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CHAPTER 1 

THE CHALLENGE OF UNDERSTANDING CHOICE UNDER RISK 

Life is uncertain. We hardly know what will happen tomorrow; our best-laid plans go awry with 

unsettling frequency. Even the recent past is often a matter of conjecture and controversy. 

Everyday decisions, small and large, are made without certainty as to what will happen next. 

 

It would therefore be comforting to have a well-grounded theory that organizes our observations, 

guides our decisions, and predicts what others might do in this uncertain world. Since the 1940s 

most economists have believed they have had such a theory in hand, or nearly so with only a few 

more tweaks needed to tie up loose ends. That is, most economists have come to accept that 

Expected Utility Theory (EUT), or one of its many younger cousins such as Cumulative Prospect 

Theory (CPT), is a useful guide to behavior in a world in which we must often act without being 

certain of the consequences.  

 

The purpose of this book is to raise doubt, and to create some unease with the current state of 

knowledge. We do not dispute that the conclusions of EUT follow logically from its premises. 

Nor do we dispute that, in a sufficiently simple world, EUT would offer good prescriptions on 

how to make choices in risky situations. Our doubts concern descriptive validity and predictive 

power. We will argue that EUT (and its cousins) fail to offer useful predictions as to what actual 

people end up doing. 

 

Under the received theory, it is considered scientifically useful to model choices under risk (or 

uncertainty) as maximizing the expectation of some curved function of wealth, income, or other 
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outcomes. Indeed, many social scientists have the impression that by applying some elicitation 

instrument to collect data, a researcher can estimate some permanent aspect of an individual’s 

attitudes or personality (e.g., a coefficient of risk aversion) that governs the individual’s choice 

behavior. This belief is not supported by evidence accumulated over many decades of 

observations. A careful examination of empirical and theoretical foundations of the theory of 

choice under uncertainty is therefore overdue. 

 

To begin with the basics: what do we mean by “uncertainty” and “risk”? Economists, starting 

with, and sometimes following, Frank Knight (1921), have redefined both words away from their 

original meaning.1  

 

In the standard dictionary definition, risk simply refers to the possibility of harm, injury, or loss. 

This popular concept of risk applies to many specialized domains including medicine, 

engineering, sports, credit, and insurance. However, in the second half of the twentieth century, a 

very different definition of risk took hold among economists. This new technical definition refers 

not to the possibility of harm but rather to the dispersion of outcomes inherent in a probability 

distribution. It is typically measured as variance or a similar statistic. Throughout this book we 

will be careful to distinguish the possibility-of-harm meaning of risk from the dispersion 

meaning.  

 

Although the notion of risk as dispersion seems peculiar to laymen, economists acclimated to it 

easily because it dovetails nicely with EUT. For centuries, economists have used utility theory to 

represent how individuals construct value. In the 1700s Daniel Bernoulli (1738) first applied the 
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notion to an intriguing gamble, and since the 1940s the uses of expected utility have expanded to 

applications in a variety of fields, seemingly filling a void. 

 

At the heart of Expected Utility Theory is the proposition that we each, individually or as 

members of a defined class, have some particular knowable attitudes towards uncertain 

prospects, and that those attitudes can be captured, at least approximately, in a mathematical 

function. In various contexts, it has been referred to as a value function (in Prospect Theory), or a 

utility of income function, or a utility of wealth function. Following the standard textbook (Mas-

Colell, Whinston, and Green [1995]) we shall often refer to it as a Bernoulli function. Such a 

function maps all possible outcomes into a single-dimensional cardinal scale representing their 

desirability, or “utility.” Different individuals may make different choices when facing the same 

risky prospects (often referred to as “lotteries”), and such differences are attributed to differences 

in their Bernoulli functions.  

 

In particular, the curvature of an individual’s Bernoulli function determines how an individual 

reacts to the dispersion of outcomes, the second definition of risk. Because the curvature of the 

Bernoulli function helps govern how much an individual would pay to avoid a given degree of 

dispersion, economists routinely refer to curvature measures as measures of “risk aversion.” 

 

Chapter 2 explains the evolution and current form of EUT, and the Appendix to Chapter 2 lays 

out the mathematical definitions for the interested reader. Presently, we simply point out that in 

its first and original meaning, aversion to risk follows logically from the definition. How can one 

not be averse to the possibility of a loss? If a person somehow prefers the prospect of a loss over 
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that of a gain, or of a greater loss over a smaller loss, in what sense can the worse outcome be 

labeled a “loss” in the first place? By contrast, under the second definition of risk as dispersion 

of outcomes, aversion to risk is not inevitable; aversion to, indifference to, and affinity for risk 

remain open possibilities.  

 

It is a truism that to deserve attention, a scientific theory must be able to predict and explain 

better than known alternatives. True predictions must, of course, be out-of-sample, because it is 

always possible to fit a model with enough free parameters to a given finite sample. That 

exercise is called “over-fitting,” and it has no scientific value unless the fitted model can predict 

outside the given sample. Any additional parameters in a theory must pay their way in 

commensurate extra explanatory power, in order to protect against needless complexity. 

