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Abstract 

Data-driven approaches to resolving feedback processes driving the earth system over 

multi- spatial and temporal scales 

By 

Hongxu Ma 

Doctor of Philosophy in Geography 

University of California, Berkeley 

Professor Laurel G. Larsen, Chair 

 
Data is one of the essential components in analyzing complex earth system 

problems. With high-quality data more feasible to the researchers, more details of the 
system could be revealed by those data-intensive computational and data-driven 
approaches.  The measurement and data collection devices have been developing 
dramatically, especially those used for earth system science. The high sampling 
resolution in all spatial, temporal and spectral scale have enabled the analysis of earth 
system problems into a data-driven era.  Meanwhile, the fast development of 
computational ability and resources allow the emergence of innovative data-driven 
methods (e.g., information theory, traditional statistical learning models, deep learning 
models). The data-driven approach is different from the physical-based (or knowledge-
based) modeling. It emphasizes learning and generalizing the rules from large amounts of 
representative data. It tries to fit the probability distribution function, for any questions, 
with the support of large numbers of observations with little constraining conditions like 
those from the physical-based model. However, before relying on purely data-driven 
methods, it is essential to remember that Earth systems are characterized as nonlinear, 
complex and dynamic systems with couplings and feedback among components and 
subsystems. 

Additionally, these coupled processes change depending on the status of the 
system and the spatial and temporal scale at which the system is analyzed. To understand 
the underlying mechanisms that drive complex systems, it is useful to conceptualize the 
system as a network of variables undergoing interactions and feedback. Traditional 
statistical analysis methods are ill-suited to capture the key attributes of this type of 
feedback processes due to the stochasticity of the variables, the nonlinearities of the 
couplings and the non-stationarity of the system. The limitation of the data (in terms of 
resolution and length in both spatial and temporal scale) and computational ability further 
narrow the effectiveness of those methods. 

The various science communities are now facing a new challenging problem. On 
the one hand, you have 1) more and more data being collected, 2) the significantly-
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improved ability to depict the status of a system and to describe the details of a 
relationship between the components within the system, and 3) the computational 
capacity and resources to be able to handle this large number of data, motivating the use 
of data-driven methods.  

In this dissertation, I will examine the potential for integrating data-driven 
techniques into earth systems science to improve our understanding of earth-surface 
processes. Specifically, I focus on applying data-driven techniques for resolving causal 
interactions of the several complex earth systems over multispectral and temporal scales. 
Four complex earth system problems with different spatial and temporal scales are 
discussed. First, we implement the data-driven methods in regional and decadal issues, 
streamflow prediction, as a case study. Our findings suggest that while information-flow 
identifies dominant streamflow controls, the results should not be limited to only “critical 
hydrologic timescales;” instead they should guide a range of timescales over which 
inputs, stores, and losses are filtered into catchment discharge. Second, we analyzed a 
regional and yearly problem, the feedback process between vegetation and topography in 
a lake delta ecosystem. The transfer entropy analysis suggests that different vegetation 
communities play functionally different roles in landscape evolution that should be 
differentiated in ecogeomorphic models. Within such models, it would be most 
imperative to resolve detailed flow characteristics at lower to low-middle island 
elevations. 

Furthermore, within elevation zones, it is likely essential to differentiate between 
the roles of multiple vegetation communities rather than treating the entire elevation zone 
as a single ecogeomorphic entity. Third, we analyzed global and millennium problems, 
the interaction among climatically variables over 42,000 years. We show that, during the 
past 420,000 years, orbital forcings trigger temperature and CO2 responses at short (5 
kyr) time lags. Over longer timescales, internal feedback, mediated by interactions with 
dust, also plays a significant role in governing temperature and CO2 concentrations. The 
short-term influence of CO2 on temperature was stronger than dust’s long-term impact, 
consistent with on radiative forcing. However, dust remained an essential driver of 
temperature over 50-kyr time lags, the amount of time between sequential glacial maxima 
and minima during the latter portion of the Pleistocene. Last, we analyzed a global and 
decadal problem, the interaction between ocean and precipitation on land. We 
quantitatively demonstrate that Sea Surface Temperature (SST) over the Gulf of Guinea 
controls moisture advection and transport to the West Sahel region; strong bidirectional 
interaction exists between local vegetation dynamics and rainfall patterns. The spatial 
distribution map of time lag with most significant transfer entropy also shows the 
apparent trend of each climate indices tested in this research. The Niño 3+4 and Niño 4 
have a relatively short time lag with significant transfer entropy to the west coast and 
have insignificant information transferred to the middle US. The Niño 1+2 and Niño 3 
have a relatively short time lag with significant information transferred to the middle 
region but insignificant information transferred to the west coast. 

By testing the effectiveness and efficiency of the data-driven methods in complex 
earth system problems over multiple spatial and temporal scales, the results verified the 
ability of those methods in identifying and quantifying the strength, statistical 
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significance, directionality and critical time lags of feedback (as well as one-way forcing) 
among variables. With these data-driven methods, we could identify which components 
comprise the system, and which dominate changes within the system. With the input of 
that knowledge, we could further predict the behavior of an element of interest or the 
stationery of the whole system and simulate the future behavior of the system under 
different scenario after fully understanding the rules and the connections of a system. 
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Chapter 1  
Introduction 
 

Data is one of the most important components in analyzing complex earth system 
problems. With high quality data more feasible to the researchers, more details of the 
system could be revealed by those data-intensive computational and data-driven 
approaches.  The measurement and data collection devices have been developing 
dramatically, especially those used for earth system science. The high sampling 
resolution in all spatial, temporal and spectral scale have enable the analysis of earth 
system problems into a data-driven era. Measurements of features that were nearly 
impossible to take in the past are now becoming possible (e.g. large range ground water 
estimation from GRACE (Rodell et al. 2007)). 

Take remote sensing techniques for example. Landsat-8 (launched in 2013 by 
USGS) provides high quality earth surface observation images with 30-meter spatial 
resolution, 16-day temporal resolution and 9-band spectral resolution. Sentinel-2A/B 
(launched in 2015 and 2017 by ESA) provides images that are up to 10 meters in spatial 
resolution, have a 5-day temporal resolution and 13 bands. These imagery data 
significantly contribute to the study and analysis of the questions in multiple areas in 
earth system science, including, but not limited to, agriculture, forestry, hydrology, 
ecology, glaciology, and urban and climate change studies. Furthermore, there are local 
scale developments with flux towers and other in-site devices that support the high-
quality data measurements of various variables. These devices provide high frequency 
(up to 20 Hz) and highly accurate measurements of CO2, air moisture, wind speed and 
direction, dust and so on. The whole communities asked for a new way to use and 
cooperate with these high-quality datasets. 

Meanwhile, the fast development of computational ability and resources enable 
the emergence of innovative data-driven methods (e.g. information theory, traditional 
statistical learning models, deep learning models) (Labrinidis and Jagadish, 2012). The 
data-driven method is different from the physical-based (or knowledge-based) modeling. 
It emphasizes learning and generalizing the rules from large amounts of representative 
data. It tries to fit the probability distribution function, for any questions, with the support 
of large numbers of observations with little constraining conditions like those from 
physical-based model. 

Take traditional statistical learning models (often referred to as machine learning 
models) for example. They are an interdisciplinary method involving probability, 
statistics, algorithms, computer science and optimization. By mimicking the way that 
humans learn, statistical learning models reorganize the knowledge structure and improve 
the generalizing and predicting ability through an iterative approach. With little human-
defined rules or knowledge, the model has a systematic way to learn from the data and 
their features based on statistical estimation. There are four major types of statistical 
learning models. 1) Supervised learning, which is the most common statistical learning 
method. Supervised learning models will learn from the dataset with labelled data (given 
the correct classification or value) and generate a model to classify the new observation 
or predict the outcomes. Within the dataset, there is a mapping from the features (X) to 
the result (y). The result could be a label (for classification models) or a value (for 
regressive models). The model uses the features (X) to estimate the prediction. And by 
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comparing the model predicted value to the known true results, the model is able to be 
optimize to the direction with better predicting ability. 2) Unsupervised learning, which 
directly learns from a dataset without labelled results. Unsupervised learning models are 
usually used for clustering purposes. 3) Semi-supervised learning, which is a combination 
of supervised and unsupervised models. Considering the labelled data is costly, the semi-
supervised learning model could use its unsupervised part to find and generalize the 
features from the unlabeled dataset, then use its supervised part to estimate and validate 
the prediction of the labeled dataset. 4) Reinforcement learning, which emphasizes on 
optimizing the expected outcomes based on the current environment status or stationary 
system. The idea comes from behavioral psychology, describing an organism could 
generate a series of behavior habits that leading to maximize benefit from learning the 
rewards and punishments from the environment. These traditional statistical learning 
models have become the new paradigm in dealing with the emerging high-quality 
datasets.  

However, before relying on purely data-driven methods, it is important to 
remember that Earth systems are characterized as nonlinear, complex and dynamic 
systems with couplings and feedback among components and subsystems. Additionally, 
these coupled processes change depending on the status of the system and the spatial and 
temporal scale at which the system is analyzed. To understand the underlying 
mechanisms that drive complex systems, it is useful to conceptualize the system as a 
network of variables undergoing interactions and feedback. Traditional statistical analysis 
methods are ill-suited to capture the key attributes of this type of feedback processes due 
to the stochasticity of the variables, the nonlinearities of the couplings and the non-
stationarity of the system. The limitation of the data (in terms of resolution and length in 
both spatial and temporal scale) and computational ability further narrow the 
effectiveness of those methods. 

The various science communities are now facing a new challenging problem. On 
one hand, you have 1) more and more data being collected, 2) the significantly-improved 
ability to depict the status of a system and to describe the details of a relationship 
between the components within the system, and 3) the computational ability and 
resources to be able to handle this large number of data (Chen and Zhang, 2014), 
motivating the use of data-driven methods. However, on the other hand, we still want to 
gain a deeper understanding of the underlying mechanisms, so how do we now create a 
relationship between pure data-driven methods and pure physical-based models?  

Research in earth system science often concerns itself with the following questions: 
• Which components comprise the system, and which dominate changes within the 

system? 
• How to predict the behavior of a component of interest or the stationary of the 

whole system? 
• How to simulate the future behavior of the system under different scenario after 

fully understanding the rules and the connections of a system? 
• What are the temporal trends and seasonal variability of a component of interest? 
• What are the causal relationships of a component of interest to the others within 

the system? 
• How to help with management (e.g. wetland restoration strategies)? 
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In the study of earth system science, most of the data or information are recorded 
in the form of spatial data and time series data. For example, the scientists could analyze 
the time series data of precipitation, snow melting, wind speed and temperature to predict 
the streamflow at the outlet. We could also analyze the time series data of historical 
climate data, like CO2, temperature (estimated from O18), dust and CH4 for up to 
420,000 years to find the relationships between those components and how these 
relationships are changed along with time.  

Meanwhile, with the development of remote sensing technology and LiDAR 
(Light Detection And Ranging), more and more earth system science data can be 
measured and recorded in the form of spatial data. Thus, it is becoming possible to fuse 
the temporal data with the spatial data to answer more complex questions. For example, 
we could analyze the temporal and spatial pattern of the sea surface temperature anomaly 
and the sea surface pressure to predict the climate extreme in the United States, or to 
predict the precipitation in the Sahel. Furthermore, we could also try to modify the 
methods to analyze spatiotemporal dataset that are traditionally used for time series data. 
This modification could then be used to analyze how different types of vegetation act 
differently in the feedback between bio-volume and topography at the wetland delta. 

In this dissertation, I will examine the potential for integrating data-driven 
techniques into earth systems science to improve our understanding of earth-surface 
processes. Specifically, I focus on applying data-driven techniques for resolving causal 
interactions between variables sensed remotely and identifying critical timescales over 
which one variable has a significant causal effect on another. In the next section, I 
introduce transfer entropy, a different statistical method that we hope to be the key in 
integrating data-driven models into physical-based modeling work flows. 
 
Transfer entropy, a way to study complex earth system science from a 
perspective of information theory. 
 

Our technology for data collection and new computational tools for analysis are 
now such that we are faced with an unprecedented opportunity to gain new 
understandings of earth surface processes. However, appropriate application of this new 
arsenal has been challenging, due to the noisy and nonlinear nature of many 
environmental systems. Traditional machine learning methods and deep learning methods 
are good at predicting the variables of interest. But it is hard for those methods to depict 
the relationships, i.e. mechanisms, among the components that constitute the system. It is 
also challenging for traditional statistical models to identify the strength, directionality 
and the time lag of the effect of one variable on another. We have to infer causal 
associations between variables, thereby improving mechanistic understanding and 
facilitating prediction. 

Transfer entropy is an information-theoretical method that statistically identifies 
directionality of forcing and feedback by measuring information transfer among pairs of 
variables. Information is defined as the Shannon entropy, H, or total uncertainty present 
in a variable’s distribution (Shannon 1949): 

𝐻𝐻 = −∑ 𝑝𝑝(𝑖𝑖)𝑙𝑙𝑙𝑙𝑙𝑙2𝑝𝑝(𝑖𝑖)𝑖𝑖 . [1.1] 
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where 𝑝𝑝(𝑖𝑖) denotes the probability that 𝑖𝑖 th event happened. H measures uncertainty in 
units of bits.  

Mutual information is used to measure the reduction in one variable’s uncertainty 
by knowing the other variable. It is calculated as 

𝐼𝐼(𝑋𝑋𝑡𝑡,𝑌𝑌𝑡𝑡) = ∑ 𝑝𝑝(𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡)𝑙𝑙𝑙𝑙𝑙𝑙2
𝑝𝑝(𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡)

𝑝𝑝(𝑥𝑥𝑡𝑡)𝑝𝑝(𝑦𝑦𝑡𝑡)𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡 .      [1.2] 

where 𝑥𝑥𝑡𝑡 ,𝑦𝑦𝑡𝑡 are values in time series 𝑋𝑋𝑡𝑡 and 𝑌𝑌𝑡𝑡. 
Transfer entropy (TE) adds directionality to mutual information. It measures how 

much information is transferred between two variables, quantifiable as the reduction in 
uncertainty in the distribution of variable Y based on knowing the value of variable X at a 
time lag 𝜏𝜏, conditioned on Y’s own history. Typically, (Schreiber 2000, Ruddell and 
Kumar 2009), it is formulated from time-series 𝑋𝑋𝑡𝑡 and 𝑌𝑌𝑡𝑡 as follows: 

𝑇𝑇(𝑋𝑋𝑡𝑡 → 𝑌𝑌𝑡𝑡,𝑘𝑘, 𝑙𝑙,𝜔𝜔, 𝜏𝜏) = ∑ 𝑝𝑝(𝑦𝑦𝑡𝑡,𝑦𝑦𝑡𝑡−𝜔𝜔∆𝑡𝑡
[𝑘𝑘] , 𝑥𝑥𝑡𝑡−𝜏𝜏∆𝑡𝑡

[𝑙𝑙] )𝑦𝑦𝑡𝑡,𝑦𝑦𝑡𝑡−𝜔𝜔∆𝑡𝑡
[𝑘𝑘] ,𝑥𝑥𝑡𝑡

[𝑙𝑙] 𝑙𝑙𝑙𝑙𝑙𝑙2
𝑝𝑝(𝑦𝑦𝑡𝑡|(𝑦𝑦𝑡𝑡−𝜔𝜔∆𝑡𝑡

[𝑘𝑘] ,𝑥𝑥𝑡𝑡−𝜏𝜏∆𝑡𝑡
[𝑙𝑙] ))

𝑝𝑝(𝑦𝑦𝑡𝑡|𝑦𝑦𝑡𝑡−𝜔𝜔∆𝑡𝑡
[𝑘𝑘] )

.   [1.3] 

Here 𝑥𝑥𝑡𝑡−𝜏𝜏∆𝑡𝑡
[𝑙𝑙] and 𝑦𝑦𝑡𝑡−𝜔𝜔∆𝑡𝑡

[𝑘𝑘] are the immediate history of 𝑥𝑥𝑡𝑡−𝜏𝜏∆𝑡𝑡 and 𝑦𝑦𝑡𝑡−𝜔𝜔∆𝑡𝑡 with block length 
of 𝑙𝑙 and 𝑘𝑘 respectively, where 𝑥𝑥𝑡𝑡−𝜏𝜏∆𝑡𝑡 and 𝑦𝑦𝑡𝑡−𝜔𝜔∆𝑡𝑡 are the values of 𝑥𝑥𝑡𝑡 and 𝑦𝑦𝑡𝑡 at 𝜏𝜏 and 𝜔𝜔 
time steps earlier respectively. The assumption that setting 𝑘𝑘 = 𝑙𝑙 = 1 is conservatively 
biased as it neglects the information transferred to 𝑌𝑌𝑡𝑡 with block lengths 𝑘𝑘 > 1 and 𝑙𝑙 > 1 
(Marschinski and Kantz 2002, Sabesan, Narayanan et al. 2003). However, it is commonly 
employed in practice to reduce the dimensionality of the probability distributions in 
equation 2 to three-dimensional distributions (as shown in Figure 1.1), to make them 
computationally tractable (Ruddell and Kumar 2009, Larsen and Harvey 2017). 

In TE analyses, a “source” variable is causally related to a “sink” variable if 
knowledge of the source variable’s value significantly reduces uncertainty in a future 
value of the sink variable. Using a modified version of the equation by Schreiber (2000) 
that is appropriate for seasonally fluctuating variables (Larsen & Harvey, 316 2017), TE 
can be used to calculate the reduction in uncertainty for time lag τ. 

Timescales of causal interactions among variables are deduced by computing TE 
over a range of different time lags τ, assessing both the magnitude and significance of the 
reduction in uncertainty in Y due to knowledge of lagged variable 𝑋𝑋𝑋𝑋−𝜏𝜏. The reduction in 
uncertainty is deemed significant when the TE value exceeds the 95th percentile of a 
distribution of transfer entropies computed from 500 randomly shuffled versions of the 
input data matrices (Ruddell & Kumar, 2009a). Here, “critical timescales” are defined as 
those time lags or ranges of time lags for which a source variable significantly reduces 
uncertainty in a sink variable. The superiority of the TE based approach in identifying 
interaction time lags (timescales) relative to approaches based on lagged correlations or 
lagged mutual information has been demonstrated by Murari et al. (2015; 2018), who 
compared the performance of these approaches in the study of different signals in 
physics. Meanwhile, Wibral et al. (2013) demonstrated TE’s effectiveness in resolving 
interaction times among different neuron signals from the different regions of the brain. 
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Figure 1.1 Transfer entropy is calculated from joint and conditional probability 
distributions based on triplets (a-c) of points: It measures the reduction of uncertainty in a 
dependent variable Y at a time t1 (a) that is attributable to knowing the value of variable X 
at time t0 (b), conditioned on the reduction of uncertainty attributable to knowing the 
value of Y at t0 (c). In the traditional version of transfer entropy used to analyze time 
series, joint and conditional probability distributions based on these triplets are computed 
by scanning down the time-series (orange arrow) (Ma et al., 2018 Figure 4A).  
 

TE has been broadly used in many scientific areas, such as financial markets, 
economics, social media, physiology, neuroscience, biochemical, chemistry, ecology, 
earth system science and so on (Vibral and Vicente, 2014; Barnett et al., 2009; Vicente et 
al., 2011). Schreiber (Schreiber, 2000) uses TE to analyze the relationship between heart 
and breath rates in the original transfer entropy paper. Ver Steeg and Galstyan (Ver Steeg 
and Galstyan 2013) analyze the TE of a Twitter social network formed by a group of 
users. Bauer (Bauer et al., 2007) uses TE identify the direction of disturbance propagation 
in a chemical process. Dimpfl and Peter (Dimpfl and Peter 2013) use TE to quantify the 
information flow between financial markets for pre-crisis, crisis and post-crisis periods 
and Baek et al use it to analyze the strength and the direction of information flows that 
are transferred within the US stock market and conclude that energy industries influence 
the whole market (Baek et al., 2005).  

In earth system science, Ruddell and Kumar (Ruddel and Kumar, 2009a, 2009b) 
identify the feedback processes among ecohydrological variables at a flux tower by their 
directionality, relative strength, statistical significance. The process networks that formed 
from the results of the TE analysis are used to delineate the key couplings, critical time 
scales and the stationary of the system. Alicia Sendrowski and Paola Passalacqua 
(Sendrowski and Passalacqua, 2017) quantified process networks of water levels in 
different portions of a river delta and the extent to which those water levels were 
controlled by wind, tide, or measured river discharge. Mike Rinderer et al. (Rinderer et 
al., 2017) tested the ability of these techniques to map out flow paths in a highly 
instrumented watershed by evaluating the transfer of information between water level 
sensors. Goodwill et al. (Goodwill et al., 2018) characterize the relationship between joint 
connectivity and energy, water and carbon flux before, during, and after disturbances. 
Goodwill and Kumar (Goodwill and Kumar, 2017) introduced a framework for temporal 
information partitioning networks that enables us to interpret process connectivity and to 
inference of behavioral shifts in ecohydrological systems by measuring the lagged 
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multivariate mutual information. Transfer entropy is potentially more powerful to infer 
causal relationships between variables, especially within a complex system, than other 
tools like linear correlation. Transfer entropy is able to identify the driving or responding 
components in a system and to detect directional coupling of subsystem (Schreiber, 
2008). The information theory measure is also able to detect the non-linear correlation 
and robust for noisy and chaotic system. And comparing with lagged mutual information, 
TE could further distinguish the information that is produced by shared history or input 
perturbations. 

Strengths of TE that contributed to these applications are its ability to: 1) measure 
the strength of both linear and non-linear interactions between flux and state variables, 2) 
reveal the direction of these interactions in time/space, and 3) quantify the timescales of 
the interactions. 

 We now perform two tests to demonstrate the ability to identify the directionality 
and strength of the non-linear coupling in a complex system with noisy. More detailed 
tests and sample applications are done in the second chapter to illustrate the performance 
of TE analysis in identifying the strength, directionality and statistical significance of 
interactions.   
 
Demonstration of transfer entropy to single coupled Lorenz system(s) 
 

We used the Lorenz system (Figure 1.2), a simplified model of atmospheric 
convection to evaluate the effects of noise and coupling strength on information flow 
(i.e., transfer entropy (TE)). The Lorenz system is described by three differential 
equations: 

𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

= 𝜎𝜎(𝑦𝑦 − 𝑥𝑥), 𝑑𝑑𝑦𝑦
𝑑𝑑𝑡𝑡

= 𝑥𝑥(𝜌𝜌 − 𝑧𝑧) − 𝑦𝑦, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= 𝑥𝑥𝑦𝑦 − 𝛽𝛽𝑧𝑧[4] 
where x is the convective velocity, y is the vertical temperature gradient, and z is 

the heat flow, 𝜎𝜎is the Prandtl number (dimensionless ratio of momentum 
diffusivity/thermal diffusivity), 𝜌𝜌 is the Rayleigh number (dimensionless parameter that 
measures the fluid instability arising because of temperature and density stratification 
with change in depth), and 𝛽𝛽 is the parameter describing the horizontal wave number of 
convective motions.  
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Figure 1.2: (A) The Lorenz system with σ =10, ρ = 8/3, and 𝛽𝛽 = 28 and (B) pairwise 
information flow between X, Y, and Z with 98% statistical confidence levels (dashed 
lines). 
 
TE for identifying the driving component and feedbacks  

We initially computed information flow between all X, Y, and Z pairs (Figure 
1.2) to demonstrate that TE was able to identify the driving component and feedbacks. By 
comparing the strength of directional information flow of each variable pairs. Y has 
stronger information flowing into X and Z than those receive from them. We see that TE 
correctly identifies y, the vertical temperature gradient, as the main system driver as it 
sets up the convective velocity (X) and subsequent heat flow (Z); this is evidenced by the 
fact that Y contributes the greatest amount of information among all the “system pairs”. 
TE for resolving causal relationships with increasing noise 
 

We now test the ability of TE to resolve causal relationships as the noise within 
the system progressively increased. This can be formulated T as follows, 𝑍𝑍𝑡𝑡 = G(𝑍𝑍𝑡𝑡−1 + 
∈𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑠𝑠𝑂𝑂𝑂𝑂𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙+𝑝𝑝𝑂𝑂𝑠𝑠𝑝𝑝𝑂𝑂𝑠𝑠𝑠𝑠), where G(Zt-1) is the noise-free map (Lorenz system) and is 
error-free in that no noise has been added and ∈𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑠𝑠𝑂𝑂𝑂𝑂𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙+𝑝𝑝𝑂𝑂𝑠𝑠𝑝𝑝𝑂𝑂𝑠𝑠𝑠𝑠is the noise that is 
introduced both through observational (i.e., instrumental) error and process error. In this 
experiment, noise was progressively added to the system by adding white noise with an 
increasing standard deviation (described as relative noise in the figure below). We see 
that TE is quite sensitive to noise (Figure 1.3) where relatively low levels of noise affect 
its ability to resolve causal pairs. Because all of the results presented in our TE analysis 
(Figures 1.2 – 1.3) were highly significant we have high certainty in the technique for 
resolving causal interactions. 
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Figure 1.3: The influence of noise on information transfer between x and z in the Lorenz 
system. The dashed line shows 98% confidence level(s) and the noise level refers to the 
relative standard deviation of the white noise added as the Lorenz system was solved. 
 
 
The application in earth system over multi-spatial and temporal scales 
 
Function reconstruction using transfer entropy and statistical learning models 
(Chapter 2) 
 

Transfer entropy (TE) can identify the critical time lags, information flow 
directions, relative strength among variables in a complex system. In this section, we 
discuss how to use the results from a TE analysis can help with function reconstruction. 
We explain how TE analyses identify the critical predictors, linearity, power of the non-
linear terms and critical time lags. With this information, we use statistical learning 
models, like LASSO (Least Absolute Shrinkage and Selection Operator), random forest 
regression and support vector machine, to reconstruct the function by learning from the 
data. The R-square of test dataset in our analysis reaches 99%. We then implement this 
approach in a real earth system science problem, streamflow prediction, as a case study. 
Our findings suggest that while information-flow identifies dominant streamflow 
controls, the results should not be limited to only “critical hydrologic timescales;” rather 
they should guide a range of timescales over which inputs, stores, and losses are filtered 
into catchment discharge. 
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Regional and yearly scale problem (Chapter 3) 
 

Coastal river deltas are complex and dynamic ecosystems where vegetation plays 
an essential role in influencing, as well as being influenced by, physical processes, 
creating ecogeomorphic feedbacks between vegetation species and topography. However, 
this feedback is poorly understood. This knowledge gap is due to difficulties in detecting 
and quantifying the interactions that define the feedback. Emerging technology and data 
analysis techniques like transfer entropy have made it possible to overcome former 
difficulties associated with sampling constraints and delineate bi-directional feedback 
within many vegetation classes at the delta scale. Here, the transfer entropy analysis was 
consistent with widespread understanding of marsh zonation, yet produced additional 
insight into which vegetation classes specifically had a dominant impact on topographic 
change. Ecogeomorphic feedback was resolvable only within native vegetation classes 
(Nelumbo and Polygonum) that occur over low to moderate elevations within the Wax 
Lake Delta. In contrast, nonnative vegetation classes (Colocasia and Eichhornia) are not 
as effective at accreting sediment as native classes. The transfer entropy analysis suggests 
that different vegetation communities play functionally different roles in landscape 
evolution that should be differentiated in ecogeomorphic models. Within such models, it 
would be most imperative to resolve detailed flow characteristics at lower to low-middle 
island elevations. Furthermore, within elevation zones, it is likely important to 
differentiate between the roles of multiple vegetation communities rather than treating the 
entire elevation zone as a single ecogeomorphic entity. 
 
Global and millennium scale problem (Chapter 4) 
 

Earth’s climate system is controlled by multiple external forcings and internal 
dynamics, including orbital variations (Hays, Imbrie, and Shackleton 1976), greenhouse 
gases (Shakun et al. 2012; Petit et al. 1999), and atmospheric aerosols (Lambert et al. 
2008).  Because of the complexity and nonlinearity of the climate system, 
characterization of the relative contributions (causation) of each factor, and their 
interactions, to climate change is incomplete. Here, we quantify information exchange 
between orbital variations, greenhouse gases, atmospheric aerosols, and air temperature 
to attribute causal relationships and for the first time provide a network map showing the 
direction and strength of climate system feedbacks over a range of timescales. We show 
that, during the past 420,000 years, orbital forcings trigger temperature and CO2 
responses at short (5 kyr) time lags. Over longer timescales, an internal feedback, 
mediated by interactions with dust, also plays a significant role in governing temperature 
and CO2 concentrations. The relative importance of the drivers engaged in this tripartite 
feedback shifts with timescale. At the shortest lags (5-25 kyr), CO2 drove temperature 
changes and dust abundance. However, at longer lags (26-55 kyr), dust assumed the role 
as a driver, mediating temperature and CO2 feedbacks. The short-term influence of CO2 
on temperature was stronger than dust’s long-term impact, consistent with on radiative 
forcing (Claquin et al. 2003; Takemura et al. 2009). However, dust remained an 
important driver of temperature over 50-kyr time lags, the amount of time between 
sequential glacial maxima and minima during the latter portion of the Pleistocene. We 
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hypothesize a mechanism whereby dust supplies essential micronutrients to enhance 
marine and terrestrial productivity (Martin 1990; Yu et al. 2015). Therefore, at longer 
timescales, temperature was controlled by dust via its strong effects on CO2. Challenging 
previous findings, we demonstrate that the relationship between dust and temperature was 
not synchronous (Lambert et al. 2008; Martínez-Garcia et al. 2011), but instead was 
highly dynamic: initially being weak, progressively strengthening, and finally dominating 
at long timescales. 
Global and decadal scale problem (Chapter 5) 
 

Climate teleconnection often interacts with local precipitation feedbacks and thus 
raise critical challenges in quantitatively partitioning the driving factors of regional 
precipitation variation.  For example, for West Sahel precipitation, two interacting 
mechanisms are widely studied: 1) warming SSTs weaken the land-ocean temperature 
contrast and force deep convection towards the ocean (Giannini et al., 2003), leading to 
reduction in continental moisture convergence, with its impacts intensified by 2) variation 
in moisture-driven vegetation interactions induced by the interrupted recycling of 
moisture through precipitation and evapotranspiration (Zeng et al., 1999).  

