreted as the intercept and slope of the double-log regression of L
on s, respectively. When D> 1, the slope will be negative. If the line under consideration has a con-
stant value of D, indicating self-similarity, the slope of the regression line will be constant over the
range of s. The greater the value of D, the greater the absolute magnitude of the slope, such that the
reduction in the line length estimate with increasing step-size is greatest for lines with relatively high
fractional dimensionality. Examination of coastline length estimates, however, indicates that the slope
of the regression line tends to increase in absolute magnitude as s rises. This observation suggests that
that coastlines (and presumably other cartographic lines) are not strictly self-similar, since the fractional
dimensionality changes over the range of s.

3.2. Area Estimation

Cartometric area estimation refers to the estimation of the area encompassed by a closed geometric fig-
ure, such as a polygon. Unlike errors in line length estimates, which are seen to arise primarily from
the effects of cartographic generalization, errors in area estimates have typically been examined in the
context of dot planimetry. This technique, common in forestry and photogrammetry, seeks to estimate
polygon area by overlaying a transparent grid of dots on a map or aerial photograph and counting the
number of dots falling within the polygon. Polygon area can then be estimated as na, where a is the
ground area represented by a single dot and n is the number of dots counted.

There are strong parallels between this technique and the GIS operation of vector to raster conversion
(see § 5.2). In this operation, a set of polygons possessing values for some thematic attribute are con-
verted into a set of grid cells possessing the thematic attribute values (or some transformation thereof)
of the polygon in which the cell is located. The area of a given polygon on a raster map can again be
estimated as na, where a is the ground area of a single cell and n is the number of cells that have been
assigned to the polygon. This area estimate is likely to be inaccurate, however, since cells located near
the edges of the polygon are often bisected by the polygon boundary. When such cells are assigned to
the polygon, they contribute to overestimation of area, and when they are not assigned, they contribute
to underestimation. Research by Crapper [60-63], Crapper et al [64], Frolov & Maling [87] and Lloyd
[144] shows that, when considering a single polygon, the relative standard error of the polygon area
estimate derived from the rasterization process is proportional to the 3/2 power of the linear dimension
of the cells and the —3/4 power of polygon area. Other authors, including Goodchild [96, 97], Muller
[168] and Switzer [203], have shown how the standard error may be computed when considering groups

of polygons.

The discussion in this section reviews two main research issues on the accuracy of area estimates. The
first is related to the effect of variations in the density of dots on the transparent overlay used in dot
planimetry. This is the analog of the effect of variations in step-size on line length estimates, as dis-
cussed in § 3.1. Much of this research is reported in the forestry literature, since dot planimetry is
often used to estimate the area of different forest types.



The second research issue discussed in this section pertains to the problem of classification error in a
remote sensing context. In remote sensing, classification involves the assignment of a class (e.g., a land
cover type) to each pixel in an image, based on the spectral response of the pixel in one or more spec-
tral bands. The area encompassed by a given class can be estimated as the number of pixels in the
image that have been assigned to that class. However, the presence of incorrectly classified pixels
means that the area estimate for a given class may be biased. Much of the research on this issue has
focused on methods of correcting area estimates for classification error, based on manipulation of the
classification error matrix (see § 2.1). This issue is also related to other accuracy issues pertaining to
“categorical coverages” (Chrisman [49]), a class of geographical data in which the values of the
thematic attribute determine the structure of the map (see § 2.2).

3.2.1. Effects of Dot Grid Density

Tryon et al [211] examined how polygon area estimates derived by dot planimetry are affected by vari-
ations in the density of dots on the transparent dot overlay. A set of five aerial photographs at a scale
of 1:31680 were partitioned into polygons representing forest and non-forest land cover classes. The
area of each polygon was estimated using transparent overlays with dot densities of 4, 8, 16 and 25 dots
per square inch (dpi). Area estimates were summed over all polygons of each cover class to yield an
estimate of the total area of each class. These estimates were observed to be fairly consistent over dif-
ferent dot densities for classes with relatively large areas, but dropped off sharply for small areas at
densities of 4 or 8 dpi. Large areas exhibited high absolute errors, while small areas exhibited high
relative errors.

Barrett & Philbrook [13] examined the relationship between dot density and the standard error of area
estimates using a method of repeated trials. Each trial involved estimation of polygon area based on a
random placement of the dot grid over the polygon. The authors performed 40 trials on two polygons
of different sizes for a 16 dpi grid, 30 trials for a 25 and a 36 dpi grid and 20 trials for a 64 dpi grid.
The mean area estimate of each polygon for a given dot density was computed and the standard error
of the area estimate was then calculated as
1k 2
s = |07 I Gy - @ (3.13)
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where: s; = standard error of the area estimate for polygon i;
a;; = area estimate for polygon i in trial j;
a; = mean area estimate for polygon i; and

k = number of trials.

Both the standard error and the relative standard error (i.e., the standard error as a percentage of the
mean area) declined as dot density increased. The authors also calculated the standard error according
to the more conventional binomial method,

A(piq / n)? (3.14)

s
where: A = total area of the photograph on which the polygon was delineated;

pi proportion of A accounted for by the area of polygon i (i.e., the estimated area of
polygon i divided by the total area of the photograph);

i

q; = 1-p;; and

n = number of dots over the entire photograph.
In contrast to the repeated trial method, equation (3.14) is based on a single estimate of polygon area.
The standard errors computed with equation (3.14) were significantly larger than those computed with
equation (3.13). According to the authors, the repeated trial method yields more precise estimates of
polygon area than the binomial method.



Gering et al [91] examined the degree to which area estimates are biased by the density of the dot grid.
A set of aerial photographs at a scale of 1:12000 were partitioned into polygons representing forest and
non-forest land cover classes. The minimum polygon size was approximately 10 acres. The area of
each polygon was estimated using three dot grids at 4, 16 and 49 dpi. Polygon area estimates were
summed to yield an estimate of the total area of each cover class. In all but one case, the differences
in cover class area estimates attributable to dot density variations were not statistically significant, indi-
cating that a decline in dot density does not introduce bias into area estimates.

In a further test, a sample of polygons was selected and their areas repeatedly estimated using each of
the three dot grids. In all but one case, differences in mean polygon areas estimate attributable to vari-
ations in dot density were not statistically significant. However, as density declined, the standard error
of the area estimates was observed to rise. By extrapolating this trend and considering the trade-off
between decreasing standard error and increasing cost associated with denser grids, the authors con-
cluded that a density of 27 dpi is optimal. At densities of 27 dpi or greater, the binomial method
(equation (3.14)) may appropriately be applied.

Frazier & Shovic [86] examined the accuracy of dot planimetry for situations in which area estimates
are based on a sample of grid cells within which dots are randomly located. This procedure is a two-
stage sampling design in which the cells represent the primary sample and the dots within each cell
represent the secondary sample. Polygons corresponding to seven land cover classes were delineated on
aerial photographs at two different dates. A systematic grid of 130 cells with 20 randomly located dots
in each cell was used to estimate the area of each cover class and served as an accurate standard against
which various sampling strategies were compared. In the authors’ experimental design, cells were
selected by random, systematic and stratified random sampling. Results indicated that 2.6 km? cells
with 8 dots per km? (ground area) or 1.26 km? cells with 15 dots per km? provided relatively accurate
area estimates with acceptable standard errors. No significant differences were observed in standard
errors for random and stratified random sampling, but systematic sampling showed considerable poten-
tial for imprecision due to periodicity in the spatial distribution.

Hixson er al [117] investigated the effect of different sampling schemes on the bias and precision of
crop area estimates derived from counts of Landsat pixels classified into crop types. This method of
area estimation is analogous to dot planimetry except that the dots have been replaced by a grid of rec-
tangular cells (i.e., Landsat pixels). Four sampling schemes were employed in which the number of
pixels sampled remained constant but the size of the sampling frame (i.e., a set of one or more contigu-
ous pixels) and the number of frames selected were permitted to vary. For experimental purposes, the
area under wheat in the study area was estimated four times for each of the four sampling schemes.
Hence the mean and standard error of the area estimates could be calculated for each sampling
scheme. In terms of precision, results showed an increase in the standard error and the relative stan-
dard error as sampling unit size increased. Systematic bias was not observed in the mean area estimate
for the different sampling schemes.

MacKay [152] argues that, whatever the method of area estimation employed, the accuracy of these
estimates may be ascertained with reference to a “pattern map.”” The pattern map is composed of
polygons of regular shapes whose area can therefore be determined geometrically with a high degree of
accuracy. Dot planimetry estimates of individual polygons, for example, could be compared against
their actual area to calculate bias and precision.

3.2.2. Correcting for Classification Error

In remote sensing, area estimates are often based om counts of the number of pixels assigned to dif-
ferent classes. As explained above, the presence of incorrectly classified pixels means that the area
estimate for a given category may be biased. Hence, in estimating area by this method it is appropri-
ate to attempt to correct for classification error.



Hay [114] describes a general method for correcting for the effects of classification error on area esti-
mates. Consider an image for which the pixels have been assigned to k classes. The area encompassed
by a given class is then proportional to the number of pixels assigned to that class. Let R be a kx 1
matrix where r; is the number of pixels assigned to class i on the image. In order to assess classification
accuracy, a sample of cells is randomly selected and their classes checked against more accurate infor-
mation derived from ground survey. Let C be the kX k classification error matrix for this sample (see §
2.1), such that c;; is the number of pixels assigned to class i but according to the ground survey, actually
belong in class j. Let E be a kxk ‘“‘normalized” classification error matrix, where each element of E is
the corresponding element of C divided by its column total. That is,

k
eij = Cij / E cij (315)
i=1
Finally, let T be a diagonal kx k matrix whose diagonal elements are the column totals of C. That is,
k
i=1

Since, by definition, ET = C, then E may be calculated as E = CT™!. The correction for classification
error is performed as

A = EIR (3.17)

Matrix A is a kX1 matrix where a; is an estimate of the number of pixels in class i on the image after
correcting for classification error. The elements of A may be multiplied by pixel area to yield esti-
mates of the area encompassed by each class. The technique ensures that the sum of the elements of A
will equal the sum of the elements of R. The sum in both cases will equal the number of pixels in the
image. In contrast, the more conventional “ratio’” method of correcting for classification error does
not preserve this equality, since it treats each row of C independently. The ratio method simply scales
each element of R by a ratio of the corresponding row and column totals of C. That is, the corrected
estimate of the number of pixels in class i on the image, a;, is given by

k
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a = r 2l (3.18)
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The author presents a hypothetical example demonstrating that equations (3.17) and (3.18) do not
necessarily yield the same result.

Maxim et al [158] present a variant of equation (3.17) that incorporates “detection” error, or error in
identifying objects of interest. Let D be a diagonal kxk matrix of detection errors. Specifically,
d; = 1/q;, where q; is the probability of detection for class i. Area estimates may be corrected as

A = DE 'R (3.19)

This generalizes to equation (3.17) when detection proabilities are equal to 1 for all classes. Other
methods are also described that may be applied when knowledge of matrices D or E is incomplete or
partial information about matrix A is available.

Bauer et al [16] describe a variant of equation (3.17) in which the elements of A and R represent the
proportions of pixels in each class rather than the total number of pixels. Hixson [116] maintains that
the success of this method depends on obtaining unbiased estimates of the elements of C. For exam-
ple, stratified random sampling may be used to ensure that all classes in the image are adequately sam-
pled. The approach also appears to be more successful when classification accuracy is relatively high
for all classes.



Chrisman [44] and Prisley & Smith [180] present another variant of equation (3.17),
P = R'F (3.20)

P is a kX1 matrix where p; is an estimate of the proportion of pixels on the image in class i after
correcting for classification error, as in the approach described by Bauer er al [16]. As described by
Hay [114], R is a kx1 matrix where r; is the number of pixels assigned to class i on the image. F is
similar to matrix E described by Hay [114] except that normalization is performed over the columns of
C. Each element of F is the corresponding element of C divided by its row total. That is,

X
fij = cij / z cij (321)
j=1
The advantage of this method is that matrix inversion is not required. Inversion may be infeasible due

to singularity when sample sizes for specific categories are small (Hay [114]). Note, however, that
equations (3.17) and (3.20) do not necessarily yield the same result.



4. ERRORS INTRODUCED DURING DATA COMPILATION

This section is concerned with errors introduced into spatial databases by data compilation methods.
Models of digitizing error, or inaccuracies in the encoded positions of digitized points, are reviewed in
§ 4.1. The discussion in § 4.2 is devoted to generalization error, or error arising from the representa-
tion of cartographic lines as sets of digitized points joined by straight line segments. Errors associated
with various mapping techniques are examined in § 4.3, § 4.4 and § 4.5. Choroplethic mapping error
(see § 4.3) incorporates aspects of data symbolization and the interaction between attribute and posi-
tional error. In isometric mapping (see § 4.4) and isoplethic mapping (see § 4.5), errors are intro-
duced by characteristics of the data that affect the accuracy of interpolation. Conceptual and percep-
tual error in mapping are discussed in § 4.6 in the context of the theory of cartographic communica-
tion.

4.1. Digitizing Error

Digitizing error refers to the positional error in a digitized point arising from inaccurate placement of
the digitizer cursor during the data encoding process. Most models of digitizing error consider posi-
tional error in the context of lines or polygon boundaries defined by sets of points connected by straight
line segments. Perhaps the most well-known of these error models is the epsilon band concept, in
which positional error is represented by a ‘‘boxcar” distribution of probable *‘true” line locations
around the digitized line. Variants of the epsilon band concept are based on alternate definitions of
this distribution. Other authors have proposed that in certain cases, digitizing error may be modeled as
a serially dependent process in which the error at a given point along a line is dependent on the error at
previously digitized points. Other models are more qualitative and account for the physiological and
psychological factors that affect the ability of the human operator to perform the digitizing task.

Digitizing error is closely related to generalization error and the two types of error are often considered
together, since both result in positional error in cartographic lines. Following Amrhein & Griffith [5],
generalization error may be defined as the error arising from the representation of a cartographic line
as a set of points joined by straight line segments. In general, the fewer the number of points, the
greater the degree of generalization error. The degree of generalization error will generally increase as
line complexity rises (Burrough [34]). Generalization error is also associated with the post-digitizing
process of line simplification, which is often applied to maintain cartographic fidelity as map scale is
reduced. Generalization error is discussed in § 4.2 of this report, but many of the models discussed
below are also pertinent to generalization error. Digitizing error also plays a role in error modeling for
specific GIS operations. In map overlay, for example, digitizing error results in the generation of
spurious polygons (see § 5.3.2). Digitizing error is likewise of some importance in assessing plan-
imetric accuracy (see § 2.4) and in establishing map accuracy standards (see § 2.3 and § 2.5).

4.1.1. The Epsilon Band Concept

The epsilon band concept provides a means of modeling the degree of digitizing error associated with
the points defining cartographic lines. This concept is described by Blakemore [27], Chrisman [45],
Honeycutt [118] and others. It is based on the notion that a buffer zone having a width twice epsilon
(€) can be constructed around any cartographic line. The delineation of this zone may be visualized as
the process in which a circle of radius € is *‘rolled” along both sides of the line (Chrisman [45]). In
modeling digitizing error, the value of € (and hence the width of the buffer zone) reflects the degree of
error in digitized point locations. The boxcar distribution of width 2e around the digitized line is
assumed to encompass the true line location and therefore represents a band of uncertainty associated
with the position of the digitized line. As noted in § 4.2, this model may also be applied to account for
generalization error, which is also associated with uncertainty in line location.



A number of authors have applied the epsilon band concept in an experimental context to determine
the degree of uncertainty introduced by digitizing error and other error sources. Chrisman [43], for
example, computed the epsilon band for a digital land use/land cover map in terms of the combined
effect of line width drafting error, roundoff error and digitizing error. Line width drafting error was
defined as the inaccuracy associated with the representation of a line as a feature of non-zero width.
This may represent a relatively large zone of uncertainty in line location, particularly on small-scale
maps. Roundoff error was defined in terms of the numerical precision of the hardware used for digitiz-
ing. Roundoff error may be propagated through subsequent calculations (see Burrough [34]). Digitiz-
ing error was assumed to hold the greatest potential for introducing errors during digital map encoding.

Each of these sources of error was treated independently, since each was assumed to be introduced at a
distinct phase in the encoding process. The value of € was therefore estimated as the sum of the errors
associated with each source. For the digital land use/land cover map, € was estimated as 15.2 m and
increased to 20 m to account for interpretation and registration error. Interpretation error was defined
as the uncertainty in the location of boundaries between land use/land cover categories associated with
indeterminacy in taxonomic definitions. Imperfect alignment of data sources due to the dimensional
instability of paper maps was assumed to be the primary cause of registration error. The epsilon band
was defined for the polygon boundaries of each land use/land cover category on the map. The area
within the band was observed to represent some 7 percent of the total map area. For individual land
use/land cover categories, this zone of uncertainty was as large as 50 percent of the mapped area of the
category. Since the value of € was constant over the entire map, this percentage was inversely related
to the mapped area of the polygon.

In a similar study, Blakemore [27] defined the epsilon band for a set of 115 polygons (employment
office areas) as a function of digitizing error, roundoff error and generalization error. Generalization
error was defined as the inaccuracy resulting from the representation of cartographic lines as a set of
digitized points joined by straight line segments (see § 4.2). The value of € was estimated as 0.7 km
and a zone of this width was defined along the inner and outer edges of each polygon boundary. A set
of 780 points (industrial establishments) was then assigned to each polygon based on a point-in-polygon
algorithm. Each point was defined as being ‘“‘definitely in” the polygon (i.e., inside the mapped
polygon but outside of the epsilon band), “possibly out” of the polygon (i.e., inside both the mapped
polygon and the inner epsilon band), “possibly in” the polygon (i.e., outside of the mapped polygon
but inside the outer epsilon band) and ‘‘ambiguously defined” (i.e., on a digitized polygon boundary).
Only half of the points were found to be uniquely assignable (i.e., ““definitely in’’). An increase in this
percentage was observed for larger values of €. Small and elongated polygons were found to be most
affected. The attribute values associated with the points (employment in the industrial establishment)
were summed for each polygon for all points in the “‘definitely in”’ category. Results showed consider-
able variation relative to the sums for all points within the mapped polygons (i.e., the ‘“‘definitely in”
and “‘possibly out” categories). These variations were not highly correlated with polygon size. Even
small numbers of points in the *“‘possibly in” category significantly affected the sum when the attribute
values for these points were relatively large.

Honeycutt [118] applied a variant of the epsilon band concept in the context of positional error in digi-
tized lines. Positional error was assumed to arise from digitizing error, interpretation error (i.e., uncer-
tainty in line location due to indeterminacy in taxonomic definitions), sampling error (i.e., inaccuracy
associated with locating ground control points) and compilation error (i.e., errors associated with line
drafting, the dimensional instability of paper maps and map revisions). The degree of error was meas-
ured in terms of the discrepancies between the locations of a line digitized from maps of different
scales. The map of the largest scale was assumed to be an accurate standard in the absence of informa-
tion about “‘true” line location. Thus the approach may also be seen as a model of generalization error
(see § 4.2).



In calibrating the model, eight stream segments were digitized from four topographic maps with scales
of 1:24000, 1:62500, 1:100000 and 1:250000. The digitized versions from the three smallest-scale
maps (the test or ‘“‘compare” lines) were superimposed over the 1:24 000-scale version (the control or
‘“base” line). The positional discrepancies were then calculated from the chain of polygons formed by
joining the end points of each test and control line. The discrepancies were measured from the hor-
izontal deviations between the test and control lines sampled at 10 m intervals. The mean and standard
deviation were calculated for both positive and negative deviations of each test line from its
corresponding control line. Results suggest that the probability distribution of positional error associ-
ated with each test line is bimodal in form. This result may be attributed to the tendency of human
operators to undercut and overshoot during the digitizing process. The bimodal error distribution may
be seen as a variant of the epsilon band in which probable line position is defined in terms of the union
of the unimodal error distributions on either side of the digitized line. This concept may also be
extended to map overlay (see § 5.3.2).

A similar model is described by Maffini [153]. Locational error in cartographic lines was ascribed to
digitizing error, generalization error and interpretation error. Trials involving repeated digitizing of
geometric figures revealed variations in digitizing error as a function of map scale and the speed of
digitizing. The presence of a probability distribution of error around each digitized line suggests that
lines may be mapped as a probability distribution rather than a simple linear feature. This model
might also be applied in map overlay in terms of the intersection between overlapping probability dis-
tributions (see § 5.3.2).

Another variant of the epsilon band concept is described by Peucker [178]. Any cartographic line can
be described by the general direction of the line and a corresponding band of a given width and length.
The band is a bounding rectangle, the sides and ends of which are parallel and perpendicular respec-
tively to the general direction of the line. The width of the band is defined by the maximum extent of
the line perpendicular to its general direction. The band can be constructed at any level of abstraction,
such that a line composed of n points can be represented by between 1 and n—1 subsets. In the latter
case each band encloses a straight line segment between two adjacent points on the line and thus the
width of the band is zero. In terms of digitizing error, this model suggests that any line may be
represented by its corresponding band at a level of abstraction concomitant with its assumed accuracy.
The implications of this model for map overlay is discussed in § 5.3.2.

A final variant of the epsilon band concept is presented by MacDougall [147]. As detailed in § 5.3.1,
the total horizontal or positional error for a map is given by the product of the index of average hor-
izontal error (e.g., the standard error) and the length of all lines on the map. This gives an estimate of
the total area of uncertainty on the map and is analogous to the area encompassed by the set of epsilon
bands for all lines. A more detailed description of MacDougall’s model and its application to map
overlay is given in § 5.3.1.