 

We shall see in Chapter 3 that the Expected Utility Theory and its many generalizations have not 

yet passed this simple test in either controlled laboratory or field settings. These theories arrive 

endowed with a surfeit of free parameters, and sometimes provide close ex post fits to some 

specific sample of choice data. The problem is that the estimated parameters, e.g., risk-aversion 

coefficients, exhibit remarkably little stability outside the context in which they are fitted. Their 

power to predict out-of-sample is in the poor-to-nonexistent range, and we have seen no 

convincing victories over naïve alternatives.  

 

Other ways of judging a scientific model include whether it provides new insights or consilience 

across domains. Chapter 4 presents extensive failures and disappointments on this score. Outside 
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the laboratory, EUT and its generalizations have provided surprisingly little insight into 

economic phenomena such as securities markets, insurance, gambling, or business cycles.  

 

After almost seven decades of intensive attempts to generate and validate estimates of 

parameters for standard decision theories, it is perhaps time to ask whether the failure to find 

stable results is the result. Chapter 5 pursues this thought while reconsidering the meaning and 

measures of risk and of risk aversion.  

 

But does it really matter? What is at stake when empirical support for a theory is much weaker 

than its users routinely assume? We write this book because the widespread belief in the 

explanatory usefulness of curved Bernoulli functions has harmful consequences. 

1. It can mislead economists, especially graduate students. Excessively literal belief in EUT, or 

CPT, or some other such model as a robust characterization of decision making can lead to a 

failed first research program, which could easily end a research career before it gets off the 

ground. We hope that our book will help current and future graduate students be better 

informed and avoid this pitfall.  

2. It encourages applied researchers to accept a facile explanation for deviations, positive or 

negative, that they might observe from the default prediction, e.g., of equilibrium with risk-

neutral agents. Because preferences are not observable, explaining deviations as arising from 

risk aversion (or risk seeking) tends to cut off further inquiry that may yield more useful 

explanations. For example, we will see in Chapter 3 that, besides risk aversion, there are 

several intriguing explanations for overbidding in first-price sealed-bid auctions. 
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3. It impedes decision theorists’ search for a better descriptive theory of choice. Given the 

unwarranted belief that there are only a few remaining gaps in the empirical support for 

curved Bernoulli functions, many decision theorists invest their time and talent into tweaking 

them further, e.g., by including a probability weighting function or making the weighting 

function cumulative. As we shall argue, these variants add complexity without removing or 

reducing the defects of the basic EUT, and the new free parameters buy us little additional 

out-of-sample predictive power. 

 

The question remains, what is to be done? Science shouldn’t jettison a bad theory until a better 

one is at hand. Bernoulli functions and their cousins have dominated the field for decades, but 

unfortunately we know of no full-fledged alternative theory to replace them. 

 

The best we can do is to offer an interim approach. In Chapter 6 we show how orthodox 

economics offers some explanatory power that has not yet been exploited. Instead of explaining 

choice by unobservable preferences (represented, e.g., by estimated Bernoulli functions), we 

recommend looking for explanatory power in the potentially observable opportunity sets that 

decision makers face. These often involve indirect consequences (e.g., of frictions, bankruptcy, 

or higher marginal taxes), and some of them can be analyzed using the theory of real options. 

Beyond that, we recommend taking a broader view of risk, more sensitive to its first meaning as 

the possibility of loss or harm. 

 

The interim approach in Chapter 6 has its uses, but we do not believe that it is the final answer. 

In Chapter 7 we discuss process-based understanding of choice. We speculate on where, 
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eventually, a satisfactory theory might arise. Will neurological data supply an answer? What 

about heuristics / rule-of-thumb decision-making? Can insights from these latter approaches be 

integrated with the modeling structure outlined in Chapter 6? We are cautiously optimistic that 

patient work along these lines ultimately will yield genuine advances. 

 

Chapter 1 Bibliography 

Bernoulli, D. (1738) . “Exposition of a New Theory on the Measurement of Risk,” trans. Louise 

Sommer (1964) Econometrica 22: 23–26. 

Knight, F. H. (1921) Risk, Uncertainty and Profit. Boston: Hart, Schaffner and Marx. 

Mas-Colell, A., Whinston, M. D., and Green, J. R. (1995) Microeconomic Theory. Oxford 

University Press.  

 

 

 

                                                 
1 Knight said that a decision maker faced risk when probabilities over all possible future states were truly “known” 
or “measurable,” and faced uncertainty when these probabilities (or some of the possible outcomes) were not 
known. Knight himself noted that this distinction is different than that of popular discourse. 
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…. 

Chapter 5 

WHAT ARE RISK PREFERENCES? 

It is a veritable Proteus that changes its form every instant. 
Antoine Lavoisier (speaking of phlogiston, quoted in McKenzie [1960] 91) 

 

The negative empirical results recounted in previous chapters raise fundamental questions. If 

measured Bernoulli functions are so mutable, so “Protean,” then how can they help us better 

understand or predict the choices people make? How can we reliably measure peoples’ intrinsic 

risk preferences?  

