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Abstract. Clustering is a classical data analysis technique that is applied to a 
wide range of applications in the sciences and engineering. For very large data 
sets, the performance of a clustering algorithm becomes critical. Although clus-
tering has been thoroughly studied over the last decades, little has been done on 
utilizing modern multi-processor machines to accelerate the analysis process. 
We propose a scalable clustering technique that benefits from existing parallel 
computers and networks of workstations. It supports the creation of 
multiresolution representations for very large geometric data sets. The output of 
the clustering process can be used for interactive data exploration, useful for 
view-dependent rendering, user-guided refinement, and progressive transmis-
sion. 

1   Introduction 

Data sets consisting of giga- or even terabytes of information have become increas-
ingly common. The increasing capabilities of high-precision and high-level-of-detail 
engineering applications (e.g., computational fluid dynamics simulations) were made 
possible by advances in computer systems and computing methods. As a conse-
quence, we have to deal with data sets of ever increasing sizes. Massive data sets also 
reside in corporate data warehouses, storing information about business and produc-
tion processes. In digital libraries, millions of documents are accumulated and available 
to individuals. The complexity of such massive data collections has far surpassed our 
cognitive abilities to fully understand them as single entities. To gain some form of 
higher-level insight into massive data it is crucial to develop technology that supports 
interactive data exploration at different levels of resolution and abstraction.  
 



Clustering is a classical data analysis technique that has been studied thoroughly 
during the last decades [5]. It has also been adopted as a standard technique in the 
emerging field of data mining [4]. Clustering is used in a variety of applications, rang-
ing from fields like earthquake prediction, whale monitoring, marketing, psychology, 
biophysics, criminology, information retrieval, image processing, to phonetic taxo n-
omy [2]. Its goal is to establish a set of groups such that objects assigned to the same 
group have certain similarities while they differ from objects in other groups. These 
groups are not known a priori and must be determined by examining the characteristics 
of the given objects. Often, one is interested in data partitions providing different 
levels of granularity – so-called multiresolution levels .  
 
Applied to massive data sets, hierarchical clustering can be used for feature extraction, 
data summary, or creation of categories that allow interactive exploration. For exa mple, 
applied to a database of customer records, it can provide insight into sales patterns 
that can be used for a focused marketing campaign. Used in the context of digital li-
braries, it produces a hierarchical index that assists in finding related documents and 
supports browsing by step-wise refinement. For very large data sets, however, creat-
ing a cluster hierarchy can require significant time. Particularly, with dynamic data sets, 
i.e., data sets whose object characteristics change over time or data sets where objects 
are inserted and deleted, the performance of the clustering process is pivotal. In addi-
tion, the output of an analysis process depends on various configuration parameters 
that describe how to interpret the data. When the clustering process is part of the 
analysis or exploration loop, a fast algorithm is necessary to guarantee an acceptable 
response time.  
 
In the field of scientific visualization, clustering has been introduced in various form 
by various researchers, for multi-resolution analysis solving a variety of problems, 
ranging from feature extraction [9], and surface reconstruction [10],[11] to vector field 
compression [12],[15],[16] and mesh simplification [14]. Weber et al. use the mu ltires o-
lution representation generated by a clustering process for a procedural grid genera-
tion method for scattered data approximation and visualization [13]. Since ma ssive data 
sets have become increasingly common in scientific visualization applications, it is 
important to create an environment that supports processing and exploring such large 
data sets. Creating multiresolution representations from large data sets  as part of 
data preprocessing  enables interactive data exploration by supporting operations 
like view-dependent rendering, user-guided refinement, and progressive transmission. 
 
We investigate the design and implementation of a parallel clustering approach (PaC) 
that is based on a divisive hierarchical paradigm. For a given data set and dissimilarity 
measure (or distance function) defined on the domain space, PaC creates either a set 
of multiresolution levels or a multiresolution hierarchy. We believe that our approach 
is helpful in applications such as parallel volume rendering [19] [21] [22] [23], parallel 
polygon rendering [24], and remote visualization [20]. 
 



In the following section, we discuss a sequential clustering approach. The paralleliza-
tion of this approach is described in section three. In the fourth section, we explore the 
characteristics and performance of PaC. 