4.1.2. Digitizing Error as a Serially Dependent Process

The notion that digitizing error results from the tendency of human operators to undercut and
overshoot during the digitizing process (see Honeycutt [118], above) has led other researchers to argue
that in certain cases digitizing error can be modeled as a serially dependent process. Keefer et al [132]
show that the occurrence of errors in stream mode digitizing can be modeled as an autoregressive mov-
ing average (ARMA) process, in which the magnitude and direction of error at a digitized point are
influenced by the magnitude and direction of error at previously-digitized points The analogy to time
series analysis exists because in stream mode digitizing, points are recorded at fixed time or distance
intervals as the operator follows the mapped line with the cursor. The ARMA process is a combina-
tion of a pure autoregressive (AR) process, in which the error at a point is expressed as a weighted
sum of p previous errors plus a random component, and a pure moving average (MA) process, in
which the error at a point is expressed as an average of q previous random components. The
ARMA(p,q) model assumes that the error series is stationary, such that the parameter d in the more



general autoregressive integrated moving average model, ARIMA(p,d,q), is equal to 0. A simpler
case is an ARIMA(1,0) model, which accounts only for the influence of error in the preceding point
and thus reduces to a simple AR(1) model.

In an empirical test, a set of sample lines were digitized under operational conditions and compared to
more accurate representations of these lines digitized under carefully controlled conditions. Digitizing
error was computed as the positive or negative discrepancy between each digitized point on the sample
line and the point at which a perpendicular intersected the accurate reference line. Correlation coeffi-
cients for the AR(1) model ranged from 0.2 to 0.8, with the distribution centered on 0.55. The
autoregressive model may also be used to simulate digitizing error. Simulation permits various map
accuracy standards to be compared and facilitates evaluation of the effects of line complexity and the
time or distance interval used in stream mode digitizing.

The more general ARIMA model can also be applied to model digitizing error for stream mode digi-
tizing (Amrhein & Griffith [5]). In this model a unilateral dependence is assumed to exist in the error
structure, such that the error at a given digitized point is dependent on the error at the previously digi-
tized point, but not vice versa. Error in digitally encoded lines results from both digitizing and general-
ization error. Generalization error arises from the representation of cartographic lines as sets of digi-
tized points joined by straight line segments. If the true line is defined by some mathematical function,
then generalization error may be measured as the error variance of the digitization-error-free points
relative to the functional form. Generalization error tends to zero as the number of digitized points
increases to infinity, when the piece-wise approximation matches the functional form. In contrast,
digitizing error rises as the number of points increases, and tends towards some upper limit correspond-
ing to the error variance in point location. Hence the “optimal”” number of points to digitize can be
identified from the point at which digitizing and generalization error intersect, such that the total error
is at a minimum for a relatively small number of points.

4.1.3. The Role of Human Factors

Other researchers have examined digitizing error in the context of human physiological and psychologi-
cal variables that affect the ability of the human operator to perform the digitizing task. The results of
such studies often suggest methods for reducing digitizing error, either during the digitizing process
itself or at a subsequent editing phase.

While it is generally accepted that human factors contribute to digitizing error, the role of specific phy-
siological and psychological variables has apparently not been studied extensively. Otawa [176] main-
tains that personal habits and attitudes are often overlooked during the digitizing phase of database
development. In an experiment conducted by the author, fourteen subjects were requested to digitize a
set of twenty-four polygons derived from a 1:20 000-scale soils map. The area of each digitized polygon
was then computed and compared across subjects. The standard deviation in area was generally within
7 percent of the mean polygon area, although standard deviations as large as 50 percent of the mean
were observed for small polygons. More importantly, significant differences in the area of individual
polygons were observed across subjects, indicating the importance of human factors in assessing digitiz-
ing error.

Jenks [130] argues that digitizing error is a function of physiological and psychological limitations of the
human operator. Error in digitally encoded lines also arises from post-digitizing processes such as line
simplification, a form of generalization error discussed in § 4.2. Different modes of digitizing give rise
to different error structures. Stream mode digitizing, for example, is dominated by “latitudinal”
errors, or positional discrepancies perpendicular to the trend of the line. These errors arise from
several sources, including psychomotor errors in line-following, physiological errors producing
“twitches and jerks” in the encoded line and the psychological tendency to undercut and overshoot
once it is realized that an error has been made. In contrast, point mode digitizing, in which the



operator digitizes critical points along the line, is dominated by “longitudinal’ errors, or errors parallel
to the trend of the line. These errors are associated primarily with logical errors in the identification of
critical points.

Digitizing error may be reduced during the digitizing process by enhanced training of human operators,
or during a subsequent phase of data editing. Experimental results suggest that digitizing error is corre-
lated with the direction of cursor movement and that operators tend to have a relatively consistent
“error signature.” Error can be reduced by providing operators with feedback about the types of
errors they have made, or by developing software that automatically corrects for the operator’s error
signature. Error reduction during the editing phase can be carried out visually, by comparing the
source document to the digitally encoded version, or automatically, by utilizing software that removes
topological inconsistencies such as loops and unclosed polygons.

Chrisman [47] details a consistent set of digitizing procedures that may be used to establish quality con-
trol during the digitizing process. Digitizing error depends on the nature of the source document, the
characteristics of the hardware used in digitizing, the digitizing mode adopted and the level of operator
training. The source document should be plotted on a mylar base to prevent errors associated with the
dimensional instability of paper maps. Hardware should be able to represent digitized coordinates at
the required level of precision. Stream mode digitizing based on a fixed distance interval delegates the
burden of selecting points to the computer. In contrast, point mode digitizing is based on subjective
criteria for identifying critical points, while stream mode digitizing based on a fixed time interval is
affected by the speed of digitizing. Experienced operators are essential to ensure high quality results
and operators must understand the logic of the maps they are digitizing in order to ensure consistency.
Requiring operators to edit their own work is a direct incentive to careful digitizing.

Error detection may be performed either visually or automatically. Visual error detection is based on a
comparison of the source document to the digitally-encoded version. Automated error detection is per-
formed by checking for topological consistency. This may be achieved with algorithms that define a
tolerance, or epsilon band, for each digitized line. (Such an algorithm is described by Chrisman [45],
Dougenik [74] and White [226], § 5.3.2.) Slivers between alternate representations of the same line
can thus be eliminated. However, while an increase in the allowable tolerance reduces such errors, it
simultaneously degrades positional accuracy and precision.

4.2. Generalization Error

Generalization error arises from the representation of cartographic lines as sets of digitized points
joined by straight line segments. As noted in § 4.1, if the true line is defined by some mathematical
function, then generalization error may be measured as the error variance of the digitization-error-free
points relative to the functional form. In general, generalization error tends to zero as the number of
digitized points increases to infinity, when the piece-wise approximation matches the functional form
(Amrhein & Griffith [5]). The degree of generalization error will generally increase as line complexity
rises (Burrough [34]).

As the implications of generalization error tend to be application-specific, most models of generaliza-
tion error are discussed in other sections of this report. Models of generalization error distinguish
between inadvertent and intentional generalization. Intentional generalization results from the process
of simplifying lines to maintain cartographic fidelity as map scale is reduced. Inadvertent generaliza-
tion is associated with the errors in cartographic line location that inevitably occur when these lines are
defined by a finite number of digitized points.



Inadvertent generalization can be modeled with the epsilon band concept, which is based on the notion
that a buffer zone can be constructed around any cartographic line to represent the degree of uncer-
tainty in line location. Uncertainty is a function of digitizing and generalization error, both of which
result in discrepancies between the locations of the digitized and ‘‘true’ lines. Blakemore [27] and
Chrisman [43, 45] discuss the epsilon band concept in the context of digitizing and generalization error
(see § 4.1.1). Implementation of the epsilon band concept for error detection and correction is
described by Chrisman [45, 47], Dougenik [74] and White [226] (see § 4.1.3). Honeycutt [118] and
Maffini [153] discuss variants of the epsilon band concept based on an observed distribution of error
around the digitized line (see § 4.1.1). Further variants are detailed by Peucker [178] and MacDougall
[147] (see § 4.1.1). The former variant is based on the notion that any cartographic line may be
represented by an encompassing rectangle whose width reflects the degree of uncertainty in line loca-
tion. The latter variant defines the total area of uncertainty on a map in terms of the product of an
index of average positional error and the total length of all cartographic lines on the map. The exten-
sion of these models to map overlay is discussed in § 5.3.2.

The effect of intentional generalization on the accuracy of cartographic lines is discussed below. Its
implications for cartometric line length estimation are detailed in § 3.1. Various researchers (Baugh &
Boreham [17], Beckett [19], Galloway & Bahr [88], Hakanson [110] and Maling [154]) have demon-
strated that length estimates tend to decline with increasing levels of generalization. This effect is tied
to map scale, such that it is necessary to account for scale effects in the line length estimation pro-
cedure.

The remainder of this section is devoted to studies of the effects of line simplification. Jenks [130]
argues that the effects of line simplification are poorly understood due to a paucity of studies on errors
in the simplification process. Two types of line simplification methods are identified by the author.
Point elimination methods are based on the exclusion of unwanted points to create a more generalized
rendition of the line (e.g., Peucker [178]). Smoothing methods are based on the application of a filter-
ing operator along the length of the line. Optimally, both methods should yield a line that is perceptu-
ally distinct from the original, but of a form recognizable as a generalization of the original line.
Excessive levels of simplification produce lines that are perceptually unrecognizable as a generalization
of the original line, while insufficient levels of simplification produce lines that are perceptually indis-
tinguishable from the original.

Little [143] adopts an empirical approach to examine the effects of different line simplification algo-
rithms on line accuracy. Accuracy was defined in terms of the National Map Accuracy Standard
(NMAS) and the American Society of Photogrammetry and Remote Sensing (ASPRS) spatial accuracy
specification (see § 2.3). NMAS defines an accurate map as one for which a maximum of 10 percent
of a sample of points exhibit a positional error of more than a specified amount (defined as a function
of map scale). The ASPRS standard is more rigorous and defines accuracy in terms of the root mean
squared error in sample point locations. Accuracy was evaluated for a set of lines of varying complex-
ity derived from topographic maps and simplified with five different point elimination algorithms. The
algorithms differed in terms of the number of points examined in determining which points to elim-
inate. They were classified as independent point, local, extended local and global algorithms. One-
way analysis of variance was used to test hypotheses related to the performance of different algorithms,
the effects of line complexity and the ability to attain each of the two accuracy standards. A significant
difference was observed in algorithm performance, with more global algorithms yielding more accurate
results. Qverall, the effect of line complexity on algorithm performance was observed to be insignifi-
cant, although the accuracy for independent point and local algorithms was often adversely affected by
complex lines. The more rigorous ASPRS standards were observed to be more difficult to attain than
NMAS. These results suggest that global algorithms should be employed in line simplification if an
accurate generalization is required.



4.3. Choroplethic Mapping

The objective of choroplethic mapping is to ‘‘symbolize” the thematic attribute values associated with
a set of areal units or polygons (e.g., census tracts, states, etc.). The thematic attribute may be
categorical or numerical. In the latter case, symbolization is performed by defining a set of class inter-
vals and assigning each polygon to the appropriate class interval based on its thematic attribute value.
Often the polygons on choropleth maps are delineated solely for enumerative purposes and thus the
positions of features on the map (i.e., the polygon boundaries) are defined independently of the
thematic attribute. In this case, choroplethic mapping error is primarily a function of attribute error.
In other cases, polygon boundaries are defined by the values of the thematic attribute themselves. For
example, in remote sensing, maps of land cover classes are often derived by assigning a class to each
pixel on the image based on its spectral response in one or more spectral bands. Polygons are defined
by groups of contiguous pixels of the same class, and therefore map error is a function of both posi-
tional and attribute error. This type of choropleth map exemplifies a class of spatial data known as a
““categorical coverage” (Chrisman [49]), which is discussed in greater detail in § 2.2.

The discussion of choropleth map accuracy in this section of the report reflects the relative importance
of positional and attribute error. Research focusing primarily on attribute error is concerned with
‘““‘data symbolization,” or the effect of class interval selection on the accuracy with which the choro-
pleth map portrays the ‘‘true’ spatial distribution of the thematic attribute. Other research focuses on
the interactions between attribute and positional error in the context of categorical coverages.

4.3.1. Data Symbolization

Jenks [127] introduces the “‘data model” concept as a means of assessing the adequacy of the selected
set of class intervals for portraying the spatial distribution of the thematic attribute on the choropleth
map. Consider a choropleth map composed of b polygons, where each polygon i possesses a data
value, z; (i.e., a numerical thematic attribute value). The set of n data values represents the data
model. In choroplethic mapping, the data values are symbolized by defining a set of k class intervals,
or ranges of data values, and assigning each polygon to the appropriate interval based on its data value.
The purpose of the symbolization process is to generalize the n data values into k classes, where k < n.
Hence the choropleth map may be referred to as a ‘“‘generalized model.”

The error introduced by symbolization is defined in terms of the differences between the data model
and the generalized model, and is referred to as the *‘blanket of error.”” The thickness of this blanket
and its distribution over the choropleth map depends on the particular set of class intervals selected,
since the class intervals define the generalized model. Class intervals may be selected to enhance cer-
tain properties of the blanket of error. For example, it might be appropriate to distribute the blanket
of error as uniformly as possible over the choropleth map, or to vary the thickness as a function of the
data values. To achieve a uniform blanket of error, each polygon is assigned to a class interval and the
mean data value for class interval j, m;, is calculated as

m = 3z/31 (4.1)
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Next the mean absolute deviation between the polygon data values and the mean data value for class
interval j, s;, is calculated as

s = S lz—-ml /31 (4.2)
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A polygon is shifted from the class interval with the highest mean absolute deviation to one with a
lower mean absolute deviation. Equations (4.1) and (4.2) are reapplied and the process continues until
the mean absolute deviations for all class intervals are approximately equal. To achieve a blanket of
error that varies in thickness as a function of data value, the same process is applied except that the



mean absolute deviation for each class interval (i.e., s;) is first divided by the mean data value for the
class interval (i.e., m;) to yield the relative mean absolute deviation.

Jenks & Caspall [131] further elaborate upon the data model concept. Three types of error in choro-
pleth maps are identified. “Tabular error,” e,, is defined as the sum of the absolute deviations

between the data values of the polygons and the mean data values of their corresponding class intervals.
That is,

k
€ = 2 Sj (43)
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where: s; = the mean absolute deviation between the polygon data values and the mean data value for
class interval j (see equation (4.2)); and

k = the number of class intervals.

The mean tabular error is computed as e, divided by n, the number of polygons. The minimum tabular
error will occur when there are as many class intervals as polygons (i.e., k = n), while the maximum
tabular error will occur when there is only one class interval. The tabular accuracy index, TAI, is
computed by dividing e, by the maximum tabular error and subtracting the resulting quotient from 1.

“Overview error,” e,, is defined as the sum of the tabular error of each polygon weighted by polygon
area. That is,

eo=§k:[2ailzi—mjl/21 (4.4)
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where: a; = the area of polygon i.

The overview accuracy index, OAI, is computed by dividing the e, by the maximum overview error
and subtracting the resulting quotient from 1. As in the case of tabular error, the maximum overview
error will occur when there is only one class interval.

“Boundary error,” e, refers to the degree to which the choropleth map accurately portrays sharp
boundaries, or ‘“cliffs,” between the data values of neighboring polygons. The boundary accuracy
index, BAI, is estimated by summing the absolute differences in data values for neighboring polygons
on the choropleth map and dividing by the sum in an “ideal” case. The ideal case is one in which the
highest cliffs (i.e., the greatest differences in the data values of neighboring polygons) in the original
data model are preserved, subject to a constraint on the maximum number of cliffs that may be por-
trayed on the choropleth map.

Based on the computed values of TAI, OAI and BAI for a given choropleth map, the composite accu-
racy index, CAI, is calculated as

CAI = (OAI®+ TAI? + BAI?)¥2 (4.5)

Since CAI = 1.732 (i.e., 3¥2), CAI may be divided by 1.732 to yield the map accuracy index, MAI,
which ranges from O to 1. The authors describe a procedure to obtain near-optimal values of TAI,
OAI and BAI. This procedure is an iterative one in which polygons are shifted among different class
intervals to obtain successively higher accuracy index values. As the number of class intervals
increases, MAI increases at a decreasing rate for choropleth maps produced with the optimization pro-
cedure. However, a threshold is reached after which the addition of more class intervals causes a
decline in map readability due to an excessive level of map detail.



Monmonier [164] argues that while the optimization of class intervals increases choropleth map accu-
racy, the resulting class breaks (i.e, the end points of the class intervals) may contain more significant
digits than the user would prefer or the accuracy of the data warrant. A solution to this problem is to
add constraints to the optimization procedure that ensure that class breaks are round numbers and per-
mit inherently meaningful values (e.g., the overall mean of the polygon data values) to be defined as
class breaks. By the principle of “flat laxity,” the resulting sub-optimal, constrained solutions will gen-
erally increase choropleth map error only marginally over the optimal set of class breaks.

Implementation of the round number constraint requires that polygon data values be converted to their
round number representations. Data values are arranged in rank order and one class break is selected
per iteration. Potential class breaks are defined in terms of the rounding base used to round off the
polygon data values. All potential breaks at any iteration are examined and the break yielding the
greatest increase in accuracy (as defined by an index such as TAI) is provisionally selected. Improved
solutions are attempted by repeatedly shifting the provisional class break as far as possible without pass-
ing a break defined at an earlier iteration. Iteration continues until the desired number of class breaks
is obtained. Empirical evidence presented by the author shows a slight decrease in map accuracy rela-
tive to unconstrained solutions. However, this decrease is offset by an increase in map readability.

MacEachren [148, 149] examined the effects on choropleth map accuracy of polygon geometry and the
complexity of the underlying statistical surface being mapped. Experiments were performed in which
54 polygons of varying size and compactness were overlaid randomly on four different statistical sur-
faces of varying complexity to simulate choroplethic mapping. Each surface was composed of a regu-
lar grid of 112X 75 z-coordinate values. Surface complexity was defined by the autocorrelation of the
z-values at a lag equal to the mean length of the long axis of the set of 54 polygons. The mean and
standard deviation of the z-values falling within each overlaid polygon was computed and the coeffi-
cient of variation, or the ratio of the standard deviation to the mean, was used as an index of error.
Multiple regression analysis was performed with the coefficient of variation as the dependent variable
and polygon size, polygon compactness and surface complexity as the explanatory variables. Bivariate
regressions revealed that surface complexity was the most critical variable, followed by polygon size
and polygon compactness. An increase in accuracy was found to correspond to a decrease in surface
complexity, a decrease in polygon size and an increase in polygon compactness.

A second set of experiments (MacEachren [150]) were performed to simulate a situation in which the
underlying statistical surface is unknown. A set of 36 contiguous polygons was selected and the size
and compactness of each polygon was measured. The coefficient of variation associated with each
polygon was computed for the four statistical surfaces used in the first set of experiments and served as
an index of observed error. In order to calculate predicted error, multiple regression analysis was per-
formed with the coefficient of variation as the dependent variable and polygon size and compactness as
the explanatory variables, using the data for the 54 polygons employed in the first set of experiments.
The resulting regression equation was used to predict the coefficient of variation (i.e., error) for each
of the 36 polygons employed in the second set of experiments. The differences between observed and
predicted error were found to be statistically significant for only one surface. Correlations between
observed and predicted error ranged from 0.64 to 0.88. It may therefore be possible to predict choro-
pleth map error when the underlying statistical surface is unknown.

4.3.2. Interactions between Attribute and Positional Error

For the class of choropleth maps known as categorical coverages, polygon boundaries on the map are
defined in terms of the values of the thematic attribute themselves and thus attribute and positional
errors are not independent. Goodchild & Dubuc [100] present a model that may be used to simulate
error in categorical coverages (which the authors refer to as *‘natural resource data’). The model is
based on a *‘phase-space”” concept. If m continuous variables, z, through z,, are distributed in two-
dimensional space, then the m-dimensional space defined by these variables is denoted as the phase-
space. To construct a choropleth map, the phase-space is divided into domains, each associated with



one of a set of k classes. When m = 1, this process is equivalent to the choropleth map symbolization
procedure, as discussed above. In the more general case when m> 1, the domains in phase-space
define a transformation of the set of m variables to a set of k classes. Since the variables are continu-
ous, if two classes share a boundary on the map, they must also share a boundary in phase-space. The
model may be applied to simulate the effects of various sources of error on choropleth map accuracy.
Examples include the effects of cell size, generalization and digitizing error, measurement error in vari-
ables and classification error associated with the delineation of domains in phase-space.

Goodchild & Wang [102] discuss ‘‘source” errors in categorical coverages, or discrepancies between
the mapped data values and data acquired by ground survey. In terms of remotely sensed data, source
errors result from pixel misclassifications associated with within-pixel variations in class membership,
class heterogeneity and uncertainty in class definitions. Information about these errors is lost, however,
when remotely sensed data input to GIS consist of a single class membership for each pixel. The
authors describe a model that is based on a set of k data layers, where k is the number of classes, and
the value for pixel i on any data layer denotes the probability that the pixel is a member of that class.
That is, each pixel is associated with a class membership probability vector, [p;, P, - - -, Pic), Where
p;; is the probability that pixel i is a member of class j. The probability vector provides a method for
estimating the uncertainty inherent in responses to queries and is analogous to the notion of member-
ship functions in fuzzy set theory (see § 6.1).