However, most of the previous work only test the correlation between 
remote/local climate factors and the precipitation over the region of interest; and map the 
spatial distribution of the correlation. Linear correlation theoretically failed due to two 
major reasons: (1) climate system is highly nonlinear; (2) The effect on precipitation 
from climate factors is not necessary happened immediately, it could have time lag before 
anomalies ’effect reach different location and cause the change in precipitation (Schepen 
et., al 2011). Meanwhile, transfer entropy method is ideal to analysis the time lagged 
correlation between climate factors and precipitation. It has been proofed effective and 
efficient in a broad range of research (Vicente et., al 2011; Rubinov and Sporms 2010; 
Verdes 2005; Kleeman 2007; Hannisdal and Peters 2011). The time lag could be easily 
introduced into this computation to detect the effect time lag in analyzing these 
correlations (Schreiber 2000; Ruddell and Kumar 2009). 

We quantitatively demonstrate that (1) Sea Surface Temperature (SST) over the 
Gulf of Guinea controls moisture advection and transport to the West Sahel region; (2) 
strong bidirectional interaction exist between local vegetation dynamics and rainfall 
patterns. (3) We assess the directional interaction patterns from nine state-of-the-art Earth 
System Models (ESMs). We find that most of the ESMs are able to represent either the 
uni-directional control of SST on precipitation or the bi-directional interaction between 
vegetation and precipitation. (4) The climate indices in the Pacific Ocean have a 
relatively short time lag (0-3 months) with significant transfer entropy in west coast and 
have relatively intermediate ones (4-7 months) in the middle and long ones (more than 7 
months) in east coast. (5) In Pacific Ocean, the time lag spatial distribution of transfer 
entropy from climate indices to precipitation has a strong correlation with the distance 
between the region that climate indices measured and U.S. mainland.  
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Chapter 2: Identifying critical lags τ using Transfer 
Entropy and application in reconstruction of non-linear 
function 
 
Transfer entropy helps with identifying non-linear terms 
 
 

Traditional time-series data analysis is the study in the time domain. For complex 
systems, time-series data should additionally be analyzed in phase space; the 
reconstruction of the phase space of the time-series data of a complex system (e.g., the 
climate system) is an essential step in understanding the system because of the 
establishment of the complex system models and the prediction of the future status are all 
performed in the phase space (Packard et al., 1980). Packard proposed a technique for 
reconstructing phase space pictures from observations of a single coordinate of any 
dissipative dynamical system (Packard et al., 1980). To reconstruct the space phase, two 
parameters, the dimensions d and the time lag of each dimensions τ, need to be identified.  
In this section, we will discuss how to identify time lag τ and then in the following 
section, discuss how to identify the dimension d. 

In this section, we will compare the effectiveness of the transfer entropy (TE) and 
lagged correlation methods in identifying a critical time lag in a system where one 
variable affects the other variable. Additionally, we will compare the effectiveness of the 
TE method and autoregressive models in identifying critical time lags in a system where 
one variable affects itself in a longer time scale. 

For the first comparison, we established three scenarios:  
The variable X linearly affects variable Y in multi-temporal lags. X is randomly 

generated from 𝒩𝒩(0,1). 
Scenario 1:  𝑌𝑌𝑡𝑡 = 2𝑋𝑋𝑡𝑡−42△𝑡𝑡 + 7𝑋𝑋𝑡𝑡−33△𝑡𝑡 + 𝜀𝜀 [2.1] 
The variable X affects variable Y in multi-temporal lags in both linear and non-

linear ways  
Scenario 2:  𝑌𝑌𝑡𝑡 = 8𝑋𝑋𝑡𝑡−42△𝑡𝑡1.71

𝑡𝑡 + 7𝑋𝑋𝑡𝑡−33△𝑡𝑡 + 𝜀𝜀 [2.2] 
The variable X non-linearly affects variable Y in multi-temporal lags. 
Scenario 3:  𝑌𝑌𝑡𝑡 = 1.5𝑋𝑋𝑡𝑡−42△𝑡𝑡0.67

𝑡𝑡 + 0.7𝑋𝑋𝑡𝑡−33△𝑡𝑡1.3
𝑡𝑡 + 𝜀𝜀 [2.3] 

Where 𝑌𝑌𝑡𝑡 is the current value of time series data Y, 𝑋𝑋𝑡𝑡−42△𝑡𝑡, for example, is the 
historical value of time series data X in 42 unit-time ago, 𝜀𝜀 is the error term following 
𝜀𝜀~𝒩𝒩(0,1). 

The lagged correlation method is a method to calculate the correlation coefficients 
between the sink variable (Y) and the shifted source variable (X). It shifts the source 
variable by multi different time lag and calculates the correlation coefficients 
respectively. 

The results are shown in the following figure. 
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Figure 2.1. Results of transfer entropy analysis and lagged correlation analysis. A) both 
transfer entropy and lagged correlation could identify the critical time lag 42 and 33. B) 
transfer entropy could identify both the linear term lag 42 and the non-linear term lag 33. 
The lagged correlation method could only identify the linear term lag 42. C) transfer 
entropy could identify both the non-linear terms with lags 42 and 33. Lagged correlation 
is unable to identify any significant signals. 

 
In scenario 1 (Figure 2.1 A), both transfer entropy and lagged correlation method 

are able to identify the critical time lag 42 and 33. In scenario 2 (Figure 2.1 B), transfer 
entropy identified both the linear term lag 42 and the non-linear term lag 33. The lagged 
correlation method could only identify the linear term lag 42. In scenario 3 (Figure 2.1 
C), transfer entropy identified both the non-linear terms with lags 42 and 33. However, 
the lagged correlation method is unable to identify any significant signals. 
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We have tested the effect from one source variable to the sink variable. We now 
explore how transfer entropy performs in an autocorrelated system. Here we use the time-
series data 𝑋𝑋𝑡𝑡 from the Lorenz system generated by the function 1.4. 

The variable X will affect Y and Z, and meanwhile, Y and Z will also affect X. 
This constitutes a system with variables indirectly affecting themselves in the longer time 
scale. 

The result of the transfer entropy analysis and autocorrelation is shown in figure 
2.2. 

 
Figure 2.2.  A) Results of autocorrelation analysis up to 50 units time lags. B) Transfer 
entropy analysis up to 50 units time lags.  
 

In constructing a nonlinear time series system, appropriate delay time must be 
identified. However, traditionally used methods, like autocorrelation, cannot treat the 
nonlinearity appropriately and may yield incorrect values (Kim et al. 1999). The result of 
transfer entropy shows that the variable X has strong feedback to itself in a short time lag 
scale (less than 10 units time) which is supported by the autocorrelation analysis. 
However, in the longer time scale, there is a valley around 10-unit time lag and a peak 
around 20-30-unit time lag. This finding agrees with previous analysis using the 
correlation integral and first local minimum of the mutual information (Kim et al. 1999; 
Abarbanel et al., 1993), which is caused by loop effects among X, Y, and Z. However, 
the autocorrelation method is not able to identify these critical time lags. 
Function Reconstruction with Transfer Entropy and LASSO 
 

In the previous session, transfer entropy was used to identify the strength, 
directionality and the time lags of the information flow (or effect from one variable to 
another) in several examples of systems that are complex in different ways. To further 
study the system, our next step is to estimate the strength of each coupling and calculate 
the coefficients. In this session, LASSO (Least Absolute Shrinkage and Selection 
Operator) is implemented with the results from a transfer entropy analysis to calculate the 
coefficients in a complex system introduced by Rober Tibshirani (Tibshirani 1996). 
LASSO is an extension of ordinary least squares, which considers a penalty to the 
residual sum of squares equal to the sum of the absolute values of the non-intercept beta 
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coefficients. The penalty will be multiplied by parameter λ that slows or accelerates the 
process. As the λ increase, the coefficients of the least associated variables shrink to zero 
more quickly than the coefficients of the more strongly associated variables. Thus, 
LASSO has the ability to select the critical variables and help with identifying the 
dimension d. 

To increase the abilities to predict and interpretation, LASSO is characterized as a 
regression with variable selection and regularization. It is originally formulated from least 
squares method with an L1 norm penalty. 

∑ (𝑦𝑦𝑖𝑖 − 𝛽𝛽0 − ∑ 𝛽𝛽𝑗𝑗𝑥𝑥𝑖𝑖𝑗𝑗
𝑝𝑝
𝑗𝑗=1 )2𝑠𝑠

𝑖𝑖=1 + 𝜆𝜆∑ �𝛽𝛽𝑗𝑗�
𝑝𝑝
𝑗𝑗=1  [2.4] 

The L1 penalty has the effect of forcing some of the coefficient estimates to be 
exactly equal to zero when the parameter λ is sufficiently large. Hence, models generated 
from the LASSO are much more interpretable than other traditional methods. LASSO 
usually perform better in a setting where a relatively small number of variables with 
substantial coefficients (James, Witten, et al., 2013). This setting matches the situation in 
most complex earth systems (Chatterjee, Steinhaeuser et al., 2012). 

LASSO regression is extended by adding extra predictors, which are obtained by 
raising each of the original predictors to a power. Given the results from transfer entropy, 
we only add the extra predictors with significant entropy transferred to y. 

Lastly, given the results from transfer entropy, we also add the predictors with the 
responding time lags shifted for taking lagged effect into consideration. 

In our test case. Random variable X is generated from 𝒩𝒩(0,1) Y is calculated by 
the following equation: 

𝑦𝑦 = 0.42𝑥𝑥𝑡𝑡−42∆𝑡𝑡3.3 + 1.12𝑥𝑥𝑡𝑡−33∆𝑡𝑡 + 1.53𝑥𝑥𝑡𝑡−27∆𝑡𝑡0.86 + 𝜀𝜀 [2.5] 
We use transfer entropy, lagged correlation and LASSO to reconstruct the 

functions and their coefficients. 
First, we randomly select 80% of the data as the training data, and then implement 

the transfer entropy on the time-series train data X and Y. 



 
Chapter 2: Identifying critical lags τ using Transfer Entropy and application in 
reconstruction of non-linear function 

 
 

15 

 
Figure 2.3. Results of transfer entropy analysis at lags from 0 unit time to 100 units time are 
shown in solid blue line. The thresholds with 95% confidence are shown in the red dash line.   
 

The results show that there are three critical time lags. They are 27, 33 and 42, 
which is same in the target function.  

Then we use the lagged correlation method to find any of the time lags are the 
linearly associated with y. 
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Figure 2.4. The result of lagged correlation analysis at lags from 0 unit time to 100 units 
time are shown in solid blue line.  
 

In comparing the results of the lagged correlation analysis and transfer entropy 
analysis, we see both methods are able to detect lag 33, but lag 27 and lag 44 are only 
detected by transfer entropy. This is suggesting that lag 33 has a linear relationship with 
the target while lag 27 and lag 44 have a non-linear relationship. 

To reconstruct the function, we use LASSO regression on modified predictors 
given the results from the previous analysis. We generate the possible representative non-
linear terms of X with lag 27 and 42. Moreover, then lagged the predictors in temporal 
scale according to the results from transfer entropy analysis. 
 

To identify the power of the nonlinear term, we calculate the mutual information 
between multiple potential representative non-linear terms and target variable Y. We 
begin with a rough search and only include the integer power for the potential 
representative non-linear terms, which is from -4 to 4 in this test case. Critical mutual 
information (threshold calculated at 95% confidence level subtracted from mutual 
information) for each power number are shown in the following figure 2.5. 
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Figure 2.5. Critical mutual information (threshold calculated at 95% confidence level 
subtracted from mutual information) of each power number in rough search. For lag 42, 
the peak of critical mutual information is located around the power of 3. For lag 27, the 
peak of critical mutual information is located around the power of 1. 

From the rough search, we find that for lag 42 and lag 27 the nonlinear terms have 
power around 3 and 1, respectively. Then we conduct the fine search around the peak 
power. Here we use linear space search with the step of 0.125. Critical mutual 
information of fine search is shown in the following figure. 
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Figure 2.6. Critical mutual information (threshold I calculated at 95% confidence level is 
subtracted from mutual information) of each power number in fine search. For lag 42, the 
peak of critical mutual information is located around power 2, 2.5, and 3.4375. For lag 
27, the peak of critical mutual information is located around the power of 0.125, 0.25, 
and 0.875. 

From the fine search, we find three peaks around the power of 2, 2.5 and 3.4375 
for lag 42. For lag 27, the results are much noisier than lag 42. This could be caused by 
the relatively high strength of noise comparing with lag 42.  We select the top four peaks 
in lag 27 fine search, which is the power of 0.125, 0.25, and 0.875. 



 
Chapter 2: Identifying critical lags τ using Transfer Entropy and application in 
reconstruction of non-linear function 

 
 

19 

Here we list several potential representative non-linear terms for each lag and 
combine them with the lagged linear term.  

The predictor for LASSO will be: 
𝑋𝑋𝑡𝑡−27△𝑡𝑡,𝑋𝑋𝑡𝑡−33△𝑡𝑡,𝑋𝑋𝑡𝑡−42△𝑡𝑡,𝑋𝑋𝑡𝑡−27△𝑡𝑡0.125 ,𝑋𝑋𝑡𝑡−27△𝑡𝑡0.25 ,𝑋𝑋𝑡𝑡−27△𝑡𝑡0.875 ,𝑋𝑋𝑡𝑡−42△𝑡𝑡2 ,𝑋𝑋𝑡𝑡−42△𝑡𝑡2.5 ,𝑋𝑋𝑡𝑡−42△𝑡𝑡3.4375  

The coefficients (after normalization) of each predictor in the LASSO regression, 
as λ decrease, are shown in the figure 2.7. The predictors that survive with higher λ 
usually represent higher importance in function reconstruction. 

 
Figure 2.7. LASSO coefficients as a function of different level regularization. 
 
The most significant terms of each time lag representation are 𝑋𝑋𝑡𝑡−42△𝑡𝑡3.4375 ,𝑋𝑋𝑡𝑡−33△𝑡𝑡,𝑎𝑎𝑎𝑎𝑎𝑎𝑋𝑋𝑡𝑡−27△𝑡𝑡0.875 . 

Next, we use ordinary least square to predict y on these three predictors. The constructed values 
including lags, the power of each term and coefficients are shown in the following table.  

Table 2.1. The comparison of construed coefficients and the true coefficients. 
 

Variable Constructed Value True Value Error rate 

First lag 27 27 0.0% 

Second lag 33 33 0.0% 

Third lag 42 42 0.0% 

Power of 𝑋𝑋𝑡𝑡−27△𝑡𝑡 0.875 0.86 1.7% 

Power of 𝑋𝑋𝑡𝑡−33△𝑡𝑡 1 1 0.0% 
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Power of 𝑋𝑋𝑡𝑡−42△𝑡𝑡 3.43 3.3 3.9% 

Coefficient of 𝑋𝑋𝑡𝑡−27△𝑡𝑡 1.51 1.53 1.3% 

Coefficient of 𝑋𝑋𝑡𝑡−33△𝑡𝑡 1.12 1.12 0% 

Coefficient of 𝑋𝑋𝑡𝑡−44△𝑡𝑡 0.38 0.42 9.5% 

 
 

The constructed function is: 
𝑦𝑦 = 0.38𝑥𝑥𝑡𝑡−42∆𝑡𝑡3.43 + 1.12𝑥𝑥𝑡𝑡−33∆𝑡𝑡 + 1.51𝑥𝑥𝑡𝑡−27∆𝑡𝑡0.875 [2.6] 
We use the 20% data that had intentionally been left out to compare the 

reconstructed value and the true value. The scatter plot and its R square value are shown 
in figure 2.8. 

 
Figure 2.8. The scatter plot of constructed value and truth value, the R square value is 
0.99. 
 

We have shown that using transfer entropy and LASSO can help with function 
reconstruction. However, here we only considering the individual terms. In future work, 
the combination of multiple different terms should be taken into consideration. 

In the appendix section, we test how transfer entropy helps with identifying 
critical time lags, non-linear terms and aggregation scales, and how it can be used with 
other machine learning models. This is done with a study case in prediction discharge 
using climatological and hydrological data. 
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Formulating accurate streamflow forecasts is important for flood management, 
resource planning, and validation of hydrologic theory. However, forecasts often perform 
poorly because of improper representation of hydrologic response timescales in 
underlying models. Here, we test emerging tools from information theory to identify 
critical hydrologic response timescales using high-quality sensor data from the Dry Creek 
Experimental Watershed, ID, USA. We hypothesized that machine learning models 
informed by information-flow analyses could identify the dominant drivers of discharge 
and their timescales and outperform uninformed models developed through expert 
judgment or trial-and-error. Consistent with previous mechanistic studies, information-
flow revealed that snowpack accumulation and partitioning into melt, recharge, and 
evaporative loss dominated discharge patterns. The informed models, driven by the time 
lags of predictor variables selected through information-flow, exhibited improved 
forecast skill relative to uniformed models that lacked lagged inputs, but only for the 
lowest 48 dimensionality models at short aggregation timescales (1 day-2 weeks). While 
the informed models captured the dominant process—seasonal snowmelt—they 
ultimately did not perform as well as the uniformed models, which disagree with our 
original hypothesis. We suggest that the uniformed models, not constrained by the lags of 
the dominant processes, more effectively represented variable interactions playing a 
critical role in translating rainfall or melt into streamflow across a range of time scales. 
Our findings suggest that while information-flow identifies dominant streamflow 
controls, the results should not be limited to only “critical hydrologic timescales;” rather 
they should guide a range of timescales over which inputs, stores, and losses are filtered 
into catchment discharge. (See Appendices)
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Chapter 3: Ecogeomorphic Feedbacks that Grow Deltas* 
 
* Ma, H., Larsen, L. G., & Wagner, R. W. (2018). Ecogeomorphic Feedbacks that Grow Deltas. Journal of 
Geophysical Research: Earth Surface, 123(12), 3228-3250. 

1 Introduction 
Vegetation is one of the primary geomorphic agents on the Earth surface, 

converting solar energy into geomorphic forces via photosynthesis(Phillips 2009). As an 
“ecosystem engineer,” vegetation can exert control over geomorphic processes through 
biomechanical and biochemical impacts on sediment and soil (Butler 1995, Corenblit and 
Steiger 2009). Plant community composition and species distributions are affected by 
climate, physical processes such as seed transport (hydrochory) and scour, and 
geomorphology, particularly elevation relative to water level, which controls exposure to 
wave energy and root oxygen (Johnson, Sasser et al. 1985, Cahoon, White et al. 2011). 
Meanwhile, vegetation can influence geomorphology via sediment trapping through 
enhanced settling or direct interception, and stabilization of the substrate (Edmonds and 
Slingerland 2010, Cahoon, White et al. 2011, Paola, Twilley et al. 2011, Lorenzo‐Trueba, 
Voller et al. 2012, Marani, Da Lio et al. 2013, Rosen and Xu 2013), though preferential 
routing of flow around vegetation patches can also induce scour (Temmerman, Bouma et 
al. 2007, Vandenbruwaene, Temmerman et al. 2011) and reduce net sedimentation 
(Nardin and Edmonds 2014). 

The relative magnitude of biotic and abiotic forcing governs whether bidirectional 
ecogeomorphic feedback develops or whether vegetation simply responds to abiotic 
forcing, or vice-versa. On floodplains, the potential for ecogeomorphic feedback and 
vegetation to serve as an ecosystem engineer is generally maximized at intermediate 
elevations in close proximity to the channel, where flow is of sufficiently low energy or 
frequency to allow for colonization of vegetation, yet inundation is frequent enough that 
the vegetation interacts with fluvial processes (Gurnell, Bertoldi et al. 2012, Gurnell 
2014). Likewise, in coastal deltaic and estuarine environments, marshes represent areas 
with large potential for ecogeomorphic feedback (van de Koppel, Bouma et al. 2012). In 
these environments, topography often acts as the primary factor impacting vegetation 
species distributions (White 1993, Cahoon, White et al. 2011). In turn, vegetation may 
play a critical role in promoting sedimentation and lateral expansion, even in areas 
experiencing regional subsidence (Reed 2002, Rosen and Xu 2013). Failing to account 
for the bidirectional nature of these feedbacks in planning restoration or management of 
these environments may have dire consequences. For example, recent work suggests that 
studies that do not account for the enhanced sediment trapping ability of macrophytes 
under high levels of inundation vastly overestimate future tidal marsh area loss to sea-
level rise, but that to avoid inevitable loss, marshes may require accommodation space 
for inland transgression (Kirwan, Temmerman et al. 2016, Schuerch, Spencer et al. 
2018). In contrast, pessimistic estimates of marsh loss based on an understanding of 
marshes passively responding to inundation may prevent implementation of relatively 
simple conservation or restoration measures (e.g. setting aside conservation zones 
landward of marshes, sediment augmentation) that could evade this outcome. Conversely, 
knowledge that vegetation is dominated by elevation-related forcing rather than engaging 
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in bidirectional feedback could emphasize the sensitivity of vegetation plantings to 
elevation gradients in a marsh restoration design.   

Although ecogeomorphic feedback between vegetation and topography in general 
has been well studied in many ecosystems, such as rivers, coastal dunes and salt marshes 
(Stallins 2005, Corenblit, Tabacchi et al. 2007, Corenblit and Steiger 2009, Gurnell, 
Bertoldi et al. 2012, Balke, Herman et al. 2014, Vinent and Moore 2015, Eichel, 
Corenblit et al. 2016), understanding of distinct geomorphic roles of different species or 
communities remains limited. Physiological differences and diverse life-history strategies 
cause salient differences in how vegetation species respond to and modify abiotic forcing, 
referred to by Diehl et al. (2017) as biological-response traits and morphological-effect 
traits, respectively. For example, stem density is a morphological-effect trait that serves 
as a first-order control on local flow velocities and turbulence intensities and, together 
with flow velocities, determines patterns of erosion or deposition within or around the 
vegetation patch (Bouma, Friedrichs et al. 2009, Follett and Nepf 2012, Yager and 
Schmeeckle 2013, Diehl, Merritt et al. 2017). Although the morphologic arrangement of 
stems near the bed is particularly important as a control on bed shear stress, the 
configuration of stems higher in the water column (e.g., branching, upright) is secondary 
to stem density in its control on flow (Heuner, Silinski et al. 2015), though horizontal 
leaves can significantly enhance local sedimentation (Pluntke and Kozerski 2003). 
Further, vegetation that accumulates epiphytic biofilm may trap sediment more 
effectively than vegetation with bare stems (Coniglio and James 1985, Wharton, Cotton 
et al. 2006). Another important morphological-effect trait is stem flexibility (Luhar and 
Nepf 2013).  Flexible submersed vegetation that bends over in high flow tends to impart 
less drag on the flow, produce more turbulent kinetic energy, and induce less 
sedimentation than rigid emergent vegetation (Heppell, Wharton et al. 2009, Ortiz, 
Ashton et al. 2013, Liu, Hu et al. 2017). Meanwhile, an ecological-response trait with 
geomorphic consequences is the ability to germinate and grow rapidly, which uniquely 
imbues pioneer species with the potential to occupy and stabilize flood-prone 
environments such as channel point bars or the marsh-mudflat interface (Perucca, 
Camporeale et al. 2006, Van der Wal, Wielemaker-Van den Dool et al. 2008, Gurnell, 
Bertoldi et al. 2012).  

Increasingly, aquatic vegetation species and communities are categorized and 
catalogued by their biological-response and morphological-effect traits (Stallins 2006, 
Merritt, Scott et al. 2010, O'Hare, Mountford et al. 2015), but little has been done to 
quantify or catalogue the ecogeomorphic feedbacks or forcings into which these traits 
translate for specific species (though see the reviews of Folkard, 2011 and Curran and 
Hession, 2013, which focus on the geomorphic roles of vegetation in streams and 
floodplains). In part, this research gap is due to a dearth of robust, field-testable 
techniques to quantify the strength of feedbacks or forcings. In this paper, we exemplify a 
new method to detect feedback and forcing from remote sensing data and apply it to 
reveal relationships between vegetation and elevation change in a prograding river delta 
(Wax Lake Delta, Louisiana, USA). We perform these analyses within distinctive 
vegetation classes aligned along deltaic elevation and age gradients. This type of 
information will be broadly beneficial to the ongoing development of ecogeomorphic 
models designed to evaluate how coastal landscapes will respond to future sea-level rise, 
for which effective parameterization of vegetation creates large uncertainties (Zinke, 
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Olsen et al. 2011, Nardin, Larsen et al. 2018). It will also benefit restoration planners who 
need to understand how the choice of vegetation species will impact the future 
development of a landscape. Further, understanding the distinct ecogeomorphic roles of 
native versus widespread invasive species in coastal ecosystems will help resource 
managers determine how much funding and effort should be devoted to the eradication of 
invasive species (Fei, Phillips et al. 2014). 

Sedimentation within marshes is typically studied using sediment elevation tables 
(SETs) or variants thereof (Boumans and Day 1993, Cahoon, Lynch et al. 2002), clay 
pads (DeLaune, Baumann et al. 1983), and/or Cs-137 dating (Roberts, DeLaune et al. 
2015), but these techniques suffer from a few disadvantages. First, data acquired with 
these methods is relevant to small (<1 m2) scales, and rarely is spatial replication 
sufficient to extrapolate to larger scales. Second, they potentially resolve (i.e., detect and 
quantify) one-way interactions from vegetation to sedimentation but are unable to resolve 
bidirectional feedback. Further, it can be difficult to determine—without widespread 
spatial replication—whether observed sedimentation is attributable specifically to 
characteristics of the vegetation or local flow and sediment supply-related phenomena. 
SETs and clay pads are typically deployed only within a single vegetation community or 
a few communities along an elevation gradient, but replication within many communities 
of vegetation is rare. Similarly, biomass, the other component of ecogeomorphic 
feedback, is difficult to resolve over large spatial scales, given the time-consuming nature 
of field surveys and subsequent gravimetric analyses.  

Recently, emerging technology and data analysis techniques have made it 
possible to overcome some of the challenges associated with small-scale sampling of 
sedimentation and/or vegetation characteristics to delineate bi-directional feedback within 
many vegetation communities at the delta scale, with substantial spatial replication. 
LiDAR (Light Detection And Ranging) imagery provides up to centimeter-scale 
resolution of vegetation canopy characteristics and topography. Further, emerging tools 
from information theory are increasingly being used in hydrology to quantify the strength 
and significance of directional interactions between pairs of variables (i.e., from a source 
variable to a sink variable) from time-series. Unlike lagged correlation statistics, transfer 
entropy, formulated within the probabilistic framework of uncertainty and uncertainty 
reduction, is robust in the detection of nonlinear interactions (Schreiber 2000). 
Popularized in studies of the brain’s neural network and gene network patterns (Percha, 
Dzakpasu et al. 2005, Ma and Bohnert 2007), transfer entropy has been used in 
hydrology to infer land-atmosphere feedbacks from flux tower data (Ruddell and Kumar 
2009, Goodwell and Kumar 2017, Goodwell and Kumar 2017), impacts of hydrologic 
and chemical disturbance on stream metabolism (Larsen and Harvey 2017) and surface-
water connectivity within complex delta distributary networks (Sendrowski and 
Passalacqua 2017, Sendrowski, Sadid et al. 2018). Here we adapt this method to detect 
spatially consistent feedback processes from remote sensing datasets that are spatially 
dense but temporally sparse, effectively using a space-for-time substitution in the 
formulation of transfer entropy.   

The main objectives of this study are 1) to identify and quantify feedbacks and 
forcing between vegetation canopy characteristics and elevation within the Wax Lake 
Delta, 2) to compare the distinct ecogeomorphic roles of different vegetation classes, and 
specificially, 3) to compare the ecogeomorphic roles of nonnative vegetation species and 
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the native species that they replace. Here we test the null hypotheses that nonnative 
(Eichhornia crassipes, Colocasia esculenta) and native (Nelumbo lutea, Polygonum spp.) 
vegetation species that occupy intermediate (subtidal to intertidal and supratidal) 
elevations on deltaic islands exhibit similar forcing or feedback between vegetation 
biovolume and elevation. In addressing objective 1, we establish a new precedent for 
analysis of causal interactions from commonly available remote sensing data, based on a 
simple modification of the transfer entropy formulation. Meanwhile, objectives 2 and 3 
produce insight for coastal restoration and vegetation management in this deltaic 
ecosystem.  

 

2 Site description and vegetation characteristics 
Our study focuses on the Wax Lake Delta, located west of the Atchafalaya River 

Delta in Louisiana, USA, in the only actively prograding portion of the Louisiana 
coastline. The Wax Lake Outlet is an artificial flood control diversion of the Atchafalaya 
River constructed in 1941, which conveys one-third of the combined discharge of the Red 
River and the Mississippi River and an average of 20.5 tons of suspended sediment per 
year (Allison, Demas et al. 2012). The Wax Lake Delta (Figure 3.1) first became 
subaerial in 1973. Since 1997, about 51.1 km2 of new land has been built (Roberts, 
Walker et al. 1997). Since that time, the Wax Lake Delta has become one of the best-
studied areas for coastal river-dominated delta dynamics. Currently, it is viewed as a 
model for engineered diversions of the Mississippi River planned to slow or mitigate 
coastal land loss. As projected land loss in the Mississippi River Delta plain is 5,700 km2 
for the period 1950-2050 (Blum and Roberts 2009) this understanding is imperative. 
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Figure 3.1.  Satellite image of the Wax Lake Delta region. 

