
UCLA
UCLA Electronic Theses and Dissertations

Title
Towards efficient, effective, and robust Neural Architecture Search methods

Permalink
https://escholarship.org/uc/item/87t2z2xm

Author
Wang, Ruochen

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/87t2z2xm
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Towards efficient, effective, and robust Neural Architecture Search methods

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science in Computer Science

by

Ruochen Wang

2021

© Copyright by

Ruochen Wang

2021

ABSTRACT OF THE THESIS

Towards efficient, effective, and robust Neural Architecture Search methods

by

Ruochen Wang

Master of Science in Computer Science

University of California, Los Angeles, 2021

Professor Cho-Jui Hsieh, Chair

Recently, Neural Architecture Search (NAS) has attracted lots of attention for its potential

to democratize deep learning. For a practical end-to-end deep learning platform, NAS plays a

crucial role in discovering task-specific architecture depending on users’ configurations (e.g.,

dataset, evaluation metric, etc.). Among various search paradigms, Differentiable Neural

Architecture Search is one of the most popular NAS methods for its search efficiency and

simplicity, accomplished by jointly optimizing the model weight and architecture parame-

ters in a weight-sharing supernet via gradient-based algorithms. At the end of the search

phase, the operations with the largest architecture parameters will be selected to form the

final architecture, with the implicit assumption that the values of architecture parameters

reflect the operation strength. Despite the search efficiency, the weight-sharing supernet

also shows a tendency towards non-parametric operations, resulting in shallow architectures

with degenerated performance. We provide both theoretical and empirical analysis of the

poor generalization observed in Differentiable NAS, which links this issue to the failure of

the magnitude-based selection. Following this inspiration, we discuss two lines of methods

that greatly improve the effectiveness and robustness of Differentiable NAS: The first line

ii

proposes an alternative perturbation-based architecture selection that is shown to identify

better architectures in the search space, whereas the second line aligns the architecture pa-

rameter with the strength of underlying operations. To complete the picture, an alternative

paradigm to the differential architecture search (predictor-based NAS) is also presented.

iii

The thesis of Ruochen Wang is approved.

Baharan Mirzasoleiman

Quanquan Gu

Cho-Jui Hsieh, Committee Chair

University of California, Los Angeles

2021

iv

To my parents . . .

for their unconditional love and support

v

TABLE OF CONTENTS

1 Introduction . 1

2 Understanding Differentiable NAS . 3

2.1 Differentiable Architecture Search Framework 3

2.2 Failure Mode Analysis of DARTS . 4

2.3 The pitfall of magnitude-based architecture selection in DARTS 4

2.3.1 α may not represent the operation strength 5

2.3.2 A case study: skip connection . 7

3 Improving the Effectiveness and Robustness of Differentiable NAS . . . 10

3.1 Perturbation-based architecture selection . 10

3.1.1 Evaluating the strength of each operation 10

3.1.2 The complete architecture selection process 11

3.1.3 Experimental Evaluation . 12

3.2 Aligning architecture parameter with operation strength via distribution learn-

ing . 15

3.2.1 The implicit Regularization on Hessian 16

4 Beyond Differentiable NAS - Predictor-based Architecture Search . . . 20

4.1 Predictor-based NAS . 21

4.1.1 Framework . 21

4.1.2 Improving the efficiency of predictor-based NAS with early termination

and learning to rank . 21

vi

5 Conclusion . 23

References . 24

vii

LIST OF FIGURES

2.1 α vs discretization accuracy at convergence of all operations on 3 randomly se-

lected edges from a pretrained DARTS supernet (one subplot per edge). The

magnitude of α for each operation does not necessarily agree with its relative

discretization accuracy at convergence. 5

2.2 Operation strength on each edge of S2 (skip connect, sep conv 3x3). (a). Oper-

ations associated with the largest α. (b). Operations that result in the highest

discretization validation accuracy at convergence. Parameterized operations are

marked red. 5

2.3 mean(αskip − αconv) (softmaxed) v.s. supernet’s validation accuracy. The gap of

(αskip − αconv) increases as supernet gets better. 9

3.1 Trajectory of test accuracy on space NAS-Bench-201 and three datasets (Left:

cifar10, Middle: cifar100, Right: Imagenet16-120). The test accuracy of our

method is plotted by taking the snapshots of DARTS’ supernet at corresponding

epochs and run our selection method on top of it. 13

viii

LIST OF TABLES

2.1 Test accuracy before and after layer (edge) shuffling on CIFAR-10. For ResNet

and VGG, we randomly swap two layers in each stage (defined as successive layers

between two downsampling blocks. For DARTS supernet, we randomly swap two

edges in every cell. 7

3.1 Test error of architectures discovered by perturbation-based selection on DARTS

Space and CIFAR-10. 14

3.2 Test error of the architectures discovered by DrNAS on DARTS Space and CIFAR-

10. 18

3.3 Test error of architectures discovered by DrNAS on DARTS Space and ImageNet

under mobile setting. 19

ix

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my advisor Prof. Cho-Jui Hsieh, who guided

me thoughtfully and patiently throughout the course of study. Moreover, I am grateful to

my collaborators - Minhao Cheng, Xiangning Chen, Xiaocheng Tang, and Shoukang Hu -

for their effort and friendship. I also own special thanks to my colleague Xuanqing Liu, who

offered me invaluable suggestions during difficult times, as well as my mentor at Microsoft

Research - Kai Chen, who introduces me to the field of Neural Architecture Search in the

first place. The research summarizes in this thesis would not exist without their inputs and

dedications.

x

CHAPTER 1

Introduction

Neural Architecture Search (NAS) has been drawing increasing attention in both academia

and industry for its potential to automatize the process of discovering high-performance

architectures, which have long been handcrafted. Early works on NAS deploy Evolutionary

Algorithm [SM02, RMS17, LSV17] and Reinforcement Learning [ZL17, PGZ18, ZYW18] to

guide the architecture discovery process. These pioneering methods require training a large

number of discrete architectures, and hence incur significant amount of computation costs.

In the attempt to improve the efficiency of NAS, several one-shot weight-sharing methods

have been proposed that dramatically cut down the search cost [BLR18, GZM19, BKZ18].

As a particularly popular instance of one-shot methods, DARTS [LSY19] enables the

search process to be performed with a gradient-based optimizer in an end-to-end manner.

It applies continuous relaxation that transforms the categorical choice of architectures into

continuous architecture parameters α. The resulting supernet can be optimized via gradient-

based methods, and the operations associated with the largest architecture parameters are

selected to form the final architecture. Despite its simplicity, several works cast doubt on

the effectiveness of DARTS. For example, a simple randomized search [LT19] outperforms

the original DARTS; [ZES20] observes that DARTS degenerates to networks filled with

parametric-free operations such as the skip connection or even random noise, leading to the

poor performance of the selected architecture.