 

But what if there is no reliable measure? Might risk preferences be a figment of theorists’ 

imagination? Might they be an economic analog of phlogiston, a fluid that chemists once 

conjured up to explain combustion? Although it took almost a century, chemists ultimately 

abandoned the concept, as it failed to explain the data. 

 

There is a prior question: what is risk? For those not trained in economic theory, risk refers to the 

possibility of harm. The same is true in important applications in engineering, medicine, 

insurance, credit and regulation. Only in certain parts of economic theory does risk refer to the 

variability or dispersion of outcomes. Is that a step forward? 

 

This chapter explores these deeper questions. We begin at the shallow end, with an episode from 

the history of chemistry. 
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5.1 Phlogiston 

 

Although first suggested centuries earlier by an obscure Greek philosopher, phlogiston entered 

the scientific mainstream with the work of Johann Joachim Becher (1635–1682) and Georg Ernst 

Stahl (1660–1734). It was postulated that phlogiston was an invisible compressible fluid that 

carried heat from one object to another. The concept of phlogiston appealed to intuition and, at 

first, seemed able to organize disparate physical phenomena such as combustion of charcoal (it 

released phlogiston into the air, leaving ashes) and smelting of certain metal ores (the ore 

absorbed phlogiston to become metal). It appeared to be a scientific advance, offering a sounder 

explanation of heat and combustion than prevailing explanations based on alchemists’ traditional 

four elements of earth, air, fire and water. 

 

Despite its initial intuitive appeal, over time the concept generated some vexing puzzles of its 

own. For example, mass seemed to depend on context. Phlogiston apparently had positive mass 

in charcoal and some metals such as magnesium, but negative mass in other metals such as 

mercury. Proponents of the theory still could account for the data if they included enough free 

parameters, e.g., for context-dependent mass, possibly negative. 

 

Phlogiston theory did not disappear when it created puzzles instead of explanations, nor when its 

supporters failed, decade after decade, to isolate phlogiston in the laboratory. The theory 

survived even without proffering any novel but correct predictions. Phlogiston vanished from 

respectable science only after a better theory came along. Indeed, when Lavoisier’s powerful 

oxidation/reduction theory emerged in the late 1780s, its acolytes were mostly the younger 
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scientists. McKenzie (1960) remarks, “Priestley and Cavendish, on whose work much of the new 

theory was based, clung to the phlogiston theory to the end of their lives.” The theory faded 

away only when its loyal supporters retired from the scene.1 

 

Are Bernoulli functions a latter day analog of phlogiston? As noted in Chapter 2, Bernoulli 

functions are the centerpiece of the theory of risky choice that entered the economic mainstream 

in the 1940s. Although students often find the theory unintuitive at first, it grows on them with 

repeated exposure. Their instinctive skepticism gradually fades until “dispersion aversion” seems 

a self-evident truth. 

 

The problem is that Bernoulli functions have not yet delivered the empirical goods. As we saw in 

Chapter 3, they have not been isolated (or reliably measured) in the lab or field, and puzzles 

proliferate. Controversies continue on the appropriate way to measure attitudes to risk. Decades 

of intensive search by theorists and empiricists in economics, game theory, psychology, 

sociology, anthropology, and other disciplines have not yet produced evidence that assuming that 

peoples’ attitudes toward risk can be modeled by Bernoulli functions can help predict their risky 

choices. Nor, as we find in Chapter 4, has that assumption helped us gain a better understanding 

of aggregate phenomena in stock, bond, and insurance markets, or about medicine, engineering 

or gambling. 

 

The lesson we draw from the phlogiston story is that Expected Utility Theory and its variants, 

despite their serious and perhaps fatal empirical shortcomings, will survive until young 

economists are convinced that they have a better theory to replace it. 
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5.2 Current Alternatives to EUT 

 

What might that better theory be? Some regard Kahneman and Tversky’s (1979) prospect theory 

as a leading candidate. We do not share that view. It seems to us that prospect theory is only 

another variant of Expected Utility Theory with a curved Bernoulli function and plenty of free 

parameters. Those parameters allow it to fit many data sets ex post, but have little value for ex 

ante prediction. 

 

The centerpiece of prospect theory is an S-shaped value function u similar to the Bernoulli 

function proposed by Fishburn and Kochenberger (1979). The value function u is convex below 

a point z (the reference point from which gains and losses are distinguished) and concave above. 

After specifying the reference point z and allowing for a kink there (“loss aversion”), the value 

function has at least three additional free parameters. One can normalize the right derivative 

u’(z+) = 1, but then must specify the left derivative u’(z-) > 1 and at least two curvature 

parameters. For example, we might impose constant absolute risk aversion on each piece, with 

a(x) = a1 > 0 for x > z (“risk aversion for gains”) and a(x) = a2 < 0 for x < z (“risk seeking for 

losses”). 