 

Land area in the Wax Lake Delta varies along gradients of chronosequence and 
elevation. Older islands and portions of islands tend to be found to the north (upstream), 
with more recently deposited strata in the south. Individual islands feature lateral and 
longitudinal elevation gradients. The highest elevations, occupied by trees (primarily 
Salix nigra), are found at the heads of islands. Natural levees, also colonized by Salix, 
form in a chevron-shaped fashion downstream of island heads. From the outer chevron, 
elevations decrease gradually downstream and into the island interiors. The most central, 
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lowest portions of the islands are often characterized by open water. Subtidal locations 
feature a mixture of submersed aquatic vegetation (SAV), which mixes with emergent 
floating-leaf vegetation such as Nelumbo lutea at higher elevations (Figure 3.2). Finally, 
intertidal to supratidal elevations, clonal emergents such as Phragmites australis, 
Colocasia esculenta, and Sagittaria spp. are abundant. Non-rooted floating vegetation 
such as Eichhornia crassipes (water hyacinth, an invasive species that tends to replace 
Nelumbo lutea and SAV) may occupy a range of elevations; its abundance at any single 
location may be transient, subject to wind patterns, tides, and/or major flow events. In 
this analysis, we distinguish between the seven major classes and species of vegetation 
outlined in Figure 3.2. These classes and species, based on the classification scheme of 
Carle et al. (2014) (see section 3.1.3), are the dominant groupings of vegetation by area 
on the Wax Lake Delta that are distinguishable from remote sensing imagery. 

 
Figure 3.2. The elevation range and morphologic structure of each class of vegetation 
considered in this analysis. 

 
The Wax Lake Delta experiences pronounced seasonality in flow and vegetation 

characteristics. Sediment is typically delivered to deltaic marshes through three 
mechanisms. Winter cold front events, which occur at a 4-7 day frequency between 
October and April (with the highest incidence in January-February) (Hardy and 
Henderson 2003), can deliver sediment resuspended from the coastal shelf to inland 
vegetation communities (Mossa and Roberts 1990, Feng and Li 2010, Li, Roberts et al. 
2011, Roberts, DeLaune et al. 2015). River flooding originating from snowmelt within 
the headwaters of the Mississippi occurs in the spring (April through June) and is often 
associated with prolonged (i.e., multiple-week) inundation of lowland floodplains and 
deltaic marshes. In 2011 (central in time to the 2009-2013 duration of this study), the 
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Wax Lake Delta experienced record flooding, with a flood peak extending from early 
May to late and a total duration between March and August (Figure 2.3). This record 
flood exceeded the stage of other notable floods in 1927 and 1937, and the 1.1 million 
metric tons of sediment deposited during this event (Bevington, Twilley et al. 2017) 
caused the Wax Lake Delta areal extent to grow by approximately 6.5 km2 (at mean delta 
water level), an increase of 28% (Carle, Wang et al. 2014). Following the flood, 8.3 km2 
(36% of the pre-flood delta’s extent) experienced vegetation community transitions 
(Carle et al. 2015). Late-summer hurricanes and tropical storms represent the third 
mechanism of sediment delivery to coastal marshes.  

 

Figure 3.3. The hydrograph of the discharge at Wax Lake Delta Outlet from Jan 1st 2009 
to Dec 31st 2013. 

 
Although sediment characteristics vary by event, suspended sediment delivered to 

deltaic marshes typically has abundant clay-to-silt size fractions and is dominantly 
inorganic (Roberts, DeLaune et al. 2015). A D50 around 40 m is common (L. Larsen, 
unpubl. data, 2017). Though the organic component measured in soil on islands of the 
Wax Lake Delta is low (5-16 g cm3; Roberts et al. 2015), others (Nyman, DeLaune et al. 
1990, Reed 2002) have noted that organic accumulation can contribute significantly to 
sedimentation, particularly in older portions of the greater Mississippi River delta area. 
Further, models of long-term delta evolution suggest that when freshwater inputs to 
deltas decrease, the result is a rapid shoreline retreat attributable to the loss of organic 
matter accumulation (Lorenzo‐Trueba, Voller et al. 2012). 

Seasonality of vegetation characteristics is another important consideration in 
attempts to resolve ecogeomorphic feedbacks within the Wax Lake Delta. Vegetation 
within low-lying parts of deltaic islands senesces during the winter (November through 
April). Higher-elevation species (e.g., Colocasia esculenta) begin to emerge in early 
February but grow to peak biomass in August. Lower-elevation species such as Nelumbo 
lutea may not emerge until up to late March, such that their live biomass may not be 
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captured in imagery acquired in January or February. However, even during periods of 
senescence, dead vegetation stems and leaves from the previous year will remain 
emergent in places of former abundance.   

The convolution of seasonal characteristics of vegetation with seasonal 
characteristics of flow and sediment delivery likely is an overwhelmingly important 
factor in the establishment of ecogeomorphic feedbacks (Nardin and Edmonds 2014). 
Vegetation may not have much influence on sedimentation during winter cold fronts 
when it is senesced, nor at the peak of summer when it is most abundant but sediment 
delivery events are rare, with the exception of hurricanes and tropical storms. Conversely, 
river flood events may represent the optimal convergence of sediment delivery with 
marsh vegetation biomass. Based on topographic surveys, Bevington found that 
prolonged, moderate- to high-discharge river floods dominate sedimentation on the Wax 
Lake Delta, whereas cold fronts are overwhelmingly associated with erosion (Bevington, 
Twilley et al. 2017). Tropical storms, on the other hand, contribute to net sediment 
aggradation. However, large floods and tropical storms may also uproot or otherwise 
stress vegetation, promoting community shifts or changing competition dynamics 
(Kalliola and Puhakka 1988, Tabacchi, Correll et al. 1998, Francis 2006). 

3 Methods 

3.1. Overview 
Here we analyzed causal links between elevation/elevation change and vegetation 

biovolume/biovolume change within distinct classes of vegetation found across the Wax 
Lake Delta. First, we extracted bare-earth elevation and vegetation biovolume from lidar 
imagery collected before and after the 2011 flood. We identified which of these points 
coincided with the boundaries of each vegetation class of interest by overlaying 
preexisting vegetation classification maps (Carle et al., 2014) corresponding to periods of 
time before and after the flood. Then, within each of these vegetation classes, we used an 
information entropy analysis to identify and quantify causal linkages between elevation 
and biovolume variables to quantify the magnitude and direction of forcing or identify 
the existence of feedback. Though the information entropy analysis identifies causal 
linkages and how strong they are, it does not identify whether each forcing is positive 
(i.e., an increase (decrease) in the “source” variable produces an increase (decrease) in 
the “sink variable) or negative (i.e., the two variables change in the opposite sense). To 
gain further insight into the nature of each pairwise coupling, we also plotted scatterplots 
of each bivariate pairing and performed a traditional vegetation and topography transition 
analysis. Each of our data sources and analysis steps are detailed below. 
3.2. Data sets 
3.2.1. LiDAR source imagery 

We used LiDAR imagery of the Wax Lake Delta to obtain delta-scale information 
about topographic change and vegetation canopy characteristics, two critical components 
of ecogeomorphic feedback in river deltas. Airborne LiDAR source imagery was 
obtained through the National Center for Airborne Laser Mapping (NCALM) and Bureau 
of Economic Geology in the Jackson School of Geosciences at the University of Texas-
Austin. Imagery that spanned the spatial extent of the Wax Lake Delta 
(https://doi.org/10.5069/G9SF2T41; https://doi.org/10.5069/G95M63M8) was obtained 

https://doi.org/10.5069/G9SF2T41
https://doi.org/10.5069/G95M63M8
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on January 14, 2009 with 1.69 pts/m2 point density, and again on February 13, 2013 with 
14.27 pts/m2 point density. The vertical errors are 5.5 cm and 3.4 cm respectively. 

Although the one-month offset in LiDAR image acquisition in 2009 compared to 
2013 may have resulted in some of the emergent vegetation communities exhibiting 
slightly different physical characteristics associated with their stage of reemergence from 
senescence, this effect is expected to be small due to the fact that both images were 
acquired during the dominant period of senescence. Rather, we expect that image-to-
image variability in elevation and vegetation class and characteristics was controlled 
dominantly by sedimentation and vegetation shifts resulting from the 2011 flood and 
smaller seasonal floods during the intervening years (Fig. 3.3). An additional potential 
source of error lies in the quantification of vegetation biovolume characteristics as a 
potential control on elevation during the period of vegetation senescence. In doing so, we 
assume that the volume of remnant stems observable from the previous season’s growth 
scales monotonically (but not necessarily linearly) with total biovolume (stem + leaves) 
averaged over the periods of sediment delivery.  

3.2.2. Surrogate bio-volume and topography from LiDAR imagery 
Biomass is one of the most significant parameters related to the health and growth 

status of vegetation and its potential influence on topographic change. Because of its high 
spatial resolution in three dimensions, LiDAR imagery can be used to calculate surrogate 
vegetation bio-volume, itself a proxy for biomass (Figure 3.4). To do so, we used the 
LiDAR return order and number of returns.  Laser pulses emitted from the LiDAR can 
return to the sensor more than one time from encounters with multiple reflective surfaces. 
The first returned laser pulse is usually reflected from the top of vegetation canopies or 
manmade structures. The last returned pulse is associated with the ground. The total 
number of returns of a given pulse can be used to classify the imaged area as open water 
or vegetation. Water has a lower number of returns, as it scatters the pulse. Meanwhile, 
vegetation has a higher number of returns. 
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Figure 3.4. The figures show the 3D view (b) and the cross-section view (c) of 
segmented LiDAR cloud points. (a) is the corresponding aerial photograph. The color of 
points represents the height. 

 
As the water returns only once, the non-water and water can be separated (Figure 

3.5). To generate the vegetation-only LiDAR data, the points with last return are deleted, 
as they represent bare ground. The surrogate bio-volume is calculated by multiplying the 
average height of the point cloud in each unit cell that contains vegetation, relative to 
bare ground, with the area of unit cell, and the topography is estimated by calculating the 
average height of the point cloud in each unit cell that represents bare ground.  
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Figure 3.5. (a) Number of returns is used to separate open water and vegetation. Here, 
the blue points represent water, and the green points represent non-water. An open-water 
channel, visible on the right side of the image, is associated with a low number of returns. 
(b) Return number is used to separate bare land and vegetation. The yellow points 
represent bare land, and the green points represent vegetation. (c) is the cross section of 
extracted vegetation points. (d) and (e) are the planform (d) and oblique (e) views of 
LiDAR cloud points of vegetation (shown in green) with and without non-vegetation 
shown in blue. 

 

3.2.3. Vegetation classification 

We used existing vegetation classification maps (Figure 4 in Carle et al. 2014) to 
segment the surrogate biovolume and elevation data by vegetation class, such that 
ecogeomorphic feedbacks within distinct classes could be resolved. Carle et al. (2014) 
implemented a maximum likelihood supervised classification method on WorldView-2 
and Landsat 5 TM remote sensing images to produce vegetation classification maps 
before and after the 2011 Mississippi River flood. The WorldView-2 images were taken 
on June 15, 2010 and October 16, 2011 with 2-m spatial resolution. The Landsat 5 TM 
images were taken on August 27, 2010 and August 30, 2011 with 30-m spatial resolution. 
Comparing with field validation, the overall classification accuracy was 75%, and the 
average classification accuracy of the vegetation classes that are a focus in this paper was 
82%. 
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Figure 3.6. Vegetation types are classified using WorldView-2 remote sensing images 
from 2010 and 2011. Modified from vegetation classification maps of Carle et al. (2015). 
In the legend, SAV = submersed aquatic vegetation. 
 

Although Carle et al.’s (2015) classification scheme encompassed 17 different 
classes, we worked with the most dominant subset, a total of seven vegetation classes 
(Tables 1 and S3). These seven vegetation types, as well as bare land and water, account 
for 91.16% of the WLD area. A rule of thumb is that transfer entropy calculations should 
be performed on datasets containing at least 500 points (Ruddell and Kumar 2009), so 
calculations performed on less dominant classes of vegetation would not be considered 
statistically robust. For the vegetation classes that we considered, pixel counts exceeded 
this value by several orders of magnitude (Table 3.1). To evaluate effects of individual 
pixels behaving non-independently (i.e., pseudoreplication), we performed an additional 
sensitivity analysis in which we randomly subsampled the data at ratios of 90%, 80%, 
70%, and 50% for the information entropy analyses. Results (Table 3.2) indicated that 
our conclusions were robust to the subsampling.  

Vegetation Type 2010 Pixel 
Count 

2011 Pixel 
Count 

2011-2010 
Change 

Vegetation 
Class 

Elevation 
Range 

Trees (Salix nigra) 93320 138723 45403 7 0.68 – 0.98 

Colocasia esculenta 329978 518902 188924 6 0.39 – 0.81 

Polygonum spp. 424198 1198920 774722 5 0.19 - 0.72 

Eichhornia crassipes 25127 78869 53742 4 0.07 – 0.63 
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Nelumbo lutea 1596107 1558448 -37659 3 0.07 – 0.50 

Potamogeton 
nodosus 1102374 217467 -884907 2 -0.18 – 0.31 

SAVs 887136 428140 -458996 1 -0.18 – 0.45 

Bare 118764 2576786 2458022 0 ~0 

Water 9058876 7876718 -1182158 0 ~0 

Table 3.1. Data classes considered in transfer entropy calculations, elevation ranges, and 
class-specific pixel counts before and after the 2011 flood. Each pixel corresponds to an 
area of 4 m2. The vegetation class is in rank order in accordance with the elevation range. 
Elevation ranges are with respect to the NAVD88 datum. SAV = submersed aquatic 
vegetation. 

 

3.3. Resolution of bidirectional feedbacks with mutual information and transfer entropy 

3.3.1. Mutual information and Transfer entropy computations 
Transfer entropy is an information-theoretical method that statistically identifies 

directionalities of forcing and feedback by measuring information transfer among pairs of 
variables. Information is defined as the Shannon entropy, H, or total uncertainty present 
in a variable’s distribution (Shannon 1949): 

𝐻𝐻 =  −∑ 𝑝𝑝(𝑖𝑖)𝑙𝑙𝑙𝑙𝑙𝑙2𝑝𝑝(𝑖𝑖)𝑖𝑖 . [3.1] 
where 𝑝𝑝(𝑖𝑖) denotes the probability that 𝑖𝑖 th event happened. H measures 

uncertainty in units of bits.  
The mutual information measures the reduction in one variable’s uncertainty by 

knowing the other variable. It is calculated as 
𝐼𝐼(𝑋𝑋𝑡𝑡,𝑌𝑌𝑡𝑡) = ∑ 𝑝𝑝(𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡)𝑙𝑙𝑙𝑙𝑙𝑙

𝑝𝑝(𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡)
𝑝𝑝(𝑥𝑥𝑡𝑡)𝑝𝑝(𝑦𝑦𝑡𝑡)𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡 .      [3.2] 

where 𝑥𝑥𝑡𝑡 ,𝑦𝑦𝑡𝑡 are values in time series 𝑋𝑋𝑡𝑡 and 𝑌𝑌𝑡𝑡. 
Transfer entropy measures how much information is transferred between two 

variables, quantifiable as the reduction in uncertainty in the distribution of variable Y 
based on knowing the value of variable X at a time lag , conditioned on Y’s own 
history. Typically, (Schreiber 2000, Ruddell and Kumar 2009), it is formulated from 
time-series 𝑋𝑋𝑡𝑡 and 𝑌𝑌𝑡𝑡 as follows: 

𝑇𝑇(𝑋𝑋𝑡𝑡 → 𝑌𝑌𝑡𝑡,𝑘𝑘, 𝑙𝑙,𝜔𝜔, 𝜏𝜏) = ∑ 𝑝𝑝(𝑦𝑦𝑡𝑡,𝑦𝑦𝑡𝑡−𝜔𝜔∆𝑡𝑡
[𝑘𝑘] , 𝑥𝑥𝑡𝑡−𝜏𝜏∆𝑡𝑡

[𝑙𝑙] )𝑦𝑦𝑡𝑡,𝑦𝑦𝑡𝑡−𝜔𝜔∆𝑡𝑡
[𝑘𝑘] ,𝑥𝑥𝑡𝑡

[𝑙𝑙]  𝑙𝑙𝑙𝑙𝑙𝑙2
𝑝𝑝(𝑦𝑦𝑡𝑡|(𝑦𝑦𝑡𝑡−𝜔𝜔∆𝑡𝑡

[𝑘𝑘] ,𝑥𝑥𝑡𝑡−𝜏𝜏∆𝑡𝑡
[𝑙𝑙] ))

𝑝𝑝(𝑦𝑦𝑡𝑡|𝑦𝑦𝑡𝑡−𝜔𝜔∆𝑡𝑡
[𝑘𝑘] )

.   [3.3] 

Here 𝑥𝑥𝑡𝑡−𝜏𝜏∆𝑡𝑡
[𝑙𝑙] and 𝑦𝑦𝑡𝑡−𝜔𝜔∆𝑡𝑡

[𝑘𝑘] are the immediate history of 𝑥𝑥𝑡𝑡−𝜏𝜏∆𝑡𝑡 and 𝑦𝑦𝑡𝑡−𝜔𝜔∆𝑡𝑡 with block 
length of 𝑙𝑙 and 𝑘𝑘 respectively, where 𝑥𝑥𝑡𝑡−𝜏𝜏∆𝑡𝑡 and 𝑦𝑦𝑡𝑡−𝜔𝜔∆𝑡𝑡 are the values of 𝑥𝑥𝑡𝑡 and 𝑦𝑦𝑡𝑡 at 𝜏𝜏 
and 𝜔𝜔 time steps earlier respectively. The assumption that setting 𝑘𝑘 = 𝑙𝑙 = 1 is 
conservatively biased as it neglects the information transferred to 𝑌𝑌𝑡𝑡 with block lengths 
𝑘𝑘 > 1 and 𝑙𝑙 > 1 (Marschinski and Kantz 2002, Sabesan, Narayanan et al. 2003). 
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However, it is commonly employed in practice to reduce the dimensionality of the 
probability distributions in equation 2 to three-dimensional distributions (as shown in 
Figure 2.7A), to make them computationally tractable (Ruddell and Kumar 2009, Larsen, 
Newman et al. 2017). 

 
Figure 3.7.  Transfer entropy is calculated from joint and conditional probability 
distributions based on triplets (a-c) of points: It measures the reduction of uncertainty in a 
dependent variable Y at a time t1 (a) that is attributable to knowing the value of variable X 
at time t0 (b), conditioned on the reduction of uncertainty attributable to knowing the 
value of Y at t0 (c). In the traditional version of transfer entropy used to analyze time 
series (A), joint and conditional probability distributions based on these triplets are 
computed by scanning down the time-series (orange arrow). In the spatial version of 
transfer entropy (B), the triplets are taken from three spatial matrices, and joint and 
conditional probability distributions are computed by scanning the spatial matrices over 
all row, column (i.e., i,j) coordinates (orange arrow). 
 

For remote sensing data that are intensive in space but sparse in time, a simple 
modification of equation 3 is necessary (Figure 3.7B). Whereas equation 3 results in high 
transfer entropy when certain ranges of values in variable X promote transitions in 
variable Y that are consistent over the time series, our modification (equation 3.4) results 
in high transfer entropy when certain states of variable Y result in particular transitions in 
variable X from one time point to another consistently over space. Hence, assuming that 
dominant interactions between X and Y are spatially stationary, the probability 
distributions in equation 3.3 can be reformulated using a space-for-time substitution: 

𝑇𝑇(𝑋𝑋 → 𝑌𝑌) = ∑ 𝑝𝑝(𝑦𝑦𝑡𝑡1
(𝑖𝑖,𝑗𝑗),𝑦𝑦𝑡𝑡0

(𝑖𝑖,𝑗𝑗), 𝑥𝑥𝑡𝑡0
(𝑖𝑖,𝑗𝑗))𝑦𝑦𝑡𝑡1

(𝑖𝑖,𝑗𝑗),𝑦𝑦𝑡𝑡0
(𝑖𝑖,𝑗𝑗),𝑥𝑥𝑡𝑡0

(𝑖𝑖,𝑗𝑗)  𝑙𝑙𝑙𝑙𝑙𝑙2
𝑝𝑝(𝑦𝑦𝑡𝑡1

(𝑖𝑖,𝑗𝑗)|𝑦𝑦𝑡𝑡0
(𝑖𝑖,𝑗𝑗),𝑥𝑥𝑡𝑡0

(𝑖𝑖,𝑗𝑗)))

𝑝𝑝(𝑦𝑦𝑡𝑡1
(𝑖𝑖,𝑗𝑗)|𝑦𝑦𝑡𝑡0

(𝑖𝑖,𝑗𝑗))
,  [3.4] 
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where 𝑋𝑋𝑡𝑡0 and 𝑌𝑌𝑡𝑡1 are random variables of spatial data with time stamps 𝑋𝑋0 and 𝑋𝑋1 
(e.g., sequential remote sensing image acquisition dates), and 𝑥𝑥𝑡𝑡0

(𝑖𝑖,𝑗𝑗) ∈ 𝑋𝑋𝑡𝑡0, where 𝑖𝑖, 𝑗𝑗 are 
the two-dimensional spatial coordinates. 

To resolve the strength of bidirectional ecogeomorphic feedbacks in the Wax 
Lake Delta, we implemented two sets of computations with equation 3.4 to resolve 1) 
feedback between sedimentation and physical canopy characteristics, and 2) feedback 
between sedimentation and vegetation class. In the first set of computations, to evaluate 
the effect of surrogate biovolume on topography we initially solved equation 4 with X = 
surrogate biovolume and Y = elevation. Subsequently, we evaluated the effect of 
topography on surrogate biovolume by setting X = elevation and Y = surrogate bio-
volume. For each of these computations, we segmented the data by vegetation class, as 
delineated in the 2009 - 2010 vegetation classification maps of Carle et al. (2015). 
Meanwhile, t0 and t1 coincided with the pre-flood 2009 and post-flood 2013 LiDAR 
imagery. Within each image, aggregate surrogate bio-volume and topography each have 
more than 18 million spatially distributed data points. 

In the second set of computations, we initially solved equation 4 with X = 
vegetation class (categorical) and Y = elevation. Subsequently, we solved the equation 
with Y = vegetation class and X = elevation.  
3.3.2. Statistical significance testing 

The method of shuffled surrogates, which tells whether or not the information 
flow in a coupling is significantly higher than that randomly occurring between unrelated 
variables, is used to evaluate the statistical significance of information transferred among 
variables (Kantz and Schürmann 1996, Marschinski and Kantz 2002, Sabesan, Narayanan 
et al. 2003). To destroy the spatial correlations, 𝑋𝑋𝑆𝑆 and 𝑌𝑌𝑆𝑆 are formed from randomly 
shuffled 𝑋𝑋 and 𝑌𝑌. Surrogate transfer entropy 𝑇𝑇𝑆𝑆(𝑋𝑋𝑆𝑆 → 𝑌𝑌𝑆𝑆) is computed 500 times by 
using Monte Carlo simulations. A one-tailed hypothesis test is used, in which T is 
deemed significant if: 

𝑇𝑇 > 𝜇𝜇(𝑇𝑇𝑆𝑆) + 𝑐𝑐 ∙ 𝜎𝜎(𝑇𝑇𝑆𝑆),  [3.5] 
where 𝜇𝜇(𝑇𝑇𝑆𝑆) and 𝜎𝜎(𝑇𝑇𝑆𝑆) are the mean and standard deviation of distribution of 

𝑇𝑇𝑆𝑆. c =1.66 corresponds to 95% confidence and c=2.36 corresponds to 99% (Ruddell and 
Kumar 2009). Here we considered the directional relationship between pairs of variables 
strong if the transfer entropy passed the shuffled surrogates significance test with at least 
99% confidence and weak if it passed the test with between 95% and 99% confidence. 
We considered the directional relationship not significant if the transfer entropy did not 
pass the test with at least 95% confidence. 

Once the threshold transfer entropy is computed, we compute a quantity that we 
heretofore refer to as the relative significant transfer entropy, for which the amount of 
uncertainty reduction above the threshold (T’) is normalized by the total uncertainty 
present in the “sink” variable: 

�𝑇𝑇(𝑋𝑋 → 𝑌𝑌) − 𝑇𝑇′(𝑋𝑋 → 𝑌𝑌)� 𝐻𝐻(𝑌𝑌)⁄ .  [3.6] 
We similarly calculate the relative significant mutual information as follows: 
�𝐼𝐼(𝑋𝑋,𝑌𝑌) − 𝐼𝐼′(𝑋𝑋,𝑌𝑌)� 𝐻𝐻(𝑌𝑌)⁄ . [3.7] 

3.3.3 Validation of modified spatial transfer entropy 
Because the spatial implementation of transfer entropy is new, we developed two 

proof-of-concept scenarios for validation purposes. In the first scenario, spatially 
intensive data X and Y were randomly and independently generated on a 500 x 500 grid 
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at times t0 and t1, with values ranging from -4 to 4. In the second scenario, X and Y were 
randomly and independently generated at t0. However, at t1, Y exhibits dependence on 
the t0 values of X and Y according to the following rules:  

𝑖𝑖𝑖𝑖 𝑋𝑋𝑇𝑇0
(𝑥𝑥,𝑦𝑦) > 0,   𝑌𝑌𝑇𝑇1

(𝑥𝑥,𝑦𝑦) = 𝑌𝑌𝑇𝑇0
(𝑥𝑥,𝑦𝑦) + 𝜖𝜖,  [3.8] 

𝑖𝑖𝑖𝑖 𝑋𝑋𝑇𝑇0
(𝑥𝑥,𝑦𝑦) < 0,   𝑌𝑌𝑇𝑇1

(𝑥𝑥,𝑦𝑦) = 𝑌𝑌𝑇𝑇0
(𝑥𝑥,𝑦𝑦) − 𝜖𝜖,  [3.9] 

where 𝜖𝜖 is a random positive number ranging from 0 to 2 and (𝑥𝑥, 𝑦𝑦) is the 
coordinate in the two-dimensional spatial field. 

Transfer entropy from X to Y in the first scenario is 0.0046 bits. The threshold 
with 95% confidence of one-tailed hypothesis test is 0.005 bits, which means that there is 
no significant information transferred or no notable impact from X to Y. Transfer entropy 
from X to Y in the second scenario is 0.0056 bits, and the threshold with 95% confidence 
is 0.0043 bits, which means that significant information flow from X to Y is detected, or, 
in other words, that Y is impacted by X. These results are consistent with expectations, 
given the setup of the two scenarios. In the second scenario, the transfer entropy 
represents a significant reduction in the relative uncertainty in variable Y of 0.05%. 
Though this represents a relatively small reduction in uncertainty, it is consistent with 
expectations given the stochasticity inherent in equations 8-9 and with previous 
applications of transfer entropy to noisy environmental systems (Larsen and Harvey 
2017). 
3.3.4. Implementation 

Transfer entropy and significance computations were implemented in MATLAB. 
The source and sink variables were alternately elevation, elevation change in time, 
surrogate biovolume (continuous), and vegetation class (categorical). Our initial set of 
analyses evaluated the feedback between elevation and vegetation canopy characteristics 
over all vegetation classes, as well as the feedback between elevation and vegetation 
class. The second set of analyses evaluated feedback among the continuous variables 
within each vegetation class, as detailed below.   

We use both mutual information and transfer entropy to quantify different aspects 
of ecogeomorphic feedbacks between vegetation characteristics and landscape evolution. 
First, we quantify the significant relative mutual information between surrogate bio-
volume of the vegetation in 2009 and the change in elevation between 2009 and 2013. 
Mutual information is not a directional quantity in the sense that it represents shared 
information between two variables. However, because the 2009 surrogate biovolume 
precedes the change in elevation, we interpret the mutual information between the two 
variables as an indicator of the impact of vegetation canopy characteristics on elevation 
change. A higher normalized mutual information implies a greater importance of 
vegetation canopy characteristics compared to other factors (such as variability in 
sediment supply, or flow characteristics) in explaining the variability in elevation change 
over the four years spanned by image acquisition. 

To infer the impact of elevation change on vegetation canopy characteristics, we 
compute the transfer entropy from elevation change to 2013 surrogate biovolume. Here, 
we use transfer entropy rather than mutual information because we expect high 
correlation between 2013 surrogate biovolume and 2009 surrogate biovolume, the latter 
of which is expected to drive elevation change. Thus, it is important to condition the 
shared information between elevation change and 2013 surrogate biovolume on the 2009 
surrogate biovolume to distinguish between cause and effect.  
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A stronger test of the impact of sedimentation attributable directly to physical 
interactions with vegetation canopies on the distribution of elevations within the delta is 
whether significant transfer entropy exists between the 2009 surrogate biovolume and 
2013 elevations, once the effect of historical (2009) elevations is accounted for. 
Significant transfer entropy between these variables implies that vegetation canopy 
structural characteristics have an overriding influence on the distribution of raw 
elevations (and not just the change in elevation). In other words, transfer entropy from 
surrogate biovolume to elevation will be significant only if biovolume itself—
independent of the extent to which biovolume is a reflection of elevation—has an 
overriding influence on elevation four years into the future, irregardless of historical 
trajectories, and thus is a dominant factor driving the short-term evolution of deltaic 
landscapes. While we expected that most vegetation classes would have a significant 
relationship between biovolume and elevation change due to known physical impacts of 
canopies on flow and sedimentation, we hypothesized that fewer vegetation classes 
would exhibit a significant transfer of information from surrogate biovolume to elevation. 