While the majority of previous research attributes the failure of DARTS to its supernet

optimization [ZES20, CH20, CWC21], little has been discussed about the validity of another

1

important assumption: the value of α reflects the strength of the underlying operations. In

this paper, we conduct an in-depth analysis of this problem. Surprisingly, we find that in

many cases, α does not really indicate the operation importance in a supernet. Firstly, the

operation associated with larger α does not necessarily result in higher validation accuracy

after discretization. Secondly, as an important example, we show mathematically that the

domination of skip connection observed in DARTS (i.e. αskip becomes larger than other

operations.) is in fact a reasonable outcome of the supernet’s optimization but becomes

problematic when we rely on α to select the best operation.

If α is not a good indicator of operation strength, how should we select the final architec-

ture from a pretrained supernet? We discuss two lines of solutions. The first line bypasses

α and directly measures the operation strength based on its contribution to the supernet

performance in an adversarial fashion. Concretely, we propose an alternative perturbation-

based architecture selection method. Given a pretrained supernet, the best operation on an

edge is selected and discretized based on how much it perturbs the supernet accuracy; The

final architecture is derived edge by edge, with fine-tuning in between so that the supernet

remains converged for every operation decision. The second line aims at aligning the archi-

tecture selection with differentiable architecture search, by formulating architecture search

as a distribution learning problem, which induces implicit hessian regularization [CWC21].

Empirical evaluations show that both lines of methods are able to drastically improve the

search performance and the robustness of differentiable NAS.

To make the picture a bit more complete, the remaining chapters of the paper discusses

an alternative architecture search paradigm that does not rely on weight-sharing supernet

to make search decisions, called predictor-based NAS. Predictor-based methods use a tiny

subset of architectures to train a surrogate model to predict the accuracy of each individual

architecture. This line of methods do not rely on a weight-sharing one-shot supernet, and

thus is free from the various inductive biases of differentiable NAS methods.

2

CHAPTER 2

Understanding Differentiable NAS

Despite the search efficiency of Differentiable Neural Architecture Search (DARTS), several

work finds that it generalizes poorly to a wide range of search spaces (Section 2.2). For

example, [ZES20] observes that DARTS degenerates to networks filled with parametric-free

operations such as the skip connection or even random noise, leading to the poor performance

of the selected architecture. While previous analysis attributes the poor generalization of

DARTS to the failure of supernet optimization, we show both empirically and mathematically

that it is in fact caused by the magnitude-based architecture selection method (Section 2.3).

2.1 Differentiable Architecture Search Framework

We start by reviewing the formulation of DARTS. DARTS’ search space consists of repeti-

tions of cell-based microstructures. Every cell can be viewed as a DAG with N nodes and

E edges, where each node represents a latent feature map xi, and each edge is associated

with an operation o (e.g. skip connect, sep conv 3x3) from the search space O. Continuous

relaxation is then applied to this search space: Concretely, every operation on an edge is

activated during the search phase, with their outputs mixed by the architecture parameter

α to form the final mixed output of that edge m̄(xi) =
∑

o∈O
expαo∑
o′ expαo′

o(xi). This partic-

ular formulation allows the architecture search to be performed in a differentiable manner:

DARTS jointly optimizes α and model weight w with the following bilevel objective via

3

alternative gradient updates:

min
α
Lval(w

∗, α) s.t. w∗ = arg min
w

Ltrain(w, α). (2.1)

We refer to the continuous relaxed network used in the search phase as the supernet of

DARTS. At the end of the search phase, the operation associated with the largest αo on

each edge will be selected from the supernet to form the final architecture. An important

implicit assumption here is that the magnitude of α = (αo)o represents the strength of the

underlying operation.

2.2 Failure Mode Analysis of DARTS

Several works cast doubt on the generalization of DARTS. [ZES20] tests DARTS on four

different search spaces and observes significantly degenerated performance, resulting in ar-

chitectures filled with skip connections. They empirically find that the selected architectures

perform poorly when DARTS’ supernet falls into high curvature areas of validation loss (cap-

tured by large dominant eigenvalues of the Hessian ∇2
α,αLval(w, α)). While [ZES20] relates

this problem to the failure of supernet training in DARTS, we examine it from the architec-

ture selection aspects of DARTS, and show that much of DARTS’ robustness issue can be

alleviated by a better architecture selection method.

2.3 The pitfall of magnitude-based architecture selection in DARTS

In this section, we put forward the opinion that the architecture parameter α does not nec-

essarily represent the strength of the underlying operation in general, in direct contradiction

to the claim made in DARTS. As an important example, we mathematically justify that

the skip connection domination phenomenon observed in DARTS is reasonable by itself, and

becomes problematic when combined with the magnitude-based architecture selection.

4

2.3.1 α may not represent the operation strength

Figure 2.1: α vs discretization accuracy at convergence of all operations on 3 randomly

selected edges from a pretrained DARTS supernet (one subplot per edge). The magnitude

of α for each operation does not necessarily agree with its relative discretization accuracy at

convergence.

c_{k-2}

0

skip_connect

1

sep_conv_3x3
2

sep_conv_3x3

3

skip_connect

c_{k-1}

skip_connect

skip_connect

skip_connect

skip_connect

skip_connect
skip_connect

skip_connect

c_{k}

skip_connect

skip_connect

skip_connect

(a) Magnitude

c_{k-2}

0

skip_connect

1

skip_connect
2

sep_conv_3x3

3

sep_conv_3x3

c_{k-1}

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3

skip_connect

sep_conv_3x3
sep_conv_3x3

skip_connect

c_{k}

skip_connect

skip_connect

skip_connect

(b) Strength

Figure 2.2: Operation strength on each edge of S2 (skip connect, sep conv 3x3). (a). Opera-

tions associated with the largest α. (b). Operations that result in the highest discretization

validation accuracy at convergence. Parameterized operations are marked red.

Following DARTS, existing differentiable NAS methods use the value of architecture

parameters α to select the final architecture from the supernet, with the implicit assumption

that α represents the strength of the underlying operations. In this section, we study the

validity of this assumption in detail.