Given the k data layers for a given scene, the authors define a ‘“‘realization’ as the process whereby
pixel probabilities are converted into specific classes. That is, the probability that a pixel i will be
assigned to a class j is the probability p;;. For example, the realization implied by the maximum likeli-
hood classifier is one in which each pixel is assigned to the class with the highest probability. The
authors describe a simulation method in which pixels may be assigned to one of two classes (i.c.,
k =2). Realizations were acquired by independent trials for each pixel in a regular, rectangular matrix
in which the probability of membership in class 1 decreased monotonically over the columns of the
matrix. The realizations were smoothed with a spatial filter to introduce an appropriate degree of spa-
tial autocorrelation. The resulting smoothed realizations were assumed to portray different representa-
tions of the boundary between the two classes based on the same set of pixel membership probabilities.
This simulation method can be used to study cartographic generalization error. For example, a meas-
ure similar to the epsilon band (see § 4.1.1) can be computed from the mean displacement of the
expected and observed boundaries for each realization. (The expected boundary is the column of the
matrix for which pixel probabilities are equal for the two classes.) The simulation method might also
be used to examine the spurious polygon problem (see § 5.3.2) by overlaying different realizations and
computing the areas of agreement and disagreement.

Goodchild & Wang [103] and Goodchild [99] present two additional methods for generating realiza-
tions of pixel membership probabilities. The first swaps pixel class memberships between realizations
until a target level of spatial autocorrelation is reached. The second posits a spatially autoregressive
process that generates a realization based on a presumed level of spatial autocorrelation.

4.4, Isometric Mapping

Isarithmic maps depict a set of non-intersecting lines connecting points of equal value for some con-
tinuous variable distributed over space. If the attribute can exist at discrete points in space, these lines
are referred to as “‘isometric” lines. *‘Contours” are isometric lines joining points of equal topographic
elevation. In contrast to isometric lines, ‘‘isopleths” are isarithmic lines for attributes that cannot exist
at discrete points (e.g., population density). Isoplethic mapping accuracy is discussed in § 4.5.



There are two distinct processes involved in isometric mapping that have some impact on the accuracy
of the derived isometric map. ‘‘Interpolation” refers to the process in which the spatial distribution of
the attribute is estimated from the observed values of the attribute at a set of sample points. The
estimated spatial distribution, or “‘interpolated surface,” commonly consists of a regular grid of points
for which the attribute values have been interpolated from a set of randomly-located sample points.
“Contouring,” the second process in isometric mapping, involves the derivation of a set of isometric
lines (or contours) from the interpolated surface. It is important to maintain the distinction between
these two processes, since each is associated with different sources and types of error.

The discussion in this section of the report focuses primarily on errors associated with interpolation,
due to an emphasis on this procedure in research articles concerned with isometric map accuracy.
Most of the articles reviewed here are empirical studies demonstrating that isometric map accuracy is a
function of the method of deriving the interpolated surface from a sample of points, the nature and
complexity of the surface, the number and spatial distribution of sample points. Other studies focus on
the interactions between interpolation error and the degree of measurement error in the observed
values associated with these points. The problems associated with contouring (e.g., the classic saddle-
point problem and the visual appearance of contours derived with different contouring methods) are
described in many standard cartography texts.

Other sections of this report also complement the discussion of isometric map accuracy. For example,
§ 2.6 highlights some aspects of sampling and spatial resolution for digital elevation models that have
direct parallels in isometric mapping. Methods of measuring the accuracy of contour lines as a func-
tion of measurement error in observed elevation values is discussed in § 2.3. Isometric mapping also
has parallels to isoplethic mapping (in which isarithmic lines are derived from the values associated
with a set of polygons), vector to raster conversion (in which the values associated with a set of
polygons are interpolated to a regular grid of cells) and areal interpolation (in which the values associ-
ated with a set of polygons are interpolated to another set of polygons). These issues are discussed in §
4.5,8§52and §5.1.

4.4.1. Factors Affecting Interpolation Accuracy

Many of the earliest studies on interpolation accuracy focus on the effects of the number and spatial
distribution of sample points. According to Morrison [166], the ability of a given set of sample points
to capture the variation present in the surface is inversely related to the degree to which the points are
clustered in space. Hence the relative accuracy of interpolation can be assessed with reference to the
nearest neighbor statistic, or the ratio of the mean distance between each point and its nearest neighbor
to the expected distance for a random distribution of points. The nearest neighbor statistic ranges from
0 (i.e., all points coincide spatially) to 2.1491 (i.e., all points are at their maximal dispersion). The
author examined variations in the nearest neighbor statistic for six sampling methods — unaligned ran-
dom (UR), aligned random (AR), unaligned stratified random (USR), aligned stratified random
(ASR), unaligned systematic (US) and aligned systematic (AS). Empirical results indicate that for
samples derived with any one of these methods, the nearest neighbor statistic tends to cluster around a
unique modal value. The relative differences in the modal value for each method exhibited the follow-
ing relationship:

AR < UR < ASR < USR < US < AS (4.6)

According to the author, systematic sampling is preferable to stratified random sampling, and stratified
random sampling is preferable to random sampling. Moreover, given a sample of points derived by
any one of these methods, it is possible to infer the relative accuracy of an interpolated surface. These
conclusions are based on the notion that a dispersed sample is more capable of capturing surface varia-
tion.



Rhind [182] argues that these conclusions are unwarranted, since there is no guarantee that a more
dispersed sample will yield a more accurate interpolated surface. Surface-specific sampling, in which
sample points are selected if they define critical points in the surface, may exhibit a high degree of spa-
tial clustering but produce more accurate results than systematic sampling. Accuracy may also be
affected in systematic sampling if periodicity is evident in the surface. Thus the appropriateness of a
given sampling method depends in part on the nature of the surface.

The effects of the nature of the surface on interpolation accuracy have been explored by Morrison
[167]. In an empirical test, four different synthetic surfaces were constructed, each continuous and
each completely described by a finite set of mathematical terms. Each of the four surfaces was sam-
pled using the six sampling methods described in Morrison [166]. For each surface/sampling method
combination, four samples of different sizes were selected, yielding a total of 96 sets of sample points.
For each of these sets, interpolation was performed with ten different interpolation methods. These
methods consisted of a fifth-order polynomial fitted to the entire surface, a trigonometric or Fourier
series and a set of first- and second-order polynomials fitted to a local neighborhood of points (in which
the neighborhood was variously defined as containing between three and ten points).

Interpolation accuracy for each of the resulting 960 interpolated surfaces was assessed by comparing
observed and interpolated values for a set of 100 grid points. Two indices of accuracy were defined —
the correlation between the observed and interpolated values and the standard deviation of the residual
values. The latter index, s, is defined as

18 v
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where: r; = the residual value at point i, or the difference between the observed value, z;, and the
interpolated value, 2;;

T = the mean residual value; and
n = the sample size.

Note that this index is similar to the RMSE (equation (2.52)), but will yield the same result only when
the mean residual value is equal to 0.

For each of the two accuracy indices, three-way analysis of variance was employed to test the effects of
interpolation method, sample size and sampling method on interpolation accuracy. For the second
index of accuracy (i.e., equation (4.7)), the sampling and interpolation methods were observed to have
the greatest effect on accuracy. Sample size and the first-order interactions between the three factors
were observed to be only marginally significant. Similar results were obtained for the alternate index
of accuracy (i.e., the correlation coefficient), except that sample size was observed to have a signifi-
cant effect.

Comparison of interpolation accuracy for different sampling methods revealed that higher levels of
accuracy were associated with unaligned methods (i.e., UR, USR and US). Considering unaligned and
aligned methods separately, systematic methods produced more accurate results than stratified random
methods, which in turn produced more accurate results than random methods. These findings are in
accordance with Morrison [166], although they are partly attributable to the use of synthetic surfaces
exhibiting an unrealistically high degree of smoothness. Variations in accuracy associated with sam-
pling method were also observed to have a less significant impact as surface complexity increased, due
to an overall decline in accuracy for more complex surfaces. An increase in accuracy was also
observed as sample size increased, although this effect again was found to be less significant for com-
plex surfaces. Interpolation methods based on fitting polynomials to a neighborhood of points yielded
relatively low interpolation accuracies, although improvements were noted as the number of points in
the meighborhood increased. The polynomial and Fourier series computed for the entire surface
yielded more accurate results, although this finding may again be attributed to a high degree of



smoothness in the synthetic surfaces.

The factors considered by Morrison in this study have since been examined in greater detail by other
authors. Shepard [196], for example, examined the effects of variations in sample size on interpolation
accuracy. The author interpolated the grid point values for a 60X 64 grid using a sample of between 4
and 272 points randomly selected from the grid. The relative RMSE was computed for all 3840 grid
points on each interpolated surface. The relative RMSE is defined as the ratio of the RMSE (see
equation (2.52)) to the standard deviation of the observed grid point values. Regression results indi-
cated a close fit (r = 0.997) between the relative RMSE and sample size according to a relationship of
the form

RMSE, = 2.83p70:56 (4.8)

where: RMSE, = the relative RMSE; and
n = the sample size.
Hence as n increases, RMSE, decreases at a declining rate.

In a similar study, MacEachren & Davidson [151] examined the effects of sample size on interpolation
accuracy for surfaces of varying complexity. Six surfaces were defined, each of which portrayed topo-
graphic elevation values for a 103x103 grid. Eight samples of points were obtained for each surface
using unaligned stratified random sampling, in which sample size varied between 100 and 2025 points.
Accuracy was calculated as the mean absolute deviation between actual and interpolated values for all
10609 grid points on the surface. The mean absolute deviation, d, is defined as

d = %ilzi—iil (4.9)

i=1
Regression results revealed a close fit between d and n according to an equation of the form

d = an® (4.10)

Coefficient b was observed to be relatively constant over all surfaces, with a mean value of approxi-
mately —0.3. Coefficient a was found to be directly related to the range of elevation values on the sur-
face, such that the value of a was lower for less complex surfaces. The authors examined the spatial
distribution of error (i.e., the absolute deviation between observed and interpolated values at the grid
points) and observed that errors tended to be more clustered in space for smaller sample sizes.

The authors also computed the appropriate contour interval based on the absolute deviations between
observed and interpolated values. For each surface/sample size combination, the minimum absolute
deviation was determined such that no more than 10 percent of the interpolated values deviated by
more than this amount from their corresponding observed values. This minimum deviation corresponds
to one-half the contour interval according to the National Map Accuracy Standard (see § 2.3). Consid-
erable variation in the minimum deviation was observed as a function of interpolation accuracy, due to
the effects of sample size and the nature of the surface. This approach facilitates contouring of inter-
polated surfaces using a contour interval that reflects interpolation accuracy.

The effects of interpolation method have been explored by other authors as well. Battle [15], for
example, evaluated the effects of varying the weighting function in interpolation methods based on
distance-weighted averaging. According to this method, the interpolated value at grid point j, Z;, is
given by

2 - shi/s L (4.11)
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where: z; = the observed value at sample point i;
d;; = the distance between sample point i and grid point j;
vy = a weight defining the influence of sample point i on grid point j as a function of d;;; and
N = the set of points defining the neighbors of grid point j.

Sample points for the evaluation were selected if they defined critical points in the surface (i.e.,
surface-specific sampling). This method of sampling was also compared to aligned systematic sam-
pling, in which sample points corresponded to points in a coarse grid. Two aligned systematic samples
were obtained to assess the effects of grid orientation. In the evaluation of sampling effects, the value
of v in equation (4.11) was fixed at 1.5. Accuracy was assessed for each interpolated surface as the
mean absolute error (see equation (4.9)).

Variations in v for surface-specific sampling were observed to produce small but systematic changes in
the accuracy of the interpolated surface. A value of 1.5 yielded the smallest mean absolute error and
produced a relatively high frequency of small errors at individual points. Thus the optimal value of ~y
depends on the variability of the surface. Depending on grid orientation, the aligned systematic sample
of points yielded a mean absolute error less than or approximately equal to the surface-specific sample.
The frequency distribution of absolute errors for the surface-specific sample showed a higher concen-
tration of both small and large errors than the aligned systematic samples. That is, the errors associated
with aligned systematic sampling were more consistent and of an intermediate range. According to the
author, the optimal sampling method is a regular grid where the spacing of grid points is a function of
surface variability.

Braile [30] examined the effects of four different interpolation methods on interpolation accuracy.
Two of the methods were based on distance-weighted averaging of neighboring sample points (see
equation (4.11)), but differed in terms of the definition of the neighborhood, N. For the first method
N was defined as the set of three points closest to the grid point that form a triangle encompassing the
grid point. For the second method N was defined as the set of three to nine points closest to the grid
point. For the third interpolation method an n™-order polynomial was fitted to segments of the sur-
face. The values at grid points were then derived from the fitted equations. For the final method sam-
ple points were arranged into irregular profiles and a cubic polynomial was fitted along lines perpendic-
ular to the profiles and passing through each grid point.

These interpolation methods were applied to a sample of 200 random points derived from a digitized
aeromagnetic map. The RMSE (see equation (2.52)) was computed for each interpolated surface as
an index of accuracy. The RMSE was observed to vary significantly for the four interpolated surfaces,
with the n'-order polynomial interpolation method yielding the lowest error and the second distance-
weighted averaging method yielding the highest error. Areas of local minima and maxima, as well as
areas along map borders, were interpolated inaccurately by both distance-weighted averaging methods.
None of the methods was able to reproduce short wavelength variations in the surface.

When interpolating over large portions of the earth’s surface, the interpolation method must also
account for the non-Cartesian distance and directional relationships between points (Willmott et al
[228]). Interpolation of climatological data typically begins with the collection of data associated with
a set of irregularly-distributed weather stations. These are then transformed into two-dimensional space
by assuming an equivalence between the longitude and latitude of each station and the x- and y-
coordinate values in two-dimensional space. Similarly, the latitude-longitude graticule is transformed
into two-dimensional space as a regular grid. Interpolation and contouring are then performed by
assuming that Cartesian distance and directional relationships hold between all stations and all grid
points. To avoid the distortion in isometric lines resulting from this approach, interpolation and con-
touring should be performed on the sphere and only then transformed into two-dimensional space.



In an empirical demonstration, the authors employed two different methods to interpolate and contour
temperature data for 100 randomly-selected weather stations located between 2 and 90° N and 50 and
170° W. In the first method, the locations of the stations and the grid points in a 4° latitude by 5° long-
itude lattice were transformed into two-dimensional space using two different cylindrical projections.
Temperature values were then interpolated from the stations to the grid points using an interpolation
method based on distance-weighted averaging (see equation (4.11)). (The interpolation method
employed also corrects for ‘‘directional isolation” of points, such that points with a small angular
separation from a grid point contribute less to the interpolated value than points with a large angular
separation, under the assumption of positive autocorrelation.) Cartesian distance and directional rela-
tionships between points were assumed to hold. Isometric lines were then derived from the interpo-
lated grid. The second method employed by the authors involved interpolation and contouring on the
sphere, followed by the transformation of isometric lines onto the two cylindrical projections used in
the first method. Great-circle distances between points were used in the interpolation, and the direc-
tional isolation of points was calculated as a function of the latitude and longitude of the points. A
comparison of the results of the two interpolation methods revealed significant errors in contour lines
derived with the first method. Errors included such anomalies as multiple contours passing through the
pole (represented as a line on the cylindrical projections). Errors in isometric line locations were
observed to be largest where data points were most sparse or projection-related distortions were
greatest.

Peucker [179] and Rhind [182, 183] maintain that the method of interpolation is perhaps the most criti-
cal factor affecting interpolation accuracy. The appropriateness of a given interpolation method
depends on the nature of the actual surface, the number and spatial distribution of sample points, the
degree of measurement error in the values associated with these points and the desired level of accuracy
(which is application-specific). In addition to quantitative accuracy, the interpolation method should
ensure surface ‘‘representativeness’ or truthful depiction of the overall form of the surface.

Barrett & Rhind [12] describe a technique that may be used to enhance the representativeness of the
interpolated surface based on filtering of spatial frequencies. Many interpolation methods are unable
to account for local minima and maxima (i.e., boundary constraints) in the interpolated values. Arbi-
trary digitization of sample points at which such minima and maxima occur offers a partial solution,
but has the disadvantage that these points may condition the overall appearance or representativeness of
the map. The technique presented by the authors is based on the construction of the spectral field, F,
from a regular grid of sample point values, Z, using the Fourier transform. In this case, Z contains
sample points defining local minima. A second spectral field, F’, is then constructed in the same way,
but using a matrix of values Z' for which all minima values have been replaced with a higher value
(which is application-specific). The differences between F and F’ indicate those elements of the spec-
tral field which are contributed to by the minima values, and are deleted from F to produce a third
spectral field F''. The inverse Fourier transform is then applied to F'’ to yield Z'’, a filtered matrix of
sample point values. Empirical tests reveal enhanced trend representation in the isometric map con-
structed from Z'’.

4.4.2. Interactions between Interpolation and Measurement Error

The preceding studies have considered interpolation accuracy to be a function of sampling, surface and
interpolation method effects. A fourth effect relates to the degree of measurement error in the values
associated with sample points and is closely related to topographic map accuracy (see § 2.3). A
number of authors have proposed techniques for assessing the interactions between interpolation and
measurement error. These techniques often suggest ways in which interpolation methods can be dev-
ised to minimize the effects of such interactions.



Stearns [200] presents a method for estimating interpolation error for isometric maps constructed from
observations that vary in space and time. This method accounts for measurement error (including
observational, time and positional error), interpolation error and ‘‘synopticity error” (i.e., the
discrepancy between the recorded and reference time of an observation). All types of error are con-
verted to map error (i.e., error in interpolated values at points) by means of conversion factors. Three
types of map error are defined — error associated with point observations, primary interpolation error
(i.e., error associated with points interpolated along lines between observations, or the primary inter-
polation axes) and secondary interpolation error (i.e., error associated with points interpolated between
the primary interpolation axes). Error associated with point observations, €, is defined as

€ = e, + eh + e gicos(yy) + e, (4.12)

where: e, = observational error (i.¢., the deviation between the actual and observed value at a point);
e; = time error (i.e., the difference between the recorded time of an observation and the
actual time);
h; = the rate of change over time in the mapped variable in the vicinity of the point;

e, = positional error (i.e., the distance between the actual and observed position of a point);

P
g, = the local ascendant (i.e., the positive rate of change in space of the mapped variable in
the vicinity of the point);

Yp = the angle defined by e, and g;

€, = synopticity error (i.e., the difference between the recorded time of the observation and
the time selected as the reference time of the map); and

h, = the rate of change in the mapped variable in the interval between the recorded and refer-
ence times.

The first three terms of equation (4.12) define measurement error and thus €, represents the sum of
measurement and synopticity errors. Parameters h,, g, and h, are conversion factors to convert time,
positional and synopticity errors to map error.

The second type of map error, primary interpolation error, ¢,, is defined as

€ = e gcos(y) + ¢ (4.13)

where: e, = truncation error (i.e., the distance between the true position of a given value and its inter-
polated position);
g, = the local ascendant; and
v, = the angle defined by the primary interpolation axis and g,.

€, represents the sum of the primary truncation errors and propagated measurement and synopticity
erTorS.

The third type of map error, secondary interpolation error, €, is defined as

€5 = epgrcos(yy) + € (4.14)

where are parameters are defined as in equation (4.13) but for points interpolated between the primary
interpolation axes.

Overall map reliability is expressed in terms of the mean and variance of e;, under the assumption that
all parameters are independent. The choice of different patterns of interpolation points (e.g., tran-
sects, triangular grids and regular and irregular grids) influences overall map reliability as a function of
the angle between the local ascendant and the interpolation axes. Several of the parameters employed
in the technique (e.g., €,, €; and ep) are context-dependent and must be estimated uniquely for dif-
ferent surfaces. Other parameters (e.g., hy, h,, g, and g)) can be estimated from average rates over the
entire map.



Rattray [181] also details a method of assessing accuracy as a function of interpolation error and meas-
urement error in observed values at sample points. The method described is applicable to interpolation
in one dimension (i.e., along horizontal or vertical profiles). The interpolated value at a point is
expressed as a weighted mean of two Lagrangian interpolation polynomials. Consider four points along
a profile, x, through x,, and their corresponding values, z; through z,. If x; < x, < %y < x3 < x4, then
the interpolated value at xg, 2, is given by

2y = pip(x0) + Rij(xo) (4.15)
where p;; (o) is given by the Lagrangian interpolation formula
(%0 — X)) (X0 — %) L o= %) (o= %) L X %) (% —x)
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and the error, Ry (xp), is given by
Rip(x0) = (%0 = x;) (%0 — X;) (%0 — X)) (5 @.17)
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where: z'"'(§;) = the third derivative evaluated at §j, where x; < §; = x,.

Two interpolation estimates may be obtained with equation (4.16), one with ijk = 123 (i.e., x4, x, and
x;) and one with ijk = 234 (i.e., x,, X; and x,). The interpolated value at point x, may then be
expressed as a weighted mean of these two estimates,

Zy = [rpia(x0) + (1 = 1) p2ss(X0)] + [rRyz3(x) + (1 — 1) Ryza(xo)] (4.18)

where: r = a weighting factor, usually equal to 0.5.

The second term in this equation is referred to as R(xy). Rearranging the above equations yields
R(x0) = [p123(x0) = pz3a(x0)] [rro(%o)] (4.19)

where 1y(x,) is defined as
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(%) = |1 (4.20)

Hence the interpolation error (equation (4.19)) is defined as the difference in the two Lagrangian inter-
polation estimates times a factor depending on the third derivative of the function z in the vicinity of
the interpolated point.

The author also presents a means of separating interpolation errors from measurement errors in the
observed values at sample points. The ratio of error in interpolated values associated with these meas-
urement errors to the total measurement error in sample points is shown to be wholly determined by
the sample and interpolation point locations and the value of r. (The reader is referred to the article
for a complete proof.) Hence it is possible to devise sampling methods that will yield relatively low
measurement-related errors in interpolated values. The effects of interpolation error, however, can
only be assessed after interpolation has been performed. These techniques are illustrated by the author
with reference to ocean temperature and salinity data along depth profiles.