2   Sequential Hierarchical Clustering  

The input for our clustering process is a sequence of n-dimensional vectors {vi}. Each 
vector is describing an object  oi. The elements of these vectors aj  are considered at-
tributes characterizing the represented object oi. For the clustering process, a dissimi-
larity measure D is used to measure the ‘distance’ between pairs of objects, and be-
tween objects and groups of objects, so-called clusters, and between pairs of clusters. 
Each cluster is characterized by an attribute vector, called cluster center  or cluster 
centroid, that is most similar to the subset of all objects. The cluster error is the sum 
of the distance between the cluster center and all objects the cluster re presents. The 
global error is the sum of all cluster errors. The goal of the clustering process is to 
find a set of partitions of different sizes such that for each partition the global error is 
minimized. When it is desired to create a multiresolution hierarchy an additional con-
straint requires the set of partitions to be hierarchically nested. 

 
Our method for creating multiresolution representation is based on an incremental and 
divisive paradigm. Initially, all data objects are placed in one cluster c1 that is recur-
sively split until a termination criterion is met. This could be, when a certain number of 
clusters has been created, a certain global error criterion is met, or no cluster e xceeds a 
certain cluster error bound . In each step of the algorithm, we replace the clus ter with 
the highest internal error by new clusters. For two new clusters and n objects that are 
assigned to the cluster to be split, there exist 2n-1 ways of dividing the cluster into two 
homogeneous child clusters. Even when the clustering criterion is guaranteed to pro-
duce convex clusters only, it is still computationally infeasible to examine all possible 
divisions. Therefore, a heuristic approach has to be used to calculate the centers of 
the child clusters. Performing reclassification only locally results in substantial per-
formance gains in comparison to utilizing a global reclassification scheme, which is a 
NP-hard problem [5]. Effective approaches are, for example, successively remo ving 
objects from one cluster to build up the second cluster, selecting the most dissimilar 
pair of objects in the split cluster as ‘seed points’ for the child clusters, or – as we do – 
applying a local k-means algorithm. When it is not desired to create a multiresolution 
hierarchy, the global error can often be further reduced by reassigning objects in the 
neighborhood where a cluster has been replaced.  

 
To determine the local neighborhood N i of a cluster C i, a neighborhood graph G (e.g., 
the Delaunay or Gabriel’s graph, see [7]) is constructed incrementally using the cluster 
centers as vertices. A cluster C1 is considered a neighbor cluster of a given cluster C2, 
when the distance in the neighborhood graph does not exceed a neighborhood 



threshold  tN. The distance Dis(C1, C2) in the neighborhood graph corresponds to the 
minimum number of edges to be traversed to reach C1 from C2. Alternatively, the 
neighborhood N of a cluster can be defined as the k  closest neighbors, see [10]. 

 
After reclassification, clusters that have been affected by object reassignments are 
updated (i.e., the cluster center and cluster error are computed). The neighborhood 
graph is updated locally replacing a region R of G that is affected by the reclassifica-
tion by an updated subgraph R’. Algorithm 1 summarizes our sequential clustering 
method: 

While termination criterion is not met { 

    Determine cluster C to be split; (1) 

    Create w new clusters Ci by splitting cluster C; (2) 

    Determine Neighborhood Ni of cluster ci; (3) 

    Reclassify data of clusters in Ni; (4) 

    Update changed clusters; (5) 

    Update neighborhood Ni; (6) 

    Update priority queue; (7) 

} 

This approach yields multiple partitions of a data set, called multiresolution levels, for 
a varying number of clusters. Since generating a multiresolution hierarchy is a special 
case of computing multiresolution levels (the neighborhood threshold tN is zero), we 
will in the following only consider the more general approach.  

 
Using a priority queue sorted by internal cluster error, the cluster to be split can be 
determined in constant time. We assume that new clusters can be created and initia l-
ized in constant time. The average number of neighbors of a cluster is expected to be 
constant for a fixed dimensionality of the data domain using, for example, a Delaunay 
graph or Gabriels’s graph to define the local neighborhood. Therefore, the neighbor-
hood of a cluster can be determined in constant time for an incrementally built graph. 
Since the expected number of neighbor clusters is expected to be constant, the com-
plexity of reclassification as described above is expected to be proportional to the 



number of objects l to be reclassified1. For a reclassification tree of depth d t, the num-
ber of objects l to be reclassified is expected to be proportional to  

td
l

2
1

≈ . (1) 

Since the number of neighbors is bound by O(1), steps (5) and (6) require constant 
time. Updating the priority queue is done in O(log c) time, the number of clusters at the 
current iteration being c. The reclassification is by far the most time-consuming step, 
especially when clusters are large. Therefore, when designing a parallel clustering 
algorithm one should focus on exploiting parallelism during the reclassification stage. 