Consider one edge on a pretrained supernet; the strength of an operation on the edge

can be naturally defined as the supernet accuracy after we discretize to this operation and

5

fine-tune the remaining network until it converges again; we refer to this as ”discretization

accuracy at convergence” for short. The operation that achieves the best discretization

accuracy at convergence can be considered as the best operation for the given edge. Figure

2.1 shows the comparison of α (blue) and operation strength (orange) of randomly select

edges on DARTS supernet. As we can see, the magnitude of α for each operation does

not necessarily agree with their relative strength measured by discretization accuracy at

convergence. Moreover, operations assigned with small αs are sometimes strong ones that

lead to high discretization accuracy at convergence. To further verify the mismatch, we

investigate the operation strength on search space S2, where DARTS fails dramatically due

to excessive skip connections [ZES20]. S2 is a variant of DARTS search space that only

contains two operations per edge (skip connect, sep conv 3x3). Figure 2.2 shows the selected

operations based on α (left) and operation strength (right) on all edges on S2. From Figure

2.2a, we can see that αskip connect > αsep conv 3x3 on 12 of 14 edges. Consequently, the derived

child architecture will lack representation ability and perform poorly due to too many skip

connections. However, as shown in Figure 2.2b, the supernet benefits more from discretizing

to sep conv 3x3 than skip connect on half of the edges.

There are several reason why α fails to capture the operation strength. Firstly, consider

the second order approximation of the validation loss of a pretrained supernet:

Lval(α̂, w) ≈ Lval(α,w) + αT∇αLval(α,w) +
1

2
αT∇2

α2Lval(α,w)α (2.2)

= Lval(α,w) +
1

2
αT∇2

α2Lval(α,w)α (∇αLval(α,w) = 0 at convergence) (2.3)

Where α̂ is the perturbed architecture parameters and α is the current instance. We can

see that the influence of α on the supernet’s validation loss depends not only on α itself

but also the Hessian matrix ∇2
α2Lval(α,w). In magnitude-based architecture selection, the

Hessian term is completely ignored, which corresponds to the case when ∇2
α2Lval(α,w) = sI.

Secondly, architecture parameters are interdependent: select and discretizing one edge to an

operation modifies the supernet, thereby affecting subsequent selection.

6

Table 2.1: Test accuracy before and after layer (edge) shuffling on CIFAR-10. For ResNet

and VGG, we randomly swap two layers in each stage (defined as successive layers between

two downsampling blocks. For DARTS supernet, we randomly swap two edges in every cell.

VGG ResNet DARTS

Before 92.69 93.86 88.44

After 9.83± 0.33 83.2015± 2.03 81.09± 1.87

2.3.2 A case study: skip connection

Several works point out that DARTS tends to assign large α to skip connections, resulting in

shallow architectures with poor generability [ZES20, LZS19, BHX19]. This ”skip connection

domination” issue is generally attributed to the failure of DARTS’ supernet optimization.

In contrast, we draw inspiration from research on ResNet [HZR16] and show that this phe-

nomenon by itself is a reasonable outcome while DARTS refines its estimation of the optimal

feature map, rendering αskip ineffective in the architecture selection.

In vanilla networks (e.g., VGG), each layer computes a new level of feature map from

the output feature map of the predecessor layer; thus, reordering layers at test time would

dramatically hurt the performance [VWB16]. Unlike vanilla networks, [GSS17] and [VWB16]

discover that successive layers in ResNet with compatible channel sizes are in fact estimating

the same optimal feature map so that the outputs of these layers stay relatively close to

each other at convergence; As a result, ResNet’s test accuracy remains robust under layer

reordering. [GSS17] refers to this unique way of feature map estimation in ResNet as the

”unrolled estimation.”

DARTS’ supernet resembles ResNet, rather than vanilla networks like VGG, in both

appearance and behavior. Appearance-wise, within a cell of DARTS’ supernet, edges with

skip connection are in direct correspondence with the successive residual layers in ResNet.

Behavior-wise, DARTS’ supernet also exhibits a high degree of robustness under edge shuf-

fling. As shown in Table 2.1, randomly reordering edges on a pretrained DARTS’ supernet

7

at test time also has little effect on its performance. This evidence indicates that DARTS

performs unrolled estimation like ResNet as well, i.e., edges within a cell share the same

optimal feature map that they try to estimate. In the following proposition, we apply this

finding and provide the optimal solution of α in the sense of minimizing the variance of

feature map estimation.

Proposition 1. 1 Without loss of generality, consider one cell from a simplified search space

consists of two operations: (skip, conv). Let m∗ denotes the optimal feature map, which is

shared across all edges according to the unrolled estimation view [GSS17]. Let oe(xe) be the

output of convolution operation, and let xe be the skip connection (i.e., the input feature

map of edge e). Assume m∗, oe(xe) and xe are normalized to the same scale. The current

estimation of m∗ can then be written as:

me(xe) =
exp(αconv)

exp(αconv) + exp(αskip)
oe(xe) +

exp(αskip)

exp(αconv) + exp(αskip)
xe, (2.4)

where αconv and αskip are the architecture parameters defined in DARTS. The optimal α∗
conv

and α∗
skip minimizing var(me(xe) −m∗), the variance of the difference between the optimal

feature map m∗ and its current estimation me(xe), are given by:

α∗
conv ∝ var(xe −m∗) (2.5)

α∗
skip ∝ var(oe(xe)−m∗). (2.6)

We refer the reader to the original paper of DARTS-PT [WCC21] for a detailed proof.

From eq. (2.5) and eq. (2.6), we can see that the relative magnitudes of αskip and αconv

come down to which one of xe or oe(xe) is closer to m∗ in variance:

• xe (input of edge e) comes from the mixed output of the previous edge. Since the goal

of every edge is to estimate m∗ (unrolled estimation), xe is also directly estimating m∗.

1Proposition 1 unfolds the optimal α in principle and does not constraint the particular optimization
method (i.e., bilevel, single-level, or blockwise update) to achieve it. Moreover, this proposition can be readily
extended to various other search spaces since we can group all non-skip operations into a single oe(·).

8

• oe(xe) is the output of a single convolution operation instead of the complete mixed

output of edge e, so it will deviate from m∗ even at convergence.

Therefore, in a well-optimized supernet, xe will naturally be closer to m∗ than oe(xe), causing

αskip to be greater than αconv.

Figure 2.3: mean(αskip−αconv) (softmaxed) v.s. supernet’s validation accuracy. The gap of

(αskip − αconv) increases as supernet gets better.

Our analysis above indicates that the better the supernet, the larger the (αskip−αconv) gap

(softmaxed) will become since xe gets closer and closer to m∗ as the supernet is optimized.

This result is evidenced in Figure 2.3, where mean(αskip − αconv) continues to grow as the

supernet gets better. In this case, although αskip > αconv is reasonable by itself, it becomes

an inductive bias to NAS if we were to select the final architecture based on α.

9

CHAPTER 3

Improving the Effectiveness and Robustness of

Differentiable NAS

In the previous chapter, we identify that the poor generalization of DARTS, including skip

connection domination, is caused by the failure of magnitude-based architecture selection.

Inspired by this analysis, we introduce two lines of methods to solve this problem: 1) A

perturbation-based architecture selection that bypasses architecture parameter α and mea-

sures the operation strength in an adversarial fashion (Section 3.1), and 2) improve the

alignment between α and operation strength via Hessian Regularization.