Switzer [204] analogously argues that, in two dimensions, covariance modeling may be used to deter-
mine the optimal locations of sample points to reduce error in interpolated values. Accuracy depends
only on sampling design, non-stationarity in the surface, temporal effects and the sensitivity of interpo-
lated values to changes in sample point location and value. Numerous techniques exist for assessing
interpolation accuracy, including cross-validation and kriging.



Newton [173] describes an interpolation method based on the premise that the observed value at each
sample point is not unique, but rather has been drawn from a probability distribution around the point.
The author posits a simple radial dependence probability distribution for each sample point i, P;, such
that

P, = exp{ —Ai[(x; — x)* + (v — yp)zlm}
= exp(—Air) (4.21)

where: A; = a weight associated with the influence of sample point i;
x; = the x-coordinate of sample point i;
y; = the y-coordinate of sample point i;
Xp = the x-coordinate of an interpolated point;
¥p = the y-coordinate of an interpolated point; and
r; = the radius, or distance, from sample point i to an interpolated point.

Replacing x, and y, with the actual location x; and y; of an interpolated point j, the predicted value at
point j, Z;, is given by

Z =3 zp/ 3 pi (4.22)
i=1 i=1

where: z; = the observed value at sample point i; and
n = the number of sample points.

The value of A; represents the influence of sample point i, since the larger the value of A;, the less the
influence of point i on a given interpolated point. The value of A; may be established for each sample
point such that it reflects a measure of confidence in the value associated with the sample point.

4.5. Isoplethic Mapping

Isopleth maps depict a set of non-intersecting lines called isopleths that join points of equal value on a
statistical surface. Isoplethic and isometric maps are both classes of isarithmic maps. The distinction
between the two lies in the nature of the statistical surface. In isometric mapping, it is assumed that
the z-values defining the surface can exist at discrete points in space (e.g., topographic elevation). In
isoplethic mapping, the z-value at any point is assumed to represent a quantity distributed over space
(e.g., population density). Isopleth maps are constructed by interpolating between z-values associated
with a set of areal units, or polygons. In practice, the distinction between isometric and isopleth maps
is often blurred, since it is always possible to aggregate or average the z-values at discrete points over a
set of areal units.

As in the case of isometric maps, the accuracy of isopleth maps is affected by the nature of the under-
lying statistical surface, the interpolation technique and the sampling method. For isopleth maps, the
sampling method refers to the number and shape of areal units to whose centroids z-values have been
assigned. The studies reviewed in this section, although few in number, focus exclusively on sampling
methods and their interactions with surface complexity.

Hsu & Robinson [122] examined the effects of areal unit size and shape on isopleth map accuracy.
Accuracy was assessed for a set of isarithmic maps constructed from different statistical surfaces and
different sets of areal units. Four isarithmic maps of varying complexity were defined, one of which
was synthetic and the other generalized topographic surfaces. Four sets of areal units were also defined
in which unit size was held relatively constant but unit shape was permitted to vary. For each isa-
rithmic map/areal unit combination, the z-value associated with each areal unit, z, was calculated as

n+1 n+1

z=Yam/ 3y (4.23)
i=1

i=1



where: a; = the area within the areal unit between isarithm i and isarithm i—1;
m; = the midpoint of the z-values of isarithms i and i—1; and
n = the number of isarithms in the areal unit.

To examine the effects of areal unit size, each of the isarithmic map/areal unit combinations was
transformed to each of five sets of hexagons, where the average size of the hexagons was different for
each set. The centroid of each hexagon was assigned a z-value based on the proportion of its area
overlapping each areal unit weighted by the z-value calculated for that areal unit. In contrast to the
centroids of irregular areal units, hexagon centroids describe a regular triangular pattern. The authors
argue that this pattern is more conducive to interpolation, and thus isopleth maps were constructed by
interpolating between hexagon centroids for each of the eighty isarithmic map/areal unit/hexagon com-
binations.

Accuracy was evaluated by obtaining a stratified random sample of thirty points for each combination.
The discrepancy between each original isarithmic map and each of the twenty corresponding isopleth
maps (i.e., four sets of areal units by five sets of hexagons) was then computed for each sample point.
Four-way analysis of variance was employed to test the significance of areal unit size and shape, hexa-
gon size and sample point location. All main effects and all two-way interactions were observed to be
significant, but sample point location was found to be a more critical factor for more complex isa-
rithmic maps. The overall discrepancy between the isarithmic and isoplethic z-values, d, was com-
puted for each of the eighty isopleth maps (see equation (4.9)). An increase in the value of d was asso-
ciated with an increase in isarithmic map complexity, hexagon size and the irregularity of areal unit
shape. An identical pattern was observed for the standard deviation of d, a measure of precision.

Hsu [121] examined isopleth map accuracy in the context of a spatial filtering paradigm. Aggregation
was performed by filtering the original continuous surface, Z, to produce a stepped statical surface, Z',
containing a z-value at each areal unit centroid. Interpolation was then performed by filtering the
stepped statistical surface, Z’, to produce the isopleth map, Z'’, containing a set of isopleths joining
points of equal value.

The author examined the effects of areal unit size on the derivation of z-values for unit centroids in the
aggregation process. Two synthetic surfaces were constructed for which z-values were defined for an
array of 115X 115 grid cells. Aggregation was performed for each surface over a set of rectangular
areal units. Each areal unit was composed of an array of (2m+1)X (2n+1) grid cells, where the values
of m and n depend on areal unit size and shape. The aggregation process was performed with the two-
dimensional filter

_ 1 m n
Z; = N [ > > Zi+k,j+]] (4.249)
k=-m l=-n
where: z; = the filtered z-value for cell ij corresponding to the centroid of a particular areal unit;
Zi+y,j+1 = the z-value for cell i+k,j+1 on the original surface; and
N = (2m+1)x(2n+1).

This filter averages all z-values within a given areal unit and assigns the result to the unit centroid.

The effects of aggregation were assessed by computing an index of relative error, e;;, for each unit cen-
troid as

€j = T/ Z (4.25)

where:

m n

= —% [LE > Zi+k,j+l] - z;

=-m l=-n

z; (4.26)




Hence rj; is related to the residual value at each unit centroid, or the discrepancy between the original
and filtered z-values. The absolute value of e;j was observed to be greater for large and elongated areal
units, areal units comprising areas of local minima or maxima and areal units around the borders of the
map.

Fairchild [79] examined the effects of areal unit compactness on isopleth map accuracy. Compactness
affects accuracy due to the greater potential for variation in z-values within elongated areal units.
Three surfaces of varying complexity were defined by assigning topographic elevation values to an
array of 75x%112 grid cells. Aggregation was performed by assigning the mean elevation value of those
cells falling within an areal unit to the unit centroid. Six aggregations were performed for each surface
using areal units of varying compactness. Compactness was defined by the Boyce-Clark shape index.
This index uses a set of equally-spaced radials emanating from the centroid of the areal unit and inter-
secting its perimeter. The length of each radial is compared to the expected length for a circle with the
same area as the areal unit.

For each surface/areal unit combination, the author created an isopleth map based on the z-values of
the areal unit centroids. Accuracy was assessed by computing the correlation between the z-values of
all grid cells for each original surface and its corresponding isopleth map. A rank correlation test was
then applied to assess the degree of correspondence between map accuracy and areal unit compactness.
Results suggest that accuracy declines slightly with a decrease in compactness. However, this effect
appears to diminish as surface complexity declines. In many cases the effect was found to be of insuffi-
cient magnitude to be of any practical significance.

4.6. Cartographic Communication

Cartographic communication refers to the process in which a map is used as a medium to transfer a
conception of some observed phenomenon of the *‘real world” to a map reader. Errors associated with
cartographic communication arise from a sequence of cognitive and physical filters that introduce dis-
tortions at each phase of the communication process. Distortions are first imparted by the
cartographer’s conception of the phenomenon to be mapped. In effect, the phenomenon is
transformed by a set of cognitive filters to produce a cognitive model of the phenomenon. The depar-
ture of this cognitive model from reality may be referred to as ‘“‘conceptual error.” The cognitive
model is itself transformed by the process of map compilation, due to the inherent distortions imposed
by a particular map projection, level of cartographic generalization and method of symbolization.
Hence the map itself represents a second, physical model of the real-world phenomenon. Further dis-
tortion is associated with the map reader’s perception of the phenomenon as depicted on the map.
Here a second set of cognitive filters interpose between the mapped phenomenon and the reader’s cog-
nitive model of the phenomenon. The departure of this cognitive model from mapped reality may be
referred to as *‘perceptual error.” Thus the cartographic communication process may be represented
by the following sequence of cognitive and physical models linked by arrows depicting a transformation
attributable to some filtering mechanism.

Reality - Cartographer’s - Map as a - Map reader’s
cognitive model physical model cognitive model

Monmonier [163] argues that in order to ensure effective cartographic communication, the degree and
nature of the distortion associated with each filtering mechanism must be understood and controlled.
The author’s main concern is with the physical filter corresponding to the map compilation process and
its impact on the map reader’s ability to accurately perceive the mapped phenomenon. Monmonier
argues that map projections, while inherently distorting, can be selected such that the distortion
enhances rather than detracts from the intended message of the map. Similarly, cartographic generali-
zation is unavoidable, but can be used to improve the clarity of the message. The degree of generaliza-
tion that is appropriate is a function of map scale, the nature of the phenomenon being mapped and the
intended purpose of the map. Map symbology, or the graphic symbols used to communicate the



phenomenon to the map reader, should optimally strike a balance between map complexity and reada-
bility. On choropleth maps, for example, map accuracy rises as the number of class intervals is
increased, but a threshold is reached at which additional class intervals cause a decline in map readabil-
ity due to an excessive level of map detail (see Jenks & Caspall [131], § 4.3.1).

Jenks [128] argues that the most important factors determining the effectiveness of cartographic com-
munication are conceptual and perceptual error. Conceptual error results from the cognitive transfor-
mation of real-world observations by the cartographer and the translation of these concepts into graphic
form on the map. Perceptual error, in contrast, refers to the degree to which the map reader fails to
duplicate the mapped concepts in the construction of the reader’s cognitive model. Jenks maintains
that these types of error are poorly understood but often more important than positional error in carto-
graphic features and measurement error in data values.

Jenks [129] argues further that the effectiveness of cartographic communication depends on the
cartographer’s clarity as to the intended purpose of the map, the symbology employed in map compila-
tion, the fidelity of the mapped representation of the phenomenon and the distortions associated with
the reader’s perception of the map. Confusion over map purpose may occur because the map is an
inherently inaccurate source of information, since it is intended only to depict the general form of some
phenomenon. The map is a graphic generalization of a set of data values and cartographers must
recognize and work within this framework rather than overloading a map with excessive detail. The
conception of a map as a graphic generalization requires that symbols be used to depict the
phenomenon on the map. These symbols must be selected in accordance with the nature of the
phenomenon. Similarly, map fidelity is largely a function of decisions made during map compilation.
In choropleth mapping, for example, fidelity is enhanced by the selection of class intervals that minim-
ize within-class variance and maximize between-class variance (see Jenks & Caspall [131], § 4.3.1).
The distortions associated with map perception interact with each of these factors to determine the
ability of a given map to communicate its message clearly.

Herzog [115] similarly argues that in the context of computer mapping, “‘visualization” or map percep-
tion is an important component of map accuracy since the map represents the human interface with the
computer. Visualization incorporates numerous aspects of graphic design and the technical methods
employed in map construction. Map generalization is a particularly important variable since it may
have a direct impact on the success of cartographic communication. The advent of computer technol-
ogy means that traditional cartographic techniques must be applied in new ways. However, many com-
mercial computer mapping packages are not adaptable to such techniques since they present too few
graphic design options.

Other authors maintain that the standard representation of cartographic communication given above
must be extended to incorporate the notion of liability. That is, cartographers must be aware of the
ways in which a given map may be misinterpreted and must design maps that minimize the chance of
such misinterpretations. Gersmehl [93] illustrates how misinterpretation may occur with reference to a
series of small-scale maps of the nine major soil orders in the US. Despite the relatively low spatial and
taxonomic resolution of these maps, they were eventually applied in a planning context in which a
much higher degree of resolution was assumed to exist. Gersmehl [92] maintains that such problems
occur because the positional and attribute features of maps are often represented at higher levels of
implied precision than the actual precision of the data would warrant. Cartographers should therefore
make use of uncertainty bands around data values, fuzzy class intervals with overlapping class boun-
daries, or additional information in the map legend, in order to portray non-homogeneity in areal units
mapped as homogeneous. Alternatively, locationally ambiguous symbols can be employed such that
the general form of the phenomenon is preserved on the map, but the reader is prevented from making
inappropriate inferences about the characteristics of individual sites.



Beard [18] also examines the question of liability associated with the misapplication of maps. The
author refers to such misapplications as “use errors,” and suggests that these errors are commonly asso-
ciated with the attempt to extract detailed information from a map with low spatial or taxonomic reso-
lution, a high level of cartographic generalization, or a graphic language that is unfamiliar to the map
reader. Use errors often arise when time and budget constraints do not permit more detailed data to
be collected, particularly when data collection is costly or time-consuming. For example, use errors
may occur when small-scale maps are used for detailed planning, maps are out-of-date, or quantitative
analysis is performed without considering scale and generalization effects (e.g., the variations in line
length estimates as a function of map scale, as discussed in § 3.1). The author argues that computer
technology affords an opportunity to reduce the incidence of use error. Computers allow data to be
stored in a detailed, disaggregated manner. Updating is much less expensive and time-consuming than
in the era of paper maps. Documentation of the quality of each map component is also possible.
Moreover, data may be structured to prevent inappropriate operations, such as the arithmetic manipu-
lation of ordinal data.

Bedard [22, 24] examines the issue of liability for land information system (LIS) databases in the con-
text of cartographic communication. The author views this process as the construction of a sequence
of cognitive and physical models, as described above. Uncertainty is introduced whenever a model is
constructed. Uncertainty results both from the limitations of human cognitive processes and the
inherent distortions associated with modeling processes. These distortions include the loss of detail and
context-dependent distortions associated with the equivocacy of model-building rules. Models are
approximations of reality in which measurements are imprecise and indeterminacy exists in the identifi-
cation and labeling of feature positions and attributes. LIS databases may therefore be said to contain
at least four types of uncertainty. ‘‘Conceptual uncertainty” refers to indeterminacy in the identifica-
tion of features. ‘‘Descriptive uncertainty” and ‘‘locational uncertainty” refer respectively to impreci-
sion in feature attributes and positions. ‘‘Meta-uncertainty’’ refers to uncertainty in the preceding types
of uncertainty.

Liability concerns demand that uncertainty be either reduced or absorbed. Uncertainty reduction is
facilitated by establishing modeling and communication rules and standards to reduce indeterminacy in
identification and to enhance precision in feature attributes and positions. Uncertainty absorption
occurs when the developer of the database guarantees it and agrees to compensate the user for damages
associated with the presence of error. In this case, the database becomes “official truth”’ to which the
data developer subscribes. Alternatively, uncertainty may be absorbed by the user who employs an
unguaranteed database and receives no compensation for damage associated with the presence of error.
In either case, the degree of uncertainty absorption is defined in terms of the level of risk in providing
or using the database. An illustration of the notion of uncertainty absorption is provided by Bedard
[23], who examined the degree of uncertainty absorption in different land registration systems in North
America and Europe. The author evaluated the degree to which each system guarantees an
individual’s rights to land and the spatial location of these rights. Each system was ranked on a “user
uncertainty absorption spectrum,” which ranged from complete absorption by the user to complete
absorption by the system. Results indicate that different systems vary in terms of their willingness to
accept responsibility for errors. Hence liability is a function of institutional arrangements and the
degree of coincidence between the views of the user and the system as to the intended function of the
database.



5. PROPAGATION OF ERROR THROUGH GIS OPERATIONS

This section reviews models of error for operations that might be applied in a GIS environment. These
models account for error propagation, or the ways in which errors present in input data are
transformed by the operation. Areal interpolation (see § 5.1) is the operation in which the values for
some variable of interest are estimated for a set of target areal units based on the corresponding values
for a different set of source areal units. Vector to raster conversion (see § 5.2) is an analogous opera-
tion in which the target zones are regular grid cells. Map overlay (see § 5.3) involves the superimposi-
tion of two or more data layers to produce a composite map depicting combinations of the attributes
from each data layer.

5.1. Areal Interpolation

Areal interpolation or cross-area estimation refers to the operation in which the values for some vari-
able of interest are estimated for a set of m “target” zones based on the corresponding values for a set
of n “source” zones. The target and source zones represent two different partitionings of the same
geographical area. The region bounded by the set of target zones is not necessarily identical to that
bounded by the set of source zones. Areal interpolation may be necessary when zonal boundaries have
been redefined or one wishes to perform quantitative or statistical analysis on variables that have been
collected for different sets of areal units.

In general, m # n and the boundaries of individual target and source zones do not coincide. Aggrega-
tion may be viewed as a special case of the more general areal interpolation model. In aggregation,
m < n and each source zone is wholly encompassed within a single target zone. Areal interpolation is a
more complicated operation than aggregation and is affected by the myriad of ways in which the value
for a given source zone might be apportioned between the target zones that overlap it. Accuracy in
areal interpolation often requires that the underlying spatial distribution of the variable of interest be
taken into account by the areal interpolation method, yet information about this distribution is often
unknown for data that have been tabulated by areal units.

Markoff & Shapiro [156] describe a number of techniques for performing areal interpolation. These
techniques are differentiated according to the class of the variable of interest. Classes include 1) abso-
lute figures (or “spatially extensive” data) characterizing some aspect of area (e. g., area of land under
cultivation), 2) proportions (or “spatially intensive” data) characterizing some aspect of area (e. g., per-
centage of land under cultivation), 3) absolute figures characterizing some aspect of population (e.g.,
total population) and 4) proportions characterizing some aspect of population (e.g., population den-

sity).

For the first two classes, “common area’ techniques are used. For case 1, values for target zones may
be estimated from source zone values weighted by the overlapping area of the source and target zones.
n a1
Vi = E —L Uj (51)
=13

where: v; = estimate of the variable of interest for target zone i;
a;; = area of overlap between target zone i and source zone j;

a; = area of source zone j; and

u; = value of the variable of interest for source zone j.

For case 2, a weighted mean is calculated for each target zone, where the weights are the proportions
of the target zone that overlap the source zone.

vi = > ﬁuj (5.2)
=1 &



where: a; = area of target zone i.

These techniques assume that the variable of interest is distributed uniformly over each source and tar-
get zone, an assumption that is clearly inconsistent with the distribution with data types 3 and 4. A
more appropriate areal interpolation technique for such data is based on shared population rather than
shared area. This is referred to as the *“common population” technique. For case 3, the technique
involves estimation of the urban population of an area of overlap using known locations and popula-
tions of cities, and then estimation of the rural population of the area of overlap based on equation
(5.1). That is,

vi = > [&l+—L—"-p'—p'Ej—]uj (5.3)
=1 UP;j pj 3
where: p’;j = urban population of the overlap between target zone i and source zone i

p; = total population of source zone j;

p’; = urban population of source zone j; and
p;—p';j = rural population of source zone j.
For case 4, the appropriate equation is
V-3 [u+Pi_—_&ﬁ . (5.4
=1 L Pi Pi 3

where: p; = total population of target zone i;
p’i = urban population of target zone i; and

pi—P’i = rural population of target zone i.

The authors present empirical results for population data showing that the common population tech-
nique is more accurate than the common area technique and that both techniques are more accurate
when estimating “‘upwards” from small source zones to large ones (i.e., m <n) than “downwards”
from large source zones to small target zones (i.e., m>n). However, the improvement in accuracy
associated with the common population technique is less dramatic when m < n, since the total popula-
tion of each source zone, both urban and rural, tends to be allocated to a single target zone.

Crackel [59] argues that these techniques assume that the area of the target zone is equal to the sum of
the areas of the source zones that overlap it. That is, for a given target zone i,

4 = i a; (5-5)
=1

This assumption will not hold if the region bounded by the set of target zones is not identical to that
bounded by the set of source zones. The value for target zone i is likely to be underestimated when

5 > 3 ay (5.6)
=1

and overestimated when
3 < 3 a (5.7)
=1

To account for this problem, it is necessary to weight the numerical result of equation (5.1) or (5.3) by

n n
a;/ 3, a;j and to replace the a; denominator in equations (5.2) and (5.4) by >
=1 =1



Goodchild and Lam [101] focus on the common area technique of areal interpolation, which the
authors refer to as the “‘direct overlay method.” In matrix notation, the direct overlay method may be
expressed as

V = WU (5.8)

where: V = an mXx1 matrix where v; is the estimate of the variable of interest for target zone i;

W = an mXn matrix where w;; is the standardized area of overlap between target zone i and
source zone j; and

U = an nx1 matrix where v is the value of the variable of interest for source zone j.

For spatially extensive data, or absolute figures,

Wi = aij/ﬁn‘, a; (5.9)

i=1

For spatially intensive data, or proportions,
n
=1

The denominators in equations (5.9) and (5.10) are equivalent to a; and a; respectively when the area

encompassed by the set of target zones is identical to that encompassed by the set of source zones.

According to the authors, the accuracy of the target zone estimates is reflected in the structure of W.
This matrix tends to be sparse and its elements are always non-negative. Small elements are often
spurious and may arise from digitizing errors and discrepancies between the cartographic representa-
tions of zonal boundaries on the source and target maps. The amount of error in the target map may
therefore be deduced from the number and magnitude of elements of W that are neither 1 nor 0. An
error-free target map can be assured only when each column of W contains only one non-zero element
(i-e., the aggregation operation, in which each source zone is wholly encompassed within a single target
Zone).