 

By itself, the value function predicts that people are risk seeking in the loss domain, e.g., would 

not purchase insurance even at moderately subsidized prices. To explain unsubsidized insurance 

purchase and other observed behavior, prospect theory supplements the Bernoulli function u with 

a probability curve w similar to that postulated in Edwards (1955) and earlier work. This curve 
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typically requires two free parameters, bringing the total to at least six: two for w, one for the 

reference point z, and at least three for the rest of u.2 

 

This flexibility (together with an unmodeled phase of editing and adjustment) allows prospect 

theory to rationalize a wide range of risky-choice data. But prediction out-of-sample is the real 

test of a scientific theory, and we have seen no evidence that prospect theory can predict 

individual behavior in new risky tasks better than simpler alternatives. Even in-sample, after 

including a standard penalty (such as Akaike or Schwartz-Bayes) for the number of free 

parameters, the best predictor is often a one-parameter version of expected utility, or even 

(parameter free) expected value maximization: see, among many other papers, Hey and Orme 

(1994), Harless and Camerer (1994), and Gloekner and Pachur (2012, Figure 2, 29). 

 

New proposals and new theoretical variants appear regularly. A prominent recent example is the 

source-dependent choice model of Chew and Sagi (2008), intended to capture the empirical 

regularity that people are more willing to bet on familiar events than unfamiliar (or ambiguous) 

events. For example, some people will pay more for a lottery that pays $10 if the daily high 

temperature three months hence is above x degrees in a nearby city than for a similar bet 

regarding a distant foreign city, and at the same time they are willing to pay more for the local 

than the distant complementary lottery which pays when the temperature is below x degrees. The 

famous Ellsberg paradox is similar: many people will be more willing to bet on red and also 

more willing to bet on black when they know that there are exactly 50 black and 50 red balls in 

an urn than when they only know that the total number of colored balls in an urn is 100 and that 

the only colors are red and black. 
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Chew and Sagi try to capture these and other forms of context dependence in a model that allows 

probability (or, by extension, cumulative-probability) weighting functions to vary across 

individuals and also to vary across “sources of uncertainty” such as local vs. foreign 

temperatures. As in prospect theory, they also postulate a value function (or Bernoulli function 

defined over monetary gains and losses) that varies across individuals. Abdellaoui et al. (2011) 

test the theory on about 130 subjects. They make heroic assumptions for tractability, e.g., 

dropping from the analysis subjects whose elicited probabilities departed systematically from the 

objective probabilities, and they even impose linear Bernoulli functions. This reduces the number 

of free parameters to four per source per individual. The parameter estimates vary dramatically 

across individuals and sources (hence the title of the paper, “The Rich Domain of Uncertainty”), 

and they find more ambiguity seeking than ambiguity aversion over some ranges of probability.  

In the less noisy treatments (e.g., when lottery prizes are actually paid with positive probability), 

they are able to reject the null hypothesis that the mean source functions are the same at the 25 

percent confidence level at least. In the concluding discussion, they note that an important 

advantage of the source-dependent model is that it has fewer free parameters than general 

context-dependent models. 

 

It would take a book far longer than this one — indeed, several shelves of books — to review all 

the other published variations on Expected Utility Theory, and we can’t claim to have studied 

them all. In the fairly large sample that we are familiar with, there is a recurrent pattern. A new 

theoretical model that relaxes one or more of the axioms in the Expected Utility Theorem is 

proposed in order to accommodate some particular set of empirical results inconsistent with 
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EUT. Relaxing axioms usually introduces free parameters that enable better fits to data for which 

the new theory was designed. If the model gains traction in the literature, then other researchers 

design experiments whose results make the new theory look bad, but make a newer theory 

suggested by the author look good. Authors proposing new theories seldom see the need to show 

that they can predict individual choice out-of-sample across a range of contexts (beyond those 

for which it was designed) more accurately than simple extrapolation. 

 

One notable exception is Koszegi and Rabin (2007), which reduces rather than increases the 

number of free parameters in prospect theory by endogenizing the reference point z. Evidence 

consistent with the more intuitive predictions of the Koszegi-Rabin model is reported in Abeler 

et al. (2011). However, Goette (2012) reports negative results for several tougher tests of the 

model, and Heffetz and List (2011) also report contrary evidence. Wenner (2013) shows that the 

Koszegi-Rabin model implies a surprising result, that a consumer who sees a price at the lower 

end of her anticipated range is less likely to buy a given item than if that same price were at the 

upper end of her anticipated range. It would be an impressive vindication of the Koszegi-Rabin 

model if this counterintuitive prediction were true, but Wenner’s experiment finds that the 

opposite (“good deal”) reaction is far more common. 

 

5.3 Diminishing Marginal Utility 

 

Venturing into slightly deeper waters, consider the meaning of diminishing marginal utility 

(DMU), the assertion that an extra dollar spent brings less utility at higher levels of consumption. 
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As noted in Chapter 2, economists from Bentham through Marshall invoked diminishing 

marginal utility to explain downward sloping demand curves for ordinary (non-risky) goods. 

They usually took DMU to be self-evident. On occasions when they took the trouble to explain 

DMU, however, they did not always regard it as a primitive property of preferences. The most 

persuasive explanation was that DMU is an emergent property that originates in the opportunity 

set. 