3.1 Perturbation-based architecture selection

Instead of relying on the α value to select the best operation, we propose to directly evaluate

operation strength in terms of its contribution to the supernet’s performance. The opera-

tion selection criterion is laid out in section 3.1.1. In section 3.1.2, we describe the entire

architecture selection process.

3.1.1 Evaluating the strength of each operation

In section 2.3.1, we define the strength of each operation on a given edge as how much it

contributes to the performance of the supernet, measured by discretization accuracy. To

avoid inaccurate evaluation due to large disturbance of the supernet during discretization,

we fine-tune the remaining supernet until it converges again, and then compute its valida-

10

tion accuracy (discretization accuracy at convergence). The fine-tuning process needs to be

carried out for evaluating each operation on an edge, leading to substantial computation

costs.

To alleviate the computational overhead, we consider a more practical measure of oper-

ation strength: for each operation on a given edge, we mask it out while keeping all other

operations, and re-evaluate the supernet. The one that results in the largest drop in the

supernet’s validation accuracy will be considered as the most important operation on that

edge. This alternative criterion incurs much less perturbation to the supernet than dis-

cretization since it only deletes one operation from the supernet at a time. As a result, the

supernet’s validation accuracy after deletion stays close to the unmodified supernet, and thus

it alleviates the requirement of tuning the remaining supernet to convergence. Therefore, we

implement this measurement for the operation selection in this work.

Algorithm 1: Perturbation-based Architecture Selection

Input: A pretrained supernet S, Set of edges E from S, Set of nodes N from S

Result: Set of selected operations {o∗e}e∈E

while |E| > 0 do

randomly select an edge e ∈ E (and remove it from E);

forall operation o on edge e do

evaluate the validation accuracy of S when o is removed (ACC\o);

end

select the best operation for e: o∗e ← arg mino ACC\o;

discretize edge e to o∗e and tune the remaining supernet for a few epochs;

end

3.1.2 The complete architecture selection process

Our method operates directly on top of DARTS’ pretrained supernet. Given a supernet, we

randomly iterate over all of its edges. We evaluate each operation on an edge, and select the

11

best one to be discretized based on the measurement described in section 3.1.1. After that,

we tune the supernet for a few epochs to recover the accuracy lost during discretization. The

above steps are repeated until all edges are decided. Algorithm 1 summarizes the operation

selection process. The cell topology is decided in a similar fashion. This simple method is

termed ”perturbation-based architecture selection (PT)” in the following sections.

3.1.3 Experimental Evaluation

In this section, we demonstrate that the perturbation-based architecture selection method

is able to consistently find better architectures than those selected based on the values of α.

The evaluation is based on the search space of DARTS and NAS-Bench-201 [DY20], and we

show that the perturbation-based architecture selection method can be applied to several

variants of DARTS.

3.1.3.1 Results on DARTS’ CNN search space

We keep all the search and retrain settings identical to DARTS since our method only

modifies the architecture selection part. After the search phase, we perform perturbation-

based architecture selection following Algorithm 1 on the pretrained supernet. We tune the

supernet for 5 epochs between two selections as it is enough for the supernet to recover from

the drop of accuracy after discretization. We run the search and architecture selection phase

with four random seeds and report both the best and average test errors of the obtained

architectures.

As shown in Table 3.1, the proposed method (DARTS+PT) improves DARTS’ test error

from 3.00% to 2.61%, with manageable search cost (0.8 GPU days). Note that by only

changing the architecture selection method, DARTS performs significantly better than many

other differentiable NAS methods that enjoy carefully designed optimization process of the

supernet, such as GDAS [DY19] and SNAS [XZL19]. This empirical result suggests that

12

architecture selection is crucial to DARTS: with the proper selection algorithm, DARTS

remains a very competitive method.

Our method is also able to improve the performance of other variants of DARTS. To show

this, we evaluate our method on SDARTS(rs) and SGAS [CH20, LQD20]. SDARTS(rs) is

a variant of DARTS that regularizes the search phase by applying Gaussian perturbation

to α. Unlike DARTS and SDARTS, SGAS performs progressive search space shrinking.

Concretely, SGAS progressively discretizes its edges with the order from most to least im-

portant, based on a novel edge importance score. For a fair comparison, we keep its unique

search space shrinking process unmodified and only replace its magnitude-based operation

selection with ours. As we can see from Table 3.1, our method consistently achieves better

average test errors than its magnitude-based counterpart. Concretely, the proposed method

improves SDARTS’ test error from 2.67% to 2.54% and SGAS’ test error from 2.66% to

2.56%. Moreover, the best architecture discovered in our experiments achieves a test error

of 2.44%, ranked top among other NAS methods.

3.1.3.2 Performance on NAS-Bench-201 search space

Figure 3.1: Trajectory of test accuracy on space NAS-Bench-201 and three datasets (Left:

cifar10, Middle: cifar100, Right: Imagenet16-120). The test accuracy of our method is

plotted by taking the snapshots of DARTS’ supernet at corresponding epochs and run our

selection method on top of it.

To further verify the effectiveness of the proposed perturbation-based architecture se-

13

Table 3.1: Test error of architectures discovered by perturbation-based selection on DARTS

Space and CIFAR-10.

Architecture
Test Error

(%)

Params

(M)

Search Cost

(GPU days)

Search

Method

DenseNet-BC [HLM17] 3.46 25.6 - manual

NASNet-A [ZVS18] 2.65 3.3 2000 RL

AmoebaNet-A [RAH19] 3.34± 0.06 3.2 3150 evolution

AmoebaNet-B [RAH19] 2.55± 0.05 2.8 3150 evolution

PNAS [LZN18]⋆ 3.41± 0.09 3.2 225 SMBO

ENAS [PGZ18] 2.89 4.6 0.5 RL

NAONet [LTQ18] 3.53 3.1 0.4 NAO

SNAS (moderate) [XZL19] 2.85± 0.02 2.8 1.5 gradient

GDAS [DY19] 2.93 3.4 0.3 gradient

BayesNAS [ZYW19] 2.81± 0.04 3.4 0.2 gradient

ProxylessNAS [CZH19]† 2.08 5.7 4.0 gradient

NASP [YXT20] 2.83± 0.09 3.3 0.1 gradient

P-DARTS [CXW19] 2.50 3.4 0.3 gradient

PC-DARTS [XXZ20] 2.57± 0.07 3.6 0.1 gradient

R-DARTS (L2) [ZES20] 2.95± 0.21 - 1.6 gradient

DARTS [LSY19] 3.00± 0.14 3.3 0.4 gradient

SDARTS-RS [CH20] 2.67± 0.03 3.4 0.4 gradient

SGAS (Cri 1. avg) [LQD20] 2.66± 0.24 3.7 0.25 gradient

DARTS+PT (avg)∗ 2.61± 0.08 3.0 0.8‡ gradient

DARTS+PT (best) 2.48 3.3 0.8‡ gradient

SDARTS-RS+PT (avg)∗ 2.54± 0.10 3.3 0.8‡ gradient

SDARTS-RS+PT (best) 2.44 3.2 0.8‡ gradient

SGAS+PT (Crit.1 avg)∗ 2.56± 0.10 3.9 0.29‡ gradient

SGAS+PT (Crit.1 best) 2.46 3.9 0.29‡ gradient

† Obtained on a different space with PyramidNet [HKK17] as the backbone.