A measure of the accuracy of the target map could presumably be obtained by reversing the interpola-
tion. Taking equation (5.8), the reverse interpolation is given by

U = BV (5.11)
)
B = an nXm matrix where b; is the standardized area of overlap between source zone j and
target zone i; and

where: U’ = an nXx1 matrix where u;’ is an estimate of the variable of interest for source zone j;

V = an mX1 matrix where v; is the estimate of the variable of interest for target zone i.

In the case of spatially extensive data,
by = 2/ > % (5.12)
i=

Since the summation is performed over source zones rather than target zones, as in equation (5.9), in
general B # W'

In an empirical test of the direct overlay method, the authors estimated the population for a set of tar-
get zones for which the actual populations were known in advance. This made it possible to directly
compute the accuracy of target zone estimates. The accuracy of the direct overlay method was com-
pared to that of pycnophylactic interpolation (based on Tobler, as cited by the authors) and interpola-
tion based on distance-weighted averaging. In general the direct overlay method was found to yield the
most accurate results. Comparison of the U and U’ matrices revealed that by reversing the interpola-
tion, target zones with inaccurate estimates can readily be identified. In general, the largest errors



were found to occur where the population was least homogeneously distributed within source zones.

Two methods for approximating the W matrix that are computationally less demanding were also exam-
ined. The first consists of assigning each source zone value to the target zone with which it has the
greatest overlap (in the case of spatially extensive data). The second consists of apportioning the
source zone value equally among all overlapping target zones. Both methods yielded accuracies higher
than pycnophylactic interpolation but lower than the direct overlay method. The authors also experi-
mented with the aggregation of source zones into new zones with maximum internal homogeneity with
respect to the variable of interest. Target zone estimates based on these new source zones were found
to be relatively poor, although they were substantially improved by the addition of a compactness or a
size constraint.

Lam [136, 137] argues that for the direct overlay method the accuracy of the target map is primarily a
function of the presence of ‘“‘split” source zones, or source zones that overlap more than one target
zone. The underlying spatial distribution of the variable of interest determines the degree to which
split source zones will contribute to error, since the direct overlay method assumes that this distribution
is homogeneous. The size and shape of the source and target zones contribute to the degree of varia-
tion discernible on the source and target maps, but their effects on accuracy are less clear. The author
posits an error model in which the error in a given target zone estimate is a function of the number and
area of split source zones overlapping the target zone and the mean absolute difference between the
value of each split source zone and its neighbors.

This model was tested for four fractal surfaces for which D ranged from 2.1 to 2.9 (see § 3.1.2). Each
surface was partitioned into sets of rectangles of varying sizes representing the source and target zones.
Error was measured in terms of the deviations between the fractal surface and the target zone esti-
mates. Correlation coefficients were computed between the error associated with each target zone esti-
mate and the three factors postulated in the model to account for error. Correlations of between 0.6
and 0.99 were observed, with the highest correlations occurring for surfaces of low dimensionality and
a large number of source zones relative to target zones (i.e., aggregation). The model was also tested
for pycnophylactic interpolation but was found to be a relatively poor predictor for this method.

Flowerdew & Openshaw [85] discuss the data problems associated with areal interpolation and present
a typology of potential problems based on the nature of the areal umit, the scale of measurement and
the relationship between the areal unit and the variable of interest. Areal units may be either
“natural” (defined by the phenomenon under consideration), “‘imposed” (defined for statistical or
enumerative purposes), or ‘‘arbitrary” (bearing no relationship to real-world phenomena). Measure-
ment scales include *‘categorical” (both dichotomous and polychotomous), “count,” ‘“‘continuous™ and
“rankings.” A distinction is also drawn between absolute figures (or spatially extensive data), propor-
tions (or spatially intensive data) and measurements which do not correspond to either of these two
categories. The relationship between the areal unit and the variable of interest may be either *“‘sum-
mary” (e.g., the population of the areal unit, since the variable summarizes some aspect of the areal
unit) or “‘functional” (e.g., political representation of an electoral district, since the variable is related
to a function of the areal unit).

By combining these three dimensions, the authors were able to produce a typology of areal interpola-
tion problems. Different areal interpolation methods are shown to be suitable for each component of
the typology. For example, the direct overlay method is appropriate for natural areal units, since these
units are defined by the spatial distribution of the variable of interest and hence each areal unit should
be relatively homogeneous. For summary-count data for imposed areal units, one might apportion the
count for the source zone into counts for each of the target zones overlapping the source zone. This
might be achieved by weighting the count by the area of each overlapping target zone portion (i.e.,
case 1 of Markoff & Shapiro [156]). Information on other, related variables might usefully be
employed to improve the accuracy of this procedure (i.e., case 3 of Markoff & Shapiro [156]). For
functionally related data, a different type of problem exists because the variable of interest, while



relevant to the source zones, may not apply directly to the target zones. The authors argue that for cer-
tain components of the typology, areal interpolation is not logically justifiable.

The geographical aspects of areal interpolation derive from the configuration and size of the source and
target zones. Areal interpolation is especially problematic when the source zones are large relative to
the target zones (i.e., disaggregation). The size of the source and target zones also complicates the
homogeneity assumption of the direct overlay method. An alternate approach might rely on a
dasymetric method in which the distribution of some limiting variable might be used to model spatial
heterogeneity in the underlying distribution and thus facilitate accurate estimation of target zone values.
For example, the percentage of cropland in a target zone might be more accurately estimated given
knowledge of the spatial distribution of altitude, slope, rainfall, soil type, or some other variable limit-
ing the location of cropland.

Application of the dasymetric method as a means of improving the accuracy of target zone estimates
has been further explored by Flowerdew [84]. This approach uses a binary limiting variable whose
spatial distribution is known for each target zone. This variable may be entered into a Poisson regres-
sion model of the form

A= )\1 Al + AZAZ (513)

Variables A; and A, represent the area of each source zone covered by categories 1 and 2 of the limit-
ing variable. The dependent variable in this model is the variable of interest for each source zone.

In an illustrative example presented by the author, the limiting variable was land use (grassland vs.
woodland) and the variable of interest was population. Thus population estimates were desired for tar-
get zones for which land use was known. The regression model was calibrated using area and popula-
tion data to yield estimates of parameters \; and \,. These estimates represent the expected population
per unit area of grassland and woodland respectively. Since population density tends to be higher for
grassland than woodland, A;>\,. The estimated population for the portion of each source zone
covered by each land use category was calculated by multiplying the parameter estimates for each
category (i.e., Ay and \,) by the area covered by that category within each source zone. To preserve
the pycnophylactic constraint (i.e., the sum of the estimated populations for the portions of each source
zone covered by each land use category must equal the actual population of the target zone), the
estimated populations were scaled by the ratio of the actual populations to the fitted populations
derived from the regression model. The resulting values were summed so as to yield population esti-
mates for each target zone.

This approach was also applied to a set of real data in an effort to estimate the population for a set of
parliamentary constituencies (target zones) using population data derived from administrative districts
(source zones). The limiting variable, political affiliation (Labor vs. Conservative), was known for
each target zone. Despite the poor fit of the regression model, the approach yielded substantial
improvements in the accuracy of target zone population estimates compared to the direct overlay
method.

5.2. Vector to Raster conversion t

The vector and raster models represent two ways in which spatial data may be encoded in the construc-
tion of a spatial database. The vector model represents spatial data as a set of objects. These objects,
whether points, lines or areas, are encoded by recording their positions in space. Thus points may be
defined as a single x,y-coordinate pair. Lines may be encoded as strings of x,y-coordinate pairs joined
by straight line segments. Polygons are composed of strings of X,y-coordinate pairs which, when joined

t The discussion in this section derives largely from Veregin [216).



by straight line segments, define a closed geometric figure.

In the raster model spatial data are represented by the values assigned to a matrix of grid cells that
cover the region of interest. Typically these cells are regular, non-overlapping and spatially exhaustive,
but they need not always be square. Spatial objects may be encoded as the set of cells that demarcate
the locations of the objects in space. Points may be encoded as single cells, while lines and polygon
boundaries may be defined as the set of adjacent cells that most closely approximate these linear
features. Clearly the degree of approximation is a function of the linear dimension of the cell, or its
spatial resolution. In this case cells may take one of two possible values, indicating whether or not the
cell is located on a point, line or polygon boundary. If the raster model is extended to allow cells to
take more than two values, then the spatial distribution of some variable of interest may be encoded as
a set of values associated with the cells. These values may be categorical, as in the case of land use, or
numerical, as in the case of remotely sensed spectral data.

Vector to raster conversion refers to the operation whereby spatial data encoded under the vector
model are transformed into a grid of cells. Scanning digitizers, for example, assign a binary value to
each cell that indicates whether or not the cell falls on some object of interest on the source map. Vec-
tor to raster conversion may also be carried out to produce a grid in which the cells take more than two
values. By accessing the attribute values corresponding to a set of polygons, a raster data set may be
produced in which each cell is assigned the value of the polygon in which it is located. This would be
appropriate for categorical data, such as land use, and for proportions, such as population density. For
other types of data, such as population counts, allowance must be made for the different areas of the
polygons and cells, and the count must be appropriately apportioned to the cells. Allowance must also
be made for cells that fall on a polygon boundary and thus might be reasonably assigned to either

polygon.

Vector to raster conversion may be performed for a variety of purposes. The speed of scanning digitiz-
ers over non-mechanical digitizing methods explains the rationale for performing vector to raster
conversion in this case. Raster data are also often easier to display and analyze, and they may facilitate
data compression and computational speed. When vector and raster databases must be combined to
facilitate data analysis, vector to raster conversion may be applied to yield a common base for the
analysis. The opposite operation, raster to vector conversion, would seem to be less commonly
applied, due in part to the difficulties of deriving meaningful x,y-coordinate values from the step-like
raster representation of spatial objects. In effect, vector to raster conversion results in a loss of preci-
sion because the spatial resolution of raster data is typically coarser than that of vector data. In many
applications, however, this loss of precision may be less deleterious than the creation of spurious
representations of spatial objects.

In discussing the errors associated with vector to raster conversion, it is important to keep in mind that
the conversion may be performed to rasterize cartographic detail (e.g., digitizing source maps by
scanner) or to produce a raster representation of some thematic attribute distributed over space (e.g.,
assigning to each cell in the grid the value of the attribute for the polygon in which the cell is located).
This distinction facilitates a broad classification of error models for vector to raster conversion as
models of positional error and models of attribute error. This classification also reflects the fact that in
many cases cartographic errors may be treated independently of thematic errors. Independence exists
when the thematic attribute has been measured for areal units that have been delineated solely for
enumerative purposes (e.g., census data). However, for other types of data known as ‘“‘categorical cov-
erages” (Chrisman [49]), independence cannot be assumed because the locations of polygon boundaries
are determined by the values of the thematic attribute themselves (see § 2.2).

Models of positional error tend to focus on inaccuracies in polygon area arising from vector to raster
conversion. These inaccuracies result because vector to raster conversion tends to cause shifts in the
location of polygon boundaries. Models of attribute error, in contrast, focus on the accuracy of the
raster representation of the spatial distribution of the thematic attribute. Accuracy is affected by the



often arbitrary nature of polygon boundaries which may mask the underlying spatial distribution of the
attribute. Models of error for vector to raster conversion are reviewed by Burrough [34], Goodchild
[97], Muller [168] and Veregin [213, 216].

5.2.1. Models of Positional Error

Frolov & Maling [69] examined changes in polygon area associated with vector to raster conversion.
Their analysis derives from a desire to model the error associated with cartometric estimates of polygon
area (see § 3.2.1). The model developed by Frolov & Maling is based on the identification of ““boun-
dary cells,” or cells that are bisected by a polygon boundary. The authors assume that the linear
dimension of the cells is sufficiently large to allow the boundary segment passing through each cell to
be represented as a straight line segment without any appreciable loss of precision. Thus each boun-
dary cell is bisected by a straight line segment that subdivides the cell into two, usually unequal, parts.
The authors contend that the set of all possible locations of this line segment can be determined from
the set of all possible values of two variables, x and a, which represent the point and angle at which the
line segment intersect one edge of the cell. Given a cell of unit dimension, x may vary from 0 to 1 and
a may vary from O to w. By integrating over these two ranges, the authors computed W, the mean area
of the smaller subdivision of the cell. The standard error, s, of the estimate of polygon area is then
given as

s = wnl? (5.14)

An estimate for n, the number of boundary cells for the polygon, is given by
n = kB (5.15)

An estimate for B, the estimated boundary length, is given by
B = 3n (5.16)
i=1

where: b = the length of the straight line segment in boundary cell i.
Equations (5.15) and (5.16) may be combined to yield

k, = 1/b (5.17)
where: b = the mean length of the straight line segments in the boundary cells (computed in a manner
analogous to w).

The value of B in equation (5.15) may be computed as
B = k;A? (5.18)

where: A = polygon area; and

k; = a measure of polygon shape.
Combining the above expressions, the standard error of the estimate of polygon area is

s = kl k21/2 k31/2 AAU‘1 (519)
(For consistency in notation, k; has replaced w in this equation.) The relative standard error, or the
standard error as a percentage of polygon area, is obtained by dividing through by A to yield

s = ki kK2 A4 (5.20)
These results indicate that the relative standard error is a function of polygon size. Relative error

declines as polygon size increases. Empirical tests conducted by the authors show close agreement
between actual and theoretical levels of error.



Lloyd [144] describes an alternate interpretation of the set of all possible locations of line segments
passing through boundary cells. Rather than a value of x varying from 0 to 1 and a value of a varying
from 0 to 7, Lloyd considered the rotation through angle w of a set of parallel, infinitely close lines.
This approach yields values of 0.8621 and 0.2469 for b and w, respectively. (Frolov & Maling
obtained values of 0.7979 and 0.2127.) Lloyd’s results change slightly the values of the parameters in
equations (5.19) and (5.20) but do not alter the overall meaning of these equations or the significance
of the results.

Crapper [63] and Crapper et al [64] focus on the estimation of n, the number of boundary cells. The
number of boundary cells depends on polygon shape and the degree of boundary contortion. The
polygon shape factor, kj, is defined as

B P
ks = s (5.21)

where: P = the actual perimeter of the polygon; and

A = the actual area of the polygon.
The mean within-cell contortion parameter, ky, is given by

1 n
n El Pi
b

ke = (5.22)

where: p; = the actual length of the boundary segment in boundary cell i; and
b = the mean length of the straight line segment in boundary cells (as defined above).

Examination of polygons with homogeneous biophysical characteristics by Crapper [61] shows that, on

average, k; =1.82. The value of k, may often be assumed to be 1.0, which is equivalent to the

assumption of Frolov & Maling that the boundary segment passing through any boundary cell can be

approximated by a straight line segment. Given these values, the number of boundary cells is given as
2k, 2 A2

= S (5.23)

Crapper [60, 62] extends this model to the case of rectangular cells, which are commonly encountered
in remote sensing. The standard error of the estimated area of a polygon in this case is given by
172
2kikymwl2 A2
s = | ———--—— (5.24)

k,b

In this equation, k; = w as defined by Frolov & Maling, and all other parameters are defined above.
For Landsat pixels, the author gives values of 1.82 for k; and 1.0 for k,. Values for k; and b were
computed in the manner proposed by Frolov & Maling, but refer to a rectangular cell with dimensions
equal to a Landsat pixel. The resulting equation for the relative standard error is

s, = 0.39 A7 (5.25)

The preceding models show that the relative standard error is proportional to the —3/4 power of
polygon area, A. When the linear dimension of the cell, c, is not equal to 1, s, is also proportional to
the 372 power of ¢ (Goodchild [97]). This relationship holds when considering individual polygons, but
not ensembles of polygons or entire maps. In the latter case, the relative standard error is linearly
related to ¢ and proportional to the —1/2 power of A (Muller [168}).



Goodchild [96] argues that the model developed by Frolov & Maling assumes serial independence in
the errors associated with each boundary cell. If serial correlation is present, however, its effect will
be to increase the relative standard error. Serial correlation will tend to be highest when the boundary
segments within boundary cells are closely approximated by straight lines (i.e., the boundary is rela-
tively smooth). Goodchild defines a measure of polygon boundary smoothness, B, as

log(n + 2 nﬁ:l i ) / log (n) (5.26)

i=1 j=i+1

It

B

where: 1;; = the correlation between the errors associated with boundary cells i and j; and

n = the number of boundary cells.
Serial independence (i.e., the Frolov & Maling model) corresponds to a case in which 8 =1 and per-
fect correlation to a case in which B = 2. The resulting general form of the equation for relative stan-
dard error is

s, = k kP2kP? ABA-1c2-(62) (5.27)

where: A = the actual area of the polygon; and

c = the linear dimension of the cell.
(Parameters k;, k, and k; are defined above. See equations (5.14), (5.17) and (5.18).)

5.2.2. Models of Attribute Error

In contrast to error models for vector to raster conversion that focus on positional error, those models
that focus on attribute error are concerned with inaccuracies in the spatial representation of the
thematic attribute on the raster map. Such inaccuracies may arise from the often arbitrary nature of
polygon boundaries, which mask the underlying spatial distribution of the thematic attribute. The
manner in which values of the attribute are assigned to cells therefore becomes an important deter-
minant of the accuracy of vector to raster conversion.

Many of the models of relevance in this discussion are likewise important for other GIS operations.
For example, the models developed for areal interpolation (see § 5.1) may also be applied to vector to
raster conversion if the target zones are grid cells. The model described by Goodchild & Lam [101]
and Lam [136, 137] shows that errors may result if cells are assigned the value of the polygon in which
they are encompassed, since this procedure makes no allowance for heterogeneity in the attribute value
within any polygon.

Several researchers have developed error models that focus explicitly on vector to raster conversion.
Switzer [203] presents a model of error in polygon area for entire maps based on errors of omission and
commission in the assignment of cells to polygons. It is assumed that a cell is assigned to a polygon
based on the location of the center point of the cell. The model is based on map complexity defined in
terms of the differences in *‘subdivision membership” (i.e., attribute values) for cells separated by a
specified distance. In general, larger errors are expected as map complexity rises. According to

Switzer, the area Ay that belongs to subdivision s on the true map, but has been assigned to subdivision
t, is given by the intersection of subdivision s on the true map and the collection of cells that have been
assigned to subdivision t. Thus the total misclassified area, A”, is given as

- S T -
A= 3 3 Ag (5.28)
s=1t=1

where: S = the number of subdivisions on the true map; and



T = the number of subdivisions on the raster map.

The operation Pgy(d) is then defined as the probability that a random point is in subdivision s on the
true map and a given cell center point is in subdivision t on the true map, when the two points are
separated by distance d. Switzer proposed that P,(d) be approximated as a Taylor series expansion of
its derivatives with respect to d (Goodchild [97]). The first two terms may be estimated from the fre-
quency with which cells separated by distances of d; and d, on the raster map fall into subdivisions s
and t. For square cells, d; and d, are equal to N™V2 and 2N~12 respectively, where N is the number
of cells in the entire map.

P (d) is estimated as

Mz
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P (d) = - (5.29)
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where: f(c;) = an indicator function equal to 1 when cell ¢; is in subdivision s and 0 otherwise;
fi(c;) = an indicator function equal to 1 when cell ¢; is in subdivision t and 0 otherwise; and

g(c;, cj, dy) = a proximity function equal to 1 when the distance between cells ¢; and c; is equal
to d; and O otherwise.

This equation is evaluated twice, once for k=1 (d,=d;=N""?) and once for k=2
(dy = d; =2N"12). The denominator of the equation is the number of cell pairs on the map that are
separated by distance d;. The numerator is the number of cells pairs separated by distance d, for
which the subdivisions are s and t.

The misclassified area is then given as
Aq = a;Py(d)) — 2, Py(dy) (5.30)

where a; = 0.76 and a, =0.19. (Goodchild [97] gives values of 0.6 and 0.11.) The values obtained
from equation (5.29) for a given pair of subdivisions s and t are inserted into equation (5.30) and the
values of Ay are then summed for all s and t, as in equation (5.28), to yield the total misclassified area
on the map. Empirical work by Muller [168] shows that this model accurately predicts the observed
area of misclassification.

Wehde [224, 225] presents an error model for vector to raster conversion in which error is defined as
the incorrect assignment of thematic attribute values at sampled points on the map. The model is
based on the notion that the accuracy of the raster map is dependent on the frequency distribution of
distances between points on the boundaries of the polygons on the source map. The “‘interboundary
distance” frequency distribution is defined as the distribution of distances between boundaries for a set
of randomly-placed lines. For raster maps, the positions of these lines are controlled by the grid matrix
and the distribution is referred to as the *‘span” distribution. In this case interboundary distances are
multiples of the linear cell dimension. As cell size increases, the frequency distribution becomes more
skewed, with small interboundary distances (defined in terms of the number of cells) predominating.
In this form the model describes aggregation, in which cells on the source map are combined to pro-
duce cells on the target map. However, it is applicable to vector to raster conversion by replacing the
span distribution with the interboundary distance distribution.

The error model is expressed as

E = FG (5.31)



where: E = a 1Xt matrix where ¢; is the predicted mapping error as a function of target cell size i;
F = a 1Xs matrix where f; is the relative frequency of span size i on the map being tested; and

G = a sXt matrix where g; is the estimate of the mapping error for target cell size j and span
size i.
The value of t is the number of different target cell sizes being tested and the value of s is the number
of possible span sizes for the map. This model can be used to predict the mapping error that would
result in a particular target map given a specified target cell size and the particular span distribution on
the source map.