4   Parallel Clustering - PaC 

The parallelization of the algorithm described above is implemented in C++ utilizing 
MPI [17] as a low-level communication extension. Multiple instances of the parallel 
program are created on a set of processing nodes. Each instance, subsequently re-
ferred to as a task , has a unique identifier in the parallel application, called rank. Each 
task is assigned to a single processor on a network of workstations and/or a mult i-
processor. The association of tasks and processors remains constant during the clu s-
tering process. The parallel application uses a master-worker model with a master task 
contro lling the clustering process performed by several worker tasks, see [18]. The 
parallel clustering process is divided into three phases: In the first phase, the data is 
distributed over the tasks. In the second phase, all tasks work on computing one itera-
tion of the clustering process (cooperative parallel clustering). In the third phase, 
each task independently computes one iteration (concurrent parallel clustering).  

4.1   Data Distribution 

During the firs t phase (initialization phase) the data set is read, and each vector is 
randomly assigned to exactly one of the worker tasks. Two different data distribution 
mechanisms have been implemented: 

 
1. Data distribution using network transfer: 
The data is read from an input file by the master process and sent to the worker pro c-
esses. This approach allows using a network of workstations that do not share a file 
system. To reduce the communication overhead during the data distribution, the ma s-

                                                                 
1 Heckel et al. also split clusters in convex regions using principal component analysis (PCA), 

which also exhibits a linear time complexity with respect to the number of objects to be re-
classified [12]. For more complex local optimization strategies – using, for example, simulated 
annealing – the complexity for the reclassification is expected to be higher. 

 



ter task is caching a certain number of vectors in buckets that are transmitted to a 
worker task, when an overflow occurs.  

 
2. Data distribution using a shared file system: 
All worker tasks read the input file at the same time. Each read vector is used as a key 
for a pseudo-random hash function. This function determines which worker task 
should store a datum. Since all tasks use the same hash function and the same key a 
consistent assignment is guaranteed. 

 
After distributing the data, each vector is stored in the associated task only. This 
association remains constant during the second phase. In the third phase, vectors 
might be reassigned and transferred to other tasks. However, each vector is assigned 
to exactly one task at all times of the clustering process.  

 
The relative performance of the processing nodes can be different, e.g., when using a 
heterogeneous network of workstations as run-time environment. To minimize idle time 
of tasks on fast processors at synchronization points during the cooperative cluster-
ing phase and to increase overall performance, the number of vectors assigned to a 
task is chosen to be proportional to the relative performance of the processor a task is 
running on. The relative performance of a processing node is determined by using the 
sequential clustering program as a benchmark.  

4.2   Cooperative Parallel Clustering 

During the cooperative parallel clustering phase all worker tasks are helping to com-
pute one iteration of the clustering process. The objects assigned to each cluster are 
distributed over all tasks. During each iteration, all worker tasks simultaneously split 
the same cluster with the highest priority and insert a new cluster. The steps (1) to (3) 
of the iteration – that are identical to the sequential clustering – are carried out simu l-
taneously by all tasks. The following local reclassification (step 4) is by far the most 
time-consuming and is conducted cooperatively. Each task generates a list of vectors 
in the region that is affected by reclassification. Since the data is randomly dis tributed 
over all tasks, each task stores a subset of the region. Then, each task assigns each 
locally stored vector to its closest cluster. Based on the resulting assignment of the 
local data, each task is recalculating the cluster centers of the reclassified region. Each 
task broadcasts a summary of the partial reclassification to the other tasks (step a in 
Algorithm 2). After receiving this information from all worker tasks (step b in Alg o-
rithm 2) each task updates the clusters in the reclassified region (step 5).2 Finally, all 
tasks simultaneously update the priority queue (step 6) and the neighborhood graph 
(step 7). 

                                                                 
2 The local reclassification scheme can be applied iteratively in a distributed k-means fashion. 



 
Fig. 1. Data distribution during phase 2, cooperative parallel clustering 

 
While the classification process progresses, the average cluster size decreases. As a 
result, the amount of work per iteration decreases, and the ratio of communication 
overhead and execution time increases. When the average cluster size does no longer 
exceed some threshold limit τSwitch, the classification process enters the third phase, 
which utilizes a more efficient strategy for large sets of small clusters. 