 

In today’s language, the explanation runs as follows. Assume that consumption alternatives are 

approximately separable, that is, each consumption choice brings some particular utility gain 

independently of other choices. (This assumption is for simplicity, and can be justified by 

redefining choices to occur over bundles of complementary composite goods, where the 

composites take into account substitutability.) Assume also that some opportunities yield more 

utility per dollar spent than others, and that the consumer is rational in the sense of not 

systematically choosing a less desirable opportunity when a better one is available. It follows 

immediately that realized marginal utility will diminish as consumption increases because the 

more valuable opportunities will be taken before the lesser ones. This argument works even if 

intrinsic marginal utility is constant. DMU therefore does not have to be innate, and can arise 

simply from the tendency to pick better opportunities first from any available set. 

 

Downward sloping demand curves are a direct consequence; individual (or aggregate) 

willingness to pay is higher for the most valuable opportunities chosen first, and declines as 

additional expenditures go to the less valuable opportunities. For example, a child might buy his 

favorite action hero first and then, until his allowance is exhausted, buy lesser heroes or villains. 
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DMU continues to play an important role in riskless choice theory. Quasi-linear utility functions 

and the single-crossing property are key ingredients of modern models in industrial organization. 

Friedman and Sakovics (2011) show how declining marginal utility of money can bring 

consumer choice theory closer to real life experiences. 

 

Hundreds of years ago, Bernoulli first made the long logical leap to use DMU to explain risky 

choice. It was not until the mid-twentieth century that the leap became routine. By that point, 

some of the best theorists of the era had built a sturdy safety net: the Expected Utility Theorem. 

In recent decades few economists seem to have thought twice about taking the leap, or even to 

have noticed the deep waters underneath. 

 

Milton Friedman and Leonard Savage are interesting exceptions. They had no quarrel with 

diminishing marginal utility in ordinary consumption, and championed the new theory of risky 

choice. But they wanted to allow for risk-seeking behavior over some ranges of income, which 

requires a change in sign so that sometimes marginal utility is increasing. To reconcile the 

apparent contradiction, they took pains to deny connections between the old and the newer 

notions of cardinal utility, and asserted that Bernoulli functions are “not derivable from riskless 

choices” (e.g. [1952], 464). As noted in Chapter 2, modern economics textbooks somehow allow 

diminishing marginal utility to cohabit peacefully with Bernoulli functions that may have convex 

segments. 

 

5.4 Are Risk Preferences Intrinsic? 
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Experimental economists in recent decades have devoted considerable attention to eliciting 

human subjects’ personal preferences over monetary lotteries. As we have seen in Chapter 3, the 

results typically are quite muddy, and remarkably sensitive to the elicitation method. 

 

This raises a more radical question: do personal risk preferences actually exist? To get started on 

this question, it is helpful to distinguish between intrinsic or innate preferences (coming entirely 

from within) and induced preferences (arising from external circumstances). Preferences over 

income, as represented by Bernoulli curves, surely are induced — because we care about money 

mainly for the goods and services it can buy, and our utility for money is sensitive to inflation 

and access to cash machines. But even preferences over goods and services apparently are also 

induced — we care about specific goods and services mainly because they may satisfy 

generalized desires for comfort and status. Indeed, Friedman and Savage (1948, 298–299) 

explain the convex portion of their Bernoulli function in terms of reaching an income level that 

would allow a person to join the upper class. 

 

There is no natural end to this chain of induction. Preferences for status and comfort presumably 

are grounded in biological and psychological imperatives, and so on. It thus seems silly to look 

for truly intrinsic Bernoulli functions. But how else might we think about how people choose 

among risky opportunities? 

 

We are now in the deep end of the conceptual pool. To stay afloat and get our bearings, we turn 

to revealed preference theory. It bypasses psychological (or biological or metaphysical) 
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questions about the true nature of preferences and points us to the relevant scientific question: at 

what level can one demonstrate regularity in risky choice? 

 

To find that level, we need to know how people perceive risk, and how perceived risk can be 

measured. The evidence, much of it summarized in Chapter 3, suggests that people, except for 

the most cognitively challenged, consistently avoid first-order, stochastically dominated, choices 

when dominance is transparent and non-negligible. Evidence on second moments is much more 

equivocal. 

 

It is time to go beyond these simple empirical points, and to try to develop clearer ideas of how 

people perceive risk and how those perceptions might be quantified. To those tasks we devote 

the rest of the chapter. 

 

5.5. How Do People Perceive Risk? 

 

As noted earlier, many economists since Markowitz (1952a) have come to regard risk as the 

dispersion or variance of monetary outcomes. But this is neither the original meaning of the 

word, nor its current use in common parlance. The Oxford English Dictionary, for example, 

defines risk as “a situation involving exposure to danger” or harm, and gives examples from 

several contexts including flouting law, engaging in outdoor activities, and concerns with 

security, fire, insurance, banking, and finance (see Chapter 4). 
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Even financial economists often give the word its original meaning. In a recent search (6 June 

2012) of SSRN.com, a finance-dominated database of 345,529 research papers, the word  “risk” 

appears in the titles of 11,144 papers. Of the ten most frequently downloaded of these finance 

papers, six use the exposure-to-harm meaning of risk, three use the dispersion meaning, and one 

uses both. 