Likewise, use transfer entropy to quantify the independent reduction in 
uncertainty in 2013 surrogate biovolume due to knowledge of 2009 elevations. 
Significant transfer entropy implies that vertical position relative to the tidal range 
influences future vegetation canopy characteristics. The magnitude of the transfer entropy 
indicates, in other words, the strength of zonation, or the control of elevation on 
vegetation characteristics, typically attributed to redox potential gradients or gradients in 
seed dispersal by flow, superimposed on competition dynamics (Bertness, 1991; Leck 
and Simpson, 1994). Meanwhile, transfer entropy from elevation change to surrogate 
biovolume provides insight into the effects of abiotic forcing on vegetation distinct from 
that gained from quantifying the transfer entropy from elevation to surrogate biovolume. 
Namely, it indicates the incremental effect of deposition on productivity, attributable to 
particulate nutrient inputs, or, if a negative relationship, to light blocking or burial. 
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Figure 3.8.   a. The probability density function of the relative transfer entropy of each 
vegetation by choosing different numbers of bins. The red dashed line represents the 95% 
confidence level. b. The histogram of relative transfer entropy of each vegetation by 
choosing different numbers of bins.
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Probability distributions were estimated through discrete binning, using eight bins 

to estimate the marginal and joint probability distributions involving vegetation class, 
corresponding to the eight categories evaluated (seven vegetation classes, plus open water 
and all of Carle et al.’s (2015) categories not depicted in Figure 3.6 that were lumped 
together as a single class). Probability distributions for the continuous variables were 
estimated using 10 evenly spaced bins (Ruddell and Kumar 2009) in the first set of 
computations. Tests of the sensitivity of the information entropy calculations to number 
of bins (Figure 2.8) revealed limited sensitivity to choose bin number within the range of 
8-12. Though there was slight variability in the magnitude of transfer entropy with 
changes in the number of bins, within all classes of vegetation evaluated, whether the 
information transferred was significant or not remained unchanged, and the direction(s) 
of information transferred between elevation and surrogate biovolume also remained 
unchanged. Because 10 bins generally produced the smallest differences in relative 
transfer entropy compared to computations with one bin less or more (Table 3.3), our 
reported analyses use the 10-bin convention.   

We did a supplemental test to validate the sufficiency of the data. In the test, we 
randomly sample the data with four different ratios (90%, 80%, 70% and 50%), and run 
the same analysis as in the paper.  The results (Table 3.2) from all different ratios, even 
when only 50% is used, agree with the results in the paper. It is reasonable to conclude 
that the data we used in the paper is sufficient to estimate the joint probability and 
measure the information flow between the variables. We also did another supplemental 
test to address the sensitivity of the results to the number of bins used. In the test, we 
evaluate different numbers of bins (8, 9, 11 and 12). The relative transfer entropy showed 
limited sensitivity to the selection of number of bins used in the resolution of probability 
density functions within the range of 8-12 bins (Figs. 3.8A and 3.8B). Though there was 
slight variability in the magnitude of transfer entropy with changes in the number of bins, 
within all classes of vegetation evaluated, whether the information transferred was 
significant or not remained unchanged, and the direction(s) of information transferred 
between elevation and surrogate biovolume also remained unchanged. Because 10 bins 
generally produced the smallest differences in relative transfer entropy compared to 
computations with one bin less or more (Table 3.3), our reported analyses use the 10-bin 
convention.  

All code, based on the toolbox by Ruddell and Kumar (2009), and datasets used in 
the analysis are available on GitHub 
(https://github.com/Hongxuma/SpatialTransferEntropy.git). 

  90% data   
Vegetation   T Threshold T (T-ThresholdT)/H(Y) 

SAVs 
X(Topography) ->Y(Biomass) 0.1379 0.1984 Not Significant 

X(Biomass) ->Y(Topography) 0.4139 0.2809 4.96% 

Potamogeton 
nodosus 

X(Topography) ->Y(Biomass) 0.5188 0.5736 Not Significant 

X(Biomass) ->Y(Topography) 0.5198 0.773 Not Significant 

Nelumbo 
lutea 

X(Topography) ->Y(Biomass) 0.014 0.000493 1.64% 

X(Biomass) ->Y(Topography) 0.0698 0.00086 2.68% 

https://github.com/Hongxuma/SpatialTransferEntropy.git)
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Eichhonia 
crassipes 

X(Topography) ->Y(Biomass) 0.4591 0.2931 7.44% 

X(Biomass) ->Y(Topography) 0.1015 0.2805 Not Significant 

Polygonum 
spp 

X(Topography) ->Y(Biomass) 0.0067 0.000203 7.76% 

X(Biomass) ->Y(Topography) 0.004 0.000613 0.19% 

Colocasia 
esculenta 

X(Topography) ->Y(Biomass) 0.046 0.000628 5.69% 

X(Biomass) ->Y(Topography) 0.000423 0.000636 Not Significant 

Trees 
X(Topography) ->Y(Biomass) 0.0362 0.0038 2.52% 

X(Biomass) ->Y(Topography) 0.000457 0.000568 Not Significant 

  80% data 
Vegetation   T Threshold T (T-ThresholdT)/H(Y) 

SAVs 
X(Topography) ->Y(Biomass) 0.2056 0.2476 Not Significant 

X(Biomass) ->Y(Topography) 0.3349 0.2292 4.06% 

Potamogeton 
nodosus 

X(Topography) ->Y(Biomass) 0.5443 0.6549 Not Significant 

X(Biomass) ->Y(Topography) 0.4717 0.7949 Not Significant 

Nelumbo 
lutea 

X(Topography) ->Y(Biomass) 0.0137 0.000552 1.60% 

X(Biomass) ->Y(Topography) 0.0466 0.0011 1.85% 

Eichhonia 
crassipes 

X(Topography) ->Y(Biomass) 0.715 0.5115 7.26% 

X(Biomass) ->Y(Topography) 0.0531 0.3428 Not Significant 

Polygonum 
spp 

X(Topography) ->Y(Biomass) 0.0406 0.000362 12.97% 

X(Biomass) ->Y(Topography) 0.0013 0.000793 0.03% 

Colocasia 
esculenta 

X(Topography) ->Y(Biomass) 0.0444 0.00048 4.26% 

X(Biomass) ->Y(Topography) 0.000777 0.000783 Not Significant 

Trees 
X(Topography) ->Y(Biomass) 0.0323 0.0042 2.47% 

X(Biomass) ->Y(Topography) 0.000412 0.000471 Not Significant 

  70% data 
Vegetation   T Threshold T (T-ThresholdT)/H(Y) 

SAVs 
X(Topography) ->Y(Biomass) 0.2142 0.2538 Not Significant 

X(Biomass) ->Y(Topography) 0.3666 0.2682 3.82% 

Potamogeton 
nodosus 

X(Topography) ->Y(Biomass) 0.4936 0.7096 Not Significant 

X(Biomass) ->Y(Topography) 0.6 0.7772 Not Significant 

Nelumbo 
lutea 

X(Topography) ->Y(Biomass) 0.0181 0.00066 2.13% 

X(Biomass) ->Y(Topography) 0.0953 0.0013 3.64% 

Eichhonia 
crassipes 

X(Topography) ->Y(Biomass) 0.6402 0.5223 4.33% 

X(Biomass) ->Y(Topography) 0.063 0.2852 Not Significant 

Polygonum 
spp 

X(Topography) ->Y(Biomass) 0.0052 0.000262 6.36% 

X(Biomass) ->Y(Topography) 0.001 0.000584 0.03% 

Colocasia 
esculenta 

X(Topography) ->Y(Biomass) 0.0465 0.00055 4.81% 

X(Biomass) ->Y(Topography) 0.000646 0.000753 Not Significant 

Trees X(Topography) ->Y(Biomass) 0.0373 0.005 2.58% 
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X(Biomass) ->Y(Topography) 0.00057 0.000572 Not Significant 

  50% data 
Vegetation   T Threshold T (T-ThresholdT)/H(Y) 

SAVs 
X(Topography) ->Y(Biomass) 0.2369 0.3399 Not Significant 

X(Biomass) ->Y(Topography) 0.3721 0.3262 1.77% 

Potamogeton 
nodosus 

X(Topography) ->Y(Biomass) 0.5398 0.7599 Not Significant 

X(Biomass) ->Y(Topography) 0.5895 0.927 Not Significant 

Nelumbo 
lutea 

X(Topography) ->Y(Biomass) 0.0136 0.000837 1.56% 

X(Biomass) ->Y(Topography) 0.0993 0.0018 3.77% 

Eichhonia 
crassipes 

X(Topography) ->Y(Biomass) 0.4537 0.4381 0.71% 

X(Biomass) ->Y(Topography) 0.2491 0.7451 Not Significant 

Polygonum 
spp 

X(Topography) ->Y(Biomass) 0.0123 0.000468 5.38% 

X(Biomass) ->Y(Topography) 0.0034 0.00094 0.14% 

Colocasia 
esculenta 

X(Topography) ->Y(Biomass) 0.017 0.000994 1.56% 

X(Biomass) ->Y(Topography) 0.000797 0.000875 Not Significant 

Trees 
X(Topography) ->Y(Biomass) 0.0342 0.0055 2.56% 

X(Biomass) ->Y(Topography) 0.000219 0.000791 Not Significant 

Table 3.2. Transfer entropy (T) with different percentage data used for each vegetation 
class considered in the analysis. The T, Threshold T are in unit of bits, and H(Y) denotes 
the Shannon entropy of the sink variable. Threshold T is calculated with 95% confidence. 
For all of the transfer entropy statistics, the X dataset comes from 2009 (with the 
exception of elevation change, which is computed as the 2013-2009 difference), while the 
Y dataset comes from 2013. 
 

  Bins = 8    

Vegetation   T Threshold T 
(T-

ThresholdT)/H(Y) 

SAVs X(Topography) ->Y(Biomass) 0.0663 0.0984 Not Significant 

X(Biomass) ->Y(Topography) 0.201 0.0943 4.70% 

Potamogeton 
nodosus 

X(Topography) ->Y(Biomass) 0.2857 0.43 Not Significant 

X(Biomass) ->Y(Topography) 0.3084 0.4579 Not Significant 

Nelumbo 
lutea 

X(Topography) ->Y(Biomass) 0.0181 0.000274 3.68% 

X(Biomass) ->Y(Topography) 0.0317 0.000437 1.38% 

Eichhonia 
crassipes 

X(Topography) ->Y(Biomass) 0.4215 0.176 13.14% 

X(Biomass) ->Y(Topography) 0.0454 0.1636 Not Significant 

Polygonum 
spp 

X(Topography) ->Y(Biomass) 0.001 0.000109 2.93% 

X(Biomass) ->Y(Topography) 0.000514 0.000438 0.01% 

Colocasia 
esculenta 

X(Topography) ->Y(Biomass) 0.0375 0.00023 7.89% 

X(Biomass) ->Y(Topography) 0.000281 0.000354 Not Significant 

Trees X(Topography) ->Y(Biomass) 0.017 0.0018 1.69% 
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X(Biomass) ->Y(Topography) 0.000149 0.000214 Not Significant 

  Bins = 9 

Vegetation   T Threshold T 
(T-

ThresholdT)/H(Y) 

SAVs 
X(Topography) ->Y(Biomass) 0.141 0.143 Not Significant 

X(Biomass) ->Y(Topography) 0.243 0.1335 4.54% 

Potamogeton 
nodosus 

X(Topography) ->Y(Biomass) 0.4368 0.5179 Not Significant 

X(Biomass) ->Y(Topography) 0.3876 0.5521 Not Significant 

Nelumbo 
lutea 

X(Topography) ->Y(Biomass) 0.0096 0.000371 1.37% 

X(Biomass) ->Y(Topography) 0.0516 0.0009 2.09% 

Eichhonia 
crassipes 

X(Topography) ->Y(Biomass) 0.4017 0.2133 9.51% 

X(Biomass) ->Y(Topography) 0.0637 0.1833 Not Significant 

Polygonum 
spp 

X(Topography) ->Y(Biomass) 0.0032 0.000143 5.75% 

X(Biomass) ->Y(Topography) 0.000423 0.00035 0.01% 

Colocasia 
esculenta 

X(Topography) ->Y(Biomass) 0.0463 0.000331 5.47% 

X(Biomass) ->Y(Topography) 0.000344 0.000476 Not Significant 

Trees 
X(Topography) ->Y(Biomass) 0.0262 0.0025 2.29% 

X(Biomass) ->Y(Topography) 0.000192 0.000309 Not Significant 

  Bins = 11 

Vegetation   T Threshold T 
(T-

ThresholdT)/H(Y) 

SAVs 
X(Topography) ->Y(Biomass) 0.1547 0.2249 Not Significant 

X(Biomass) ->Y(Topography) 0.2726 0.2166 2.09% 

Potamogeton 
nodosus 

X(Topography) ->Y(Biomass) 0.4677 0.6702 Not Significant 

X(Biomass) ->Y(Topography) 0.4767 0.7856 Not Significant 

Nelumbo 
lutea 

X(Topography) ->Y(Biomass) 0.0169 0.000589 1.78% 

X(Biomass) ->Y(Topography) 0.073 0.000994 2.67% 

Eichhonia 
crassipes 

X(Topography) ->Y(Biomass) 0.5388 0.357 7.89% 

X(Biomass) ->Y(Topography) 0.0994 0.3453 Not Significant 

Polygonum 
spp 

X(Topography) ->Y(Biomass) 0.0109 0.000225 8.59% 

X(Biomass) ->Y(Topography) 0.001 0.000588 0.02% 

Colocasia 
esculenta 

X(Topography) ->Y(Biomass) 0.0544 0.000507 5.59% 

X(Biomass) ->Y(Topography) 0.0016 0.000791 0.04% 

Trees 
X(Topography) ->Y(Biomass) 0.0333 0.0043 2.26% 

X(Biomass) ->Y(Topography) 0.000318 0.000592 Not Significant 

  Bins = 12 

Vegetation   T Threshold T 
(T-

ThresholdT)/H(Y) 

SAVs 
X(Topography) ->Y(Biomass) 0.2203 0.2634 Not Significant 

X(Biomass) ->Y(Topography) 0.3177 0.2458 2.65% 
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Potamogeton 
nodosus 

X(Topography) ->Y(Biomass) 0.5669 0.7884 Not Significant 

X(Biomass) ->Y(Topography) 0.6565 0.9032 Not Significant 

Nelumbo 
lutea 

X(Topography) ->Y(Biomass) 0.0164 0.000713 1.59% 

X(Biomass) ->Y(Topography) 0.0841 0.0012 2.93% 

Eichhonia 
crassipes 

X(Topography) ->Y(Biomass) 0.4335 0.429 1.90% 

X(Biomass) ->Y(Topography) 0.098 0.4304 Not Significant 

Polygonum 
spp 

X(Topography) ->Y(Biomass) 0.0148 0.000298 7.40% 

X(Biomass) ->Y(Topography) 0.0018 0.00073 0.05% 

Colocasia 
esculenta 

X(Topography) ->Y(Biomass) 0.0566 0.000589 7.24% 

X(Biomass) ->Y(Topography) 0.0027 0.00097 0.07% 

Trees 
X(Topography) ->Y(Biomass) 0.0376 0.0051 2.34% 

X(Biomass) ->Y(Topography) 0.000359 0.000654 Not Significant 

Table 3.3. Transfer entropy (T) with different number of bins for each vegetation class 
considered in the analysis. The T, Threshold T are in unit of bits, and H(Y) denotes the 
Shannon entropy of the sink variable. Threshold T is calculated with 95% confidence. 
For all of the transfer entropy statistics, the X dataset comes from 2009 (with the 
exception of elevation change, which is computed as the 2013-2009 difference), while the 
Y dataset comes from 2013.   
 

3.4. Vegetation and topography transition analysis 
While transfer entropy establishes the non-independence of pairs of variables (i.e., 

the existence of a “causal” relationship between them), it says nothing about how 
variables influence other variables (e.g. whether the relationship is positive, negative, or 
piecewise). To grapple with the nature of the dynamic interactions between topography 
and vegetation classes, we complemented the transfer entropy analysis with a vegetation 
and topography transition analysis. First, to evaluate temporal changes in vegetation 
classes, a vegetation transition matrix was calculated based on the vegetation 
classification maps. The number of 2 × 2-m cells transitioning from each class (Table 
3.4) to each other class between 2010 and 2011 was tabulated and recorded in an 8 × 8 
transition matrix.  

Subsequently, a topographic change matrix was computed to evaluate how much 
elevation changed for each transition type. Within the cells undergoing each of the 64 
(i.e., 8 × 8) possible transitions, the change in elevation between 2009 and 2013 was 
computed. Negative values represented a loss in elevation, and positive values 
represented a gain. The total elevation change for each transition type was then 
normalized by the total area of the transition type.  

4 Results 
4.1 Trends and transitions in elevation, surrogate biovolume, and vegetation class  

Across the imaged area, sediment accreted by an average of 24.9 mm between 
2009 and 2013, but with large variability across the delta (standard deviation of 25.2 
mm). Net positive elevation changes occurred in all vegetation classes and were generally 
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highest in the lower portions of the delta (Table 3.4). Areas occupied consistently by 
open water and floating Potamogeton nodosus increased in elevation by 44-47 mm, while 
the highest areas, occupied by Salix nigra, increased by an average of just 2 mm. 
Meanwhile, across the whole study area biovolume changed by 1.47 % ± 19.47% from 
2009 to 2013.  

From 2009 to 2013, 32.6% of the imaged vegetation area transitioned to other 
vegetation classes (Table 2.4; Figure 2.9; and as discussed in Carle et al., 2014). Within 
individual vegetation classes, the percentage of areal coverage transitioning between 
2010 and 2011 ranged from 5.60% (Salix nigra) to 98.63% (Colocasia esculenta). Most 
transitions happened between species with a similar topographic range and primarily at 
lower elevations within the tidal wedge. Transitions from lower-elevation classes to 
higher-elevation classes tended to occur in places where elevation gains were greater than 
average for that vegetation class (i.e., cells to the right of the diagonal in Table 2, with the 
exception of transitions from intertidal classes to Nelumbo lutea). Gains in elevation 
within SAV prompted shifts to Potamogeton nodosus and Nelumbo lutea, with a 
particularly large proportion (26.2%) transitioning to Nelumbo lutea. For example, the 
nonnative invasive species Eichhornia crassipes exhibited a relatively large increase in 
area, overtaking 48.9% of the 2010 area of Colocasia esculenta.  

  To 

  

Water 
and 

Others SAVs 
Potamogeto
n nodosus 

Nelumbo 
lutea 

Eichhorni
a crassipes 

Polygonu
m spp. 

Colocasi
a 

esculenta 

Trees 
(Salix 
nigra) 

Spatially 
Average

d 

Fr
om

 

Water and 
Others 

49.6 
(82.84%) 

29.7 
(1.40%) 

42.6 
(0.59%) 

42.0 
(4.78%) 

26.5 
(7.12%) 

32.4 
(2.56%) 

25.7 
(0.38%) 

18.5 
(0.32%) 

46.6 
(17.16%) 

SAVs 
37.6 

(53.73%) 
12.5 

(10.34%) 
35.6 

(1.88%) 
24.4 

(26.18%) 
35.9 

(5.71%) 
33.0 

(0.30%) 
33.6 

(1.49%) 
28.3 

(0.37%) 
31.3 

(89.66%) 

Potamogeto
n nodosus 

47.5 
(72.38%) 

27.7 
(8.36%) 

40.9 
(10.66%) 

42.3 
(7.22%) 

28.5 
(1.11%) 

44.2 
(0.05%) 

54.5 
(0.20%) 

42.5 
(0.01%) 

44.6 
(89.34%) 

Nelumbo 
lutea 

33.6 
(32.33%) 

28.2 
(6.82%) 

27.5 
(0.85%) 

24.6 
(50.19%) 

34.6 
(6.97%) 

33.2 
(0.22%) 

34.1 
(1.59%) 

29.5 
(1.03%) 

28.7 
(49.81%) 

Eichhornia 
crassipes 

27.0 
(10.70%) 

13.8 
(0.17%) 

67.6 
(0.02%) 

29.3 
(5.20%) 

11.3 
(65.70%) 

16.2 
(15.85%) 

11.9 
(1.55%) 

24.7 
(0.81%) 

14.8 
(34.30%) 

Polygonum 
spp. 

20.2 
(4.06%) 

25.6 
(0.06%) 

26.5 
(0.01%) 

28.1 
(1.26%) 

13.2 
(28.75%) 

15.8 
(64.77%) 

11.8 
(0.70%) 

19.6 
(0.39%) 

15.4 
(35.33%) 

Colocasia 
esculenta 

13.7 
(33.76%) 

21.2 
(0.37%) 

38.2 
(0.10%) 

29.0 
(3.78%) 

10.5 
(48.92%) 

7.9 
(10.91%) 

8.6 
(1.37%) 

6.8 
(0.78%) 

12.0 
(98.63%) 

Trees (Salix 
nigra) 

4.4 
(2.62%) 

17.7 
(0.06%) 

-1.1 
(<0.01%) 

13.1 
(0.79%) 

9.6 
(1.46%) 

6.3 
(0.55%) 

10.5 
(0.12%) 

1.1 
(94.40%) 

1.5 
(5.6%) 

 

Table 3.4. The matrix of the mean elevation change (unit in mm/ m2). The degree of 
change is colored from red (gain) to white (loss) for each vegetation type. The percentage 
of each class transitioning to the other classes is also calculated and shown in brackets. 
The spatially averaged elevation changes also calculated. The degree of change is 
represented by saturation of green and the percentage of area that underwent a transition 
to other type are shown in brackets. 
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Figure 3.9. The vegetation transition map of each vegetation types. The color bar on the edge 
represents the vegetation type and the size of arrow represents the number of pixels for each 
transition. The arrows which point to themselves represent the pixels that remained unchanged. 

 

4.2. Resolution of feedbacks and forcings between vegetation and sediment 
Transfer entropy-based resolution of vegetation-sediment feedbacks indicated strong 

feedback between elevation and surrogate biovolume over all vegetation classes (Fig. 3.10A, 
Table 3.5). The transfer entropy from elevation to surrogate bio-volume exceeded the 95% 
confidence threshold and explains 1.30% uncertainty of bio-volume, and that from surrogate bio-
volume to elevation explains 0.48% uncertainty of elevation. Meanwhile, elevation also exerted 
strong feedback with vegetation class. The transfer entropy from elevation to vegetation class 
exceeded the 95% confidence threshold and explains 1.61% uncertainty of vegetation class, 
while that from vegetation class to elevation exceeded the threshold and explains 2.36% 
uncertainty of elevation.  
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Figure 3.10. a) Feedback and forcing between elevation, surrogate bio-volume, and vegetation 
class, based on a transfer entropy analysis. b) Transfer entropy between elevation and surrogate 
bio-volume for each vegetation class considered. The orange line represents transfer entropy that 
passes the significance test with 95% confidence. The time lag between all depicted causal 
relationships is four years, as constrained by the LiDAR image acquisition in 2009 and 2013. 
 

  Transfer Entropy    



 
Chapter 3: Ecogeomorphic Feedbacks that Grow Deltas 

 48 

      

Vegetation   T 
Threshold 

T 
(T-ThresholdT) 

/H(Y) p-value 

SAVs 
X(Elevation) ->Y(Bio-volume) 0.1419 0.1811 Not Significant - 

X(Bio-volume) ->Y(Elevation) 0.2261 0.1732 3.57% <0.001 

X(Elevation change) ->(Bio-Volume) 0.6998 0.1697 22.44% <0.001 

Potamogeton 
nodosus 

X(Elevation) ->Y(Bio-volume) 0.4681 0.5891 Not Significant - 

X(Bio-volume) ->Y(Elevation) 0.5106 0.6756 Not Significant - 

X(Elevation change) ->(Bio-Volume) 0.6725 0.5214 5.29% <0.001 

Nelumbo lutea 
X(Elevation) ->Y(Bio-volume) 0.0138 0.000467 1.62% <0.001 

X(Bio-volume) ->Y(Elevation) 0.0701 0.000766 2.69% <0.001 

X(Elevation change) ->(Bio-Volume) 0.3278 0.00063 23.94% <0.001 

Eichhonia 
crassipes 

X(Elevation) ->Y(Bio-volume) 0.4841 0.2712 9.37% <0.001 

X(Bio-volume) ->Y(Elevation) 0.0652 0.2527 Not Significant - 

X(Elevation change) ->(Bio-Volume) 0.2559 0.2891 Not Significant - 

Polygonum spp 
X(Elevation) ->Y(Bio-volume) 0.0066 0.000183 7.81% <0.001 

X(Bio-volume) ->Y(Elevation) 0.000702 0.00046 0.01% <0.001 

X(Elevation change) ->(Bio-Volume) 0.0044 0.00026 3.45% <0.001 

Colocasia 
esculenta 

X(Elevation) ->Y(Bio-volume) 0.046 0.0004 4.43% <0.001 

X(Bio-volume) ->Y(Elevation) 0.000596 0.000597 Not Significant 0.051* 

X(Elevation change) ->(Bio-Volume) 0.055 0.000487 11.06% <0.001 

Trees 
(Salix nigra) 

X(Elevation) ->Y(Bio-volume) 0.0326 0.0033 2.53% <0.001 

X(Bio-volume) ->Y(Elevation) 0.000262 0.000418 Not Significant - 

X(Elevation change) ->(Bio-Volume) 0.00051 0.00023 0.01% <0.001 

  

 Mutual Information of 
Elevation Change & Bio-volume at 2009 

Vegetation 
I Threshold I 

(I-Threshold 
I)/H(Y)������ 

SAVs 1.1869 0.045 41.94% 

Potamogeton 
nodosus 0.4291 0.2089 8.81% 

Nelumbo lutea 0.6095 0.00013 45.56% 
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Eichhonia 
crassipes 

0.8028 0.00013 28.68% 

   

Polygonum spp 0.526 0.0012 56.44% 

Colocasia 
esculenta 0.5714 0.00011 76.89% 

Trees 
(Salix nigra) 0.8735 0.0618 46.58% 

Table 3.5. Transfer entropy (T) and mutual information (I) for each vegetation class considered in the 
analysis. The T, Threshold T, I and Threshold I are in unit of bits, and H(Y) denotes the Shannon entropy 
of the sink variable. Threshold T and Threshold I are calculated with 95% confidence. For all of the 
transfer entropy statistics, the X dataset comes from 2009 (with the exception of elevation change, which 
is computed as the 2013-2009 difference), while the Y dataset comes from 2013. 

* The transfer entropy from bio-volume to elevation of Colocasia esculenta is just below the 95% 
confidence level.   
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Vegetation classes exhibited a range of resolvable feedbacks and/or forcings. For the 

weak test of vegetation’s influence on elevation (i.e., mutual information in Table 3.5), all 
vegetation classes had a significant influence on the change in elevation, with the classes highest 
in elevation having the strongest influence. Of these classes, Colocasia esculenta featured the 
highest significant relative mutual information, with an average of 76.89% of the information 
present in the temporal elevation change shared with that of the 2009 surrogate biovolume.  

For the stronger test of feedback or forcing between vegetation canopy structure and 
topography (i.e., transfer entropies between elevation and biovolume), only a single, floating, 
vegetation class (Potamogeton nodosus) exhibited no resolvable feedback or forcing (Table 3.5). 
With the exception of Potamogeton and communities of submersed aquatic vegetation, elevation 
exerted a significant impact on surrogate biovolume within all vegetation classes. However, only 
classes at low to moderate (SAV, Nelumbo lutea, Polygonum spp.) elevation ranges had 
resolvable forcing from surrogate biovolume to elevation. In a spatial sense, the subtidal island 
interiors in younger parts of the delta exhibited one-way forcing from surrogate biovolume to 
elevation, while supratidal island heads and along-channel levees exhibited one-way forcing 
from elevation to surrogate biovolume. Meanwhile, bidirectional feedback occurred at moderate 
elevations intermediate between island interiors and higher-elevation near-channel levees, which 
occupied a larger proportion of older islands at the upstream end of the delta than the younger 
islands downstream (Figure 3.11).  
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Figure 3.11. a) The map of the region with significant feedback between elevation and bio-
volume. b) The map of the region with information significantly transferred from bio-volume to 
elevation. c) The map of the region with information significantly transferred from elevation to 
bio-volume. d) The map of the region with one-way forcing from bio-volume to elevation. e) 
The map of the region with one-way forcing from elevation to bio-volume. 
 

Finally, in the test of how incremental deposition or erosion influenced vegetation 
surrogate biovolume characteristics (third row in each set of transfer entropy statistics in Table 
3.5), elevation change significantly reduced uncertainty in the 2013 surrogate biovolume, 
independent of the 2009 biovolume, of all vegetation classes except for Eichhornia crassipes, 
with the caveat that for Salix nigra, the reduction in uncertainty was very small (0.01% of the 
uncertainty in biovolume). Within all vegetation classes, correlations between elevation change 
and the change in biovolume were positive (Figure 3.12), suggesting that deposition of sediment 
enhanced the volumetric growth of the canopy. The strength of the forcing was strongest for 
Nelumbo lutea and SAV, with a >20% reduction in the uncertainty of biovolume in both classes 
(Table 3.5). The relationship was slightly less strong in Colocasia esculenta, with an 11% 
reduction in the uncertainty of biovolume. 
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Figure 3.12. The relationship between topography change and surrogate Bio-Volume change of 
each vegetation type.  