In order to estimate G the author enumerated the possible positions of a target cell over different span
sizes to derive the probability of incorrectly assigning the target cell. When target cell size is a multiple
of source cell size, there is a finite number of such positions. The author enumerated possible positions
in only one dimension by placing a line with a length equal to the linear dimension of a given target cell
over sets of source cells with different span sizes. In an empirical test, the model predicted the correct
trend in incorrect assignments, but overestimated the actual error by a factor of two.

Clarke [51] employed an experimental approach in which a set of five different spatial distributions of
a thematic attribute, each mapped onto six different sets of polygons which varied in size, shape and
degree of convolution, were rasterized according to four different vector to raster conversion methods.
These methods included inverse distance weighting of the five nearest polygon centroids to the cell
(using weights of d™2 and d™*, where d is the distance), trend-fitting in which a polynomial surface was
fitted to the spatial distribution and inverse distance weighting then applied to the estimated surface,
pycnophylactic interpolation (based on Tobler, as cited in Goodchild & Lam [101]) and spatial smooth-
ing (based on Hsu [121]).

‘The author constructed thirty polygon maps, each of which was then rasterized using each of the four
methods. Since the polygon maps were based on a known spatial distribution of the thematic attribute,
it was possible to measure the degree of error associated with each raster representation. The author
posited an error model based on the size and shape of the polygons, the complexity of the spatial distri-
bution and the vector to raster conversion method employed. Fourteen variables related to the first
three factors were employed in multiple regression analysis in which the dependent variable was the
absolute error between the actual spatial distribution and the raster representation of this distribution.
The regression models, stratified by vector to raster conversion method, exhibited high explanatory
power (R? values ranged from 0.78 to 0.98). When variables related to the complexity of the spatial
distribution were excluded, explanatory power dropped significantly (R? values ranged from 0.16 to
0.43).

5.3. Map Overlay

In the map overlay operation, two or more data layers are superimposed to produce a composite map
depicting combinations of the thematic attributes on each data layer. For numerical attributes, attri-
bute values can be combined by arithmetic operators. Boolean operators are employed for categorical
attributes. If the data are in vector format the mapping units are polygons, and if the data are in raster
format they are single cells. Raster data may also be used to delineate polygonal mapping units as sets
of contiguous cells whose attribute values are the same. Only in the raster case are the boundaries of
the mapping units on different data layers likely to coincide perfectly. Moreover, this will occur only
when the data layers are registered to the same grid. In the vector case, the mapping units or polygons
on different data layers may share common boundary segments, but perfect boundary coincidence is
unlikely to occur.



The technical details of the map overlay operation are therefore dependent on the nature of the input
data. A straightforward application of map overlay in remote sensing is the calculation of band ratios
for a set of pixels. Similarly it is a relatively simple task to apply Boolean operators once remotely
sensed spectral data have been classified into cover types. For vector data, in contrast, map overlay
involves the identification of all points at which the boundaries of the polygons on each data layer inter-
sect. Polygons on the composite map are then delineated as sets of boundary segments which, when
chained together, create closed geometric figures.

Error models for the map overlay operation may be differentiated according to their emphasis on posi-
tional and attribute error. As noted previously in § 5.2, these two error sources may often be assumed
to be independent when polygon boundaries have been imposed a priori for enumerative purposes. If
attribute and positional error may be treated independently, then both error components contribute to
total composite map error. That is, composite map error is a function of error in the thematic attri-
bute values attached to the polygons on each data layer, as well as error in the positions of polygon
boundaries. The latter source of error has received considerably more attention in the literature.
Errors in polygon boundaries may be attributed largely to digitizing and generalization error (see § 4.1
and § 4.2). Since map overlay involves the superimposition of two or more data layers, positional error
is also associated with differences in the scale, age or map projection of the data layers. In the context
of map overlay, these sources of error result in discrepancies in the cartographic representations of
polygon boundaries such that these boundaries may not coincide on different data layers even if they
happen to coincide in reality. The resulting “‘gaps’ or ‘‘slivers’ that appear on the composite map are
often referred to as “‘spurious polygons™ since they do not correspond to any observable or readily
agreed-upon feature of the real world.

Thematic and cartographic error cannot be so easily separated when the positions of features on a
given data layer are defined by the values of the thematic attribute. For such categorical coverages
(see § 2.2), positional error, to the extent that it may be said to exist, is not separable from attribute
error. Models for attribute error therefore tend to emphasize the manner in which error in thematic
attribute values on individual data layers are propagated through the map overlay operation.

The following discussion first focuses on factors affecting the level of error associated with map over-
lay. Models of positional error are then described with reference to the spurious polygon problem.
Finally, models of attribute error are discussed that focus on the propagation of errors in thematic attri-
bute values through the map overlay operation. Reviews of many of these models are provided in Bur-
rough [34] and Veregin [213, 214, 215].

5.3.1. Factors Affecting Accuracy

MacDougall [147] argues that composite map accuracy is a function of three parameters — ‘“‘horizon-
tal” or positional error in polygon boundaries, polygon ‘‘purity” or attribute error, and error intro-
duced by the operation itself (error propagation). Horizontal error is seen to arise, not only from
imprecisions associated with drafting and digitizing, but the prevalence of indeterminate polygon boun-
daries for such attributes as soil and vegetation types. Polygon purity refers to the internal homogeneity
of a polygon and is calculated as the proportion of the total area of the polygon that is correctly classi-
fied. Errors associated with map overlay itself are seen to interact with these two sources of error.
Note that since the author is concerned primarily with thematic attributes such as soils and vegetation,
his assumption that horizontal error is distinguishable from polygon purity is difficult to justify, since
the polygon boundaries are defined by the values of the thematic attribute (Chrisman [48]).

The total horizontal error for a given data layer i, H;, can be estimated by



where: h; = a measure of horizontal error for data layer i;
t; = the total length of all polygon boundaries on data layer i; and
a; = the total area of data layer i.

This equation yields an estimate of the proportion of the total area of data layer i that is uncertain or
unreliable. If the polygon boundaries are known to have different levels of horizontal error, then equa-
tion (5.32) may be replaced by

1=
Hi = = 3 hjy (5-33)
3 =

where: h; = a measure of horizontal error for polygon boundary j on data layer i;

t; = the total length of polygon boundary j on data layer i; and
m; = the number of polygon boundaries on data layer i.

According to MacDougall, the lower limit of composite map accuracy, Ay, is given by
n n
Amin = f(z Hi9 H Pi’ G) (5.34)
i=1 i=1

where: P; = the purity of data layer i;
n = the number of data layers; and
€ = the error introduced by the map overlay operation.

This equation represents a case in which the errors on each data layer are independent. MacDougall
argues that when errors are correlated, the horizontal error of the composite map will approach the
mean horizontal error of data layers 1 through n, H, while the purity of the composite map will be
approximated by the purity of the least pure data layer, Py;,. Thus the upper limit to composite map
accuracy, Ap,,, is given as

Apax = f(H, Pyin, €) (5.35)

Equation (5.35) corresponds to a case in which the areas of horizontal error and impurity tend to coin-
cide spatially. Hence it would be inappropriate to sum horizontal errors, or multiply purities (since the
area of impurity on each data layer is contained within the area of impurity on the least pure data
layer). Sources of error arising from the map overlay operation itself (i.e., € in equations (5.34) and
(5.35)) are not dealt with extensively by MacDougall. These errors are seen to arise primarily from
scale and map projection differences between data layers, as well as the generation of spurious
polygons due to discrepancies in the cartographic representation of the same polygon boundary segment
on different data layers,

Chrisman [48] argues that MacDougall’s analysis of error is pessimistic, because errors associated with
map overlay can be substantially lower than MacDougall’s model would suggest. Chrisman re-examines
MacDougall’s analysis in light of advances in map overlay techniques and recent empirical findings.
Empirical tests, for example, demonstrate that positional error in polygon boundaries may be much
lower than expected, since data often exceed the minimum accuracy standard reported in map legends.
Testing can also be performed to establish site-specific estimates of positional error for indeterminate
boundaries. These boundaries are often artifacts of imprecise attributes, rather than imprecise boun-
dary positions as MacDougall suggests. Fuzzy boundaries also acquire a sharper character if they
obtain legal status (i.e., planning or zoning). In certain applications, this may be equivalent to an
actual increase in precision. MacDougall’s method of estimating horizontal error (i.e., equations
(5.32) and (5.33)) also ignores the effects of line curvature. Without such an adjustment, lines will
seem to increase in length with more detailed measurement, resulting in an increase in the estimate of
error (see § 3.1).



As in the case of positional accuracy, polygon purity may also be much higher than the minimum accu-
racy standard reported in the map legend. MacDougall’s analysis ignores the distinction between
‘““identification’ errors (i.e., errors in assigning the correct attribute value) and *‘discrimination” errors
(i.e., errors in separating adjacent values). The latter type of error is essentially synonymous with the
indeterminate boundary problem and, despite MacDougall’s separation of positional and attribute
error, is impossible to distinguish from positional error in polygon boundaries. In defining polygon
purity as the proportion of the polygon that is correctly classified, MacDougall also ignores the fact that
certain misclassifications are less serious than others. Chrisman argues that in the context of a classifi-
cation error matrix approach (see § 2.1), the entire matrix, and not just the main diagonal, should be
considered. Moreover, since maps are often constructed using rules of minimum polygon size, impur-
ity is often intentional and designed to ensure effective cartographic communication (see § 4.6). These
impurities are often conscious choices tied to the concepts of scale and generalization.

Errors associated with the map overlay operation itself are also capable of being managed with modern
computational approaches to map overlay. Examples include the merging of data from diverse sources
to select the most accurate cartographic detail, the identification of ‘“‘integrated terrain umits” (ITUs)
as basic mapping units for map overlay and the use of an error tolerance in map overlay algorithms to
reduce the incidence of spurious polygons. Chrisman also argues that MacDougall’s error model is
unrealistic in its treatment of horizontal error and polygon purity. In particular, the model allows the
total horizontal error to exceed the total area of the composite map. The estimate of composite map
purity ignores correlations between data layers as it omits a covariance term. Finally, MacDougall
does not incorporate the most common cause of composite map error — the lack of source maps of
sufficient accuracy.

Chrisman [49, 50] describes an empirical approach to error modeling for categorical coverages. For
categorical coverages, issues of positional and attribute error tend to interact, but established methods
of accuracy assessment tend to treat these two error components as separable. Assessment of positional
accuracy, for example, focuses on sets of well-defined points, thus ignoring the impact of attribute mis-
classification. Conversely, methods of assessing attribute accuracy, such as the classification error
matrix approach adopted in remote sensing, fail to distinguish between positional and attribute com-
ponents of error.

Chrisman argues that for such accuracy assessments to be more comprehensive, they must compare
complete maps rather than just sets of sampled points. One approach might be to overlay two categori-
cal coverages purporting to show the same phenomenon. This approach could be used to detect spuri-
ous polygons and artifacts of error which may seem perfectly distinct, but which in reality are often dif-
ficult to disentangle. Moreover, spurious polygons and classification error may be seen as extreme
cases between which exist transitional forms of error that are neither purely positional nor purely attri-
bute. These issues cannot be divorced from the effects of map scale, which impact both positional and
attribute accuracy due to the distortions inherent in cartographic generalization. Total error may
therefore be viewed as a composite of a set of stochastic processes operating simultaneously within the
boundaries set by scale effects.

5.3.2. The Spurious Polygon Problem

Some of the issues raised by Chrisman [48] pertaining to positional error have been examined in greater
detail by other authors. Roller [188] suggests that ancillary data (in this case provided by remote sens-
ing) can be used to improve the accuracy of polygon boundary positions. The methodology is based on
the identification of credible polygons within the polygons delineated in the original survey, and is con-
ceptually equivalent to Chrisman’s suggestion that data sources may be merged to acquire more accu-
rate cartographic detail. This is referred to as ‘“‘templating” by Dangermond [69]. Dangermond also
suggests that ITUs might be identified as basic mapping units for map overlay. ITUs possess multiple
attributes derived from several data layers and as such they avoid the problem of alternate representa-
tions of the same boundary line on different data layers. Chrisman [45] and Dougenik [74] describe the



implementation of a map overlay algorithm that incorporates an error tolerance band in defining boun-
dary intersection points. This tolerance defines the maximum distance that any point on a polygon
boundary is permitted to move. By allowing the algorithm to move points, spurious polygons can be
removed if they are narrower than the defined tolerance. The algorithm is described in detail by White
[226].

This error tolerance model derives largely from the epsilon band concept described by Blakemore [27],
Chrisman [45], Honeycutt [118] and others (see § 4.1.1). The epsilon band concept suggests that for
any cartographic line a buffer zone having a width of twice epsilon () can be constructed around the
line. This zone may be delineated by joining the center points of a circle of radius e as it is “rolled”’
along both sides of the line (or in the case of polygons, along the inner and outer edges of the polygon
boundary). The primary role of the epsilon band concept in error modeling for map overlay is to
describe a zone of uncertainty in the position of a given polygon boundary. For example, if polygon
boundaries have been digitized according to a specified level of accuracy, such that the digitized boun-
dary cannot deviate more than x mm from the boundary on the source map, then € = x and the boun-
dary on the source map will fall somewhere within the zone of width 2 € surrounding the digitized boun-

dary.

The epsilon band concept and its variants may also be applied in map overlay to identify spurious
polygons (Honeycutt [118]). If the maximum width of a given composite map polygon is less than 2¢,
then the polygon is likely to be spurious since it is wholly within the zone of uncertainty in polygon
boundary location. The epsilon band is a boxcar distribution in which the probability of error is equal
at all distances up to € on either side of the boundary and drops to zero at distances greater than e. If
the distribution of error around boundaries is known to follow some other probability distribution, then
this distribution can be used in place of the epsilon band model (Hudson [124] and Maffini [153]). An
example is the bimodal distribution of error around digitized lines observed by Honeycutt [118] (see §
4.1). The distributions associated with all lines are superimposed and the combined probability that a
given point is actually contained within a mapped polygon is computed as a function of the individual
probability distributions. The combined probability may be computed for a sample of points within a
given polygon and if this probability is consistently below some threshold, then the polygon may be
flagged as spurious. Honeycutt suggests a number of methods for combining probabilities, including
the mean probability and the probability associated with the line closest to the point.

Peucker [178] describes another variant of the epsilon band concept that may be applied to map over-
lay. This variant is based on the notion that any cartographic line has a corresponding band defined by
the maximum perpendicular deviation of the line from its general trend (see § 4.1). In map overlay,
this model may be applied to reduce the computations required to identify points at which polygon
boundaries intersect, since the intersection point for any two lines must be located within the parallelo-
gram defined by the intersection of the two corresponding bands. Since Peucker’s model also has
implications for cartographic generalization, it might also be applied in map overlay to reduce the
incidence of spurious polygons. Any line may be generalized by partitioning it into subsets until each
subset has a band with a width less than or equal to a specified threshold value. At each step, parti-
tioning is performed by selecting, as the subset end points, those points that define the maximum extent
of the line perpendicular to its general direction. The original line is then replaced by the lines defin-
ing the general direction of each subset. In map overlay, this procedure might be applied to the carto-
graphic lines defining the boundaries of each composite map polygon, with the aim of eliminating
spurious polygons caused by slight discrepancies in the representations of the same feature on different
data layers.

The spurious polygon problem has also been approached from the viewpoint that these polygons tend
to have relatively small areas. Thus composite map polygons might be flagged as spurious if their area
is below a specified threshold value. McAlpine & Cook (cited in Burrough [34]) found that the
number of composite map polygons, m,, could be reasonably well predicted by the equation
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m, = [2 mivz] (5.36)
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where: m; = the number of polygons on data layer i; and
n = the number of data layers.

(Note that the exponent 1/2 is missing in Burrough [34].) Thus the number of composite map polygons
tends to rise exponentially as the number of data layers increases. Empirical tests indicate that a large
percentage of these composite map polygons tend to be small and, by implication, spurious as well.

Cook [56] further explored the implications of composite map polygon size for the identification of
spurious polygons. According to the author, the reliability of a given polygon on any data layer will in
general decline as the area of the polygon decreases. The magnitude of this decline, however, is a
function of the thematic attribute portrayed on the data layer. This gives rise to the concept of a
“‘size-probability function” (SPF), which describes the relationship between polygon reliability and
polygon area. The SPF may be estimated for each of the data layers involved in map overlay, and the
joint SPF for the composite map may be computed as the product of the SPFs of all individual data
layers (assuming independence between data layers). Given an acceptable minimum probability of
reliability, it is then possible to flag those composite map polygons whose area, according to the joint
SPF, corresponds to a probability below this acceptable minimum. Once flagged, these spurious
polygons presumably could be deleted.

An alternate approach to the identification of spurious polygons is given by Goodchild [95, 97]. The
author maintains that the number of spurious polygons on the composite map is a function of the
number of polygon vertices on each data layer rather than the number of polygons. Goodchild’s
approach is based on the identification of points of intersection between the “true’ cartographic line
and the digitized representations of this line on different data layers. Each point of intersection along
the true line is assigned a value of either 1 or 2, corresponding to the data layer containing the
representation of the line at that point. Spurious polygons are then identified by certain sequences of
1s and 2s.

Based on runs of binary symbols, the number of spurious polygons that can occur on the composite
map ranges from a minimum of 0 to a maximum of 2 min(v,, v,) — 4, where v, is the number of vertices
on data layer i. In the random case, the expected number of spurious polygons, E[s], is given by
2vyv
Es] = —2 -3 (5.37)

V1'+'V2

As this equation indicates, the number of spurious polygons will tend to be higher for data layers with a
high degree of cartographic detail. Simulations performed by Goodchild show that, on average, equa-
tion (5.37) overestimates the observed number of spurious polygons by approximately 20 percent. The
number of spurious polygons tend to be only one-half of the theoretical maximum.

5.3.3. Models of Attribute Error

Newcomer & Szajgin [172] present a model for categorical raster data based on the attribute accuracy
of each data layer. The accuracy of data layer i, P[E]], is defined as the proportion of cells on data
layer i that are correctly classified. If two data layers are involved, the accuracy of the composite map,
P[E], is given by

P[E]

P[E, M By
P[E,] P[E; 1 E{] (5.38)
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This is the intersection of the correctly classified cells on the two data layers. That is, a given cell may
be misclassified on more than one data layer, but it need be misclassified on only one of the data layers
to be misclassified on the composite map. Equation (5.38) bears some similarity to equation (5.34)
but incorporates a covariance term in the form of the conditional probability, P[E,|E,]. This term
represents the proportion correctly classified cells on data layer 1 that are also correctly classified on
data layer 2. However, as noted by Chrisman [48] and Veregin [215], this term cannot be computed
from the classification error matrix, the standard method of accuracy assessment in remote sensing and
other fields where raster data are employed.

Veregin [215] gives the general form of equation (5.38) when there are n data layers as

PE] = PIEENE ... N El

= P[E,] PE, 1By [] PIE; O] (5.39)
i=1
where:
&E) = ENEN...NE, (5.40)
Minimum composite map accuracy, P[E./™"], is given by
P[E™"] = max {o, a- 2 P[E]) } (5.41)
i=1

where: P[E;] = the proportion of cells on data layer i that are misclassified.

This will occur when the misclassified cells on each data layer do not coincide spatially. Maximum
composite map accuracy, P[E™], is given by

P[E™™] = min {P['E',,]} i=1,2,...,n (5.42)

This will occur when the misclassified cells on all data layers coincide spatially with the misclassified
cells on the least accurate data layer.

Equations (5.39) through (5.42) indicate that composite map accuracy will generally be lower than the
accuracy of the individual data layers. As the number of data layers increases, composite map accu-
racy will initially decline sharply and then tend to level off. Moreover, composite map accuracy will
tend to be higher if the misclassified cells on each data layer coincide spatially, in which case the con-
ditional probabilities will tend towards 1.

Walsh et al [221] applied the Newcomer & Szajgin model to a set of land cover, slope-angle, slope-
aspect and soil type data layers. “‘Inherent” error was measured for each data layer by field-checking a
sample of cells and computing the proportion of cells that were correctly classified. In order to calcu-
late the conditional probabilities for the model, the same cells were sampled on each data layer.
Inherent error ranged from 43 to 83 percent. Map overlay was performed on various combinations of
two or three data layers based on cell sizes of both 2.5 and 10.0 acres. Due to high levels of inherent
errof, minimum composite map accuracy (i.e., equation (5.41)) was often equal to 0, while maximum
composite map accuracy (i.e., equation (5.42)) ranged from a low of 32 percent to a high of only 41
percent. Observed composite map accuracy (i.e., equation (5.39)) ranged from a low of 6 percent to a
high of only 29 percent. “‘Operational” error was defined as the difference between the theoretical
upper limit to composite map accuracy (i.e., equation (5.42)) and observed composite map accuracy
(i.e., equation (5.39)). Operational error thus measures the degree to which misclassified cells on dif-
ferent data layers do not coincide spatially. Levels of operational error were observed to range from 12
to 27 percent.



Veregin [215] argues that the Newcomer & Szajgin model is applicable only to the Boolean AND
operator. For this operator, a cell must be accurate on all data layers in order to be accurate on the
composite map. For example, if two data layers depicting land cover at different dates are superim-
posed with the aim of producing a composite map showing land cover change over time, then the land
cover class for a given cell must be accurate on both data layers. In contrast, if map overlay is applied
to identify cells with a particular cover class on either of the two dates, then the requirement is only
that the land cover class for a given cell be accurate on one of the data layers.