 

As the dictionary definition suggests, risk is multifaceted. For example, bankers distinguish 

operational risk (harm resulting from computer failure, embezzlement, robbery, etc.) from 

political risk (harm stemming from possible changes in national policy, e.g., tax rates or even 

expropriation) and do not lump them together with credit risk (failure of borrowers to repay), 

counterparty risk (failure of other financial institutions to honor repayment agreements, possibly 

due to their own counterparty risk), market risk (changes in financial market prices or yields that 

decrease asset values or increase liabilities) or currency risk (arising from exchange rate 

fluctuations). 

 

Of necessity, bankers deal separately with different sorts of risk. Indeed, an important proximate 

cause of the 2008 financial meltdown was rating agencies’ conflation of credit risk and market 

risk.3 Likewise, as we saw in Chapter 4, insurance companies distinguish between risks arising 

from acts of God and those originating in human nature. 

 

The general point is that different levels and different kinds of risk change the opportunity sets 

available to decision makers in different ways. We will explore the implications in Chapter 6. 
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For the remainder of the present chapter, however, we will focus on risk that can legitimately be 

described by monetary lotteries with given probabilities. Even here, opinions may differ on 

which aspects of the probability distribution are perceived as salient. Since Markowitz (1952a), 

economists have taken dispersion (measured as the second moment of the distribution, as noted 

below) as the salient aspect. But if risk refers to the possibility of harm, then dispersion matters 

only on the downside. The upside is not perceived as risky except by some economists. 

 

To sharpen the point, consider how you would react if the stock market went up by 2 percent one 

day and 3 percent the next day. These happy events do not seem automatically to increase the 

possibility of harm, and your first reaction probably would be that there must be some attractive 

opportunities. But an economist trained in the Markowitz line of thinking would perceive 

greater-than-usual dispersion, and therefore greater risk. 

 

5.6. Measuring Risk 

 

In the present context, any numerical risk measure is a functional with non-negative values on 

the space of lotteries. Of course, there are many such functionals that might capture some aspect 

of risk. Following is a short list of some that have received attention from academic economists. 

• The standard risk measure is variance Var[L] = σ2
L = E(m – EL)2, the mean squared 

deviation from the mean of the distribution. Closely related measures include standard 

deviation (the square root of variance = σL = √(Var[L]) ), and volatility (the standard 

deviation per unit time of a dynamic stochastic process). As noted in the Appendix to 
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Chapter 2, conventional measures of risk aversion (such as the coefficient A(x) of absolute 

risk aversion) are essentially indexes of variance aversion.  

• It may surprise some that Markowitz (e.g., [1959] chapter 9, 193–194) argued that there is a 

better (albeit less convenient) way to capture an intuitive notion of risk: negative semi-

variance, defined as the mean squared negative deviation from the mean. In the notation of 

the Appendix to Chapter 2, it is Nsv[L] = E([m – EL]–)2, where y– = min{0, y}. This risk 

measure ignores outcomes in excess of the mean (it sets them to zero) and computes the 

variance of the shortfalls (outcomes m < EL) that remain.  

• Skewness Sk[L] = σL
-3E(m – EL)3 and kurtosis Kur[L] = σL

-4E(m – EL)4 , the standardized 

third and fourth moments of the distribution, are considered by some economists as risk 

measurements that interact with higher derivatives of the Bernoulli function; see below. 

 

A different set of risk measures have gained increasing attention by industry practitioners and 

some applied economists. Three of the most popular are: 

1. Loss probability (Lp), the probability of a negative (or zero) outcome. Also referred to as 

“tail risk,” this measure assigns a zero monetary value to a reference outcome, and simply 

reports the probability mass Lp[L] ∈ [0, 1] that the lottery L assigns to worse outcomes. For 

example, short-term-bond ratings are mainly based on the probability of loss relative to the 

promised payments. See, for example, Buffett (2012) and Gerstein (2012). 

2. Value at Risk (VaR)4 is the magnitude of maximum loss whose probability is no more than a 

given level q. For F denoting the cumulative probability distribution associated with L, it can 

be written VaR[L,q] = max {0, -F-1(q)}. For example, let q = 0.02 and let L closely 

approximate the standard (mean 0, variance 1) Normal distribution. Then VaR[L,q]  = 2.05, 
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i.e., the probability of a loss of 2.05 or more is 2 percent. The 2 percent level is favored by 

some financial practitioners because it closely approximates the worst calendar week of the 

year. See, for example Jorion (2006). 

3. Expected loss takes into account the magnitude of losses as well as their probability. It can be 

written as Xl [L] = -E ([m]–) = -Σpi min{0, mi}, which is equal to the loss probability Lp[L] 

times the average size of the loss when there is one. Long-term-bond ratings and new 

systemic risk measures (e.g., Hansen [2013]) seem to be mainly based on Xl. 

 

Compared to those in the previous list, these loss-related measures of risk more directly reflect 

the degree of harm associated with a lottery. For example, negative semi-variance captures the 

dispersion of outcomes below the mean, but harm (or loss) may occur only at lower (or perhaps 

higher) values than the mean. In such cases, dispersion doesn’t really capture the degree or 

likelihood of harm. 