For all tasks: While termination criterion is not met { 

    Determine cluster C to be split; (1) 

    Create w new clusters Ci by splitting cluster C; (2) 

    Determine neighborhood Ni of cluster cI; (3) 

    Locally reclassify data of clusters in Ni; (4) 

    Broadcast local cluster information; (a) 

    Receive cluster information from other tasks; (b) 

    Update changed clusters; (5) 

    Update neighborhood Ni; (6) 

    Update priority queue; (7) 

} 

4.3   Concurrent Parallel Clustering 

In the third phase, each task is concurrently computing one iteration of the clustering 
loop. Each cluster with its associated objects is assigned to exactly one task. At the 



end of the second phase, the domain space is partitioned in different regions, each of 
them being assigned to a particular worker task. In the third phase, all clusters in one 
region are initially hosted by the corresponding task. Since at the end of phase 2 clu s-
ters are distributed over all tasks, cluster fragments have to be transferred to a single 
task whenever it must be considered for reclassification by that task.  

 

 

Fig. 2. Data distribution during phase 3, concurrent parallel clustering 

To avoid inconsistencies and ensure a deterministic behavior, a task can only split a 
cluster provided it has exclusive access to its neighbor clusters. When clusters in the 
local neighborhood are not present in the worker task, it sends out a request to the 
master task. The master tasks determines the host of the requested clusters and for-
wards the requests to the corresponding worker tasks, which transfer the ordered 
clus ters directly to the requesting task. For a suffic iently large value of τSwitch, the num-
ber of request collisions can be expected to be low. Therefore, the tasks can work 
relatively independent with very low communication cost. After reclassification, a 
worker task serves the outstanding cluster requests and transmits these clusters to the 
reques ting task. By checking for requests directly before determining a split candidate, 
the interference of task is decreased. However, it is possible that a split candidate x is 
sent from task l to a remote task r when it is member of the split candidate’s neighbor-
hood in r. Since x’s neighbor’s might change after reclassification of r, the list of re-
quested clusters in l has to change as well. Clearly, l cannot proceed unless x has 
been transferred back to l. When task l receives the previously determined split candi-
date x, it updates its request list to x’s neighbors. For consistency reasons, cluster x is 
not permitted to be split by task r, or any other task different from l. After it has been 
identified as a split candidate by i, its ‘dirty flag’ is set. Dirty clusters are simply ig-
nored during the determination of split candidates. Once x is split by l its dirty flag is 
cleared, and it might be split by a remote task after it has been transferred.  

 

For all worker tasks: While termination criterion is 
not met { 



    Determine cluster C to be split; (1) 

    Create w new clusters Ci by splitting cluster C; (2) 

    Determine neighborhood Ni of cluster cI; (3) 

    Send requests to master task, if not locally pre-
sent; (c) 

    While waiting to receive clusters: 

        Check for requests and transfer clusters; (d) 

    Reclassify data of clusters in Ni; (4) 

    Update changed clusters; (5) 

    Update neighborhood Ni; (6) 

    Update priority queue; (7) 

    Check for requests and transfer clusters; (f) 

} 

5   Application 

To test the performance of our parallel clustering algorithm we have applied it to a set 
of unorganized points in 3D space. In this case, clustering is used to reconstruct sur-
faces at different level of resolution, each one described by a triangular mesh, see 
Figure 3. A detailed discussion of this technique and the application domain is pro-
vided in [10]. 
  

Fig. 3. Three resolution levels of Mt St. Helens data set 

 



Data distribution costs: 
Using the network transfer via the master task, the timing for data distribution is linear 
with respect to the size of the input. For very large data sets, this distribution mecha-
nism requires substantial time and is about twenty times slower than the initialization 
in the sequential clustering program for our system configuration. This distribution 
mechanism is therefore a performance bottleneck that highly impacts the performance 
of the overall parallel clustering tool. When all work tasks concurrently read from the 
input file and assign the data using a pseudo-random hash function as described 
above, the data distribution shows a performance similar to the sequential clustering 
algorithm. 