The latter example is consistent with the application of the Boolean OR operator, in which case com-
posite map accuracy for n data layers is given by

PE] = 1-PE, N E N --. N El
= 1 - P[E}] P[E, 1Ey] I] PIE: 1 O(E)] (5.43)

i=1
where:
OE) = ENEMN.-. - MNE+ (5.44)

Thus composite map accuracy for the OR operator is defined in terms of the intersection of the mis-
classified cells on each data layer. Minimum composite map accuracy, P[E;""], is given by

P[E™"] = max {P[EJ} i=1,2,...,n (5.45)

This will occur when the misclassified cells on the most accurate data layer are also misclassified on
every other data layer. Maximum composite map accuracy, P[E."*"], is given by

P[E™] = min {1, (é PE]) } (5.46)

This will occur when the misclassified cells on each data layer do not coincide spatially. Note that the
situation that produces the lowest composite map accuracy for the AND operator produces the highest
composite map accuracy for the OR operator.

Equations (5.43) through (5.46) indicate that for the OR operator, the accuracy of the composite map
can never fall below that of the most accurate data layer. Moreover, as the number of data layers
increases, composite map accuracy will tend to increase, rather than decline as for the AND operator.
This may result in a composite map that is more accurate than any of the data layers from which it was
constructed.

The impact of different Boolean operators on composite map accuracy is also illustrated by Robinson
& Strahler [187] in the context of map overlay for “fuzzy” data (see § 6.1). Fuzziness or indeter-
minacy in attribute values may be represented by assigning a membership value between 0 and 1 to
each cell on each data layer, reflecting the presumed validity of the attribute value for that cell. If the
AND operator is applied, then the membership value for a cell on the composite map is defined as the
minimum membership value of the corresponding cells on all data layers (see equation (6.14)). Equa-
tion (6.14) directly parallels equation (5.39). It represents a more general form of the Newcomer &
Szajgin model in which cell accuracy is not confined to O (misclassified) or 1 (correctly classified), but
may range anywhere between these two values. For the OR operator, the membership value for a cell
on the composite map is defined as the maximum membership value of the corresponding cells on all
data layers (see equation (6.15)). Equation (6.15) directly parallels equation (5.43).



In the Newcomer & Szajgin model, accuracy is defined as the proportion of cells correctly classified,
and thus the model is appropriate only for categorical data. An analogous model may also be
developed for numerical data, in which error is defined in terms of the deviations between actual and
estimated cell values (Veregin [215]). This model, like that of Newcomer & Szajgin, is based on the
accuracy of each data layer as well as a measure of covariance. The error covariance for any two data
layers i and j, s;j, is defined as

1

M
=y 2 i ) (Zg — 2 (5.47)

where: z;; = the actual value of cell m on data layer i;
2, = the estimated value of cell m on data layer i;

Zm;
2.,j = the estimated value of cell m on data layer j; and

the actual value of cell m on data layer j;

M = the number of cells on each data layer.

When i = j the equation defines the error variance of a data layer. Based on this equation the error

variance of the composite map can be computed as a function of the arithmetic operator applied in

map overlay. For example, when n data layers are added, the error variance of the composite map,
PRI

., is given by

2 n
s = >
i=1]

B

Sij (5.48)
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Equations can also be derived for other arithmetic operators or sets of operators.

While most models of thematic error for map overlay focus on the propagation of error in thematic
attribute values through the map overlay operation, it is also important to consider the error introduced
by the operation itself. Even if the input data layers are of relatively high quality, the misapplication of
map overlay may introduce error into the composite map. Some examples of the misapplication of
map overlay have already been discussed, including the use of data layers of different dates, scales or
projections. 1In the case of attribute error the misapplication of map overlay is primarily the result of
applying arithmetic or Boolean operators to data that do not support the assumptions behind these
operations.

Hopkins [119] compares different methods of computing the attribute values of composite map
polygons and identifies the major difficulties and errors associated with each method. The author’s
analysis focuses on suitability mapping, in which data layers representing various dimensions of the
landscape are superimposed to create a composite map in which each polygon is assigned a rating
reflecting its suitability for some proposed activity. Error may be introduced in the construction of sui-
tability maps when the data do not support the assumptions of the arithmetic operator applied to them.

In the “‘ordinal combination” method, polygons on data layers depicting different factors are rated
according to their suitability for the proposed activity. The data layers are then superimposed to yield
a composite map in which the rating for a given polygon is equal to the sum of the ratings for the
polygons on the individual data layers whose intersection is the composite map polygon. Hopkins
argues that this is an invalid arithmetic operation since suitability ratings are measured on an ordinal,
not an interval, scale. Moreover the method implies that each data layer is independent, whereas suita-
bility may be a nonlinear or multiplicative function of the factors portrayed on the data layers. The
“linear combination” method is identical to the ordinal combination method except that, before they
are summed, the suitability ratings on each data layer are multiplied by a weight reflecting the impor-
tance of the factor portrayed on the data layer. The resulting suitability ratings on the composite map
are normalized by dividing by the sum of the weights. The effect of weighting is to change the unit of
measurement for each factor such that all factors are on the same interval scale. According to the
author, this method is valid arithmetically but still suffers from the assumption of independence.



Other methods of suitability mapping do not assume independence between data layers. These include
the “nonlinear combination method” (in which data layers are combined according to known
mathematical functions), the “‘factor combination method” (in which data layers depicting categorical
factors are combined with Boolean operators and each unique combination of categorical values on the
composite map is assigned a suitability rating), and cluster analysis (in which sites are grouped accord-
ing to their similarity across factors). Alternatively, suitability mapping may be approached in terms of
logical rules of combination. For example, ‘“‘critical” data layers might be identified whose suitability
rankings override those of other data layers in certain situations.



6. GENERAL ISSUES OF SPATIAL DATABASE ACCURACY

This section discusses a set of issues with general implications for assessing accuracy in spatial data-
bases. The discussion in § 6.1 focuses on models of uncertainty, or methods of incorporating informa-
tion about inexactness into operations applied to spatial data. Accuracy issues of importance to
specific geographical models are briefly reviewed in § 6.2. General data quality issues pertaining to
spatial databases are discussed in § 6.3.

6.1. Modeling Uncertainty

Many operations are applied to spatial data under the assumption that features, attributes and their
relationships have been specified a priori in a precise and exact manner. However, as revealed by the
studies reviewed in this report, this assumption is generally not justifiable, since inexactness is almost
invariably present in spatial data. Inexactness exists in the positions of features and the assignment of
attribute values (see § 2) and may be introduced at various stages of data compilation and database
development (see § 4). Moreover, inexactness may be propagated through GIS operations to appear in
modified form on tabular and graphic output products (see § 3 and § 5). Inexactness is often inadver-
tent, as in the case of measurement error or imprecision in taxonomic definitions, but may also be
intentional since generalization methods are frequently applied to enhance cartographic fidelity (see §
4.2).

The discussion that follows focuses on methods of modeling uncertainty, or incorporating information
about inexactness into operations applied to spatial data. Research has tended to focus on certain
classes of operations, including map overlay, querying and classification. Models of uncertainty incor-
porate ideas from natural language processing, the value of information concept, non-monotonic logic
and fuzzy set, evidential and probability theory. In contrast to many of the models discussed elsewhere
in this report, models of uncertainty seek to redefine spatial operations to account for inherent inexact-
ness in spatial data.

Stoms [201] reviews four models of uncertainty based on probability theory, Shafer’s theory of evi-
dence, fuzzy set theory and non-monotonic logic. The author describes how each model is appropriate
for a different type of inexactness in spatial data. Inexactmess is seen to arise primarily from three
sources. ‘““Randomness” may occur when an observation can assume a range of values. ‘“Vagueness”
may result from imprecision in taxonomic definitions. ‘‘Incompleteness of evidence’” may occur when
sampling has been applied, there are missing values, or surrogate variables have been employed.

The first model of uncertainty is based on probability theory and models uncertainty as the conditional
probability that a hypothesis is true given some observation. That is,
P[Hj]

P[H,1X] = P[Xl&]m (6.1)

where: P[H;|X] = the conditional probability that hypothesis H; is true given observation X;

P[X I H;] = the conditional probability of observing X given that hypothesis H; is true;

P[H;] = the probability that hypothesis H; is true; and

P[X] = the probability of observing X.
As an example, in classifying remotely sensed data, H; might signify the hypothesis that a given pixel
belongs to class i, where X is the vector of responses for the pixel in different spectral bands. Inexact-
ness is therefore reflected in the conditional probability P[H; 1 X], which indicates the degree to which
one might assume the class to be correct given the vector of responses. As the author notes, this model
assumes that probabilities can be assigned correctly based on prior knowledge, which is often untrue in

an operational context. Unfortunately, the model provides no mechanism for weighting the assigned
probabilities as a function of their reliability. This probabilistic model is appropriate primarily for



inexactness associated with randomness, since it focuses on inexactness in factual information. Maxim
& Harrington [157] employ an analogous model in the analysis of classification error in remote sensing
(see § 2.1).

The second model of uncertainty discussed by Stoms derives from Shafer’s theory of evidence. In this
model, the probability measure that hypothesis H; is true is replaced by a measure of the probability
that the available evidence supports the truth of the hypothesis. Evidential theory is based on the for-
mulation of an “‘evidential interval” between a ‘“‘belief function,” which measures the degree to which
the evidence supports the hypothesis, and a “plausibility function,” which measures the degree to
which the evidence fails to refute the hypothesis. The belief and plausibility functions represent,
respectively, the lowest and highest degree of evidential support in favor of the hypothesis. Assume
that set A represents the set of possible hypotheses and the associated probability that each hypothesis
is true.

A = {P[H], P[H], P[H], ..., P[H], 0} (6.2)

where: P[H;] = the probability that hypothesis H; is true;
h = the number of hypotheses; and
© = the uncommitted or distributed support.

By definition,

o+ i P[H] = 1 (6.3)
i=1

The belief function, Bel[H;], is simply the probability P[H;]. The plausibility function, PI[H;], is given
by

P[H] = 1 - ﬁ P[H]] j#i
=1
= Bel[H] + © (6.4)

Note that when © =0, PI[H;] = Bel[H,] = P[H;], which shows that evidential theory is a generalization
of probability theory. The inferential interval, [Bel[H;], PI[H]], represents the incompleteness of evi-
dence for hypothesis H; due to uncommitted support (i.e., ©). Evidential theory is most appropriate
for inexactness associated with incompleteness of evidence. Despite its pragmatic value, however, the
model suffers from an inability to account for conflicting evidence and to choose between different
hypotheses with similar levels of support.

The third model discussed by Stoms is fuzzy set theory. Fuzzy logic is based on the assignment of a
“membership function,” w(X), which indicates the degree to which observation X belongs to set A.
The membership function can be used to model the vagueness inherent in geographical concepts (e.g.,
‘“‘near’’), such that a response to a query will be defined in terms of the degree to which the concept is
satisfied for the specified locations. According to the author, the primary strength of fuzzy logic lies in
its ability to handle inexactness associated with vagueness.

The final model of uncertainty, non-monotonic logic, takes assertions about the validity of a hypothesis
to be true until evidence is found to prove it false. The logic is based on a list of the evidential factors
that would prove the hypothesis to be true and those that would prove it to be false. If additional evi-
dence shows a previous hypothesis to be false, it is possible to backtrack to the point at which the false
inference was made and establish an alternate hypothesis that is consistent with the new evidence. This
model is appropriate for inexactness associated with incomplete evidence, in which case default or
expected values can be used until additional evidence suggests some alternate hypotheses.



Lee er al [141] further explore the roles of probability and evidential theory in the context of classifica-
tion of remotely sensed data. The authors focus specifically on the merging of data from different
sources to produce a final classified image. It is assumed that there are n data sources, each providing
a measurement x, for each pixel, where s =1,2,...,n. In the case of multiple spectral bands, x, will be
a vector for each pixel. From these measurements, a set of m, data classes are derived by classifying
each source s. The it data class for source s is denoted as dgy, where i = 1,2,... m,. Finally, a set of M
information classes are derived by merging the data classes from each source. Information class jis
denoted as wj, where j=1,2,... M.

A global membership function is then defined for each information class w; as
n
FJ = P[Wj]l_n I—Il P[lexs] * (65)
ol

where: P[w]] = the probability of observing information class wi;

P[w;Ix] = the conditional probability of observing information class w;j given measurement X;
and

ag = an index of reliability related to the inverse of the uncertainty associated with source s.

The conditional probabilities are estimated as

S, Plx,| dg, wj Pldg, w]
= (6.6)

g‘; S Plx, | dg, w] P[dg, w]
i=1i=1

Plwjix] =

where: P[dg,w;] = the joint probability of information class j and data class i from source s.

(The reader is referred to the article for the derivation of these equations.) The joint probabilities may
be obtained from prior knowledge or may be estimated by tabulating the joint occurrence of the infor-
mation classes against each data class in a training area for which ground truth data (i.e., the informa-
tion classes) are available. To simplify the calculations of the conditional probabilities P[x | dg,w], the
authors argue that they may be estimated independently of the information classes as P[x; | dg]-

The membership function in equation (6.5) is used as a discriminant function to classify pixels. This is
achieved by assigning each pixel to the information class with the maximum membership function
value. The reliability index o, for source s determines the influence of the source on the discriminant
function, since an increase in a,, which implies a decrease in uncertainty, results in an increase in the
influence of the source. The authors suggest that in practice, a, should be set to 1 for the most reliable
source, 1. The ag values for each of the remaining sources are then computed as

a, = u,/uy s=1,2,...,n 6.7)

where: u, = the uncertainty associated with source r; and

U, = the uncertainty associated with source s.

An empirical test shows that varying the value of u, for different sources can result in enhanced classifi-
cation accuracy (expressed as the proportion of pixels correctly classified).

The evidential model presented by the authors focuses on uncertainty in the assignment of classes to
pixels and permits different data sources to be merged in order to reduce this uncertainty. Consider set
S;, which is associated with the first data source and gives the set of probabilities that a pixel belongs to
classes A through D.

S; = {PA], Py[B], P|[C], »,[D], ©, } (6.8)



©, is the uncommitted or distributed support, as defined in equation (6.2). P [D] represents a mixture
of classes A and B, which are not individually resolvable. The belief functions for classes A through C
(i.e., Bej[A], Bel;[B] and Bel,[C]) can be calculated simply as their associated probabilities from S,
(i.e., Py[A], P{[B] and P,[C]). (See the discussion following equation (6.2).) However, in calculating
the belief function for class D, Bel,[D], it is necessary to account for the fact that classes A and B are
subsets of class D. Hence Bel[D] = P;[A] + P;[B] + P,[D]. More generally,

Bel{U] = 5 PB[V] (6.9)

vu=Vv

Analogously, the plausibility function is defined as

Pi[U] = &+ 3 P[V] (6.10)

vVMUxz

As a consequence of the inability to resolve classes A and B, the evidential interval for class D may
overlap those of the other classes, making it difficult to confidently establish the correct class assign-
ment for the pixel. Assume, however, that a second data source exists for which all classes are indivi-
dually resolvable. Then

S = {Py[A], Py[B], P;[C], 6, } (6.11)

Dempster’s orthogonal sum rule may then be applied to combine S; and S,. Let P.[Z] be the combined
probability for class Z. Then the rule states that

PIZ] = + 3 PXIRY] (6.12)
XM Y=2
where:
k=1- 3 PX]P[Y] (6.13)
XM Y=g

Using the values generated by equation (6.12) to yield a set of combined probabilities, S, the belief
and plausibility functions may be computed by equations (6.9) and (6.10).

The authors argue that the probabilities in sets S; and S, may be computed from average classification
errors incurred for each source. Several different rules may then be used in the classification process.
The support-based rule is based on the assignment of a pixel to the class with the highest belief function
value (or the highest plausibility function value, since the authors maintain that the belief and plausibil-
ity functions will have the same rank ordering). Alternatively, the absolute rule may be employed, in
which a pixel is assigned to the class whose belief function value exceeds the plausibility function values
of all other classes (although this can lead to situations where decisions are not possible). Empirical
results show that the evidential method is able to incorporate information from different data sources,
since classification based on the combined set of probabilities, S, was observed to yield a higher clas-
sification accuracy than classification based on either data source alone.

Robinson & Strahler [187] focus on models of uncertainty based on fuzzy set theory. As noted above,
the basis of fuzzy set theory lies in the assignment of a membership function, w,(X), which indicates
the degree to which observation X belongs to set A. Alternatively, the membership function may be
viewed as a measure of belief that X is an element of A, or an index of the relative accuracy associated
with assigning observation X to class A. The authors describe three approaches for incorporating the
membership function within a non-fuzzy schema, such as a GIS in which the semantics of the data
model are expressed as precise logical constraints.



The first approach is based on a fuzzy relational database management system, where each observation
in the database has an attached membership function value. In this approach, the membership func-
tion might represent the degree to which the observation belongs to the class to which it has been
assigned. The authors demonstrate how these membership function values may be combined when per-
forming map overlay. (As described in § 5.3, map overlay involves the superimposition of two or more
data layers to produce a composite map depicting the joint distribution of attributes from each data
layer.) Consider a case in which n data layers are superimposed and each data layer is composed of a
set of pixels or cells. Let u,; be the membership function for cell m on data layer i. If the AND
operator is applied (i.e., the intersection of the attributes from each data layer), the membership func-
tion for cell m on the composite map, pp,., is given by

Bpme = min(pg) i=1,2,...,n (6.14)

Hence the composite map cell is only as accurate as the least accurate of the corresponding cells on all
data layers. If the OR operator is applied (i.e., the union of the attributes from each data layer), the
membership function is given by

Bme = Max (o) i=1,2,...,n (6.15)

Thus the composite map cell assumes the accuracy of the most accurate of the corresponding cells on
all data layers. As noted in § 5.3.2, these equations represent a generalized form of an error mode! for
map overlay based on the classification error matrix (see § 2.1), where cell accuracies must be either 0
(misclassified) or 1 (correctly classified).

The second approach discussed by the authors is based on the assignment of a “‘similarity relation”
over the elements of each domain set. For example, given a set of slope classes, one can assign a value
between O and 1 to each pair of classes representing the degree of similarity in the class values. A
query that requests the locations in the data base of a certain class can then be answered in terms of the
similarity relation between this class and the class associated with each location. Similarity relations
can also be assigned over multiple domains and the results combined for queries involving subsets of
these domains. When the query incorporates the AND operator (e.g., all locations of class A in
domain set 1 AND class B in domain set 2), the combined similarity relation for a given location in the
data base is defined as the minimum of its similarity relations for each domain set. When the query
incorporates the OR operator, the combined similarity relation is defined as the maximum of the indi-
vidual similarity relations.

The third approach described by the authors is based on the notion that the imprecision intrinsic to
natural language is possibilistic in nature. A possibilistic relational uniform fuzzy (PRUF) model then
provides a means of facilitating approximate machine inference. In the PRUF model, queries and pro-
positions are processed by identifying constraints induced by the query or proposition, performing tests
on each constraint and then aggregating the individual test results to yield an overall test score. Con-
sider a proposition stating that a specified location is on gentle slopes and is near a certain city. The
constraints induced by the proposition, ‘“‘gentle” and ‘“‘near,” are tested using a possibility distribution
yielding test results indicating the degree to which the specified location satisfies each constraint. The
two test results are then aggregated to produce an overall test score indicating the degree to which the
proposition is satisfied.

Tests of queries and propositions based on natural language processing have been explored in greater
detail by Robinson [186]. The author focuses on the development of a linguistic approximation to the
geographical concept of “‘near’” that accounts for the vagueness inherent in this concept. Most previ-
ous models of natural language processing do not adequately account for this vagueness, assuming
instead that the user has the ability to translate inexact natural language concepts into exact concepts
for the computer. The author proposes a question-answer procedure to facilitate machine acquisition
of a fuzzy representation of the concept of near and permit automated inference.



Denote as C the concept to be acquired by the computer. Let F,_,(X) be the acquired concept, or
fuzzy set, at the k—1™ step in the question-answer procedure. At the k™ step, the computer asks
whether a given location in the database (e.g., a city), x;, belongs to set C (i.e., is near to another city,
z). If the user responds affirmatively, the computer constructs F,(X) as a function of the distance
between x; and z, and a parameter a that determines the spread of the fuzzy set. Parameter o is adap-
tive and is modified in the concept acquisition procedure. The concept C at step k, C,, is then defined
as

G = Gy U FR(X) (6.16)

If the user responds negatively, the computer constructs F',(X) as 1—F,(X) and computes C, as
G = G N FuX) (6.17)

The author describes a method for automating the question-answer procedure such that fuzziness in the
concept can be reduced in an efficient manner. A set of locations is selected for testing against loca-
tion z based on an index of fuzziness. This index also provides the basis for a stopping rule. Empirical
results show that concept acquisition is dependent on the stopping rule and the initial value of .

Smith & Honeycutt [197] describe the value of information concept as a means of estimating the value
of reducing uncertainties in data. The concept uses a decision tree to characterize a decision problem
and the ways in which the problem might be modified with the incorporation of additional information.
The decision tree is composed of nodes and arcs. Nodes represent branching points in the decision
process. At ‘*‘decision nodes,” the decision maker must choose between two or more alternatives.
Decision nodes are followed by additional decision nodes or by ‘‘chance nodes.” Chance nodes are
points at which uncertainty is resolved. Chance nodes are followed by outcomes of the decision pro-
cess which may represent the final outcome or additional decision nodes. Arcs represent either alter-
natives (i.e., the arc joins two decision nodes or a decision node to a chance node) or outcomes (i.e.,
the arc joins a chance node to a decision node or a chance node to a final outcome). Arcs that
represent outcomes are referred to as ‘“‘chance arcs,” each of which possesses an associated probability.
The probabilities for the set of chance arcs emanating from a given chance node must sum to 1.