 

Some recent work with higher moments and higher derivatives (see Eeckhoudt [2012] for a 

recent summary) can be regarded as an indirect attempt to capture downside risk or loss. An 

individual facing an unavoidable zero-mean lottery is called prudent if she is less averse to it in a 

higher income initial state, i.e., if she has convex marginal utility, i.e., if the third derivative of 

her Bernoulli function is positive. The interpretation of u''' > 0 as prudence remains a bit 

problematic, however, since an increase in u''' induces a lower investment in prevention 

(Eeckhoudt and Gollier [2005]). 
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===== 

Equation 2A.5, from Appendix to Ch 2 

Eu(m) = u(EL) + (1/2)u’’(EL)VarL + (1/6)u’’’(EL)SkL + (1/24)u’’’’(EL) KurL + ER5. 

====== 

 

As seen in equation (2A.5) of the Appendix to Chapter 2, greater prudence indicates a greater 

affinity for positive skewness in the lottery. That is, holding constant the mean and variance of 

the lottery, a prudent person prefers (a) a longer positive tail and (b) a shorter negative tail. We 

suspect that effect (b) is the main driver of empirical findings of prudence (e.g., Noussair, 

Trautmann, and van de Kuilen [2012]). Of course, effect (b) can be captured more directly by 

expected loss or value at risk. 

 

A similar analysis applies to kurtosis. A negative fourth derivative of a Bernoulli function 

corresponds to concavity of the second derivative, and implies that an individual would prefer to 

disaggregate two independent zero-mean risks across different states, rather than aggregating 

them in a single state. The literature refers to such individuals as temperate, but Eeckhoudt 

(2012) cautions that this interpretation works for some comparative exercises but not for others. 

 

Temperance is usually measured as –u'''' normalized either by u' or by u''', and by the same 

equation (2A.5) it can be seen as measuring aversion to kurtosis. More concretely, again holding 

constant the mean and variance, a temperate person prefers a lottery with (a') a shorter positive 
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tail and (b) a shorter negative tail. Again we believe that effect (b) is the main driver, and that it 

is best captured directly. 

 

Yet higher moments of probability distributions appear in Taylor expansion terms beyond those 

written out in equation (2A.5) of the Appendix to Chapter 2. Theoretical literature speculates that 

most people have Bernoulli functions whose nth derivatives are negative for n even and positive 

for n odd. Although we haven’t seen it spelled out in the literature, the logic is essentially the 

same as for the second and third derivatives. Higher odd moments capture asymmetries between 

the more extreme upper and lower tails (beyond the asymmetries already captured in lesser odd 

moments), and so positive odd nth derivatives capture effects (a) and (b) with respect to the more 

extreme tails. Likewise, higher even moments reflect the mass in either of the more extreme tails, 

and negative even nth derivatives capture effects (a') and (b) with respect to the more extreme 

tails. We maintain that effect (b) is what counts and that direct measures are preferable. 

 

Although the mathematics may charm some readers, we believe that the theory of prudence, 

temperance, and beyond is scientifically vacuous. Bernoulli functions can’t be observed directly, 

and inferring their shape from observed choices is fragile at best. Even under the maintained 

assumption of Constant Relative Risk Aversion, researchers have been unable to reach consensus 

on the order of magnitude of the normalized second derivative, as we have seen in Chapters 3 

and 4. Estimating higher derivatives seems like a hopeless empirical task even if they (or their 

ratios) were constant, which seems implausible. The exercise appears essentially metaphysical 

and, of course, if our interpretation is correct, it is completely unnecessary. All these derivatives 

are telling us the same thing, over and over — that people typically don’t like the lower tail 
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because it represents loss or harm. And that we know already, from the original loss-based 

definition of risk. 

 

Expected Loss versus Standard Deviation 

Standard deviation σ L is probably the most widely used measure of dispersion risk in a well-

defined lottery. The centered second moment Var[L] = σ L2 = E[m-EM]2 has a scale that is 

unintuitive, but taking its square root makes it easy to interpret as the magnitude of a typical 

deviation from the mean. Expected loss Xl [L] is easier to compute and has a very direct 

interpretation in terms of monetary lotteries that may have losses as well as gains. 

 

Are these measures really so different in practice? That is, if we stopped using standard deviation 

and instead used expected loss to compare the risk inherent in alternative choices, would we ever 

make different decisions? If not — if these and other risk measures typically rate lotteries more 

or less similarly — then there wouldn’t be much at stake in the present discussion. 

 

To address this practical question we performed the following exercise. Systematically vary the 

lotteries and for each lottery compute both measures of risk. Next, graph the pair of measures as 

a point on a scatter plot. If the points bunch tightly around a positively sloped line, then the two 

risk measures are roughly linear transformations of each other, and in that case for practical 

purposes are pretty much the same. 

 

Each of the 121 diamond markers in Figure 5.1 plots the expected loss versus standard deviation 

associated with different lotteries. The outcomes of each lottery are distributed uniformly over 
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[a, b], where a takes all integer values from –10 to 0 and b takes all integer values from 0 to +10. 