 
In summary, vegetation biovolume had a resolvable impact on deposition or erosion 

within all vegetation classes, but it was a dominant influence on marsh elevation only within 
rooted classes that occupy lower elevations (i.e., Nelumbo lutea and SAV). Strong 
ecogeomorphic feedback loops (i.e., bidirectional forcing between surrogate biovolume and 
elevation) were resolvable for classes only at moderate elevation ranges. At lower elevations 
(within SAV), only directional forcing from surrogate bio-volume to elevation was resolvable, 
whereas at higher elevations (within Colocasia esculenta and Salix nigra) and within the widely 
ranging floating invasive Eichhornia crassipes, forcing from elevation to surrogate biovolume 
was resolvable. While vegetation communities had a dominant influence on elevation over the 
four-year timescale of the experiment only at moderate elevations, nearly all vegetation canopies 
reduced uncertainty in deposition. Conversely, deposition amounts had a significant influence on 
surrogate biovolume in nearly all vegetation classes, particularly those low in the tidal range.    

5 Discussion 

5.1 Delta-scale resolution of ecogeomorphic feedbacks with information theory 
The linkage between elevation, vegetation community composition, and canopy 

characteristics has been long recognized for coastal marshes. In the classic example, mean high 
water marks the elevation at which Spartina alterniflora, which occupies low elevations, 
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transitions to Spartina patens, a superior competitor that is limited by low rhizosphere oxygen 
content, in New England salt marshes (Bertness 1991). More recent studies have shown that the 
factors influencing salt marsh zonation are often complex, and that saturated and unsaturated 
flow and groundwater discharge may interact with salinity and elevation in determining 
vegetation distribution patterns (Silvestri, Defina et al. 2005, Wilson and Gardner 2006). 
Freshwater marshes, including deltaic freshwater marshes, have more diverse community 
compositions and even more complex patterns of zonation, often with overlap between 
communities. Nevertheless, the influence of elevation on species composition remains 
discernible and regionally consistent (Odum 1988, Leck and Simpson 1994).  

The basic concept of marsh zonation is concerned with the one-way influence of 
elevation or other abiotic factors on vegetation distribution. Understanding of the feedback 
between vegetation species and topography along different portions of the marsh 
elevation/zonation gradient is less well developed, particularly for freshwater, deltaic marshes. In 
part, this knowledge gap is due to difficulties in resolving ecogeomorphic feedback from data. 
Primary difficulties include a disparity in the timescales over which vegetation-to-topography 
(slower) and topography-to-vegetation (faster) forcings act and high spatial variability in the 
effects of vegetation on topography, which are convolved with spatial variability in sediment 
supply and flow characteristics. 

A spatial transfer entropy analysis based on LiDAR imagery is able to overcome many of 
the difficulties in resolving bidirectional feedback between vegetation and topography. The 
approach is particularly well suited for detection of noisy relationships (e.g., section 3.2.3). 
Transfer entropy does not presume the nature of the relationship between the pair of variables 
but provides a means to statistically distinguish between apparent correlations between variables 
A and B that are due to 1) A causing B, 2) B causing A, 3) a third factor C causing apparent 
synchrony between A and B or 4) feedback (bi-directional causality between A and B). 

Here, the transfer entropy analysis was consistent with widespread understanding of 
marsh zonation, yet produced additional insight into which vegetation communities had the most 
dominant impacts on topographic change. With respect to the former, knowledge of marsh 
elevation at a previous time step reduced uncertainty in future vegetation class to a greater extent 
than knowledge of vegetation class at the previous time step (Figure 3.10A), suggesting that 
physical habitat had a dominant influence over biological facilitation (i.e., seed bank) in the 
dynamics of vegetation community distribution. This finding complements previous studies on 
vegetation succession in the Atchafalaya Delta (Shaffer, Sasser et al. 1992). The 
vegetation/topographic transition analysis provided additional support for this interpretation, 
showing that transitions in communities structured along an elevation gradient tended to be 
associated with consistent changes in elevation (Table 3.4). Further, in the transfer entropy 
analysis, elevation had a resolvable impact on the surrogate bio-volume of almost every 
vegetation class, except for those adapted to submersed conditions (SAV) and the floating 
Potamogeton nodosus class. 

With vegetation class-specific analysis, surrogate biovolume shared significant mutual 
information with elevation change in all vegetation classes examined (Table 3.5), consistent with 
our hypothesis that canopy characteristics serve as a control on sedimentation and erosion. The 
normalized mutual information is greatest in Colocasia esculenta, suggesting that canopy 
characteristics are the primary factor explaining variability in sedimentation and that variability 
in sediment supply or flow characteristics plays a more minor role, unless correlated with the 
surrogate biovolume of Colocasia. On the channel-side and inner-side margins of the high marsh 
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platform (Salix nigra and Polygonum spp., respectively), the normalized significant mutual 
information decreases relative to Colocasia, but remains high compared to the low island 
interiors, where exposure to deeper waters or a wider range of flow velocities may coincide with 
more variability in sediment delivery or erosion. In particular, Salix nigra exhibits both areas of 
erosion and of deposition (Figure 3.12), consistent with observations and models of high-velocity 
routing of water around island heads and edges, which triggers erosion, together with deposition 
on the natural levees (Olliver and Edmonds 2017, Wagner, Lague et al. 2017, Bevington and 
Twilley 2018). 

In the stronger test of the impact of ecogeomorphic feedback on marsh elevations (i.e., 
transfer entropies in Table 3.5), far fewer vegetation classes emerge as providing significant 
information to (i.e., reducing uncertainty in) elevation that is independent of past elevations. 
Although the mutual information analysis suggested that canopy characteristics are the dominant 
driver of variability in sedimentation within the high marsh platform, the transfer entropy 
analysis on elevation data suggests that, because of the higher rates of sedimentation in the low 
marsh, it is only within these vegetation classes that biovolume serves as a dominant driver of 
absolute elevation over the four-year timescale of analysis. On the other hand, in the high marsh 
and near channel edges, consistent spatial variability in flow patterns or production of organic 
matter (measured to be much greater in the high marsh than low marsh) may be more dominant 
controls on absolute elevation (Bevington and Twilley 2018).    

Nevertheless, the absence of statistically significant transfer entropy from vegetation to 
elevation does not necessarily reflect a lack of ecogeomorphic feedback. For example, mats of 
Eichhornia crassipes are highly mobile, prone to transport by wind, tides, and, particularly, storm 
events. Its distribution at a snapshot in time, therefore, may not be representative of its 
distribution during the period of sediment accumulation captured between LiDAR image 
acquisitions. Further, the highly variable range of elevations over which Eichhornia crassipes 
occurs results in highly uncertain values of the elevation at which a canopy of particular 
biovolume will occur at a future time step, regardless of the sedimentation directly attributable to 
the vegetation canopy. Thus, significant transfer entropy may be a sufficient, while not 
necessary, requirement for resolution of ecogeomorphic feedback.  

2.5.2 Do nonnative vegetation communities have similar ecogeomorphic function to 
native communities? 

Our transfer entropy analysis suggests that ecogeomorphic feedback that has a substantial 
short-term impact on evolving topography was resolvable only within native vegetation 
communities that occur over low to moderate elevations (subtidal to intertidal) within the Wax 
Lake Delta. Within higher elevation ranges, Colocasia esculenta, which displaces a mixture of 
species such as Polygonum and Sagittaria spp., responds to elevation but does not significantly 
influence it (though its canopy structure does significantly impact spatial variability in 
deposition). Within lower vegetation ranges, Eichhornia crassipes and Potamogeton nodosus, 
which displace Nelumbo lutea and SAV, exhibit no resolvable influence on elevation, though as 
discussed above, their mobility may explain the lack of statistically significant transfer entropy.  

Within lower vegetation ranges, Eichhornia crassipes and Potamogeton nodosus, which 
displace Nelumbo lutea and SAV, exhibit no resolvable control on elevation, despite the fact that 
they occur in zones with among the highest rates of deposition (Table 3.4). Though, as discussed 
above, their mobility may explain the lack of statistically significant transfer entropy, this 
analysis suggests that unmeasured factors such as variability in sediment supply or flow may 
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serve as a stronger control on elevations in the areas occupied by these vegetation classes than 
the biovolume of the vegetation canopy.  

Vegetation morphology and the presence/absence of epiphyton may explain why, in the 
Wax Lake Delta, nonnative vegetation communities are not as functional at accreting sediment 
as native communities. The underwater biomass and blockage factors (important controls on 
sedimentation (Chen, Ortiz et al. 2012)) of floating Eichhornia crassipes and Potamogeton 
nodosus are low compared to SAV. Because the biomass of floating vegetation is concentrated in 
the upper portion of the water column, flows are forced preferentially closer to the bed, where 
they may inhibit sediment deposition (Wharton, Cotton et al. 2006). Studies in lakes and streams 
show that, for this reason, floating vegetation induces substantially lower sedimentation than 
emergent or submersed vegetation (Horppila and Nurminen 2005, Li, Pan et al. 2016). Colocasia 
esculenta contrasts with Eichhornia crassipes in that it is emergent in addition to having high 
densities, thus resulting in a high blockage factor and strong potential to promote accretion by 
decreasing flows and enhancing settling. However, its stem diameters are large (8-10 mm), 
particularly near the bed, where two distinct stems characteristically join into one large culm. 
Large-diameter stems may inhibit particle settling by setting a large characteristic eddy scale and 
promoting high turbulence intensities (Leonard and Luther 1995, Nepf 1999), which inhibit 
deposition within the patch (Chen, Ortiz et al. 2012, Follett and Nepf 2012, Ortiz, Ashton et al. 
2013). Furthermore, direct capture efficiencies—defined as the ratio of particles transported 
within the upstream projected area of the vegetation stems to the particles that are permanently 
captured on vegetation stems—are inversely proportional to stem diameter (Palmer, Nepf et al. 
2004). 

Indeed, direct particle interception by stems, an often-neglected and/or potentially 
underestimated component of sedimentation budgets (Fauria, Kerwin et al. 2015) may contribute 
substantially to the resolved differences between vegetation classes in ecogeomorphic feedback 
strength. All of the classes with a statistically significant influence of surrogate bio-volume on 
topography have extensive epiphytic biofilm coverage, which, in our observations and in studies 
elsewhere (Gerbersdorf and Wieprecht 2015), has been noted to be associated with substantial 
fine sediment capture. In contrast, Colocasia esculenta stems are devoid of biofilm and 
hydrophobic, though both of these properties change when they senesce. 

Though it remains unclear whether the mechanism behind differences in ecogeomorphic 
feedback strength is the purely physical effect of vegetation biovolume on flow or the presence/ 
absence of epiphytic biofilm, our results clearly suggest that efforts to control invasive 
Eichhornia crassipes in coastal marshes will likely have a payoff in higher sedimentation rates. 
Less sedimentation occurs at higher elevations, but if Colocasia esculenta could be prevented 
from invading high marsh vegetation communities, higher rates of sedimentation may also result, 
though investigations into belowground differences in organic matter production between 
Colocasia and the communities it displaces are warranted (Bevington and Twilley 2018). 
5.3 Ecogeomorphic functional types and ecogeomorphic models of delta evolution  

Above all, our analyses suggest that different vegetation communities play functionally 
different roles in landscape evolution. This insight contrasts with the common practice of 
representing vegetation in ecogeomorphic models as a single entity, even over a range of aquatic 
to upland elevations (Bertoldi, Siviglia et al. 2014). For example, models of river-floodplain 
evolution typically consider only the ecogeomorphic effects of trees (Murray and Paola 1997, 
Nicholas and Quine 2007, Nicholas 2013, Manners, Schmidt et al. 2013) whereas 
ecogeomorphic marsh models typically consider a single species of emergent marsh grass 
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(Kirwan and Murray 2007, Mariotti and Fagherazzi 2010, Larsen and Harvey 2011, Fagherazzi, 
Kirwan et al. 2012). In our data-driven analysis of the Wax Lake Delta, it was apparent that trees 
played a role different from that typically assigned in models of river/floodplain evolution, in 
which they typically act as stabilizing agents, diminishing erosion. Here, no significant forcing 
relationship from tree surrogate bio-volume to topography was resolved, consistent with others’ 
observations of the erosion of island heads in the Wax Lake Delta (Carle, Sasser et al. 2013), and 
with the physically based understanding that large-diameter, sparse stems tend to enhance 
erosion rather than stimulate deposition (Follett and Nepf 2012, Liu and Nepf 2016). Numerical 
models suggest that, unless delta island heads are populated with vegetation with a high blockage 
factor, erosion within the heads may be high (Nardin, Edmonds et al. 2016).  

Given the increasing availability of LiDAR data and principles and practices of open 
science that have made several transfer entropy toolboxes readily available (Ruddell and Kumar 
2009, Larsen, Newman et al. 2017), it may become practical for modelers to use spatial transfer 
entropy as a screening tool to define the relevant ecogeomorphic functional types that should be 
included in a model of a particular floodplain or wetland of interest. Here, our analyses would 
suggest that almost every vegetation class considered has a distinct ecogeomorphic role that 
should be differentiated in a model, with the exception of Potamogeton nodosus, which could be 
reasonably left out of an ecogeomorphic model. Within such a model, it would be most critical to 
resolve detailed flow characteristics at lower to low-middle island elevations, where SAV and 
Nelumbo are abundant, as these communities exert the strongest influence on topographic 
change. Furthermore, within elevation zones, it is likely important to differentiate between the 
roles of multiple vegetation classes (e.g., Nelumbo vs. Eichhornia) rather than treating the entire 
elevation zone as a single ecogeomorphic entity. Whether interception or settling-dominated 
sedimentation is the most important process to represent within these classes, however, remains 
an open question. 
5.4. Data and analysis limitations 

In any attempt to detect or quantify feedbacks and forcings from data, it is important to 
be aware of sensitivities to timescale (Turnbull, Hochstrasser et al. 2014). One potential 
limitation of our study is that our analysis is derived from just two points in time (spaced four 
years apart). Limited sampling in time presents the risk that the period sampled is not 
representative of the set of external drivers that activate feedback and forcing over the timescale 
of delta evolution. Our analysis period was dominated by a major river flood that presented the 
opportunity to observe flow-sediment interactions in response to sediment delivery and/or 
erosion typical of major flood events and of intervening average cold front-induced disturbances 
(Figure 3.3) but not infrequent hurricane-type disturbance.  

Information entropy analyses will also be sensitive to the time step evaluated. Short time 
steps (e.g., source images at a resolution of less than one year, or on the order of several years 
with below-average sedimentation events) may pose challenges in detecting feedback and 
forcing with transfer entropy, as the previous time step would expectedly reduce most of the 
uncertainty in the variable of interest, obscuring reductions in uncertainty by exogenous 
variables. On the other hand, with long time steps (e.g., five or more years, or even as little as a 
few years with several major disturbances), processes other than local ecogeomorphic feedbacks 
(e.g., localized patterns in wind, flow, or sediment deliver) may contribute more substantially to 
uncertainty in the response variable, manifesting as noise in an information entropy analysis and 
reducing the likelihood of detecting statistically significant ecogeomorphic interactions. At the 
same time, longer timescales of observation may allow for more sediment delivery to higher-
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elevation locations, potentially resulting in detection of significant information flow from 
surrogate biovolume to elevation (though presumably with a lower magnitude of information 
transfer than for lower-elevation areas). 

Last, it is also important to recognize that the ecogeomorphic feedbacks we have 
quantified here apply to the local (i.e., patch) scale, and that larger-scale feedbacks may be 
relevant to the evolution of deltaic islands. Olliver and Edmonds (Olliver and Edmonds 2017), 
for instance, found evidence supporting the hypothesis that intertidal (the elevation range from 
SAV and up to, but not including, Colocasia) and subaerial (the elevation range from Colocasia 
to Salix nigra) elevation platforms are alternative stable states, which self-organize to remarkably 
consistent elevations. This self-organization, in the face of local variability in the strength of 
ecogeomorphic feedbacks, may reflect larger-scale ecogeomorphic feedbacks, such as those 
arising from the effect of landscape configuration on regional flow fields (Larsen, Ma et al. 
2017) or on the sediment (Nardin and Edmonds 2014) or particulate nutrient supply (Bouma, 
Van Duren et al. 2007) delivered to vegetated platforms. Prediction of delta evolution will 
ultimately require understanding of both the large-scale and local-scale ecogeomorphic 
feedbacks, with spatial transfer entropy providing an efficient means of identifying and 
quantifying local-scale feedbacks and interactions. 

6 Conclusions 
Here we have addressed questions about the strength of ecogeomorphic feedbacks 

responsible for vertical delta growth within different vegetation classes. To do so, we extended 
the transfer entropy approach for extracting causal interactions to spatial systems. The approach 
enables measurement of the relative strength, directionality and statistical significance of 
interactions between state variables of interest—here, surrogate bio-volume and elevation. 

Based on our quantification of statistically significant feedbacks, we found that, in a 
spatially averaged sense, elevation exhibits strong feedback with surrogate biovolume in the 
Wax Lake Delta, a river-dominated delta ecosystem. In addition to bidirectional feedback 
between surrogate bio-volume and topography, we also resolved statistically significant forcing 
from topography to vegetation class, which is consistent with existing understanding of delta 
vegetation succession associated with elevation change. Within individual vegetation classes, the 
type of coupling between surrogate biovolume and elevation reflects the magnitude of 
sedimentation within vegetation canopies and the importance of elevation for plant growth. Here, 
native species tended to have strong feedback-dominated couplings, while invasive species had a 
forcing-dominated coupling, from elevation to biovolume. Native species with feedback-
dominated couplings contributed most of the observed increase in elevation over the course of 
the study, whereas species with the forcing-dominated couplings contributed little to the 
observed elevation growth.  
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Chapter 4  

Dust mediates CO2 - Temperature feedbacks over 
Pleistocene glacial - interglacial cycles 
4.1 INTRODUCTION 

        The climate system has moved between glacial and interglacial stages in relatively 
consistent ~100 kyr cycles during the late Pleistocene (Petit et al. 1999), begging the question: 
What mechanisms control this consistent synchrony? These cycles are of significant interest 
because they imply self-regulation within the climate system and have significant implications 
for understanding and predicting potentially abrupt climate changes (Lenton et al. 2008). 

The correlation analysis among greenhouse gases, temperature and other paleoclimate 
records have been well studied. The directionality, relative strength and statistical significance of 
each causal effects is still challenging to identify. CO2 is originally believed to lead the change 
of Antarctic temperatures based on the temporal scale (Fischer et al. 1999; Shackleton 2000). 
However, the lag used to identify the causality from CO2 to temperature is not able to be 
identified in the last deglaciation (Pedro et al. 2012; Shakun et al. 2012). The relation between 
variables could have different feedback status when system stationary changed. Even more 
complex, two variables could have mixed opposite feedbacks at the same time, instead of simple 
one-way forcing effect (Nes et al. 2015). For example, high CO2 concentration will amplify 
photosynthesis which will lead a negative feedback since photosynthesis takes up CO2. 
However, high temperature will amplify respiration, the release of CO2, leading to a positive 
feedback (Cramer et al. 2001). Additionally, high temperatures decrease the CO2-consuming 
process and CaCO3 neutralization process (Archer et al. 2004), and lastly will lead a positive 
feedback through releasing methane from the hydrate storages (Archer et al. 2009). But 
Martinez-Boti et al. (2015) have found carbon release from the oceans that precede the 
temperature changes in deglaciation. This complex system with multiple feedback scheme 
remains a major challenge to identify the causality roles of each paleoclimate variable.  

The climate history as revealed by proxies from the Antarctic Vostok ice core shows a 
clear pattern during the past 420 kyr, in which glacial-interglacial cycles occurred with about 100 
kyr periodicity (Petit et al. 1999) (Figure 3.1). The timing of glacial-interglacial transitions was 
previously found to be “closely correlated” with external orbital forcings such as the earth’s 
orbital eccentricity, whose average period is 93,000 years (Hays, Imbrie, and Shackleton 1976). 
Other studies have shown that climatic cycles “strongly correspond” to orbital precession and 
obliquity cycles (Berger 1978; Imbrie et al. 1992). However, none of those analyses were 
technically able to demonstrate the causal link between orbital and climate changes, which we 
address here for the first time by quantifying the direction and magnitude of information transfer 
within the system (see Chapter 1.). 

        Paleoclimate reconstructions record long-term climate dynamics, thus providing the 
opportunity to assess the evolutionary history of the climate system. Further, paleoclimate data 
can help reveal controlling mechanisms that regulate and stabilize the climate system 
(Washington et al. 2009). Most research has focused on the evolution of temperature and 
greenhouse gases, in particular CO2, suggesting that greenhouse gases principally drove 
temperature changes (Shakun et al. 2012; van Nes et al. 2015). Others linked dust directly to 
temperature by showing a highly synchronous relationship between the two (Lambert et al. 2008; 
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Martínez-Garcia et al. 2011; Winckler et al. 2008). Motivated by previous findings, we explore 
the role of atmospheric aerosols: in particular, how dust, through its enhancement of carbon 
sequestration, which capture carbon and storage CO2 and other form carbon in the long term, 
acts as a key mediator in the coupling between CO2 and temperature. 

        Dust has been hypothesized to regulate climate changes via two distinct 
mechanisms. First, dust directly affects the earth’s energy balance through reflecting solar 
radiation (Claquin et al. 2003) and nucleating clouds, which then reflect incoming shortwave 
radiation and release long wave radiation (Yue et al. 2011). Second, dust carries macro- and 
micro-nutrients such as iron which can fertilize marine (Martin 1990) and terrestrial (Yu et al. 
2015) ecosystem productivity. Subsequent settling of marine organisms and lithification of ocean 
sediments can sequester carbon from the short-term to the long-term carbon cycle. By affecting 
earth’s CO2 balance via productivity, dust also indirectly exerts relatively short-term control on 
temperature.  

        Although the tight dust-to-climate connection has been widely perceived in various 
paleoclimate data and well acknowledged (Lambert et al. 2008; Winckler et al. 2008), the cause-
and-effect relationships between dust and climate change, and their relevant time scales, have 
never been rigorously demonstrated (Martínez-Garcia et al. 2011). Previous studies largely relied 
on pairwise analysis (e.g., dust to temperature or dust to CO2) and linear regression with non-
directional and non-causal analysis frameworks (Shakun et al. 2012; Lambert et al. 2008; 
Kohfeld et al. 2005). However, the climate system is characterized by nonlinear interactions that 
control directional feedbacks and emergent climate responses (van Nes et al. 2015) over a range 
of timescales. Here, we address these issues by applying a nonlinear technique used widely in 
information theory analyses to identify causal dynamics in complex systems, to directly “map” 
the interactions that constitute a climate network and the timescales over which they occur, and 
to identify drivers and regulators of climate changes during the last four climate cycles. 
  
4.2 METHODS AND DATA 

We used the Vostok ice core (Petit et al. 1999) records of local temperature, CO2, CH4, 
dust, Na, and July insolation at 65°N, eccentricity, obliquity, and precession (Ashkenazy et al. 
2003) for the transfer entropy analysis. All-time series were interpolated to 1 kyr estimates. 
Transfer entropy is a causal inference technique that identifies forcing, feedback, or synchronous 
relationships via directed information transfer among pairs of variables. Information is defined 
here using Shannon’s [1949] approach: 

𝐻𝐻 = −∑ 𝑝𝑝(𝑖𝑖)𝑙𝑙𝑙𝑙𝑙𝑙2𝑝𝑝(𝑖𝑖)𝑖𝑖 . [4.1] 
where p(xi) denotes the probability of the i th event in the series and H is in units of bits. 

Transfer entropy (T) is an asymmetric measure of information transfer between two random 
variables (Schreiber 2000). Given two-time series X = {x1, x2, . . ., xn}and Y = {y1, y2, . . ., 
yn}, T from X to Y can be computed using the following conditional entropies: 

  [4.2] 
Where i is an instant in time, k and l are the block lengths of past values in X and Y, 

respectively, and τ and t are the time lags in X and Y, respectively.  
The method of shuffled surrogates, which tells whether or not the information flow in a 

coupling is significantly higher than that randomly occurring between unrelated variables, is 
used to evaluate the statistical significance of information transferred among variables (Kantz 
and Schürmann 1996, Marschinski and Kantz 2002, Sabesan, Narayanan et al. 2003). To destroy 

https://paperpile.com/c/S0v9ik/Nu0V
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the spatial correlations, 𝑋𝑋𝑆𝑆 and 𝑌𝑌𝑆𝑆 are formed from randomly shuffled 𝑋𝑋 and 𝑌𝑌. Surrogate 
transfer entropy 𝑇𝑇𝑆𝑆(𝑋𝑋𝑆𝑆 → 𝑌𝑌𝑆𝑆) is computed 500 times by using Monte Carlo simulations. A one-
tailed hypothesis test is used, in which T is deemed significant if: 

𝑇𝑇 > 𝜇𝜇(𝑇𝑇𝑆𝑆) + 𝑐𝑐 ∙ 𝜎𝜎(𝑇𝑇𝑆𝑆),  [4.3] 
where 𝜇𝜇(𝑇𝑇𝑆𝑆) and 𝜎𝜎(𝑇𝑇𝑆𝑆) are the mean and standard deviation of distribution of 𝑇𝑇𝑆𝑆. c 

=1.66 corresponds to 95% confidence (Ruddell and Kumar 2009). Here we considered the 
directional relationship between pairs of variables strong if the transfer entropy passed the 
shuffled surrogates significance test with at 95% confidence. When both directions are 
significant, the maximum information in the interested time range is used to determine the 
directionality. For example, if max (Tx → y) > max (Ty→ x), then X forces Y.   

Theoretically, a complex system could be modeled with multiple transmitters and 
receivers between which information flows. The amount of information sent out by a transmitter 
is not necessarily equal to the amount of information received by the corresponding receiver, 
because information commonly is modified or lost during transfer. The actual amount of 
information transfer (from X to Y) is measured by the shared information between Y and time-
lagged X minus the shared information between Y and its own history at a given time step. 

Analogously, climate relevant variables including internal and external states and fluxes 
can be treated as information transmitters and receivers. The actual amount of information 
transfer between climate relevant states can then be mathematically quantified. More 
importantly, the information transfer from one climate variable to another is modified by other 
agents, as well as by system nonlinear and chaotic features. As a result, information can become 
distorted, lagged, or even dissipated during transfer, which might make the traditional linear-
based causality inference technique (e.g., Granger causality) fail. 

A climate feedback is defined as a bidirectional interaction such that a change of one 
state or flux can cause a change of another state or flux and vice versa. For example, atmospheric 
CO2 concentration affects temperature, and in return, temperature also affects atmospheric CO2 
concentration. By definition, climate feedback is a bidirectional causality problem, which can be 
quantitatively and rigorously solved by bidirectional information transfer. “Information 
provider” means its information production is higher than information consumption. The net 
information transfer is always from provider to sink, meaning the former drives changes in the 
latter. The net information is calculated by subtracting total information significantly transferred 
from this variable from the total information significantly transferred to this variable. Similarly, 
in this study, information providers (Figures 4.2 pink nodes) drive the changes in information 
sinks (Figures 4.2 green nodes). 

Time lag (𝜏𝜏) of information transfer from X to Y (Tx →y) means that when a certain 
event occurred in X, after time τ, Y responds. The observed time lag of information transfer is a 
mixture of several components. First is a physical time lag. For example, it takes time for 
Saharan dust to affect Amazon rainforest phosphorus dynamics (e.g., from atmospheric 
transportation time). Secondly, the observed time lag also contains the effects coming from 
climate system nonlinearity, chaos, and randomness that are not quantifiable by traditional 
lagged linear correlation analysis. 

We analyzed climate system feedbacks by considering nonlinear interactions among 
variables hypothesized to affect climate that are recorded in the Vostok ice core (78°S, 106 °E) 
and orbital reconstruction histories, including: (1) external forcing: orbital and insolation 
changes; (2) greenhouse gases: CO2 and CH4; (3) climate state indicators: temperature and ice 
volume, which are directly from Vostok ice core (Lorius et al., 1985), based on the age model 
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from Bornola et al. (Bornola et al., 1991).and (4) aerosols: sea salt aerosol and dust (Figure 4.1). 
The abbreviation and the units of the variables used in this analysis are shown in Table 4.1.  

We use first difference method to remove the trend of CH4, CO2, Dust, O18 and Na. 
Transfer entropy is implemented on the delta change among the climatological variables.  
Variable pairs that are obviously physically related (e.g. Insolation and Precession) are ignored 
in transfer entropy analysis. For physically obvious reasons, the directional transfer entropy from 
climatological variables to external forcing variables (e.g. from CO2 to Eccentricity) are also 
ignored. 

 
Figure 4.1: Time series data for Vostok ice core and orbital variables used in this study. 
 
Table 4.1. The abbreviation and units of the variables used in this analysis 

Variable Abbreviation Unit 

Eccentricity ECC - 

Obliquity OBL Degree (°) 

Precession PREC Rad 

Insolation JanInsoS65 W/m2 

CO2 CO2 Parts per million by volume 

CH4 CH4 Parts per billion 

Delta T T °𝐶𝐶 

O18 O18 ‰, parts per thousand 
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Na Na Parts per billion 

Dust Dust Parts per million 

 
 
4.3 RESULTS & DISCUSSION 
4.3.1 OVERALL CLIMATE SYSTEM FEEDBACK 

Here we use a process network (Ruddell and Kumar, 2009) to delineate the feedback 
patterns considering all possible variables. In the process network, variables are represented by 
nodes and the couplings between variables are represented as weighted directional links (Figure 
4.2.). The process network captures the critical time scale, relative strength and directionality of 
the couplings in a complex system as a whole at the same time. The process network is able to 
identify the relationships that are usually not able to be detected using those methods analyzing 
one relationship at a time (Ruddell and Kumar, 2009).  Despite more than four decades of 
research on ice and ocean sediment cores (Hays, Imbrie, and Shackleton 1976; Johnsen et al. 
1972), a unifying framework for quantitatively analyzing dynamic climate system feedbacks has 
not been demonstrated.  