‡ Recorded on a single GTX 1080Ti GPU.

∗ Obtained by running the search and retrain phase under four different seeds and

computing the average test error of the derived architectures.

lection, we conduct experiments on NAS-Bench-201. NAS-Bench-201 provides a unified

cell-based search space similar to DARTS. Every architecture in the search space is trained

14

under the same protocol on three datasets (cifar10, cifar100, and imagenet16-120), and their

performance can be obtained by querying the database. As in section 3.1.3.1, we take the

pretrained supernet from DARTS and apply our method on top of it. All other settings are

kept unmodified. Figure 3.1 shows the performance trajectory of DARTS+PT compared

with DARTS. While the architectures found by magnitude-based selection degenerates over

time, the perturbation-based method is able to extract better architectures from the same

underlying supernets stably. The result implies that the DARTS’ degenerated performance

comes from the failure of magnitude based architecture selection.

3.2 Aligning architecture parameter with operation strength via

distribution learning

Recall that in Section 2.3, we show that the misalignment between α and operation strength

is caused by the existence of the Hessian term ∇2
α2Lval(α,w) (eq. 2.2). When this hessian

is ill-conditioned, the magnitude of alpha deviates from the operation strength. Therefore,

another way to improve the robustness of DARTS is to regularize this Hessian. In this

section, we propose a principled method by formulating differentiable NAS as a distribution

learning problem.

3.2.0.1 Neural Architecture Search as distribution learning

Bilevel-Optimization with Simplex Constraints In DARTS, the uncontrained archi-

tecture parameters are mapped to the operation mixing weight via softmax function, allowing

it to lie in the probability simplex. To motivate our method, we first generalize the bilevel

formulation of DARTS by using θ to simplex-constrained represent the operation mixing

weight:

min
θ
Lval(w

∗, θ) s.t. w∗ = arg min
w

Ltrain(w, θ),

|O|∑
o=1

θ(i,j)o = 1, ∀ (i, j), i < j, (3.1)

15

where the simplex constraint
∑|O|

o=1 θ
(i,j)
o = 1 can be either solved explicitly via Lagrangian

function [LKB20], or eliminated by substitution method (e.g., θ = Softmax(α), α ∈ R|O|×|E|) [LSY19].

Learning a Distribution over Operation Mixing Weight Previous differentiable ar-

chitecture search methods view the operation mixing weight θ as learnable parameters that

can be directly optimized [LSY19, XXZ20, LKB20]. This has been shown to cause θ to over-

fit the validation set and thus induce large generalization error [BKZ18, ZSH20, CH20]. We

recognize that this treatment is equivalent to performing point estimation (e.g., MLE/MAP)

of θ in probabilistic view, which is inherently prone to overfitting [Bis16, GCS04]. Based

on this insight, we formulate the differentiable architecture search as a distribution learning

problem. The operation mixing weight θ is treated as random variables sampled from a

learnable distribution. Formally, let q(θ|β) denote the distribution of θ parameterized by β.

The bi-level objective is then given by:

min
β

Eq(θ|β)
[
Lval(w

∗, θ)
]

+ λd(β, β̂) s.t. w∗ = arg min
w

Ltrain(w, θ). (3.2)

where d(·, ·) is a distance function. Since θ lies on the probability simplex, we select Dirichlet

distribution to model its behavior, i.e., q(θ|β) ∼ Dir(β), where β represents the Dirichlet

concentration parameter. Dirichlet distribution is a widely used distribution over the prob-

ability simplex [JLP19, Dav03, LHZ20, KNZ19], and it enjoys nice properties that enables

gradient-based training [Mar18].

3.2.1 The implicit Regularization on Hessian

The objective in (3.2) can be viewed as a Lagrangian function of the following constraint

objective:

min
β

Eq(θ|β)
[
Lval(w

∗, θ)
]

s.t. w∗ = arg min
w

Ltrain(w, θ) , d(β, β̂) ≤ δ, (3.3)

Here we derive an approximated lower bound based on (3.3), which demonstrates that our

method implicitly controls the conditional number of the Hessian matrix ∇2
θL̃val(w, θ).

16

Proposition 2. Let d(β, β̂) = ∥β − β̂∥2 ≤ δ and β̂ = 1 in the bi-level formulation (3.3).

Let µ denote the mean under the Laplacian approximation of Dirichlet. If ∇2
µL̃val(w

∗, µ) is

Positive Semi-definite, the upper-level objective can be approximated bounded by:

Eq(θ|β)(Lval(w, θ)) ≳ L̃val(w
∗, µ) +

1

2
(

1

1 + δ
(1− 2

|O|
) +

1

|O|
1

1 + δ
)tr

(
∇2

µL̃val(w
∗, µ)

)
(3.4)

with:

L̃val(w
∗, µ) = Lval(w

∗, Softmax(µ)), µo = log βo −
1

|O|
∑
o′

log βo′ , o = 1, . . . , |O|.

This proposition is driven by the Laplacian approximation to the Dirichlet distribu-

tion [Mac98, Aka17]. The lower bound (3.4) indicates that minimizing the expected valida-

tion loss controls the trace norm of the Hessian matrix. We refer the reader to the DrNAS

paper [CWC21] for the detailed proof.

3.2.1.1 Experimental Results

Empirically, DrNAS significantly outperforms DARTS and comparable methods on CIFAR-

10 (Table 3.2) and ImageNet (Table 3.3).

17

Table 3.2: Test error of the architectures discovered by DrNAS on DARTS Space and CIFAR-

10.