For example, the round marker in the northeast corner of the scatter denotes a lottery uniformly 

distributed on [–10, 10]; its standard deviation is 5.77, and the expected loss is 5.0. 

 

The regression line in the figure clearly shows a positive but imperfect relation (Spearman 

correlation 0.71) between the two risk measures. 

---Figure 5.1 About Here--- 

Of course, the uniform distribution is rather special. The beta distribution is a two-parameter 

family of distributions on a fixed interval, usually normalized to [0, 1], that is reduced to the 

uniform distribution when the two parameters, α and β, are both 1.0. To include possible losses, 

we shifted the support interval to [–0.5, 0.5] and computed the two risk measures for the 121 

lattice points α ∈ {0.05, 1, 2, 3, . . , 10} and , β ∈ {0.15, 1, 2, 3, . . , 10}(the lower limits of α 

and β were shifted away from zero to avoid undefined values). 

 

Figure 5.2 shows the resulting scatterplot of expected loss versus standard deviation in diamond 

markers (with lottery for beta distribution with α = 5 and β = 5 shown by a circular marker; 

expected loss = 0.12. standard deviation = 0.15). Given the nature of the scatter, no linear 

regression line can capture the main regularities of the relationship between standard deviation 

and expected loss across the 121 lotteries. Their Pearson correlation is 0.1, and Spearman 

correlation is –0.12. 

 

These figures suggest that, as a practical matter, standard deviation and related dispersion 

measures are not closely related to the more direct measures of harm. That conclusion is 



29 
 

reinforced by similar analyses of the Normal distribution and various skewed combinations of 

uniform distributions (Sunder [2012]).  

---Figure 5.2 About Here--- 

Does the practical difference between the two sorts of measures extend beyond simple lotteries? 

Adapting an idea developed in a theoretical paper by Friedman and Abraham (2009), an 

empirical paper by Feldman (2010) examines financial market behavior. Feldman defines 

perceived loss (PL) as an exponential average of historical losses experienced in a financial 

asset. Thus PL is an empirical counterpart of Xl that gives greater weight to more recent events. 

Feldman found that PL predicts subsequent medium- and long-run returns in a large set of 

mutual funds better than existing popular sentiment indexes, including the VIX index and other 

indexes based on dispersion. 

 

This finding suggests that Xl better captures investors’ perceptions of risk than does variance or 

similar dispersion measures. But it is only a suggestion, because there is a large gap between 

theoretical lotteries with well-defined distribution functions, and typical risky choices in 

financial markets (or elsewhere in the world) for which the distribution can only be guessed from 

historical or other evidence. We leave it to others to suggest how best to bridge that gap. 

 

5.7 Discussion 

Our explorations in this chapter have settled little, but they do provide at least three key 

perspectives for the remaining chapters. First, it is now clear that intrinsic risk preferences, 

whatever they may be, are not directly observable, and are quite difficult to access even 

indirectly. 
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Second, a person’s revealed risk preferences may be driven more by her circumstances than by 

her intrinsic preferences. For example, classic diminishing marginal utility is an emergent 

property of getting the “most bang for the buck,” and even the three-segment (concave, convex, 

concave) Bernoulli function suggested by M. Friedman and L. Savage may arise more from class 

structure than from intrinsic risk preferences. 

 

Third, for most people, perceived risk may actually have little to do with second moments 

(variance) or higher moments (skewness, kurtosis, and beyond). Harm in simple lotteries may be 

captured better by direct (first moment) measures of the lower tail. By Occam’s Razor, anything 

more complicated requires careful justification. 

===== 

Equation 2 from Appendix to Ch 2 

Eu(m) = u(EL) + (1/2)u’’(EL)VarL + (1/6)u’’’(EL)SkL + (1/24)u’’’’(EL) KurL + ER5. 

====== 
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1 Physicist Max Planck ([1948] 22) expressed a similar thought: “Eine neue wissenschaftliche Wahrheit pflegt sich 
nicht in der Weise durchzusetzen, daß ihre Gegner überzeugt werden und sich als belehrt erklären, sondern vielmehr 
dadurch, daß ihre Gegner allmählich aussterben und daß die heranwachsende Generation von vornherein mit der 
Wahrheit vertraut gemacht ist.” Laue gehaltenen Traueransprache. The translation (as cited in Kuhn, 1970) “A new 
scientific truth does not triumph by convincing its opponents and making them see the light, but rather because its 
opponents eventually die, and a new generation grows up that is familiar with it.” 
2 A problem with the probability weighting function is that it over weights not just gains and losses that are rare and 
extreme, but also (contrary to most data) over weights moderate size events if they are rare. This empirical glitch is 
repaired in cumulative prospect theory (Tversky and Kahneman [1992]) by applying weights to the cumulative 
probability function instead of directly to the probabilities.  
3 Lo (2012), among others, shows how the problem was exacerbated by ambiguous liability for covering higher-
than-advertised default rates on products engineered from home mortgages. 
4 Not to be confused with variance, Var. Note that VaR has a very similar flavor to risk measures favored by 
engineers, such as a “100 year flood.” 
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