The patterns of information flow within the climate system dynamically evolve, and are 
complicated by nonlinearity and chaotic features (Shukla 1998; Stenseth and Mysterud 2002; 
Ashkenazy et al. 2003). Our analysis reveals that, on average over all of the timescales analyzed 
(~o (100 kyr)), drivers of the climate system are the external forcings (eccentricity, precession, 
obliquity, and insolation), sea salt aerosol (Na), and ice volume (18O); responders to these 
drivers are temperature, greenhouse gases, and dust (Figure 4.2). Over these long timescales, 
dust is a central mediator (therefore its location in the middle of the network), collecting and re-
distributing information within the climate system and consequently governing interactions 
between other variables. Historically, bidirectional feedbacks between temperature and CO2 
have been widely investigated in terms of identifying driver-responder relationships (Shakun et 
al. 2012). In contrast, the system-scale feedback resolved here suggests that CO2 and 
temperature are not as simply coupled as previously thought (Shakun et al. 2012; van Nes et al. 
2015; Lüthi et al. 2008); rather, their coupling is strongly mediated by the effects of dust, as 
described below. 
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Figure 4.2. Feedback pattern of the climate system during the past 420 kyr. Size of each node 
represents net information flow divided by the number of connected nodes. Arrow size denotes 
magnitude of net information transfer over all timescales (also see Figure 4.3). Green nodes are 
information sinks (responders) and pink nodes are information sources (drivers). The distance 
between any two nodes is scaled with magnitude of net information transferred. (An arrow from 
CO2 to Dust is edged as red dash line for visualization purpose) 
 
4.3.2 EVOLUTIONARY VIEW OF CLIMATE SYSTEM FEEDBACKS 
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Figure 4.3. Time series of net information flow (positive means net production; negative means 
net consumption) for all variables. 
 

Significant amounts of information originated from solar insolation, orbital obliquity, 
precession, and eccentricity (Figure 4.3) and flowed to dust and CO2 as shown by the arrows in 
Figure 4.2 and the net information flow in Figure 4.3.  Information transfer metrics confirm that 
external forcings initially drove climate change. The information production from perturbations 
associated with those orbital forcings sharply declines with time lag, indicating that external 
forcings only initiated but were not responsible for sustaining the long-term climate system 
responses to changes in external drivers. Consistent with external forcings, ice volume (as 
inferred from ice 18O content) continued to amplify the initial orbital and insolation 
perturbations via ice-albedo feedbacks (McGehee and Lehman 2012; Wang and Mysak 2002; 
Gallée et al. 1992).  



Chapter 4 Dust mediates CO2 - Temperature feedbacks over Pleistocene glacial - interglacial cycles 

 65 

 
 
Figure 4.4. (a) Net information flow within CO2-T-Dust tripartite subsystem. Thick lines 
indicate statistically significant (at the alpha = 0.05 level). (b - e) Thickness of lines represent 
strength of directional feedback, size of node denotes net information. Green nodes are 
information sinks (responders) and pink nodes are information sources (drivers). The CO2-T-
Dust tripartite exhibits dynamic behavior and involves four distinct stages: (b) initially, CO2 and 
T exhibit loose coupling and CO2 drove T; (c) strong internal coupling between CO2 and T is 
established; (d) dust starts to affect both T and CO2 significantly; and (e) dust dominates the 
system and supplied large amounts of information (about 40-60%; Figure 4.5) to sustain the 
strong coupling between T and CO2. 
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Figure 4.5. Relative contribution of dust to sustaining T and CO2 coupling. The relative 
contribution is calculated through dividing net information that gain from dust by the gross 
information that transfer to the other. This relative contribution of dust delineates what the 
percentage of information that sustaining CO2 and T coupling is supplied by dust. 
Approximately 40-60% of information exchange between CO2 and T is supplied by dust at long 
timescales. Thick lines indicate statistically significant (at the alpha = 0.05 level). 
 
 
 

However, the effects of ice volume on the climate system are much weaker than those of 
dust over longer time lags (50 ~ 100 kyr beyond the initial perturbation). By analyzing the sum 
of the information flow over a band of 0 – 2kyrs lags of each climatological variable pair, 
external forcing variables (ECC, OBL, PREC) and O18 are serving as the primary information 
sources (Figure 4.3) and most of the information go to and storage in dust and CO2. Over times 
lags of up to 35 kyr beyond perturbations, CO2 and dust absorbed the most information in the 
climate system (Figure 4.2, Figure 4.3). Transfer entropy analysis is implemented on the 
tripartite subsystem formed by CO2, temperature and dust (Figure 4.4a, Figure 4.5). As shown in 
the series subplots in Figure 4.4 (b) to (e), the information flow accumulated within bands of 
relatively short time lag shows CO2 has a strong feedback correlation with temperature 
(represented by the arrows in figure 4.4(b)). Meanwhile, CO2 and dust serving as an information 
sources, which has positive net information flow (represented by pink circle) and temperature 
serve as the information sink (represented by green circle), which absorbs more information than 
it gains. The correlation of the tripartite subsystem changes along with taking a band of longer 
lags, as well as the role of dust and CO2. However, the temperature consistently serves as the 
information sink and drove by the dust and CO2 in this tripartite subsystem during each ~ 100 
kyr climate cycle. 
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Figure 4.6. Net information flow within CO2-T-Dust-CH4 tripartite.  
 
 
 
4.3.3 DYNAMICS OF CO2-T-DUST TRIPARTITE SUBSYSTEM 

        Previous hypotheses that CO2 leads or causes temperature change were derived 
from lagged correlation analyses designed for linear systems (Montgomery, Peck, and Vining 
2015) and may not be sufficient to resolve nonlinear (Ashkenazy et al. 2003), dynamic, two-way 
interactions between these variables (Shakun et al. 2012; Lüthi et al. 2008). Recent advances 
based on dynamical systems analysis demonstrate that CO2 and temperature have two-way 
interactions (van Nes et al. 2015), (i.e., temperature and CO2 mutually affect each other at 
different times within the last 420 kyr). Our results are consistent with this finding (Figure 4.7 (a) 
bar 12 CO2->delta T and (b) bar 11 delta T -> CO2) and further highlight that dust acted as a key 
mediator of more complex interactions between temperature and CO2 (Figure 4.4a). 
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Figure 4.7. Information transfer from all variables to (a) temperature, (b) CO2, (c) dust, and (d) 
CH4. 
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Importantly, components of feedbacks within the CO2-T-Dust tripartite subsystem 
exhibit four distinct timescales (Figure 4.4b). First, within the band of short time lag (0-2 kyr), 
which accumulate the information flow from 0 time lag to 2 kyr time lag, temperature and CO2 
were loosely coupled compared with later stages, indicated by the information flow between 
variables (thickness of lines connecting CO2 and temperature in Figure 4.4b). At this stage, 
temperature is jointly driven by CO2 and dust, through direct radiative forcing effects (Claquin 
et al. 2003; Takemura et al. 2009; Yue et al. 2011). During the second stage (time lag 3-25 kyr), 
the strong coupling between temperature and CO2 was fully established (Shakun et al. 2012) 
with CO2 surpassing dust as the predominant driver for temperature. However, at the third stage 
(time lag 26-55 kyr), dust drove both CO2 and temperature and their internal coupling (note that 
CO2 and temperature became information sinks (green nodes)). Finally, in the fourth stage, (time 
lag 56-100 kyr), dust overwhelmingly regulated changes in CO2 and temperature, accounting for 
40 - 60% of the information flow between CO2 and temperature (Figure 4.5). The impact of dust 
on temperature is relatively consistent over a broad band of time lags (56-100 kyr) (Figure 4.5 
magenta line). However, dust impacts on CO2 tended to accumulate and become more 
significant over longer time periods. This increasing trend highlights long-term impacts of dust 
on land and ocean biological CO2 sequestration, and might be more significant than previously 
thought (Lambert et al. 2008; Winckler et al. 2008; Kohfeld et al. 2005; Maher et al. 2010; Wolff 
et al. 2006; Legrand et al. 1991).  The accumulated information flow analysis is not necessarily 
mean the information is consistently transferred to the target variable with a uniform strength and 
velocity. The information could be hold by a third variable (information carrier) for a relatively 
long time and then released back to the system. For example, the dust could serve as an 
information carrier and be trapped in the ice during the glacier period and then released back to 
the system during the interglacial period. 

Dust could potentially serve as a direct control on CO2 over long glacial-to-interglacial 
timescales for multiple hypotheses. First, dust could control CO2 through biogeochemical 
processes by changing of CaCO3 cycle and changing in marine productivity. By promoting 
sequestration of C in ocean sediments through the biological carbon pump. Carbon has higher 
transfer effectiveness into the deep ocean and taken away from the sea surface once fixed in the 
euphotic zone (Bopp et al. 2003). Both an increasement of major nutrients (𝑃𝑃𝑃𝑃43− and 𝑁𝑁𝑃𝑃3−) 
(Broecker, 1982) and increasement of utilization of surface nutrients by marine ecosystem could 
amplify the biological carbon pump and the reduce the atmospheric CO2 during the glacial times 
(Knox and McElroy, 1984; Sarmiento and Toggweiler, 1984; Siegenthaler and Wenk, 1984). 
Marine biota, like phytoplankton, which is depends on the supply of iron-rich dust, could lower 
the atmospheric CO2 in a dusty glacial period (Martin and Fitzwater, 1988; Coale et al, 1996; 
Boyd et al., 2000). Meanwhile, when followed by lithification, dust would make less C available 
for the short-term C cycle during the next interglacial.  Second, high dust, especially for high 
iron-rich dust, could lower diatom Si/N or Si/C uptake ratios. (Brzezinski et al. 2002; Takeda, 
1998) It could drive the Antarctic toward N-depletion with excess silicate remaining in surface 
waters. Matsumoto et al (2002) postulate the silicate rich water could be transported to the 
subtropics and lowers the CO2 by favoring diatoms growth. 
4.4 CONCLUSIONS 

The overall- and sub-system feedback patterns demonstrate that temperature and CO2 
exhibit short-term (5 kyr) responses to external forcings (orbital eccentricity, precession, 
obliquity, and solar insolation) but that an internal feedback, the CO2-T-Dust subsystem, exerts 
control over the band of longer time lags (26-55 kyr). It implied that previous analyses of 
pairwise feedback between only temperature and CO2 may miss the role of internal feedbacks 
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involving other variables, thus hindering our understanding of the relative importance of a 
network of cause and effect relationships within the climate system. 

Remarkably high dust deposition during glaciation has been observed and confirmed by 
different paleoclimate reconstructions (e.g., ice cores, marine sediments) (Martínez-Garcia et al. 
2011; Petit et al. 1999; Winckler et al. 2008). However, the relationships between dust and 
climate are uncertain (Lambert et al. 2008; Martínez-Garcia et al. 2011; Kohfeld et al. 2005; 
Saigne and Legrand 1987; Legrand et al. 1991), ranging from, e.g., linearly synchronous 
(Lambert et al. 2008) to nonlinear (Martínez-Garcia et al. 2011). Here, we quantitatively 
demonstrated that (1) dust’s role in regulating climate was asynchronous and more importantly, 
(2) dust’s role dynamically evolved within ~100 kyr climate cycles and could potentially serve as 
a direct control on CO2 over long glacial-to-interglacial timescales. 
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Chapter 5: 
Climate teleconnection revealed by transfer entropy 
5.1 Background 

Global and regional precipitation are associated with local water balance as well as 
interacting with remote forcings, such as large-scale circulation and advective moisture supply. 
The latter is often known as teleconnection of the climate system (Daniel et., al 1991). 
Understanding the remote control on regional precipitation is essential to better understand the 
local dynamics of precipitation trend and variability. For example, previous work has shown that 
climate indices (e.g. Pacific/ North American, Southern Oscillation Index, Niño series) have a 
significant correlation with precipitation in U.S. (Daniel et., al 1991; Ropelewski and Halpert 
1988; Mock 1995; Barlow et., al 2000; Redmond and Koch 1991; and McCabe and Dettinger 
1999), and that precipitation has an especially strong connection with sea surface temperature 
(Haylock et., al 2005).  

Climate teleconnection often interacts with local precipitation feedbacks and thus raise 
critical challenges in quantitatively partitioning the driving factors of regional precipitation 
variation.  For example, for West Sahel precipitation, two interacting mechanisms are widely 
studied: 1) warming SSTs weaken the land-ocean temperature contrast and force deep 
convection towards the ocean (Giannini et al., 2003), leading to reduction in continental moisture 
convergence, with its impacts intensified by 2) variation in moisture-driven vegetation 
interactions induced by the interrupted recycling of moisture through precipitation and 
evapotranspiration (Zeng et al., 1999). Charney (1977) and Zeng (1999) also proposed that 
barren soil with larger albedo leads to increased atmospheric subsidence and thereby decreased 
moisture convection and precipitation. Aerosols such as dust have relatively smaller effects on 
precipitation through increased mid-troposphere radiative heating, surface cooling, and ice and 
cloud condensation nuclei in comparison to SST and vegetation’s impact (Huang et al., 2009; 
Hui et al., 2008). Some studies also conclude that the West African Monsoon influences the 
amount of moisture transported from the Atlantic to the Sahel region (Taylor, 2008). These 
remote and local feedback mechanisms associated with West Sahel precipitation warrant 
rigorous statistical analysis to accurately attribute the local precipitation variation to certain 
processes or factors.  

However, most of the previous work only test the correlation between remote/local 
climate factors and the precipitation over region of interest; and map the spatial distribution of 
the correlation. Linear correlation could theoretically fail to detect teleconnections due to two 
major reasons: (1) climate system is highly nonlinear; (2) The effect on precipitation from 
climate factors is not necessary happened immediately, it could have time lag before 
anomalies ’effect reach different location and cause the change in precipitation (Schepen et., al 
2011).  For example, the linkage between El Niño sea surface temperature anomalies and 
precipitation in the US fluctuation has been proved by many studies (Ropelewski and Halpert 
1986; Trenberth et al. 1988; Trenberth and Guellimot 1996; Bunkers et al. 1996;).  The primary 
physical mechanism in this linkage is the change in tropical convection associated with the El 
Niño/ La Niña conditions and the subsequent change in atmospheric circulation through Rossby 
wave dispersion from the anomalous tropical convection (Hoskins and Karoly 1983). The signals 
of SST anomalies may not immediately affect the precipitation in the US, but absorbed and held 
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by the positive feedback with atmospheric circulation rather than direct moisture transport (Ting 
and Wang, 1997). 

Even lagged correlations analysis has been used in many studies to detect teleconnections 
(Oldenborgh et al., 2000; Nicholls 1987; Mo and Livezey, 1986). The linear-based analysis still 
not able to detect the non-linear correlations (see Chapter 2) and distinguish the direct or indirect 
components (Zhou et al. 2015). Some nonlinear based approaches have been proved to be more 
effective in detecting teleconnections (Boers et al. 2013; Mukhin et al. 2018). For example, 
complex network has been used in analyzing climate time series data effectively (Tsonis et al., 
2007; Yamasaki et al., 2008; Donges et al., 2009a; Malik et al., 2011; Steinhaeuser et al., 2012; 
Berezin et al., 2012). Nonlinear generalizations of PCA are also successfully applied in climate 
analysis (Ross et al. (2008); Gámez et al. (2004); Hannachi and Turner (2013); Hlinka et al. 
(2014); Pires and Ribeiro (2017). Meanwhile, transfer entropy method is ideal to analysis the 
time lagged correlation between climate factors and precipitation. It has been shown to be 
effective and efficient in broad range research (Vicente et., al 2011; Rubinov and Sporms 2010; 
Verdes 2005; Kleeman 2007; Hannisdal and Peters 2011). The time lag could be easily 
introduced into this computation to detect the effect time lag in analyzing these correlations 
(Schreiber 2000; Ruddell and Kumar 2009). 

5.2 Case study 1. Sahel precipitation* 

(*Liu, B. Y., Zhu, Q., Riley, W. J., Zhao, L., Ma, H., Van Gordon, M., & Larsen, L. (2019). Using 
Information Theory to Evaluate Directional Precipitation Interactions Over the West Sahel Region in 
Observations and Models. Journal of Geophysical Research: Atmospheres, 124(3), 1463-1473.) 

This case study published on Journal of Geophysical Research: Atmospheres in 2019 by 
Bessie Liu, Qing Zhu, William Riley, Lei Zhao, Hongxu Ma, Mollie Van Gordon and Laurel 
Larsen. Hongxu contribute to the design of methodology and results analysis. Here, part of the 
materials is included in this section as a use case for the application of transfer entropy in climate 
system with global spatial scale and decadal temporal scale. (Liu et al., 2019) 

Water availability has historically been one of the most significant threats to African 
regional social and economic well-being. Over the Sahel region, a megadrought during the 1960s 
and 1970s induced by an abrupt and substantial rainfall reduction caused widespread famine and 
death. The post-drought recovery, which is still ongoing, has been characterized by gradual 
increases in rainfall, but with dramatic fluctuations. The large negative human impacts, slow 
recovery, and variability raise important questions of why and how rainfall dynamics evolve and 
interact with other components of the regional climate system. In this case study, we provide an 
observational assessment of regional mechanisms (informed by directional transfer of 
information entropy) that regulate Sahel rainfall. 

5.2.1 Hypotheses 

We focused on two prevailing hypotheses potentially responsible for West Sahel 
precipitation variation (Figure 5.1). First, warm sea surface temperatures weaken land-ocean 
temperature contrast and transfer deep convection to the ocean, which leads to precipitation 
decreases over land (Giannini et al., 2003). Second, terrestrial vegetation dynamics control water 
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(evapotranspiration) and energy (surface albedo) fluxes into the atmosphere and thus impact 
local precipitation (Zeng et al., 1999). Each hypothesized interactive pattern was upheld or 
falsified by quantifying directional information entropy transfer between West Sahel 
precipitation and (1) Sea Surface Temperature and (2) Leaf Area Index (LAI). 

 
Figure 5.1. Conceptual model of hypothesized mechanisms that control variability in Sahelian 
precipitation: (1) The African West Sahel region receives moisture through low-level 
southwesterly flow from the Gulf of Guinea. Therefore, West Sahel precipitation is strongly 
controlled by SST variation over the Gulf of Guinea. (2) Vegetation growth in the West Sahel 
region is influenced by water availability and land surface vegetation dynamics that control 
water and energy fluxes into the atmosphere and therefore affect local precipitation. (Liu et al., 
2019) 

5.2.2 Data and model 

Sea Surface Temperature in the Gulf of Guinea was provided by NOAA Optimum 
Interpolation (OI) Sea Surface Temperature (SST) V2 (Reynolds et al., 2002). This dataset 
combines daily in situ, bias corrected satellite retrieval (Smith and Reynolds, 1998), as well as 
modeled SST starting from 1981, and interpolates to a monthly time scale at a 1°×1° resolution. 
Since advective moisture from the Gulf of Guinea strongly controls West Sahel precipitation 
(Sultan and Janicot, 2003), we extracted and averaged the SST over the Gulf of Guinea (1W-8E, 
0-5N) for our analysis. 

For vegetation dynamics, we used GLASS Leaf Area Index (LAI) as a proxy, which was 
derived from Advanced Very High Resolution Radiometer (AVHRR) LAI, Moderate Resolution 
Imaging Spectroradiometer (MODIS) LAI, and CYCLOPES LAI using a neural network 
approach (Liang and Xiao, 2012). We defined the West Sahel region to be between 10 °N and 
20 °N, and between 20 °W and 10 °E. The LAI product over this region, available since 1982, 
was extracted for each individual grid cell at a 0.5°×0.5° degree resolution. 

Precipitation data came from Climate Research Unit (CRU ts3.2) from 1901 to 2014 
(Harris et al., 2014). This product is gridded over two thousand precipitation stations onto 
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0.5°×0.5° resolution regular grids and provided a monthly climatology mean and anomaly over 
the West Sahel region. 

Similar to the observations, we analyzed the monthly precipitation, LAI over the West 
Sahel region, and SST over the Gulf of Guinea from nine Earth System Models (ESMs) that 
participated in the CMIP5. We used historical emission-driven fully coupled simulations 
(esmhistorical) from bcc-csm1-1-m, CanESM2 (Chylek et al., 2011), CESM1-BGC (Lindsay et 
al., 2014), GFDL-ESM2G (Dunne et al., 2012), HadGEM2-ES (Collins et al., 2011), inmcm4 
(Volodin et al., 2010), IPSL-CM5A-LR (Cattiaux et al., 2013), MPI-ESM-LR (Brovkin et al., 
2013), and NorESM1-ME (Tjiputra et al., 2013). 

Since we focused on precipitation variation and its underlying controls and interactions, 
we detrended all datasets by first removing the long-term trend with a 10-year moving average 
and then the seasonal cycle by subtracting the mean seasonal cycle averaged across the whole-
time series. Next, we investigated the information entropy transfer between the residual 
(anomaly) time series.  

Based on information theory, directional interactions (or causation) can be quantitatively 
measured by how much information entropy is transferred between variables (Schreiber, 2000; 
Shannon, 2001). First, we calculate Shannon Information Entropy (H, a measure of uncertainty, 
quantified in bits) of a variable (X) (i.e., SST over the Gulf of Guinea, LAI, or Precipitation):  

         (5.1) 
where xi is a possible value of variable X and p(xi) is the probability of xi within the 

whole time series X. Given two time series X [xi : i = 1:n] and Y [yj : j = 1:n] (e.g., Precipitation 
and SST), the directional information entropy transfer from X to Y (TX->Y) is a measure of the 
extent to which knowledge of X independently reduces uncertainty in Y’s future behavior, once 
the reduction of uncertainty derived from knowledge of Y’s own past behavior is accounted for. 
It is calculated as: 

     (5.2) 
where k and l refer to the block-length history of y and x on which estimates of 

uncertainty reduction of yi are conditioned. Here, we use k and l  = one time step as a 
conservative choice (Ruddell and Kumar, 2009) and drop the superscript in future reference to 
these variables. 𝑙𝑙∆𝑋𝑋 is the time lag over which X transfers information to Y. If the transferred 
entropy (in bits) is larger than a significance threshold, the directional impact was interpreted as 
statistically robust. The significance threshold is calculated by randomly shuffling the time series 
X and Y to destroy temporal relationships between the variables and computing the transfer 
entropy. The significance threshold is then selected as the  𝛼𝛼= 0.05 value from the Monte Carlo 
distribution of transfer entropies.  

For this study, we define “interactions” under the climate change context to be significant 
bidirectional information exchange between two climate relevant variables; while “control” is 
unidirectional information flow from the source process to sink process. For example, if patterns 
in the precipitation time series (𝑥𝑥𝑖𝑖−𝑙𝑙∆𝑡𝑡) significantly reduce uncertainty in future values of the 
LAI time series ( ) beyond the reduction in uncertainty due to knowledge of LAI’s history (yi-
1), then unidirectional control of precipitation on LAI is identified. If directional control of LAI 
on local precipitation is similarly identified, a bidirectional “interaction” is identified. We 
evaluated information transfer between all pairs of variables at all possible lags 𝑙𝑙∆𝑋𝑋 to test for the 
existence of hypothesized hydro-climatological interactions at the scale of the West Sahel. Here 
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we report the maximum amount of information transferred over all lags examined and its 
associated timescale. 

5.2.3 Results and discussion 

The African Sahel region receives moisture through low-level southwesterly flow from 
the South Atlantic Gulf of Guinea across the Southwestern coast of West Africa (Lamb, 1978; 
Sultan and Janicot, 2000). Strong advection of moisture over the West Sahel region and Guinea 
Coast often leads to corresponding precipitation changes (Nicholson and Webster, 2007). 
Therefore, to assess the influence of convection-driven moisture controls on precipitation, and 
vice-versa, we take a spatial range for the Gulf of Guinea to be [1 °W - 8 °E and 0 - 5 ° N]. 

Information transfer from SST over the Gulf of Guinea (averaged the SST values within 
[1 °W - 8 °E and 0 - 5 ° N]) to West Sahel precipitation was significant over 93% of analyzed 
West Sahel grid cells (Figure 5.2). In contrast, information transfer from West Sahel 
precipitation to SST over the Gulf of Guinea was much smaller; less than 1% of the grid cells 
transferred significant information, which is well below the experiment-wide false positive rate 
of α= 0.05 (Figure 5.3). Therefore, our information transfer-based analysis supports the 
hypothesis that SST variation over the Gulf of Guinea unidirectionally controls precipitation 
variation over the West Sahel region. This observed directional control from SST to West Sahel 
precipitation was consistent with modeling studies (Biasutti et al., 2008; Folland et al., 1986; 
Giannini et al., 2003; Lamb, 1978; Vizy and Cook, 2001). For example, Giannini et al. (2003) 
suggested that the oceanic warming around Africa might have reduced the difference in 
temperature between land and ocean, making deep convection migrate to the ocean while 
reducing precipitation on land. 
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Figure 5.2. Directional interaction (1) only from Leaf Area Index (LAI) (blue), (2) only from 
Gulf of Guinea Sea Surface Temperature (SST) (cyan), or (3) from both LAI and SST (yellow) 
to West Sahel precipitation. Only statistically significant grid cells are shown in color. (Liu et al., 
2019) 

Another widely acknowledged hypothesis is that local vegetation-precipitation 
interactions control West Sahel precipitation (Wang and Eltahir, 2000; Zeng et al., 1999; Zheng 
and Eltahir, 1998). For example, using an ecosystem model, Hickler et al. (2005) showed that 
vegetation growth in the West Sahel region was mostly influenced by water availability but not 
by temperature variability. Another modeling study showed that variation in precipitation was 
closely related to variation in vegetation cover (Zeng et al., 1999). However, there is a general 
lack of observational demonstration of vegetation – precipitation interactions. 

Here, we used observed LAI as an indicator for local vegetation coverage and variation, 
reducing uncertainties caused by solely relying on simulation data as in previous studies. Over 
99% of the study’s grid cells showed significant information transfer from precipitation to LAI, 
suggesting the importance of precipitation to LAI inter-annual variability in the West Sahel 
region (Figure 5.3). Further, over 99% of the study’s grid cells showed a significant amount of 
information transfer from LAI to precipitation (Figure 5.2), suggesting that local variation in 
evapotranspiration and its impact on the surface energy balance contributes to changes in 
atmospheric moisture and energy for convection, and therefore to changes in regional 
precipitation. 
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Figure 5.3. Directional interaction from West Sahel precipitation to (1) only Leaf area index 
(LAI) (blue), (2) only Gulf of Guinea Sea Surface Temperature (SST) (cyan), or (3) both SST 
and LAI (yellow). Only statistically significant grid cells are shown in color. (Liu et al., 2019) 

Charney et al. (1977) first proposed that overgrazing in the West Sahel region may be the 
cause of persistent drying by enhancing a positive biogeophysical interaction. In particular, the 
reduced amount of vegetation leads to an increase in albedo and a cooler land surface over which 
air descends and dries, consequently suppressing precipitation. This dynamic was seen in many 
subsequent studies that used coupled biosphere-atmosphere models, suggesting that reduction in 
vegetation intensifies West Sahel drying, although the triggering mechanism of West Sahel 
drought may include changes in a combination of controls, including land cover and SST (Wang 
and Eltahir, 2000). However, the coupled climate models used in previous studies applied a wide 
variety of underlying assumptions and process representations. Observational demonstration of 
Charney’s hypothesis is challenging due to the fact that regression-based (R2) or lead/lag 
correlations assume linear relationships between variables, although the system is inherently 
nonlinear. As a formal non-linear causal inference framework, transfer entropy can address such 
challenges. Here, the data demonstrate a causal relationship among observed precipitation, SST, 
and LAI. Our approach provides a first observational evaluation of directional interaction 
patterns affecting West Sahel precipitation. These resolved interactions can serve as useful 
model evaluation benchmarks, as discussed below. 



Chapter 5: Climate teleconnection revealed by transfer entropy 

 79 

Following our analysis above, we used the observed information transfer between 
modeled (1) SST and precipitation and (2) LAI and precipitation as quantitative benchmarks for 
the underlying mechanisms affecting West Sahel precipitation. Although the observational data 
showed that 93% of grid cells transfer significant information from both LAI and SST to 
precipitation (Figure 5.2, 5.4), GFDL-ESM2G, IPSL-CM5A-LR, CESM1-BGC, bcc-csm1-1-m, 
and NorESM1-ME predict that 77%, 65%, 55%, 51%, and 56% of the grid cells transfer 
significant information from both factors, respectively, while other models generally failed 
(significant entropy transfer appeared over less than 1% of grid cells) to capture either LAI or 
SST’s observed impact on precipitation. We also found that only one third of the ESMs captured 
the precipitation control on LAI over at least half of their grid cells (Figure 5.3, 5.4). The models 
that most closely reproduce the observed relationship were inmcm4, IPSL-CM5A-LR, bcc-csm1-
1-m, and GFDL-ESM2G with 86%, 56%, 50%, and 49% of the studied grid cells being 
statistically significant, respectively. 