Architecture
Test Error

(%)

Params

(M)

Search Cost

(GPU days)

Search

Method

DenseNet-BC [HLM17]⋆ 3.46 25.6 - manual

NASNet-A [ZVS18] 2.65 3.3 2000 RL

AmoebaNet-A [RAH19] 3.34± 0.06 3.2 3150 evolution

AmoebaNet-B [RAH19] 2.55± 0.05 2.8 3150 evolution

PNAS [LZN18]⋆ 3.41± 0.09 3.2 225 SMBO

ENAS [PGZ18] 2.89 4.6 0.5 RL

DARTS (1st) [LSY19] 3.00± 0.14 3.3 0.4 gradient

DARTS (2nd) [LSY19] 2.76± 0.09 3.3 1.0 gradient

SNAS (moderate) [XZL19] 2.85± 0.02 2.8 1.5 gradient

GDAS [DY19] 2.93 3.4 0.3 gradient

BayesNAS [ZYW19] 2.81± 0.04 3.4 0.2 gradient

ProxylessNAS [CZH19]† 2.08 5.7 4.0 gradient

PARSEC [CGF19] 2.81± 0.03 3.7 1 gradient

P-DARTS [CXW19] 2.50 3.4 0.3 gradient

PC-DARTS [XXZ20] 2.57± 0.07 3.6 0.1 gradient

SDARTS-ADV [CH20] 2.61± 0.02 3.3 1.3 gradient

GAEA + PC-DARTS [LKB20] 2.50± 0.06 3.7 0.1 gradient

DrNAS 2.54± 0.03 4.0 0.4‡ gradient

DrNAS + progressive learning 2.46± 0.03 4.1 0.6‡ gradient

⋆ Obtained without cutout augmentation.

† Obtained on a different space with PyramidNet [HKK17] as the backbone.

‡ Recorded on a single GTX 1080Ti GPU.

18

Table 3.3: Test error of architectures discovered by DrNAS on DARTS Space and ImageNet

under mobile setting.

Architecture
Test Error(%) Params

(M)

Search Cost

(GPU days)

Search

Methodtop-1 top-5

Inception-v1 [SLJ15] 30.1 10.1 6.6 - manual

MobileNet [HZC17] 29.4 10.5 4.2 - manual

ShuffleNet 2× (v1) [ZZL18] 26.4 10.2 ∼ 5 - manual

ShuffleNet 2× (v2) [MZZ18] 25.1 - ∼ 5 - manual

NASNet-A [ZVS18] 26.0 8.4 5.3 2000 RL

AmoebaNet-C [RAH19] 24.3 7.6 6.4 3150 evolution

PNAS [LZN18] 25.8 8.1 5.1 225 SMBO

MnasNet-92 [TCP19] 25.2 8.0 4.4 - RL

DARTS (2nd) [LSY19] 26.7 8.7 4.7 1.0 gradient

SNAS (mild) [XZL19] 27.3 9.2 4.3 1.5 gradient

GDAS [DY19] 26.0 8.5 5.3 0.3 gradient

BayesNAS [ZYW19] 26.5 8.9 3.9 0.2 gradient

DSNAS [HXZ20]† 25.7 8.1 - - gradient

ProxylessNAS (GPU) [CZH19]† 24.9 7.5 7.1 8.3 gradient

PARSEC [CGF19] 26.0 8.4 5.6 1 gradient

P-DARTS (CIFAR-10) [CXW19] 24.4 7.4 4.9 0.3 gradient

P-DARTS (CIFAR-100) [CXW19] 24.7 7.5 5.1 0.3 gradient

PC-DARTS (CIFAR-10) [XXZ20] 25.1 7.8 5.3 0.1 gradient

PC-DARTS (ImageNet) [XXZ20]† 24.2 7.3 5.3 3.8 gradient

GAEA + PC-DARTS [LKB20]† 24.0 7.3 5.6 3.8 gradient

DrNAS† 24.2 7.3 5.2 3.9 gradient

DrNAS + progressive learning† 23.7 7.1 5.7 4.6 gradient

† The architecture is searched on ImageNet, otherwise it is searched on CIFAR-10 or CIFAR-

100.

19

CHAPTER 4

Beyond Differentiable NAS - Predictor-based

Architecture Search

While previous sections mainly focus on analyzing and improving differentiable NAS meth-

ods, in this section we introduce an alternative paradigm of NAS called predictor-based

architecture search. Unlike Differentiable NAS, Predictor-based methods do not rely on

building weight-sharing supernets to estimate the performance of child architectures. In-

stead, they build a surrogate predictor to infer the performance of child architectures; The

predictor can be trained using a tiny selected subset of all architectures (usually in hundreds

of architectures), and subsequently deployed for architecture evaluation the efficiently. This

way, predictor-based methods are free from the inductive biases of weight-sharing differen-

tiable NAS. However, search efficiency becomes a major bottleneck for predictor-based NAS:

To label the training pool for the surrogate predictor, we now need to train and evaluate

hundreds of architecture fully from scratch. To improve the search efficiency, previous works

mainly focus on developing more sample-efficient predictors. We tackle this challenge from

different perspective: pause and resume the training of poor architectures to save budget.

The resulting framework, RANK-NOSH, reduces the search budget of the best predictor-

based algorithm by 5 folds, while achieving competitive performance.

20

4.1 Predictor-based NAS

4.1.1 Framework

Starting from a pool of randomly selected architectures, previous methods iteratively conduct

the following steps: 1) train and evaluate all the architectures in the pool fully; 2) fit a

surrogate performance predictor; 3) use the predictor to propose new architectures and add

them to the pool for the next round [DCA20, WNS19, YZA20]. Compared with previous RL

and evolution-based NAS methods, using a performance predictor can reduce the number

of networks evaluated from scratch. However, training all the architectures in the candidate

pool fully is still extremely computationally expensive. Most complementary advances alone

this line focus on developing better predictors that require a smaller training pool [DCA20,

WNS19, YZA20], but the potential to further cut down the search cost by reducing the

training length of individual architectures in the pool has not drawn much attention.

4.1.2 Improving the efficiency of predictor-based NAS with early termination

and learning to rank

Inspired by successive halving [JT16], our key idea is that the learning process of poor

architectures can be terminated early to avoid wasting budgets. However, it is non-trivial

to integrate successive halving to predictor-based NAS formulations. Firstly, predictor-

based algorithms iteratively add new architectures to the candidate pool [DCA20, WNS19,

YZA20], whereas regular successive halving only removes underperforming candidates from

the initial pool. Secondly, with successive halving, architectures in the pool will be trained

for different number of epochs, so their validation accuracy are not directly comparable in

a semantically meaningful way. Standard regression-based predictor fitting, which requires

the exact validation accuracy for each architecture when fully trained, will be problematic

in this setting.

21

To tackle those challenges in a unified way, we introduce RANK-NOSH, an efficient

predictor-based framework with significantly improved search efficiency. RANK-NOSH con-

sists of two parts. The first part is NOn-Uniform Successive Halving (NOSH), which describes

a multi-level scheduling algorithm that allows adding new candidates and resuming termi-

nated training process. It is non-uniform in the sense that NOSH maintains a pyramid-like

candidate pool of architectures trained for various epochs without discarding any candidates.