 
Message size: 
Using network transfer via the master task for the data distribution, the message 
length during the first phase depends on the chosen size of the buckets and the di-
mensionality of the domain. In the second phase, the message length depends on the 
dimensionality of the domain and the number of neighbors, which is a function of 
dimensionality. Our experiments have shown that the message size in phase two varies 
between about 200 and 400 bytes, with an average of about 260 bytes, for a 3D real 
space. In the third phase, the message length depends on the size of the cluster trans-
ferred between tasks, which is bounded by τSwitch and is decreasing while the classifica-
tion is progressing.  

   
Performance: 
We have applied PaC to a topographic data set that consists of roughly 2 million 3D 
points. Each point describes the height z at a certain location (x,y). Our program is 
used to reconstruct the relief of the topography at different levels of detail. The size of 
the input file is 47.3 MB, and 100 clusters are computed. PaC was executed on an SGI 
Onyx with 4 processors and 512 MB main memory. The clustering time is measured for 
the parallel application and the sequential version of the clustering program (1*), see . 
The speed-up factor is computed by dividing the execution time of the sequential 
algorithm by the execution time of PaC. With two tasks and only one worker task, PaC 
exhibits a performance that is 8% slower than sequential program. Utilizing more pro c-
essors yields an almost linear speed-up.  

 
With four tasks, three processors are fully utilized, while one processor, running the 
master task, has a low utilization. Adding one task yields a higher performance, but 
increases the overhead for context switching, since more tasks than processors are 
used. Increasing the number of task results in a performance loss for an increased 
overhead. The state diagram in Figure 5 shows that randomly distributing the data 
yields a good workload balance for the multiprocessor machine.  



Fig. 4. Performance and speed-up in dependency of number of tasks 

  

Fig. 5. States of 5 tasks on SGI Onyx 2 - red: split and reclassify, blue: communicate and up-
date clusters 

Workload balancing: 
When using a network of workstations instead of a single multiprocessor machine, the 
relative performance of the used machines may vary. In this case, using a random 
distribution may degrade the performance of the existing hardware. In our experiment, 
we use six machines with varying relative performance, see Figure 6. The relative per-
formance is measured by running the sequential clustering algorithm on the participat-

ing machines as a benchmark.  

Fig. 6. Relative performance of the six used workstations 

The network of workstations determines 100 clusters for a data set that consists of 
100,000 3D points. The execution time is about 36 seconds. The state diagram in Figure 
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7 reveals that the first three worker tasks (tasks 0 through 3) spend much time on the 
update phase waiting for task number 4, which runs on the slowest machine (Angela) 
to reach the synchronization point. 

 

 
Fig. 7. States of six unbalanced tasks on a network of workstations. 

 
Weighting the workload by the relative performance reduces the execution time to 26 
seconds. The state diagram shown in Figure 8 documents that considering the relative 
performance results in a better processor utilization. The clustering time for the se-
quential program is 110 seconds on Durango, which is the fastest of the used ma-
chines. Considering that only five workers are used, this speed-up is almost ideal. The 
low utilization on the master task's machine also indicates that many more tasks could 
be used to cluster a sufficiently large data set using the proposed master-worker archi-
tecture. 

Fig. 8. States of six balanced tasks on a network of workstations. 

 

Fig. 9.  States  of five tasks at the beginning and the end of the clustering process 

Granularity: 
While the clustering in phase two progresses, the average cluster size decreases. This 
results in an increasing overhead/computation ratio in phase two, see Figure 9. In 
contrast, during phase three the overhead/computation ratio decreases over time, 
since the request collision and cluster transfer frequency decrease with an increasing 
number of clusters. To get the best of both approaches we start with cooperative clu s-
tering and switch to concurrent clustering after a sufficiently large number of clusters 
have been generated. The overhead for transferring the partial cluster fragments is 
spread out over time, since cluster fragments are only transferred on demand. The 
optimal value for the parameter τSwitch must be determined empirically and is dependent 
on the system configuration (e.g., number of processing nodes, network, type of ma-
chines), the characteristics of the data set, and the error metric. For our system con-



figuration, we have determined that the data set and τSwitch have to be fairly large to 
gain considerable speed-ups compared to using phase two only.  

6   Conclusion 

We have presented a new method that enables to create cluster hierarchies utilizing 
modern multiprocessors and network of workstations. Our evaluation has demo n-
strated that our method is scalable and can be used to analyze very large data sets 
benefiting from existing multiprocessor machines. Our approach should be extremely 
beneficial for many applications, where the evaluation of multiresolution representa-
tions of very large data sets is required. 
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