 

 
Figure 5.4. (a) Emergent benchmarks (here, mean annual precipitation) for West Sahel 
precipitation from observations and CMIP5 ESMs. (b) Percentage of model grid cells exhibiting 
interactions consistent with the observed mechanistic benchmark for West Sahelian precipitation. 
SST, LAI, and P are sea surface temperature, leaf area index, and precipitation, respectively. (Liu 
et al., 2019) 
 

In summary, GFDL-ESM2G and IPSL-CM5A-LR most accurately reproduced observed 
interactions in more than 50% of the study’s grid cells. All tested CMIP5 models generally 
captured the precipitation control on vegetation but largely failed to reproduce both LAI and 
SST’s influence on precipitation. Although GFDL-ESM2G and IPSL-CM5A-LR relatively well 
reproduced the observed mechanistic interactions, they either dramatically overestimated 
(GFDL-ESM2G) or underestimated (IPSL-CM5A-LR) precipitation amount for the West Sahel 
region, suggesting that capturing both the interaction patterns and the emergent precipitation 
amount is challenging and important. Our results suggest that a full evaluation of climate models 
requires a combination of mechanistic and traditional emergent pattern benchmarks. 
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5.3 Case study 2. U.S. precipitation 

Oceanic and atmospheric climate indices are potentially useful predictors of precipitation 
(Schepen et al., 2011). Understanding the temporal and spatial aspects of correlation between 
climate indices and precipitation is essential to understanding the ocean-continental dynamic 
system. Previous work has demonstrated that climate indices (e.g. Pacific/ North American, 
Southern Oscillation Index, Niño series) have a significant correlation with precipitation in U.S. 
(Daniel et., al 1991; Ropelewski and Halpert 1988; Mock 1995; Barlow et., al 2000; Redmond 
and Koch 1991; and McCabe and Dettinger 1999). In particular, precipitation has strong 
connection with sea surface temperature (Haylock et., al 2005). However, most of the previous 
work only test the correlation between anomalies and three-months average precipitation and 
map the spatial distribution. The effect on precipitation from climate anomalies is not necessarily 
immediate, but could have a time lag. Schepen used a rigorous Bayesian joint probability 
modeling approach to find the cross-validation predictive densities of gridded Australian 
seasonal rainfall totals using lagged climate indices as predictors throughout 1950-2009. They 
found lagged climate indices derived from sea surface temperature anomalies in the Pacific 
region (e.g., Niño3, Niño3.4, and Niño 4) show a significant relationship with Australian 
seasonal rainfall total. The lag between SST and rainfall could go up to 3 months (Schepen et al., 
2011). Yang et al. (2006) applied wavelet analysis and the least squares method to depict the 
time-frequency features and the dominant oscillating time scales of Great Plains precipitation 
variation, and then analyze the characteristics of lead-lag correlation with central-eastern Pacific 
SST. They found that the associations are strongest when the SST leads the precipitation by one 
month and the significant SST-precipitation relationship appears over a wide range of time in 
which SST leads the precipitation up to 10 months with 95% confidence level. 

Thus, temporal scale characteristic of these correlation is also important. 
Meanwhile, transfer entropy method is an ideal method to perform time lagged 

correlation between climate indices and precipitation in different locations in U.S. Transfer 
entropy is a method that measures how much uncertainty of one system decreased by introducing 
another system. It has been shown to be effective in a broad range of research (Vicente et., al 
2011; Rubinov and Sporms 2010; Verdes 2005; Kleeman 2007; Hannisdal and Peters 2011). The 
time lag could be easily introduced into this computation to detect the time lag inherent in these 
correlations (Schreiber 2000; Ruddell and Kumar 2009).  

Thus, mapping the effect time lag from climate anomalies for precipitation from different 
locations is important step to understand the temporal and spatial aspect of correlations. 

5.3.1 Data and model 

The Niño series indices are used in this study (Table 5.1). The Niño series indices 
measure sea surface temperature (SST) over different locations in the Pacific Ocean (http:// 
www.esrl.noaa.gov /psd /data /climateindices/list/). These sea surface temperature indices are 
commonly used in studying ENSO teleconnection and the connection to the US climate 
(Bjerknes 1969, Rasmussen and Carpenter 1982, Wyrtki 1985). Niño series indices depict the sea 
surface temperature anomalies in the ENSO region. Niño 1+2 region (0-10S, 90W-80W) is the 
eastern-most of the Niño SST regions and corresponds with the region of coastal South America 
where El Niño phenomenon was first recognized.  This index tends to have the most 
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considerable variance of the Niño SST indices (Trenberth and Stepaniak, 2000). Niño3 region 
(5N-5S, 150W-90W) use to be the primary focus for monitoring and predicting El Niño. 
Trenberth (1997) later found that the critical region for coupled ocean-atmosphere interactions 
for ENSO lies further west. Niño3.4 region (5N-5S, 170W-120W) represents the average 
equatorial SSTs across the Pacific from about the dateline to the South American coast.  The 
Niño 3.4 index typically uses a 5-month running mean, and El Niño or La Niña events are 
quantified in terms of this index as corresponding to times when SST exceed +/- 0.4C for six 
months or more (Trenberth, 1997). Niño4 (5N-5S, 160E-150W) measures SST anomalies in the 
central equatorial Pacific with less variance than the other Niño indices.  

Beyond the sea surface temperature anomalies, other climate indices are also highly 
correlated with ENSO. For example, the oldest index for ENSO is the Southern Oscillation Index 
(SOI) which measures the difference between the atmospheric pressure at sea level at Tahiti and 
Darwin (Bliss, 1932). However, the SOI can be affected by shorter-term fluctuations unrelated to 
ENSO since it is only considered two individual stations, and because it uses sea level pressure 
which as a meteorological quantity is affected by weather. The outgoing longwave radiation 
indexes are introduced by continuous satellite data (Chiodi and Harrison, 2013). However, the 
data only extends back to 1979, which may not be able to provide enough data for our study. 

Thus, we choose to use all four Niño series indices that measure the sea surface 
temperature anomalies in different regions. They are well-known to have a strong correlation to 
US precipitation (Yang et al., 2007; Wang and Ting, 1999; Lee et al., 2008; Ting and Wang, 
1997). Meanwhile, the precipitation patterns depend on the whole SST field, including gradients 
of SST. By considering the four neighboring regions, it allows for an evolutional perspective by 
comparing the difference in results between these indices. 

The period used is from 1960 to 2015. The regions of each climate indices are shown in 
Figure 5.8.(a) and Figure 5.9.(a). While Table 4.1 describe the characteristics of each climate 
indices. 
Table 5.1. Climate indices used as the information provider of U.S. precipitation 

Climate 
Indices 

Description Region Location 

Niño1+2 Average SST anomaly over 80°-90°W and 0°-10°S Pacific 
80°W-90°W, 0°-
10°S 

Niño3 Average SST anomaly over 150°-90° W and 5°N-5°S Pacific 
150°W-90° W, 
5°N-5°S 

Niño3.4 Average SST anomaly over 170°-120° W and 5°N-5°S Pacific 
170°W-120° W, 
5°N-5°S 

Niño4 Average SST anomaly over 150°-160° E and 5°N-5°S Pacific 
150°W-160° E, 
5°N-5°S 

 
The precipitation data investigated in this study are collected from National Oceanic and 

Atmospheric Administration Monthly Climate Data Pool (http://www.ncdc.noaa.gov/cdo-
web/search). 2595 precipitation stations are selected because they have records from 1960 to 
2015, and have less than 10 percent missing data.  The spatial distribution of these stations 
(Figure 5.5) are relatively more concentrated over both coasts. 
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Figure 5.5. The locations of 2595 precipitation stations in U.S. 

For two systems, 𝑋𝑋𝑡𝑡 = {𝑥𝑥𝑡𝑡} 𝑋𝑋 = 1,2, … ,𝑎𝑎 and 𝑌𝑌𝑡𝑡 = {𝑦𝑦𝑡𝑡} 𝑋𝑋 = 1,2, … ,𝑎𝑎. 𝑥𝑥𝑡𝑡 and 𝑦𝑦𝑡𝑡 represent 
the state of system 𝑋𝑋 and 𝑌𝑌 at time 𝑋𝑋 respectively. In this study, climate indices are noted as 
system 𝑋𝑋, while precipitation data are noted as system 𝑌𝑌. Transfer entropy of each climate 
indices to each precipitation are calculated with 12 time lags (from 1-month time lag to 12-
month). The 𝜏𝜏 with largest significant transfer entropy  𝑇𝑇(𝑋𝑋𝑖𝑖,𝑡𝑡>𝑌𝑌𝑠𝑠,𝑡𝑡) of each pair of climate 
indices (𝑖𝑖 = 1, … ,4) and precipitation data (𝑎𝑎 = 1, … ,2595) are noted to represent the significant 
time lag. If all 12 transfer entropy with different 𝜏𝜏 are non-significant, the correlation will be 
noted as non-significant. 

The significant region (region with significant transfer entropy from climate indices to 
precipitation) map was made by using ordinary Kriging method (Georges Matheron, 1960). 
Meanwhile, the significant time lag of each stations was also used as input for making time lag 
spatial distribution map of each climate indices by using ordinary Kriging method. 

5.3.2 Results 

5.3.2.1 Sub-regions 
First, we focus on eight pre-defined sub-regions (Figure 5.6) and 21 remote climate 

indices of interest based on empirical knowledge and literature survey.  The sub-region are 
defined following the US Census Bureau. We have compared with the subregions used by 
Bukovsky (2012) and NOAA. However, precipitation stations are not evenly distributed. To 
make sure the number of stations of each sub-region to be roughly the same, we choose to use 
the US Census Bureau plan. The middle Atlantic region and New England region are merged for 
this reason as well. 
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Figure 5.6. Pre-defined sub-region used in this study. 
 

 
Figure 5.7. The percentages of weather stations, whose precipitation variation are identified to 
be significant information sinks of the various Niño climate indices. 

El Niño dynamics potentially affect precipitation intensity over a large portion of United 
States. Here we quantify the significance of information entropy transfer from El Niño indices 
(including, Niño1+2, Niño3, Niño3.4, and Niño4) to the observed precipitation variation across 
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different sub-regions. We find that 25-30% of weather stations over the Mountain and West 
North Central US regions show significant information transfer, while only less than 5% of 
weather stations over the East North Central and North East US regions (i.e., less than the chance 
of a random positive with a significance threshold of 0.05) are significant information sinks 
(Figure 5.7.). It reveals a clear spatial pattern of how Niño indices impact US regional 
precipitation dynamics.  

 
5.3.2.2 Niño Climate Indices Series 

 
Figure 5.8. (a) Niño1+2 is the sea surface temperature (SST) averaged over the area 80°W-
90°W, 0°-10°S. (b) is the ordinary kriging map of time lag of each stations with significant 
transfer entropy from Niño1+2 to precipitation. The red area represents short time lag (1-3 
months), yellow area represents intermediate time lag (4-7 months) and the blue area represents 
long time lag (more than 7 months) (c) is the map of region with significant transfer entropy 
(shown in red).  
 

We first discuss in detail the results from using Nino 1+2. From 5.8.(b), a clear time lag 
pattern is depicted. The precipitation over the middle of the continental US has relatively short 
time lag response to Niño1+2, while east and west coast have long ones. The topography also 
affects the time lag spatial patterns. The Rocky Mountains divide the spatial distribution of 
teleconnected changes into an eastern portion with short time lag, and a western portion with a 
larger lag. 
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Figure 5.9. (a) Niño3, Niño3.4 and Niño4 measure the sea surface temperature of region of 
150°W-90° W, 5°N-5°S, 170°W-120° W, 5°N-5°S and 160°E-150° W, 5°N-5°S respectively. 
(b).1, (c).1 and (d).1 are the map of region with significant transfer entropy from Niño3, Niño3.4 
and Niño4 respectively. (b).2, (c).2 and (d).2 are the map of time lag spatial distribution of each 
climate indices. The legend is same as figure 5.8.(b). 
 

We now discuss Niño3, 3+4, and 4.   From Niño4 to Niño3, the index region moves 
eastwards towards the US mainland, while Niño3.4 located between the two. Figure 5.9(b-d) 
show that the significant region expands from Niño4 to Niño3. The precipitation has strong 
connection with Niño series climate indices. The maps shown in (b).2, (c).2, and (d).2 show that 
the short time lag region (shown in red) also expands from Niño4 to Niño3. These spatial pattern 
shows that in 5°N-5°S latitudinal zone the distance between SST anomalies region with U.S. 
mainland has a positive correlation with the region area with significant transfer entropy and 
with the region are with short time lag. 

Meanwhile, the topography also affects the spatial pattern. The longitude of Rocky 
Mountain is around 110°W. The short time lag region for Nino3.4 and Nino4 (shown as red in 
5.9.(c).2 and 5.9.(d).2) is on the west side of the Rocky Mountain. On the eastern side of the 
Rocky Mountain, most of the precipitation stations have no significant response to the Niño3.4 
and Niño 4. It is affected by the rain shadow effect (Poage and Chamberlain, 2002). The 
topography in the mountain region uplifts the moist air mass. Along with uplifting, it expands 
and cools, which is no longer able to hold the moistures comparing its’ relatively warm status. 
Clouds are formed and will drop rain and snow as it rises a mountain. After the air mass passes 
over the mountain and move downstream, the air mass becomes warm and carry less moisture, 
resulting in low precipitation rate on the other side of the mountain. However, as the region of 
Niño3 range from 150°W-90°, the short time lag region is expanding to the east side of Rocky 
Mountain, which also contributes to the increase of region with a short time lag. The vertically 
integrated total moisture flux from the Gulf of Mexico could be a potential source to the 
precipitation in the east side of Rocky Mountain (Trenberth and Guillemon, 1996). 

Niño 3.4 and Niño 4 has a significant connection to the precipitation/drought of the 
western coast with a 0-2-month time lag.  The linkage is explained by the change in tropical 
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convection associated with the El Niño/ La Niña conditions and the subsequent change in 
atmospheric circulation through Rossby wave propagation from the anomalous tropical 
convection (Hoskins and Karoly 1983). However, the signals of SST anomalies may not 
immediately affect the precipitation in the US. The information flow from the SST to the 
precipitation is absorbed and hold by the positive feedback with atmospheric circulation rather 
than direct moisture transport (Ting and Wang, 1997). The warm (cold) sea surface temperature 
will reduce (intensify) the meridional surface temperature gradient, which in turn leads to a 
smaller (larger) meridional gradient in the surface air temperature. The smaller (larger) 
meridional surface temperature gradient maintains a weaker (stronger) Pacific jet stream (Ting 
and Wang, 1997). Thus, the pacific jet stream altered by the sea surface anomalies connects the 
precipitation over the West coast to Niño 3.4 and Niño 4, thus establishing the physical basis for 
the information connection between the two.  

The west coast region responds significantly faster to the Niño 4 and Niño 3.4 but 
relatively slow, or even insignificantly, to the Niño 3 and Niño 1+2. The middle region of the 
continental US has the opposite behavior, responding faster to Niño3 and Niño 1+2 but slower, 
or even insignificantly, to Niño 4 and Niño 3.4. To identify the reasons why there is a significant 
response spatial patterns to Niño 4 and Niño 1+2, we implement a transfer entropy analysis from 
the Niño 4 index to Niño 1+2 index. The result shows that Niño 1+2 lags Niño 4 by 0-1 month. It 
could partially explain those locations with less than the 1-month response time difference 
between to Niño 4 and Niño 1+2.  
Two other reasons could explain the difference in teleconnections to the Nino indicies in the 
other locations. First, there is a difference of the response to La Niña and El Niño between Niño 
4 and Niño1+2. Niño4 has a strong response to La Niña, but a relatively small response to El 
Niño, while the Niño 1+2 has the opposite characteristics (Hanley et al., 2003). The west coast 
region has much lower average precipitation than the middle continental US region. The 
precipitation signals of these two regions would thus be affected differently by El Niño or La 
Niña. For example, it is easier for a wet year to make a significant difference in precipitation in 
the west coast than a dry year, considering most of the year in California has near zero 
precipitation. Moreover, as previously stated, Niño 4 has a stronger response to La Niña, and 
Niño 1+2 has a stronger response to El Niño. Second, the topography could also exaggerate the 
difference in spatial response patterns between Niño 4 and Niño 1+2. Direct moisture transport 
by the Pacific jet stream could explain the short response time of coast region to Niño 4. But 
because of the presence of the Rockies Mountain, the middle continental US region has no direct 
connection to the moisture transport by the Pacific jet stream (and hence to Niño 4). However, 
direct moisture flux from the Gulf of Mexico could be a potential source for explaining the short 
response time of the middle continental US region to Niño 1+2(Trenberth and Guillemon, 1996).  
Future work will implement transfer entropy analysis on the Gulf of Mexico and the precipitation 
in the US to further answer this question. 

5.4 Conclusions 

We conclude that Transfer Entropy is an effective approach to quantify directional 
relationship between climate factors (including local and remote ones) and regional precipitation. 
In the Sahel precipitation study, we applied information theory to evaluate two widely 
acknowledged hypotheses regarding controls on West Sahel region precipitation variability: (1) 
unidirectional control of Sea Surface Temperatures over the Gulf of Guinea on West Sahel 
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precipitation and (2) bidirectional interactions between West Sahel precipitation and local 
vegetation dynamics. Based on information transfer between observed variables, we developed 
mechanistic benchmarking metrics for CMIP5 ESM predicted precipitation over the West Sahel 
region. In combination with traditional emergent pattern benchmarks (e.g., mean and trends in 
annual precipitation), we found that most ESMs were able to capture either the directional 
control of SST on precipitation or bidirectional interactions between vegetation and precipitation. 
However, none of the models captured both interactive patterns and the emergent mean and 
trends of regional precipitation. We recommend that a combination of mechanistic and 
traditional emergent pattern benchmarks should be used to better assess and inform processes 
that require improved representation in climate models. In the US precipitation study, we found 
that different climate indices have dramatically different teleconnections with US local 
precipitation, thus, there is no single climate indices could be used to understand precipitation 
over the whole US.   

The spatial distribution map of time lag with most significant transfer entropy also shows 
the clear trend of each climate indices tested in this research. By analyzing the results of transfer 
entropy, we found that the signals of SST anomalies may not immediately affect the precipitation 
in the US, the hold by the positive feedback with atmospheric circulation rather than direct 
moisture transport. The Niño 3+4 and Niño 4 have a relatively short time lag with significant 
transfer entropy to west coast and have insignificant information transferred to the middle 
continental US. The Niño 1+2 and Niño 3 have a relatively short time lag with significant 
information transferred to the middle region but insignificant information transferred to the west 
coast.  Normally the linkage explained by the change in tropical convection associated with the 
El Niño/ La Niña conditions and the subsequent change in atmospheric circulation through 
Rossby wave propagation from the anomalous tropical convection (Hoskins and Karoly 1983). 
The Niño 3+4 and Niño 4 have a relatively short time lag with significant transfer entropy to the 
west coast and have insignificant information transferred to the middle US. The Niño 1+2 and 
Niño 3 have a relatively short time lag with significant information transferred to the middle 
region but insignificant information transferred to the west coast. The precipitation signals in 
these two regions have different sensitivity to the El Niño and La Niña effect.  
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Appendices 
 

Study case: The utility of information flow in formulating discharge 
forecast models: a case study from an arid snow-dominated 
catchment* 
 
*This work is done by Christopher Tennant, Laurel Larsen, Dino Bellugi, Edom Moges, Hongxu Ma, and 
Liang Zhang. Hongxu Ma majorly contribute to the methodology part, which is an extension of Chapter 2.  
 
1 Introduction 
 
Forecasting river flows is a cornerstone of operational hydrology and an important research topic due to the 
substantial impacts of flooding on life and the economy (average cost of $4.5 billion/flood event; 
https://www.ncei.noaa.gov/news/calculating-cost-weather-and-climate disasters). Forecasting is also an important 
facet of water resources planning such as predicting summer low flows (Godsey et al., 2014), anticipating drought 
conditions (Kapnick et al., 2018), or managing reservoir systems (Rhoades et al., 2018). Hydrologic forecasts can, in 
many instances, achieve a high degree of accuracy and utility but often perform more poorly at certain times of year 
(e.g., baseflow or peak flow) or for certain types of catchments. For example, in a national-scale evaluation of the 
predictability of different streamflow metrics, Eng et al. (2017) found that although data-driven forecasts typically 
predict mean annual runoff and the number of hydrograph peaks well, low flows are generally poorly predicted. 
Well-performing models are often labor-intensive, requiring years for model development, and/or might not perform 
well under climate conditions different from those under which the model was calibrated (Pechlivanidis et al., 2011). 

Hydrologic forecasts are typically formulated at one end or another of what we refer to as the hydrologic modeling 
pendulum (Figure 1). The hydrologic pendulum analogy alludes to the fact that, like a physical pendulum that 
spends most of its time at its extremes, the hydrologic modeling community has tended to segregate its efforts into 
mechanistic, physically based modeling or empirical, data-driven modeling. Physically-based models are grounded 
in first principles and use differential equations to describe the physics of water movement and transport throughout 
the atmosphere, biosphere, bedrock, soil, and river channels. Both the parameterization of catchment properties and 
representation of 81 hydrologic processes span a range of complexity in physically-based models, with lumped 
parameters and tipping bucket representations exemplifying the simpler end of the spectrum and distributed 
parameters and detailed flow routing exemplifying the complex end. This representational complexity participates in 
a tradeoff with model computational and developmental tractability, performance for an individual catchment, and 
generalizability to a range of catchments (Larsen et al., 2016). Presently, agency-sponsored efforts to develop 
continental-extent models for producing hydrologic forecasts at the catchment scale are grounded in physical 
modeling approaches with high representational complexity (Hipsey et al., 2015; Newman et al., 2015; Xia et al., 
2012). 

https://www.ncei.noaa.gov/news/calculating-cost-weather-and-climate
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Figure 1. The hydrologic modeling pendulum. Hydrologic model efforts often fall into either physically based or 
data-driven approaches. We argue that a middle-ground between the two approaches will lead to better model 
performance and optimal learning. 
 
At the opposite end of the hydrologic pendulum, data-driven, or machine-learning modeling approaches have been 
shown to perform as well (if not better) than process-based models (Shrestha and Nestmann, 2009; Todini, 2007; De 
Vos and Rientjes, 2005), yet they have important limitations. One is that they are quite sensitive to the training set 
employed; a model calibrated for a given time period will not predict well if there is a shift in system state or if the 
model encounters an event that is not contained within the training set. Furthermore, data-driven models can easily 
lose sight of first principles and lack physical interoperability, and many machine learning approaches are often 
based on discharge alone (Tokar & Johnson, 1999; Rasouli et al., 2012; Kisi & Cimen, 2011). Like a pendulum that 
has greatest momentum between the extrema, hydrologic forecasting may be most fruitful when it combines data-
driven and physically-based strategies for modeling. Indeed, there have been many recent calls for this approach 
within the hydrology community (Lettenmaier, 2018; Lopez et al., 2016; Yucel et al., 2015). For example, Fatichi et 
al. (2016), issuing a strong call for model-data fusion, identify one of the primary opportunities for advancement of 
modeling efforts as the use of the hyperresolution data coming online from hydrologic observatories in a two-way 
exchange with large-scale modeling to formulate and test hypotheses. 

Several analysis techniques not commonly used in the earth sciences and with roots in the data and information 
sciences may provide opportunities for resolving major uncertainties in hydrologic forecasts formulated at either end 
of the hydrologic modeling pendulum. These uncertainties include model feature selection (i.e., selection or 
representation of the variables dominant in driving catchment behavior) and identification of the appropriate 
timescales over which hydrologic processes occur (Benettin et al., 2015; Gibson et al., 2002; McGuire & 
McDonnell, 2006; McNamara et al., 2011; Skøien et al., 2003). 
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Streamflow is a result of complex interactions among climatic forcing, storage units, topography, land cover, and 
hydrogeological variables at different timescales (Bloschl & Sivapalan, 1995). Hydrologists generally recognize 
several types of timescales as critically important for discharge forecasting. Transit time lags represent the time 
parcels of water spend in storage (e.g., snowpack, in soils or groundwater) before reaching the catchment outlet, 
whereas hydraulic response timescales, governed by the celerity of the pressure wave, represent the time between a 
precipitation signal and a discharge response (McDonnell & Beven, 2014). Transit time lags are orders of magnitude 
larger than hydraulic response timescales (Beven, 1982) and are likely the most significant unknown for developing 
viable hydrologic forecast models (Kirchner, 2003; Kirchner et al., 2000). 

Isotope-based studies and correlation analyses suggest these lags may be surprisingly long. For example, McGuire 
and McDonnell (2006) reported transit time lags ranging from less than one to five years, though these lags may be 
highly variable within single catchments (Benettin et al., 2015; Godsey et al., 2014; Nippgen et al., 2016). Also, 
Godsey et al. (2014) found that in some catchments, low flows depend not only on the current year’s snowpack but 
the previous year’s peak snow water equivalent (SWE) as well. An inability to account for these long transit times 
may be why estimates of catchment storage derived from continental-extent models exhibit substantial mismatches 
to satellite-derived estimates of storage (Scanlon et al., 2018). Further, Dawson and Wilby (2001) found that 
determination of interaction timescales (lags) between predictors and target variables is one of the critical factors 
governing performance of data driven models, while Yu et al. (2006) showed improved performance in a support 
vector machine model by considering timescales that are associated with hydrological response times. These studies 
highlight the need for a systematic guide in identifying interaction timescales in model development.  

In this work we examine the potential for critical timescale detection through transfer entropy analyses to improve 
hydrologic forecasts. This analysis, grounded in information theory, quantifies the flow of information between pairs 
of time series. We argue that “info-flow informed” forecasts offer a number of benefits in different modeling 
contexts (e.g., avoidance of relying on subjective judgements and/or trial and error analysis in identifying 
timescales), discuss what these analyses reveal about watershed processes, and lay the groundwork for how our 
approach could be extended to inform physically-based models and ensure that they properly represent process time 
scales. We apply this approach to the Dry Creek Experimental Watershed (DCEW), a catchment with openly 
available time-series data (McNamara et al., 2017; McNamara, 2017), for which soil-water (McNamara et al., 2005, 
2011; Williams et al., 2009; Smith et al., 2011) and groundwater (Aishlin, 2006; Miller et al., 2008) storage 
processes and the catchment water balance (Kelleners et al., 2009, 2010; Stratton et al., 2009) have been studied 
extensively.  

Our specific questions are as follows: (1) What are the characteristic timescales between measures of 
hydrometeorological predictors (e.g. precipitation, snowmelt, shallow and deep soil moisture) and streamflow 
response? (2) How does the explicit inclusion (or omission) of the dominant timescales affect streamflow prediction 
skill? (3) How do differences in the temporal variability of hydrologic inputs and stores affect their ability to reduce 
uncertainty in discharge? We hypothesize that: (1) forecasting models that use input data lagged at the timescale for 
which predictor variables transfer the most information to discharge will improve prediction skill over uninformed 
null models. (2) Variables with a high frequency of variation (e.g., precipitation) will reduce a greater amount of 
uncertainty in discharge when aggregated over time compared to their non-aggregated form. (3) 
Hydrometeorological fluxes will influence streamflow primarily over short-term lags (i.e., < 1 year), reflecting 
characteristic hydrologic response timescales of the watershed. However, longer transit-time lags, due to 
groundwater storage processes, will also be resolvable. 

 
2 Site Description and Data 
 
The DCEW is located in southwestern Idaho just north of the city of Boise and within the northern portion of the 
Snake River Basin (Figure 2). The DCEW drains 27 km2 of semi-arid mountainous terrain that ranges from ~ 1000 
m up to 2100 m in elevation. The majority of precipitation occurs during winter months, with snow being dominant 
at higher elevations and rain at lower elevations; approximately 54% of the basin’s annual average precipitation of 
57 cm is in the form of snow (Stratton et al., 2009; Williams et al 2009). Snow can persist at high elevations from 
November through March, though interannual variability is high, and in warm years precipitation can fall 
dominantly as rain (Tyler et al., 2008). Rain-on-snow events are common in late autumn and early spring, while 
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summers are hot and dry, with infrequent thunderstorms (Williams et al., 2009). According to the van Koppen 
climate classification system, upper elevations are characterized as moist continental climate and dry summers 
(Dsa), and lower elevations as steppe summer dry climate (Bsa) (Henderson-Sellers & Robinson, 2001). Vegetation 
within the catchment varies with aspect, elevation, and soil type, with grass and shrubland being the most common 
at lower elevations and and Douglas-fir (Pseudotsuga Menziesii), lodgepole pine (Pinus contorta), and aspen 
(Populus tremuloides) dominating the upper elevations (>1500 m). Riparian areas feature dense brush along 
perennial portions of Dry Creek and its tributaries and around low-elevation seeps, consisting of cottonwoods 
(Populus fremontii), water birch (Betula occidentalis), yellow willow (Salix lutea), mountain alder (Alnus viridus), 
and mountain maple (Acer spicatum). The geology of DCEW is predominantly biotite granodiorite of the Atlanta 
Lobe of the Idaho Batholith which is Cretaceous in age (Johnson et al., 1988), Soils tend to be relatively thin (max 
depths of 1.2 m) (Williams et al., 2009) and coarse-grained and are classified as loamy sands and sandy loams 
(Gribb et al., 2009); a thin veneer of wind-blown loess covers portions of the basin (McNamara et al., 2017). Soil 
characteristics also vary with aspect, with steeper north-facing slopes having thicker soil depths, more organic 
matter and silt, higher porosity, and greater water storage than gentler south-facing slopes (Geroy et al., 2011). 
Because of limited soil moisture storage capacity (Smith et al., 2011) and no groundwater flow contribution (Yenko, 
2003), high-elevation portions of Dry Creek are intermittent and lose flow (Aislin, 2006) to deep (> 100 m) 
groundwater (Miller et al., 2008), though one tributary (Shingle Creek, with a drainage area of 8.6 km2) and the 
lower-elevation mainstem are perennial, sustained by groundwater (Stratton et al., 2009). 