For the second part, we construct architecture pairs and use a pairwise ranking loss to train

the performance predictor. The predictor is essentially a ranking network and can efficiently

distill useful information from our candidate pool consisting of architectures trained for dif-

ferent epochs. Moreover, the proposed framework naturally integrates recently developed

proxies that measure architecture performance without training [AMD21, CGW21, MTS20],

which allows more architectures to be included in the candidate pool at no cost.

4.1.2.1 Experimental Results

On DARTS Space, RANK-NOSH achieves an average test error of 2.53% on CIFAR-10 with

over 5x search budget reduction than previous SOTA predictor-based NAS method arch2vec,

which obtains an average test error of 2.56%.

22

CHAPTER 5

Conclusion

This paper provides both theoretical and empirically analysis of differentiable architecture

search, which leads to advancement in both algorithmic and paradigmatic design. To push

the limit of Neural Architecture Search, it requires not only understanding and advancing

of existing algorithms, but also out-of-box thinking about new settings. For example, all

existing NAS paradigm assumes and traverses a predefined search space, which is essential

to the search outcome but requires a lot of prior knowledge to construct. Automated search

space design remains a challenging future direction with huge potential in fully automatizing

NAS pipeline.

23

REFERENCES

[Aka17] Charles Sutton Akash Srivastava. “Autoencoding Variational Inference For Topic
Models.” In International Conference on Learning Representations, 2017.

[AMD21] Mohamed S. Abdelfattah, Abhinav Mehrotra, Lukasz Dudziak, and Nicholas D.
Lane. “Zero-cost proxies for lightweight NAS.” In ICLR, 2021.

[BHX19] Kaifeng Bi, Changping Hu, Lingxi Xie, Xin Chen, Longhui Wei, and Qi Tian.
“Stabilizing DARTS with Amended Gradient Estimation on Architectural Pa-
rameters.”, 2019.

[Bis16] Christopher Bishop. Pattern Recognition and Machine Learning. Springer New
York, 2016.

[BKZ18] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc
Le. “Understanding and Simplifying One-Shot Architecture Search.” In Jennifer
Dy and Andreas Krause, editors, Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pp. 550–559, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR.

[BLR18] Andrew Brock, Theo Lim, J.M. Ritchie, and Nick Weston. “SMASH: One-Shot
Model Architecture Search through HyperNetworks.” In International Conference
on Learning Representations, 2018.

[CGF19] Francesco Paolo Casale, Jonathan Gordon, and Nicolo Fusi. “Probabilistic Neural
Architecture Search.” arXiv: 1902.05116, 2019.

[CGW21] Wuyang Chen, Xinyu Gong, and Zhangyang Wang. “Neural Architecture Search
on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective.” In
International Conference on Learning Representations, 2021.

[CH20] Xiangning Chen and Cho-Jui Hsieh. “Stabilizing Differentiable Architecture
Search via Perturbation-based Regularization.” In Hal Daumé III and Aarti
Singh, editors, Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research, pp. 1554–
1565. PMLR, 13–18 Jul 2020.

[CWC21] Xiangning Chen, Ruochen Wang, Minhao Cheng, Xiaocheng Tang, and Cho-Jui
Hsieh. “Dr{NAS}: Dirichlet Neural Architecture Search.” In International Con-
ference on Learning Representations, 2021.

[CXW19] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. “Progressive differentiable architec-
ture search: Bridging the depth gap between search and evaluation.” In Proceed-
ings of the IEEE International Conference on Computer Vision, pp. 1294–1303,
2019.

24

[CZH19] Han Cai, Ligeng Zhu, and Song Han. “ProxylessNAS: Direct Neural Architecture
Search on Target Task and Hardware.” In International Conference on Learning
Representations, 2019.

[Dav03] Michael I. Jordan David M. Blei, Andrew Y. Ng. “Latent Dirichlet Allocation.”
The Journal of Machine Learning Research, Mar 2003.

[DCA20] Lukasz Dudziak, Thomas Chau, Mohamed S. Abdelfattah, Royson Lee, Hyeji
Kim, and Nicholas D. Lane. “BRP-NAS: Prediction-based NAS using GCNs.” In
NeurIPS, 2020.

[DY19] Xuanyi Dong and Yi Yang. “Searching for A Robust Neural Architecture in Four
GPU Hours.” In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 1761–1770, 2019.

[DY20] Xuanyi Dong and Yi Yang. “NAS-Bench-201: Extending the Scope of Repro-
ducible Neural Architecture Search.” In International Conference on Learning
Representations (ICLR), 2020.

[GCS04] Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin. Bayesian
Data Analysis. Chapman and Hall/CRC, 2nd ed. edition, 2004.

[GSS17] Klaus Greff, Rupesh K. Srivastava, and Jürgen Schmidhuber. “Highway and
Residual Networks learn Unrolled Iterative Estimation.” In International Confer-
ence on Learning Representations (ICLR), 2017.

[GZM19] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei,
and Jian Sun. “Single Path One-Shot Neural Architecture Search with Uniform
Sampling.”, 2019.

[HKK17] Dongyoon Han, Jiwhan Kim, and Junmo Kim. “Deep Pyramidal Residual Net-
works.” In CVPR, 2017.

[HLM17] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger.
“Densely Connected Convolutional Networks.” 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2017.

[HXZ20] Shoukang Hu, Sirui Xie, Hehui Zheng, Chunxiao Liu, Jianping Shi, Xunying Liu,
and Dahua Lin. “DSNAS: Direct Neural Architecture Search without Parameter
Retraining.” In CVPR, 2020.

[HZC17] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. “MobileNets: Ef-
ficient Convolutional Neural Networks for Mobile Vision Applications.” arXiv:
1704.04861, 2017.

25

[HZR16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual Learn-
ing for Image Recognition.” In IEEE Conference on Computer Vision and Pattern
Recognition, pp. 770–778, 06 2016.

[JLP19] Weonyoung Joo, Wonsung Lee, Sungrae Park, , and Il-Chul Moon. “Dirichlet
Variational Autoencoder.”, 2019.

[JT16] Kevin Jamieson and Ameet Talwalkar. “Non-stochastic best arm identification
and hyperparameter optimization.” In AISTATS, 2016.

[KNZ19] Samuel Kessler, Vu Nguyen, Stefan Zohren, and Stephen Roberts. “Hierarchical
Indian Buffet Neural Networks for Bayesian Continual Learning.”, 2019.

[LHZ20] Soochan Lee, Junsoo Ha, Dongsu Zhang, and Gunhee Kim. “A Neural Dirich-
let Process Mixture Model for Task-Free Continual Learning,” in International
Conference on Learning Representations.” In ICLR, 2020.

[LKB20] Liam Li, Mikhail Khodak, Maria-Florina Balcan, and Ameet Talwalkar.
“Geometry-Aware Gradient Algorithms for Neural Architecture Search.” arXiv:
2004.07802, 2020.