A number is also attached to each final outcome as a function of the desirability of that outcome. The
preferred decision path through the tree is then determined by ‘“‘rolling back” the tree. This is
achieved by computing the value at each node at successively higher levels of the tree. In the case of a
decision node, the value of the node, v;, is computed as

vi = max(u) j=1,2,...,n (6.18)

where: u; = the value at which arc j terminates; and
n = the number of arcs emanating from node i.

In the case of a chance node, v; is computed as
n
=1

where: p; = the probability associated with arc j.

This procedure is repeated successively for each level in the tree by substituting the computed v; values
for each v;. The procedure continues until the highest level of the tree is reached, which corresponds
to the root node. The arc emanating from the root node with the highest value of v; indicate< the pre-
ferred decision and v; itself represents the value of this decision.



The expected value of perfect information (EVPI) is defined as the increase in the value of a decision
node associated with completely resolving the uncertainty about a chance node. To compute the
EVPI, the chance node is moved one level above the decision node and the decision node is replicated
for each of the arcs emanating from the chance node. The value of the decision tree is then computed
as described above. The EVPI is calculated as the difference between the values of the modified and
original trees. It is also possible to compute the expected value of imperfect information using an
analogous approach. The authors provide several simple examples in which these procedures are
applied. They suggest that the value of information concept can be used in developing spatial data-
bases to answer questions about the preferred scales, sources and sampling methods for collecting and
encoding data.

6.2. Geographical Modeling

This section briefly reviews studies that consider the implications for geographical modeling of errors in
spatial databases. Some of these studies refer to specific models and are not discussed in great detail
below. For example, Davis [70] discusses the reliability of predictive land classification models as a
function of cartographic and ecological factors. Cartographic factors include characteristics such as
spatial resolution, precision and bias, while ecological factors include the strength, consistency and
scale-dependent nature of relationships between ecological and terrain variables. Griffith [106] exam-
ines errors in estimates of distance or separation in network line lengths or between areal unit cen-
troids. The expected values and variances of these estimates can be established in the context of both
additive and proportional error structures for different probability distributions of error. Kennedy
[135] discusses the small number problem, which occurs when small fluctuations in a measured variable
cause large changes in a calculated percentage, ratio or rate. This may occur for small areal units, for
which the value of the measured variable is small, or for large areal units that are sparsely populated.
Vitek & Richards [217] examine the implications of error for flood-hazard analysis. Vertical and hor-
izontal error in topographic maps associated with coordinate transformations and data compilation
practices can seriously reduce the reliability of the line defining the flood limit.

In a more general context, errors associated with geographical modeling may be classified as measure-
ment and specification errors (Anselin [6]). Measurement error refers in part to inexactness in the
coordinate values of digitized points. Other forms of measurement error relate to the aggregation of
attribute values over a set of areal units. The interdependence between location and value in spatial
databases gives rise to spatial dependence and heterogeneity. Specification error, in contrast, is partic-
ular to a given model and includes the use of an incorrect model, functional form or set of variables.
In the context of geographical modeling, specification error results in spatial patterns of error. The
presence of errors with a distinctive pattern affects the validity of estimation and prediction with stan-
dard linear models and the assessment of model validity. Summary measures of accuracy are likely to
imperfectly reflect the partitive accuracy associated with individual observations. A meaningful loss or
risk function is needed that accounts for the relative significance of error at different locations (see
Aronoff [9, 10], § 2.1.2).

In a non-spatial context it is a relatively straightforward task to evaluate the propagation of measure-
ment error in input variables (Alonso [2] and Burrough [34]). Consider a set of m input variables, x,
through x,,, which are combined by some arithmetic operator (e.g., addition, multiplication, etc.) to
produce an output variable, z. The error propagated to z, €,, is defined in terms of the measurement
error associated with each input variable, €, as
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where: r; = the correlation between x; and X;.

This equation indicates that propagated error tends to be higher for correlated variables. Moreover,
propagated error will be higher for certain arithmetic operators (e.g., multiplication) than others (e.g.,
addition) as a function of the partial derivatives. Increasing the number of variables will tend to
reduce error associated with model misspecification, but will simultaneously increase the amount of
propagated measurement error. Therefore model complexity should reflect the reliability of the data.
The optimal model is one for which the sum of propagated and specification error is at a minimum.
Variants of equation (6.20) can be applied to assess error propagation in estimates of elevation, area
and distance (Neumyvakin & Panfilovich [171]).

As noted above, specification error includes the use of an incorrect set of variables. This often occurs
when surrogate variables are employed because the real variable of interest cannot be measured.
Empirical evidence suggests that reliability of surrogate variables may often be distributed non-
uniformly over space (Napton & Luther [170]). Moreover, surrogate variables are frequently collected
at scales that are incompatible with the specified statistical model. Hence the reliability of surrogate
variables is highly dependent on the context in which they were originally collected.

Several authors have presented general frameworks for assessing the implications of error on spatial
transformations or operations. For example, the “spatial data configuration” framework defines the
exact relationship between pre- and post-transformed parameters (e.g., means, variances, correlations,
etc.) by specifying the manner in which these parameters are modified by the transformation (Arbia
[7]). This framework may be applied to transformations such as the delineation of areal units, the
aggregation of existing areal units and areal interpolation (see § 5.1). Alternatively, transformations
can often be modeled as a spatial filtering operation with an estimable response function (Tobler
(210]). To the degree that transformations affect the results of geographical modeling, it might be
appropriate to develop modeling techniques that are “frame independent,” or unaffected by the spatial
coordinate system.

Other authors have proposed that the effects of transformations be evaluated in the context of sensi-
tivity analysis (Openshaw [175]). Formal models of error propagation are not always necessary, since
for many purposes precise quantitative estimates of error are not necessary. Sensitivity analysis based
on stochastic simulation rests on few assumptions and is computationally tractable. It facilitates calcu-
lation of error given a plausible set of assumptions about errors in the untransformed data. In suitabil-
ity mapping (see Hopkins [119], § 5.3.3), sensitivity analysis may be used to evaluate the effects of dif-
ferent weights or the exclusion of different data layers (Lodwick [145]). These effects may be
expressed in the form of confidence limits on the composite map.

6.3. Data Quality Issues

This section briefly reviews some issues of general importance in developing quality standards and
methods of error assessment for spatial data. These issues are pertinent in a variety of contexts and are
not specific to any single data type, data compilation method or GIS operation.

Errors in spatial databases include inherent and operational error (Vitek et al [218] and Walsh [220]).
Inherent error arises from errors in source documents as a function of the methods applied in data col-
lection, compilation and representation. Operational error refers to error arising from data processing
operations. It is the responsibility of the data producer to document the levels of inherent error and
describe the probable nature of operational error and its interaction with inherent error. Data utility,
or the level of accuracy required, is application-specific (Morehouse [165]). Hence data users are
responsible for evaluating the appropriateness of the data for a specific application.



The critical accuracy issues encountered in the development of databases for specific applications may
not conform to theoretical notions about quality and accuracy. The nature of the operational environ-
ment must be considered in the development of quality standards and methods of accuracy assessment
for spatial data. In developing and implementing large databases for market and social research, many
operational concessions must be made that have an impact on data quality (Saalfield [195]). To the
degree that these databases rely on existing data, quality concerns include the integration of data from
different sources and methods of aggregation and disaggregation (Brusegard & Menger [31]).

Although the nature of the operational environment has a direct effect on the relevance of different
types of error, practitioners must not ignore basic quality standards solely for reasons of cost and
expedience. For example, Blakemore [28] argues that enthusiasm for microcomputer technology has
led to an erosion of concern for fundamental aspects of data quality. Despite the publication of quality
standards by all major mapping agencies (see § 2.3 and § 2.5), concern for data quality has been
eroded by the low resolution display devices common to microcomputers. Technological innovation
has not responded to quality concerns. Rather, technological limitations have shaped notions of data
quality as practitioners have been forced to cope with the crude nature of display devices. The limited
storage capabilities of microcomputers may exacerbate the apparent unwillingness of practitioners to
incorporate quality information within digital databases.

The concept of error in cartography has evolved over time as a function of the development of new
types of maps and new technologies for encoding and displaying spatial data (Muller [169]). The oldest
tradition is the concept of horizontal and vertical precision in topographic maps and geodetic surveys
(see § 2.3 and § 2.4). Methods of accuracy assessment are relatively well-established and account for
errors associated with locating ground position, interpreting data from surveys and air photos, general-
izing to small-scale maps and employing different map projections and drafting methods. For thematic
or “‘communication” maps, precisely locating points is relatively unimportant. Error concepts per-
tinent to such maps include conceptual and perceptual error (see § 4.6) and method-produced error, or
error attributable to data compilation (see § 4). These maps often contain “controlled” error, or error
intentionally introduced to facilitate cartographic communication. Modern spatial data handling maps
are produced for a variety of purposes and are often merged and combined in an automated environ-
ment to produce new maps. For these maps, error is defined relative to map use and objectives.
Hence the importance of horizontal and vertical precision, conceptual and perceptual error, and
method-produced error depend on the application of the map.

Dutton [76] argues that the development of data quality standards must consider the ontology of space,
since the character of spatial data is tied to notions of what constitutes reality. Ontology is closely
allied with the purpose or mandate whereby data have been collected. Discrepancies in the representa-
tions of the same feature in different databases often result because the feature has been encoded to
fulfill a different purpose. Topological data structures are required that allow for multiple versions of
the same feature. Data structures must also be capable of handling features whose locations are
indeterminate or defined solely by cultural and institutional consensus. Accurate ground control is
important in developing accurate databases, but current technological developments encourage ad hoc
measurements unrelated to existing survey networks. Such measurements will have no general utility
without agreed-upon cataloging procedures. Thus evaluation of data quality does not amount simply to
estimating global and local error parameters and documenting their incidence in a quality report.
Rather than relying on external documentation of quality, data structures must intrinsically qualify their
information content. Important qualifiers include location, time, scale and purpose, the specification
of which must be seen as an implicit goal of the development of data quality standards.

White [227] similarly argues that many errors in spatial databases are fundamentally attributable to
ontological issues. Correcting such errors amounts to identifying the elementary geometrical features
that are assumed to exist. For example, a boundary between two polygons is a shared attribute of these
polygons. The boundary should therefore be represented by encoding the shared points along this
boundary rather than tracing the boundary of each polygon independently. This approach eliminates



gaps and slivers that inevitably occur between independently traced polygon boundaries. The genera-
tion of spurious polygons in map overlay (see § 5.3.2) results because the automated process does not
adequately mimic human geometrical intuition. (A similar point is made by Goodchild [98].) Again
the solution to this problem is not to maintain the separate data layers but to define the elementary
features assumed to exist on the composite map. At a more basic level, successful development and
implementation of spatial databases is often thwarted by the failure to separate points from their coor-
dinate values. In consequence, precise coordinate values must be obtained before the database can be
implemented and future revisions of coordinate values cannot easily be achieved. Points should be con-
sistently and absolutely distinguishable but coordinate values should be unconstrained variables. Suc-
cessful automation of spatial data requires understanding of the nature of space afforded by topological,
graph and model theory.



7. SUMMARY

The issue of spatial database accuracy encompasses a variety of concepts, methods and models. The
significance of different dimensions of accuracy is a function of data type, application and the sources
of error deemed to be important in a particular context. This report reviews a diverse range of
research and provides a logical structure for addressing different dimensions of spatial database accu-
racy. On the broadest level, the error taxonomy developed in this report identifies five main dimen-
sions of spatial database accuracy — measurement of error in spatial databases (§ 2), accuracy of car-
tometric estimates (§ 3), errors introduced during data compilation (§ 4), propagation of error through
GIS operations (§ 5) and general issues of spatial database accuracy (§ 6). The taxonomy organizes
different dimensions of accuracy into a practical, user-oriented structure that reflects the interests of
those conducting both pure and applied research.

Methods for detecting and measuring errors in spatial databases are presented in § 2. Various aspects
of classification accuracy are examined in § 2.1. In a remote sensing context, classification accuracy is
often evaluated with a classification error matrix, or a cross-tabulation of the assigned and actual classes
for a sample of points or pixels. The PCC, or the percentage of pixels correctly classified, is frequently
employed as an index of classification accuracy. In § 2.1.1, methods are described for comnstructing
confidence limits around a sample PCC, estimating the minimum sample size required to meet a speci-
fied level of confidence and performing hypothesis tests on a sample PCC based on the binomial distri-
bution or the normal approximation to this distribution. Alternatives to the PCC as an index of classif-
ication accuracy are introduced in § 2.1.2. These alternatives are designed to circumvent some of the
limitations of the PCC, including its sensitivity to row and column totals, its inability to distinguish
between errors of omission and commission and its inability to account for correct classifications occur-
ring by chance alone. Alternatives include producer’s and user’s accuracy, minimum class accuracy,
the & statistic and its variants, transformations of the classification error matrix and a variety of statisti-
cal models. Some alternatives to the classification error matrix are described in § 2.1.3. These alter-
natives are based on the agreement between the mapped and actual areas of different classes. Other
issues pertaining to classification accuracy are addressed in § 2.1.4, including the implications of spatial
autocorrelation and errors in ground survey data for accuracy assessment, sources of error in classifica-
tion methods and the development of standards for accuracy assessment procedures.

In § 2.2, the nature of error in soil maps is addressed in the context of spatial variations in soil proper-
ties. Soil properties exhibit relatively high-frequency spatial variations that result in heterogeneity
within mapping units and indeterminacy in mapping unit boundaries. Empirical studies of the nature
of soil property variations are reviewed in § 2.2.1. Mathematical models of these variations are
presented in § 2.2.2. Some of these models account for soil property variations as a set of superim-
posed processes operating at different spatial scales that give rise to definitive soil patterns. Other
models focus on the changes in soil properties at mapping unit boundaries and the use of ancillary data
to improve the accuracy with which mapping unit boundaries are delineated.

Data quality standards and methods for evaluating horizontal and vertical error for topographic maps
are described in § 2.3. Standards based on compliance testing, including the National Map Accuracy
Standard, are compared with standards based on statistical expressions of accuracy, including the
Engineering Map Accuracy Standard and the American Society of Photogrammetry and Remote Sens-
ing spatial accuracy specification. Methods that have been proposed as the basis for alternate stan-
dards are also described in this section. An example is Koppe’s formula, which accounts for the
effects of terrain slope on vertical error, permits horizontal and vertical accuracy standards to be com-
bined into a single expression and facilitates computation of bands of horizontal error around contour
lines.



The issue of horizontal accuracy for large-scale planimetric and cadastral maps is addressed in § 2.4.
This section of the report examines the trade-off between the desirability of rigorous standards and the
cost of acquiring data that conform to these standards. This section also addresses the problems associ-
ated with merging data with different levels of spatial and taxonomic resolution and the application of
hierarchical tesselations that define horizontal precision as an implicit attribute of the level in the
hierarchy. Planimetric accuracy is also closely associated with distortions introduced by map projec-
tions. These distortions can be evaluated with techniques such as Tissot’s indicatrix and reduced with
various linear and non-linear coordinate transformations.

General data quality standards for multi-purpose digital geographic base files are discussed in § 2.5.
These standards are based on the notion of “truth in labelling” rather than compliance testing or statist-
ical expressions of accuracy. Concepts such as data lineage, positional accuracy, attribute accuracy,
logical consistency and completeness are discussed in this section.

Methods for classifying and correcting vertical errors in digital elevation models are presented in § 2.6.
This section describes error classifications, accuracy testing procedures and aspects of spatial resolution
that affect accuracy as a function of terrain variability. Several techniques are also presented for
detecting and correcting gross errors based on surface modeling.

The accuracy of cartometric estimates, or estimates of lengths and areas derived from maps, is exam-
ined in § 3. The effects of cartographic generalization on line length estimation are discussed in § 3.1.
In § 3.1.1, empirical studies are reviewed that focus on the interaction between map scale and the
method employed to estimate line length. This section also details some techniques that may be used to
correct for these interactions. The application of fractal theory in this context is addressed in § 3.1.2.

The accuracy of cartometric estimates of area is discussed in § 3.2 in the context of classification error
and the method used to derive area estimates. Empirical studies of the effects of grid density in dot
planimetry are reviewed in § 3.2.1. In § 3.2.2, methods are presented that may be used to correct for
the effects of classification error on area estimates. These methods are based on transformations of the
classification error matrix.

Errors introduced into spatial databases by data compilation methods are discussed in § 4. Models of
digitizing error, or inaccuracies in the encoded positions of digitized points, are presented in § 4.1.
These models typically focus on positional error in the context of cartographic lines or polygon boun-
daries defined by sets of digitized points joined by straight line segments. The epsilon band concept
and its variants define error in terms of a distribution of probable true line locations around the digi-
tized line (§ 4.1.1). Digitizing error may also be modeled as a serially dependent process, such that the
error at a given point along the line is dependent on the error at previously digitized points (§ 4.1.2).
Various physiological and psychological factors also affect the ability of the human operator to perform
the digitizing task (§ 4.1.3).

The issue of generalization error, or error arising from the representation of cartographic lines as sets
of digitized points joined by straight line segments, is discussed in § 4.2. This section focuses on the
epsilon band concept and its variants, the implications of cartographic generalization for line length
estimation and the effects of line simplification on the positional accuracy of cartographic lines.

Errors associated with choroplethic mapping are discussed in § 4.3. The focus of § 4.3.1 is data sym-
bolization, or the transformation of the numerical attribute values associated with a set of areal units to
a set of classes. Map accuracy depends on the selection of class intervals that reliably depict the
numerical values of the areal units. Methods are described that facilitate near-optimal class interval
selection. These methods are dependent on areal unit geometry and the nature of the underlying sta-
tistical surface. Interactions between attribute and positional errors are examined in § 4.3.2.



Errors in isometric maps, the focus of § 4.4, are introduced primarily by factors affecting the accuracy
of interpolation. As described in § 4.4.1, these factors include the nature of the underlying surface,
the interpolation algorithm and the sampling method (including the number and spatial distribution of
sample points). The interaction between interpolation and measurement error is discussed in § 4.4.2.
Various methods are described whereby the effects of measurement error on interpolation accuracy
can be evaluated and reduced.

For isopleth maps (§ 4.5), accuracy is also largely a function of the nature of the underlying surface,
the interpolation algorithm and the sampling method (including the number and geometry of the areal
units to which attribute values have been assigned). This section of the report reviews a number of
empirical studies that focus on these factors.

Conceptual and perceptual errors in mapping are addressed in § 4.6 in the context of cartographic
communication. The cartographic communication model posits that cognitive and physical filters intro-
duce distortions at each phase of the communication process. Effective communication requires that
these distortions be controlled to enhance, rather than detract from, the communicative potential of the
map. Important considerations include overall map design, symbology, map projection and class inter-
val selection. This section also addresses the question of liability, or responsibility for conceptual and
perceptual errors. The notion of uncertainty absorption is introduced, whereby the map producer
guarantees the map as official truth or the user accepts responsibility for all misinterpretations.

Models of error propagation for spatial operations applied in a GIS environment are detailed in § 5.
The focus of § 5.1 is areal interpolation, or cross-area estimation. In this operation, the values of some
variable of interest are estimated for a set of target areal units based on the corresponding values for a
set of source units. Accuracy is primarily a function of areal unit geometry, the nature of the underly-
ing statistical surface and the degree of coincidence in target and source areal unit boundaries. Various
techniques are discussed that can be used to model the effects of these factors and improve the accu-
racy of areal interpolation using ancillary data.

Vector to raster conversion, discussed in § 5.2, is analogous to areal interpolation when the target areal
units are regular grid cells. Models of positional error for vector to raster conversion (§ 5.2.1) focus on
inaccuracies in estimates of polygon area based on counts of cells. These errors arise from the pres-
ence of boundary cells, or cells intersected by a polygon boundary. A variety of error models are
presented that account for the effects of boundary cells as a function of cell size, polygon size and
boundary smoothness. Models of attribute error (§ 5.2.2) focus on errors in the raster representation
of the thematic attribute. These errors arise from the often arbitrary nature of polygon boundaries,
which masks the nature of the underlying statistical surface. Models of attribute error focus on errors
of omission and commission in assigning cells to polygons.

Map overlay (§ 5.3) involves the superimposition of two or more data layers to produce a composite
map showing combinations of the thematic attributes on each data layer. The accuracy of this opera-
tion is a function of positional error in polygon boundaries, attribute error and error introduced by the
map overlay operation itself (§ 5.3.1). The spurious polygon problem is discussed in § 5.3.2. Spurious
polygons arise from positional errors in polygon boundaries that give rise to discrepancies in the carto-
graphic representations of the same feature on different data layers. Error models for spurious
polygons are based on the epsilon band concept and its variants, the geometrical properties of polygon
boundaries and the notion that spurious polygons may be identified in terms of their size. Models of
attribute error for map overlay are described in § 5.3.3. These models use indices of classification
error for individual data layers to estimate the level of classification error on the composite map.
Analogous models exist for numerical data. This section of the report also addresses the impact of dif-
ferent arithmetic operators on the reliability of composite maps used in suitability mapping.



The issues addressed in § 6 are more general in nature and have broad implications for assessing accu-
racy in spatial databases. Methods of incorporating information about inexactness into spatial opera-
tions are described in § 6.1. These methods derive from natural language processing, the value of
information concept, non-monotonic logic and fuzzy set, evidential and probability theory.

Some of the implications of errors in spatial databases for geographical modeling are addressed in §
6.2. This section focuses on the trade-off between measurement and specification error, error propa-
gation through simple mathematical models and the role of sensitivity analysis in evaluating the effects
of different types of error.

In § 6.3, accuracy issues of general significance are discussed in the context of the data quality stan-
dards and methods of accuracy assessment for spatial data. These issues include inherent and opera-
tional error, the nature of the user environment, the evolution of the concept of error in cartography
and ontological dimensions of accuracy.
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