[LQD20] Guohao Li, Guocheng Qian, Itzel C. Delgadillo, Matthias Muller, Ali Thabet,
and Bernard Ghanem. “SGAS: Sequential Greedy Architecture Search.” In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1620–1630, 2020.

[LSV17] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray
Kavukcuoglu. “Hierarchical Representations for Efficient Architecture Search.”,
2017.

[LSY19] Hanxiao Liu, Karen Simonyan, and Yiming Yang. “DARTS: Differentiable Archi-
tecture Search.” In International Conference on Learning Representations, 2019.

[LT19] Liam Li and Ameet Talwalkar. “Random Search and Reproducibility for Neural
Architecture Search.”, 2019.

[LTQ18] Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. “Neural Ar-
chitecture Optimization.” In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems 31, pp. 7816–7827. Curran Associates, Inc., 2018.

[LZN18] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li,
Li Fei-Fei, Alan Yuille, Jonathan Huang, and Kevin Murphy. “Progressive Neural
Architecture Search.” Lecture Notes in Computer Science, p. 19–35, 2018.

26

[LZS19] Hanwen Liang, Shifeng Zhang, Jiacheng Sun, Xingqiu He, Weiran Huang, Kechen
Zhuang, and Zhenguo Li. “DARTS+: Improved Differentiable Architecture
Search with Early Stopping.”, 2019.

[Mac98] David J. C. MacKay. “Choice of Basis for Laplace Approximation.” Machine
Language, October 1998.

[Mar18] Fritz Obermeyer Martin Jankowiak. “Pathwise Derivatives Beyond the Reparam-
eterization Trick.” In International Conference on Machine Learning, 2018.

[MTS20] Joseph Mellor, Jack Turner, Amos Storkey, and Elliot J. Crowley. “Neural Archi-
tecture Search without Training.”, 2020.

[MZZ18] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. “ShuffleNet V2:
Practical Guidelines for Efficient CNN Architecture Design.” In ECCV, 2018.

[PGZ18] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. “Efficient
Neural Architecture Search via Parameters Sharing.” In Jennifer Dy and Andreas
Krause, editors, Proceedings of the 35th International Conference on Machine
Learning, volume 80 of Proceedings of Machine Learning Research, pp. 4095–4104,
Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR.

[RAH19] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. “Regularized
Evolution for Image Classifier Architecture Search.” Proceedings of the AAAI
Conference on Artificial Intelligence, 33:4780–4789, Jul 2019.

[RMS17] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Sue-
matsu, Jie Tan, Quoc V. Le, and Alexey Kurakin. “Large-Scale Evolution of
Image Classifiers.” In Proceedings of the 34th International Conference on Ma-
chine Learning - Volume 70, ICML’17, p. 2902–2911. JMLR.org, 2017.

[SLJ15] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. “Going
Deeper with Convolutions.” In CVPR, 2015.

[SM02] Kenneth O. Stanley and Risto Miikkulainen. “Evolving Neural Networks through
Augmenting Topologies.” Evolutionary Computation, 10(2):99–127, 2002.

[TCP19] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew
Howard, and Quoc V. Le. “MnasNet: Platform-Aware Neural Architecture Search
for Mobile.” In CVPR, 2019.

[VWB16] Andreas Veit, Michael Wilber, and Serge Belongie. “Residual Networks Behave
Like Ensembles of Relatively Shallow Networks.” In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances
in Neural Information Processing Systems 29, pp. 550—-558. Curran Associates,
Inc., 2016.

27

[WCC21] Ruochen Wang, Minhao Cheng, Xiangning Chen, Xiaocheng Tang, and Cho-Jui
Hsieh. “Rethinking Architecture Selection in Differentiable NAS.” In Interna-
tional Conference on Learning Representations (ICLR), 2021.

[WNS19] Colin White, Willie Neiswanger, and Yash Savani. “BANANAS: Bayesian Op-
timization with Neural Architectures for Neural Architecture Search.” arXiv
preprint arXiv:1910.11858, 2019.

[XXZ20] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and
Hongkai Xiong. “PC-DARTS: Partial Channel Connections for Memory-Efficient
Architecture Search.” In International Conference on Learning Representations,
2020.

[XZL19] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. “SNAS: stochastic neural
architecture search.” In International Conference on Learning Representations,
2019.

[YXT20] Quanming Yao, Ju Xu, Wei-Wei Tu, and Zhanxing Zhu. “Efficient Neural Archi-
tecture Search via Proximal Iterations.” In AAAI, 2020.

[YZA20] Shen Yan, Yu Zheng, Wei Ao, Xiao Zeng, and Mi Zhang. “Does Unsupervised
Architecture Representation Learning Help Neural Architecture Search?” In
NeurIPS, 2020.

[ZES20] Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Marrakchi, Thomas Brox,
and Frank Hutter. “Understanding and Robustifying Differentiable Architecture
Search.” In International Conference on Learning Representations, 2020.

[ZL17] Barret Zoph and Quoc V. Le. “Neural Architecture Search with Reinforcement
Learning.” In International Conference on Learning Representations (ICLR),
2017.

[ZSH20] Arber Zela, Julien Siems, and Frank Hutter. “NAS-BENCH-1SHOT1: BENCH-
MARKING AND DISSECTING ONE-SHOT NEURAL ARCHITECTURE
SEARCH.” In International Conference on Learning Representations, 2020.

[ZVS18] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. “Learning
Transferable Architectures for Scalable Image Recognition.” 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Jun 2018.

[ZYW18] Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, and Cheng-Lin Liu. “Practical
Block-Wise Neural Network Architecture Generation.” In IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2018, 2018.

28

[ZYW19] Hongpeng Zhou, Minghao Yang, Jun Wang, and Wei Pan. “BayesNAS: A
Bayesian Approach for Neural Architecture Search.” In ICML, pp. 7603–7613,
2019.

[ZZL18] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. “ShuffleNet: An
Extremely Efficient Convolutional Neural Network for Mobile Devices.” In CVPR,
2018.

29

	Introduction
	Understanding Differentiable NAS
	Differentiable Architecture Search Framework
	Failure Mode Analysis of DARTS
	The pitfall of magnitude-based architecture selection in DARTS
	Lg may not represent the operation strength
	A case study: skip connection

	Improving the Effectiveness and Robustness of Differentiable NAS
	Perturbation-based architecture selection
	Evaluating the strength of each operation
	The complete architecture selection process
	Experimental Evaluation

	Aligning architecture parameter with operation strength via distribution learning
	The implicit Regularization on Hessian

	Beyond Differentiable NAS - Predictor-based Architecture Search
	Predictor-based NAS
	Framework
	Improving the efficiency of predictor-based NAS with early termination and learning to rank

	Conclusion
	References