 
Figure 2. Dry Creek Experimental Watershed in Idaho, USA. Discharge data were obtained from the catchment 
outlet (cross symbol), while hydrometeorological and soil moisture data were obtained from the Treeline (TL) 
station (triangle) and Lower Gauge (LG) station. 
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The DCEW has been operational since 1998, with hydrometeorological and soil moisture sensors supplying data at 
an hourly time increment. Hydrometeorological sensors are positioned at a treeline (TL) and lower-elevation gauge 
(LG) station. Soil moisture sensors are distributed at four locations across the catchment, on north-facing and south-
facing slopes adjacent to each hydrometeorological station. Discharge is monitored at the catchment outlet at the LG 
station (Figure 2). 

2.1 Data 
Initially, all variables monitored at the TL and LG meteorological stations (McNamara, 2017; Table 1), which span 
the longest observational period of all the catchment sensors, were considered as candidate variables for the 
discharge forecasting models and critical timescales analysis. Discharge measured at the LG station (McNamara et 
al., 2017) was the response variable in the forecasting analysis. Raw data from 1 January 2001 through 19 July 2017 
were obtained from Boise State University (https://earth.boisestate.edu/drycreek/data/; data links to each station 
provided in Acknowledgements section). In addition, evaporation, a derived variable, was estimated for the TL and 
LWR stations using the Priestley-Taylor model. The Priestley-Taylor method (Priestley and Taylor, 1972) for 
estimating evaporation is based on radiation and is a simplification of the Penman-Monteith combination equation 
(Penman, 1948; Monteith, 1981). An α of 1.72 was used instead of the commonly used 1.26 to reflect the higher 
moisture stress of the arid conditions within the catchment. We compared mean monthly estimates of evaporation 
between the Priestley-Taylor and Penman-Monteith methods with long term (1916 - 2005) pan observations from 
the nearby Arrowrock Dam, Boise River, Idaho 
(https://wrcc.dri.edu/Climate/comp_table_show.php?stype=pan_evap_avg), and found better qualitative agreement 
with the Priestly-Taylor estimates. Evaluation of a broader range of crop coefficients would likely have improved 
evaporative estimates from the Penman-Monteith method; however, since the timing (as opposed to total amounts) 
of evaporative-demand was most salient for our analysis we used the Priestley-Taylor estimates.  

All data were carefully quality controlled and any outliers or spurious patterns in the data were identified and 
removed by hand. Gaps in the data were filled using interpolation, multiple linear regression, and autoregressive 
models. When possible, multiple linear regression was used to fill gaps as this provided a synthetic record based on 
observations from within the catchment. When gaps occurred over small-time scales at both meteorological stations 
(LG and TL) autoregressive or linear interpolation was used to in-fill the records. Overall, only a small portion of 
the time series (< 6% on average) required gap in-filling. Gap-filled data products are also provided to the reader, 
with a link in the Acknowledgements. 

Raw data, originally provided on an hourly time step, were aggregated to the daily time scale, the minimum time 
step included in our analysis. We also aggregated the data to 1-week, 2-weeks, 1-month, 2-month, 3-month, 6-
month, 1-year, and 2-year timescales using a back-looking moving window to smooth out higher frequencies of 
variability (e.g., for precipitation, whose daily time-series is dominated by zeros). To remove periodic/seasonal 
trends from the time series we computed an anomaly for each variable at each aggregation length by computing the 
day of water year (DOWY) mean (based on the full period of record) and then differencing the DOWY mean from 
the daily and aggregated values. These anomaly time series were used for our transfer entropy analysis and allowed 
us to detect causal interactions between hydrologic variables that were not driven by synoptic changes in seasonal 
conditions.  

https://earth.boisestate.edu/drycreek/data/
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Figure 3. Correlation-heat-map for Treeline station. See Table 1 for a description of the variables. 
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Figure 4. Principal components analysis for the Treeline station. Colors show relative magnitudes of the loading of 
each variable on nine principal components scores. 
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Figure 5. Correlation-heat-map for Lower gauge station. See Table 1 for a description of the variables. 
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Figure 6. Principal components analysis for the Lower gauge station. Colors show relative magnitudes of the 
loading of each variable on nine principal components scores. 
 

Following the data preprocessing, a subset of predictor variables was selected for further analysis. Selection of 
predictor variables is important for removing redundant data, avoiding over-parameterization, and discarding non-
informative predictors (May et al., 2011). For each meteorological station, we conducted a correlation analysis and 
principal components analysis to identify variables that exhibited collinearity (Figure 3-2.14 and Table 1). We 
discarded the collinear variables least relevant to the physical water balance of the catchment from further analysis, 
with a few exceptions (Table 1). Although air temperature, shallow soil moisture, and evapotranspiration exhibited 
high correlations with each other, the principal components analysis suggested that components of these variables 
exhibited orthogonal behavior, so all three variables were retained (Figure 4, 2.14). Also, although soil moisture 
from north-facing slopes was strongly correlated to that from south-facing slopes, we retained both sets of variables 
because of prior physical understanding of salient differences in mechanisms that drive soil moisture availability as 
a function of aspect (Geroy et al., 2011; Smith et al., 2011; McNamara et al., 2018). Last, both snow-water 
equivalent (SWE) and snowmelt were retained despite their high correlation because of the understanding that 
instantaneous melt rate (i.e., snowmelt) measures a process that could have different implications for discharge from 
total water available within the snowpack (SWE).  In total, we identified 9 predictor variables per station for our 
final analysis (Table 1), resulting in a total of 18.  

Notably, unlike many other machine-learning based forecasts of discharge discussed in the literature (Erdal and 
Karakurt, 2013; Hsu et al., 1995; Besaw et al., 2010; Kisi and Cigizoglu, 2007; Jeong and Kim, 2005), we did not 
consider past discharge as a predictor. Our rationale was that our analysis was intended to evaluate the type of 
forecasts that might be generated from projections of hydroclimatic information for ungauged basins from land-
surface models or available through remote sensing, for longer forecast timescales than a single day in advance.  

Table 1. Hydroclimatic and hydrologic variables considered for discharge forecast model 
 

Variable(s)1 Description Unit Used as 
input?2 

Behavior category 
from TE analysis3 

Precipitation   mm day-1 Yes 3 
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Rain   mm day-1 No -- 

Snow   mm day-1 No -- 

Air temperature   oC Yes 3 

Evapotranspiration   mm day-1 Yes 2, 3 (TL) 3, 2 (LG) 

VMC_P1_05 (LG) Volumetric moisture content at 5 
(10, 15, 30, 50) cm, south-facing 

% Yes 3 

VMC_P1_15 (LG) % No -- 

VMC_P1_30 (LG) % No -- 

VMC_P1_50 (LG) % No -- 

VMC_P2_05 (LG) Volumetric moisture content at 5 
(10, 15, 30, 60) cm, north-facing 

% Yes 3 

VMC_P2_10 (LG) % No -- 

VMC_P2_15 (LG) % No -- 

VMC_P2_30 (LG) % No -- 

VMC_P2_50 (LG) % No -- 

VMC_P3_05 (TL) Volumetric moisture content at 5 
(15, 60) cm, south-facing 

% Yes 3 

VMC_P3_15 (TL) % No -- 

VMC_P3_60 (TL) % No -- 

VMC_P4_05 (TL) Volumetric moisture content at 5 
(15, 30, 45) cm, north-facing 

% Yes 3 

VMC_P4_15 (TL) % No -- 

VMC_P4_30 (TL) % No -- 

VMC_P4_45 (TL) % No -- 

ST_P1 at all depths (LG) Soil temperature, south-facing oC No -- 

ST_P2 at all depths (LG) Soil temperature, north-facing oC No -- 

ST_P3 at all depths (TL) Soil temperature, south-facing oC No -- 

ST_P4 at all depths (TL) Soil temperature, north-facing oC No -- 

Solar radiation   Wm-2 No -- 

Net radiation   Wm-2 No -- 

Relative humidity   % No -- 

VMC_P1_100 (LG) Volumetric moisture content at 
100 cm, south-facing 

% Yes 2 
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VMC_P2_100 (LG) Volumetric moisture content at 
100 cm, north-facing 

% Yes 1 

VMC_P3_100 (TL) Volumetric moisture content at 
100 cm, south-facing 

% Yes 3 

VMC_P4_65 Volumetric moisture content at 
65 cm, north-facing 

% Yes 1 

Wind speed   m s-1 No -- 

Wind direction   Degrees No -- 

SWE Snow-water equivalent mm Yes 1 

Snowmelt   mm day-1 Yes 2 (TL) 
2,3 (LG) 

1Unless otherwise indicated, includes variables measured at both the Lower Gage (LG) and Treeline (TL) sites. 
2Based on a principal components analysis and correlation analysis performed on variables from each station 
individually. Clustered rows group variables that are collinear with each other (with the caveat that the collinearity 
of data from the LG station with data from the TL station was not evaluated). 
3See Section 3.4.1.2. Where multiple categories are listed, the primary category is listed first. 
3 Methods 
3.1 Information-flow analysis to identify causal interactions and critical timescales  
Here we use the transfer entropy to identify causal interactions and critical timescales as discussed in the previous 
chapter. We calculate TE for time lags up to 730 days (i.e., two years), which meets the criterion for the minimum 
number of overlapping data points between the discharge and predictor time-series for a robust TE analysis (500 
datapoints, according to the rule of thumb proposed by Ruddell and Kumar (2009a)). We quantify the relative 
significant TE at each lag τ as 𝑇𝑇𝑂𝑂𝑂𝑂𝑙𝑙,τ′ = (𝑇𝑇τ −  𝑇𝑇0,τ)/𝐻𝐻𝑄𝑄where 𝑇𝑇0,τ is the significance threshold at that time lag and 
HQ is the total uncertainty in the sink variable, discharge. 𝑇𝑇𝑂𝑂𝑂𝑂𝑙𝑙,τ′  is a normalized version of the TE that quantifies the 
significant reduction in the uncertainty of discharge relative to the total uncertainty in discharge. The τ associated 
with the highest 𝑇𝑇𝑂𝑂𝑂𝑂𝑙𝑙,τ′ within the first 180 lags was selected as the critical timescale (i.e., most significant lag) to be 
used in the machine-learning forecast models. Although use of just a single time lag in these analyses captures only 
the timescale of the most dominant mechanism through which each independent variable controls discharge, 
ignoring multi-year and/or less dominant processes, the decision to apply one time lag to each variable allows us to 
cleanly test the hypothesis that incorporating information about critical timescales improves a model’s forecast skill, 
without applying arbitrary thresholds for peak selection. Further, by limiting the τ selected for the machine learning 
analysis to 180 days, we minimize the number of training days that must be discarded (i.e., since the first portion of 
the time series up to the maximum number of lag days considered cannot be modeled). 

 
3.2 Forecasting models 
As a simplest first test of our hypotheses, we generated machine-learning model forecasts of discharge in the 
DCEW. Although these models lie on the purely data-driven end of the hydrologic modeling pendulum, they offer 
the advantage here of providing a straightforward means through which to adjust the critical timescales represented 
in the model (i.e., through adjustment of the predictor variable lags and aggregation timescales used in model 
training). 

Unlike physically based models, the performance of machine-learning models is not a function of the quality of 
measurements of physical properties of the catchment nor of calibration of hydrologic parameters, resulting in a 
simpler test of the hypotheses.  

We selected two commonly used machine-learning strategies to generate discharge forecasts. Random forest 
regression (RFR) was selected as an example of a machine-learning algorithm that is readily interpretable, in that it 
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is possible to extract the relative importance of variables in predicting an output and even to generate a predictive 
equation that is a linear combination of variables in a partitioned state-space. Support vector machine regression 
(SVR), in contrast, was selected as an example of a machine-learning algorithm that generates black-box predictions 
(making it difficult to estimate the “importance” of predictor variables) but that, relative to other common machine-
learning algorithms such as artificial neural networks, exhibits improved generalization ability and performance, 
particularly for highly nonlinear systems (Vapnik, 1998). SVR always converges upon global (not local) minima 
but, in comparison to RFR, is more computationally intensive. Collectively, we refer to the RFR and SVR forecasts 
as the machine learning models (MLMs). 

Both MLMs were trained and tested in an identical manner. In both cases, the first 75% of the discharge time series 
was designated the training dataset (from 01/01/2001 to 12/31/2012), while the last 25% (from 01/01/2013 to 
12/31/2016) served as the “test” dataset for evaluating model performance. In the training phase, the training data 
were randomly partitioned into 5 disjoint subsets, and in turn each subset is used as a test set while the other k-1 sets 
are used for training. Parameters used within the MLMs (described below) were also optimized through k-fold 
cross-validation grid searching, which tests discrete combinations of parameters within the search range. The 
parameters resulting in the best average performance across the k iterations are used to train the SVR on the entire 
training set. The resulting model is then evaluated on the test dataset. Performance within the training dataset was 
assessed through the root-mean squared error. As described in section 3.3.2.3, performance within the test dataset 
was assessed through a suite of metrics. 

3.2.1 Random Forest Regression 
RFR is an ensemble learning technique that combines a number of decision trees into an additive model to generate 
a predicted value (here, streamflow). Each base or tree model is trained on a random sample of the training dataset. 
The prediction is the average of all the outputs from the trees, which controls for overfitting. RFR is typically valued 
for the accuracy and stability of the output models (Ho, 1995; Breiman, 2001).   

Here we used the scikit-learn python package to implement the RFR (Pedregosa, 2011), splitting the branches based 
on the Gini impurity coefficient (Liaw & Wiener, 2002). Five algorithmic parameters were optimized through the 
cross-validation grid searching: 1) the number of individually trained regression tree models in the ensemble, 2) the 
number of features to be considered when searching for the best split strategy, 3) the minimum number of samples 
needed to generate leaf nodes, 4) the minimum number of samples needed for a leaf node, which will make sure the 
model will have enough historical data to learn for a certain scenario, and 5) the threshold to stop the growth of the 
tree. The node will stop splitting if this split induces a decrease of the impurity smaller than this threshold. 

3.2.2 Support Vector Regression 
Support Vector Machines (SVM) are a class of non-parametric semi-supervised learning algorithms (Vapnik & 
Chervonenkis, 1974; Vapnik, 1995). They can be applied to highly non-linear problems by mapping the input data 
via a kernel function to a much higher dimensional space where the original nonlinear problem can be transformed 
into a linear one (Drucker et al., 1997). For robustness, the learning algorithm for SVR introduces a cost function to 
penalize deviations from the learned continuous function, which is minimized via convex quadratic optimization. 
The most widely used cost function in SVR is the ε-insensitive loss function (Vapnik, 1995; Müller et al., 1999), 
whereby data points inside a “tube” of radius epsilon do not contribute to the cost. SVMs thus require choosing a 
kernel function (here, a radial basis function) and its hyper-parameter (i.e., the width γ of the radial basis), a hyper-
parameter C that controls the error penalty, and in the case of ε-SVR, the hyper-parameter ε. Due to the 
computational intensiveness of training the SVR, the grid search and k-fold cross-validation procedure to obtain 
values for the hyper-parameters gamma, C, and epsilon were initially performed with a coarse grid resolution (0.5 
increments in log2 space) to find neighborhoods of the parameter space that were subsequently tested in detail with 
a fine grid resolution (0.05 increments in log2 space) 5-fold cross-validation procedure.  Ultimately, these choices 
control the complexity of the non-linear mapping and the tradeoff between training error vs. model complexity, and 
thus the tradeoff between training and prediction performance. We adopted the epsilon-SVR described in Smola and 
Schölkopf (1998) and implemented in the package LIBSVM (Chang & Lin, 2011) (software available at 
http://www.csie.ntu.edu.tw/~cjlin/libsvm). 

3.2.3 Assessment of model performance  
The use of multiple model performance measures is important to reveal model goodness of fit for the different 
segments of a hydrograph. Here, we considered three statistical performance measures (1) Nash-Sutcliffe efficiency 

http://www.csie.ntu.edu.tw/%7Ecjlin/libsvm
http://www.csie.ntu.edu.tw/%7Ecjlin/libsvm
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(NSE), which emphasizes model performance in capturing high flow segments, (2) the log transformed Nash-
Sutcliffe (logNSE) metric, which emphasizes model performance in low flow regimes, and (3) Root mean square 
error (RMSE), which reveals performance in capturing the overall model fitting. Mathematically, the formulations 
are: 

𝑁𝑁𝑁𝑁𝑁𝑁 = 1 −  
∑ �𝑄𝑄𝑖𝑖 − 𝑄𝑄�𝑖𝑖�

2𝑁𝑁
𝑖𝑖

∑ (𝑄𝑄𝑖𝑖 − 𝑄𝑄�𝑖𝑖)2𝑁𝑁
𝑖𝑖

 [2.6] 
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In the above equations, 𝑄𝑄𝑖𝑖  and 𝑄𝑄�𝑖𝑖represent observed and simulated streamflow over a total record length of N data 
points, while 𝑄𝑄�𝑖𝑖 represents the mean of the discharge time series. 

 

Generally, we found that the results from the NSE metric mirrored those of the logNSE metric, so while we show 
both metrics in our table of MLM results, we heretofore discuss only the NSE metric. 

 
3.3. Experimental design 
We tested the performance of TE-informed hydrological forecasts against several important benchmarks (Table 2). 
The “null” model benchmark is a forecast formulated as a simple day-of-year (DOY) average. This model predicts 
that discharge at any DOY in the test period is equal to the average discharge measured in the same DOY during the 
training period. The “expert’s” model benchmark, meanwhile, is an MLM developed through traditional (i.e., not 
info-flow informed) approaches, in which the expert recognizes the importance of timescale in model performance 
but lacks a robust way of detecting critical timescales. In this model, a combination of professional judgement and 
trial-and-error was used to select input variable characteristics, prior to examining the results of the TE analysis. 
Last, each of the “informed” MLMs was compared to a companion “uninformed” MLM, which used the same 
combination of input variables and aggregation timescales but in which the inputs were not time-lagged. 

Table 2 Classes of discharge forecast models evaluated. The shading of the rows indicates the color used to depict 
each class of model throughout the paper. 
 
Model 
Terminology 

Model description TE-informed 
components 

Number of predictor 
variables 

Null Prediction formulated from day-of-year average 
flow 

None N/A 

Cumulative, 
informed 

MLM with full set of predictor variables from 
Table 1, aggregated at specified timescale and all 
smaller timescales 

Lags 18 x number of 
aggregation scales 

Cumulative, 
uninformed 

MLM with full set of predictor variables from 
Table 1, aggregated at specified timescale and all 
smaller timescales 

None 18 x number of 
aggregation scales 

Non-cumulative, 
informed 

MLM with full set of predictor variables from 
Table 1, aggregated at specified timescale 

Lags 18 

Non-cumulative, 
uninformed 

MLM with full set of predictor variables from 
Table 1, aggregated at specified timescale 

None 18 
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Limited, 
informed 

MLM with only temperature and precipitation as 
predictors, aggregated at specified timescale and all 
smaller timescales 

Lags 2 x number of 
aggregation scales 

Limited, 
uninformed 

MLM with only temperature and precipitation as 
predictors, aggregated at specified timescale 

None 2 x number of 
aggregation scales 

Expert’s MLM with Lower Gauge and Treeline 
precipitation, air temperature, and soil moisture 
(deep + shallow, north-facing + south-facing) as 
predictors, aggregated at 7 days of daily data, the 
subsequent 2 weeks of weekly data, and subsequent 
2 months of monthly data 

None 12 x (7 + 2 + 2) = 121 

Fully informed MLM with full set of predictor variables from 
Table 1, each aggregated and lagged at the 
timescales that coincide with the maximum transfer 
of information to discharge 

Lags, 
aggregation 
scale 

18 

 
 
Several classes of MLMs were developed for comparison, mainly to assess the independent contributions of 
appropriate selection of the lag timescale and aggregation timescale(s). “Cumulative” MLMs included variables 
aggregated at multiple timescales, whereas “non-cumulative” MLMs featured only a single timescale of aggregation. 
A separate set of “limited” MLMs was developed to evaluate whether TE-informed models developed only using 
the most widely available sensor datasets (air temperature and precipitation, also available as remote sensing 
products) exhibited improved performance relative to uninformed models. Last, a set of “fully informed” models, in 
which a unique aggregation timescale and lag that maximized information transfer to discharge were selected for 
each variable.  

4 Results 
4.1 Characteristic timescales of interaction between discharge and its hydrometeorological predictors 
4.1.1 Critical timescales for daily-aggregated predictors of streamflow 
 
All daily predictor variables transferred significant information to discharge over lags from several days up to 120 
days, though with considerable variability across variables and within that span of time (Figure. 2.15 and 2.16). 
While several variables consistently transferred significant information to discharge within the first day 
(precipitation, snow-water equivalent, and some soil moisture pits) across the two measurement stations, other 
variables (air temperature, evapotranspiration, other soil moisture stations) consistently transferred significant 
information only after several days of lag, with the delay being greatest for air temperature. 
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Figure 7. Relative significant transfer entropy of daily hydroclimatic predictor variables to discharge. The color 
indicates the value of 𝑇𝑇𝑂𝑂𝑂𝑂𝑙𝑙,τ′  over a range of variables (y-axis), and lag days τ (x-axis) for the Lower Gauge (A) and 
Treeline Station (B). White areas indicate lag times for which no significant information was transferred to 
discharge. 
 
Within the 120-day “seasonal” timescale, snow-water equivalent (SWE) by far transferred the most information to 
discharge (Figure 7), peaking at an approximately 90-day lag. Deep soil moisture measured on the north-facing 
slope (P2 and P4) transferred the next highest amount of significant information, with a nearly equivalent lag for the 
treeline pits and a shorter lag (~70 days) for the lower-elevation pits. Deep moisture on the south-facing slopes 
transferred the third-highest amount of significant information, with a lag equivalent to that of the north-facing 
slopes at lower elevations and a slightly longer lag (>100 days) than the critical timescales of SWE or soil moisture 
on the north-facing slope at the Treeline station. Among the remaining daily-aggregated variables, precipitation and 
air temperature transferred the lowest amounts of significant information to discharge. 
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Figure 8. Relative significant transfer entropy of daily hydroclimatic predictor variables to discharge over all 
aggregation timescales for the Lower gauge station. The color indicates the value of 𝑇𝑇𝑂𝑂𝑂𝑂𝑙𝑙,τ′  over a range of variables 
(subplots), lag days τ (x-axis) and aggregation timescales(y-axis). White areas indicate lag times for which no 
significant information was transferred to discharge. 
 
At timescales longer than the 120-day “seasonal” timescale but still less than one year, many of the variables 
exhibited some transfer of significant information to discharge, interspersed with many non-significant lags, except 
for SWE, which consistently transferred significant information over a band spanning 180-320 days. Within this 
band of timescales, the transfer of information peaked approximately half a year after the seasonal timescale peak. 
Because of this symmetry and the lack of an underlying physical mechanism, we interpret significant information 
transfer within this band as an artifact due to incomplete removal of each year’s seasonal signal through the day-of-
year anomaly filter, as previously noted by Larsen and Harvey (2017). In other words, if an intra- and interannually 
variable signal is consistently low in summer but high in winter (or vice-versa), and that pattern is incompletely 
removed through subtraction of a typical year’s signal (as performed here, see section 3.2.1), the remnant summer-
low values will be associated with remnant winter-high values half a year later, thereby reducing uncertainty. For 
this reason, we do not further discuss significant information transfer within this band of timescales. Notably, other 
short bands of significant information transfer surrounded by bands without significant information transfer may be 
attributed to random processes, as one in 20 randomly shuffled samples in a time series would be expected to yield a 
false positive when using a significance threshold of alpha = 0.05. 

At one year past the ~90-day information transfer peak, SWE and deep soil moisture (particularly on the north-
facing slope) transferred notable amounts of information to discharge, while air temperature and Treeline 
precipitation transferred no significant information. Among the predictor variables with substantial information 
transfer at these timescales, the magnitude of information transfer was higher than that exhibited in the “false” half-
year harmonic discussed above. Because of the high probability of interannual variability, artifacts in information 
transfer are less likely for the one-year harmonic than the half-year harmonic. Thus, these greater-than-one-year lags 
in significant information transfer are likely interpretable as physically important. 
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4.1.2. Critical timescales for multiday-aggregated predictors of streamflow 
 
At aggregation timescales of greater than one day, the behavior of predictor variables fell into roughly three 
different categories (Figure. 2.16 and 2.17). First, variables with high significant information transfer to discharge at 
the daily timescale (SWE, deep moisture on north-facing slopes) continued to transfer high amounts of information 
to discharge up to aggregation timescales of 1-3 months, with similar but slightly shorter peak lags (i.e., the 
“seasonal” critical timescale), consistent with adjustment for the centroid of the backwards-looking window used for 
the aggregation. Over longer timescales of aggregation, their importance fades.  

The second category includes variables for which significant information transfer to discharge peaks at intermediate 
timescales, of 2-6 months (snowmelt, ET). Although the first peak lag for these variables is consistent with the 
seasonal critical timescale, these variables have equally or almost-equally strong peak information transfer at the 
multi-year timescale (i.e., ~90-day critical lag + 365 days). 

The third category includes variables that have some of the lowest significant information transfer to discharge but 
peak in their information transfer at long (1-2 year) timescales of aggregation (precipitation, air temperature, deep 
moisture on south-facing slopes, shallow moisture on both north-facing and south-facing slopes). Information 
transfer peaks tend to be broader for these variables and spread over a wider range of lags than the consistent 
seasonal critical timescale previously identified. These lags range from approximately 50 to 150 days. Notably, 
these variables transfer significant information to discharge over all time lags and also feature broad secondary 
peaks at the two-year harmonic. 
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Figure 9. Relative significant transfer entropy of hydroclimatic predictor variables to discharge over all aggregation 
timescales for the Treeline site. The color indicates the value of 𝑇𝑇𝑂𝑂𝑂𝑂𝑙𝑙,τ′  over a range of predictor variables (subplots), 
lag days τ (x-axis), and aggregation timescales (y-axis). White areas indicate lag times for which no significant 
information was transferred to discharge.  
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Figure 10. Measured and modeled hydrographs for the best-performing support vector regression (SVR) and 
random forest regression (RFR) forecast models in select model classes. Model classes (subfigure rows) are 
described in Table 2. Precipitation is displayed in the background of the hydrographs, and predictions for the null 
(day-of-year) model are shown for the model test period (2012-2017). The training period extends from 2000-2012. 
4.2 Comparative Performance of Machine-learning Models 
4.2.1 General model performance 
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While forecast performance varied substantially across the different MLMs in our experimental design, some 
generalities were observed. Both the RFR and SVR models tended to capture baseflow relatively well and 
underpredict peakflow, though the timing of peakflow was generally well predicted (Figure. 2.18). For both the RFR 
and SVR models, the uninformed daily (i.e., same-day, unlagged) model exhibited similar or worse performance 
compared to the null (day-of-year mean) model, with an RMS error of approximately 0.13 𝑚𝑚3𝑎𝑎−1 (0.15 𝑚𝑚3𝑎𝑎−1 for 
the RFR) and a NSE of 0.44-0.46 (-0.33 for the RFR). 

Table 3. Performance metrics for the complete set of discharge forecasting models. Models are shaded by class, in 
accordance with the experimental design (Table 2) 

Model 

SVR (or 
Null Model) 
RMSE 
Test 

RFR 
RMSE 
Test 

SVR (or 
Null Model) 
NSE Test 

RFR NSE 
Test 

SVR (or 
Null Model) 
logNSE 
Test 

RFR 
logNSE 
Test 

Null 0.13300   0.44400   0.43500   
1D Uninformed 0.15006 0.12500 -0.32858 0.45900 -0.06413 0.54800 

1W Cumulative Uninformed 0.12106 0.10100 0.13523 0.64600 0.69717 0.69500 
2W Cumulative Uninformed 0.09980 0.09100 0.41233 0.71800 0.68214 0.74700 
1M Cumulative Uninformed 0.07485 0.08300 0.66947 0.76100 0.67549 0.78500 
2M Cumulative Uninformed 0.06738 0.07800 0.73216 0.79100 0.70419 0.82000 
3M Cumulative Uninformed 0.06710 0.07900 0.73433 0.78600 0.67748 0.82500 

6M Cumulative Uninformed 0.06503 0.07700 0.75047 0.79500 0.79406 0.83300 

1D Informed 0.08629 0.10700 0.56072 0.60700 0.58714 0.65700 
1W Cumulative Informed 0.08096 0.10500 0.61328 0.62200 0.59680 0.68300 
2W Cumulative Informed 0.08270 0.10100 0.59646 0.64900 0.48961 0.69500 
1M Cumulative Informed 0.08409 0.10100 0.58280 0.64800 0.50894 0.69600 
2M Cumulative Informed 0.08920 0.10000 0.53060 0.65700 0.47922 0.70600 
3M Cumulative Informed 0.08802 0.09900 0.54283 0.66600 0.59246 0.71300 

6M Cumulative Informed 0.08583 0.09700 0.56540 0.67700 0.61268 0.72400 

1D Non-Cumulative Uninformed 0.15006 0.12500 -0.32858 0.45900 -0.06413 0.54800 
1W Non-Cumulative 
Uninformed 0.10059 0.09200 0.40297 0.78600 0.45382 0.74000 
2W Non-Cumulative 
Uninformed 0.09421 0.09500 0.47637 0.69100 0.51980 0.71700 
1M Non-Cumulative 
Uninformed 0.09932 0.08500 0.41802 0.75000 0.45249 0.78500 
2M Non-Cumulative 
Uninformed 0.11045 0.08500 0.28023 0.75500 0.30677 0.79700 
3M Non-Cumulative 
Uninformed 0.11458 0.09600 0.22542 0.68100 0.25151 0.73700 
6M Non-Cumulative 
Uninformed 0.12924 0.09000 0.01445 0.72200 0.01455 0.76100 

1Y Non-Cumulative Uninformed 0.13316 0.16700 -0.04622 0.04700 -0.08689 0.03900 

1D Non-Cumulative Informed 0.08629 0.10700 0.56072 0.60700 0.58714 0.65700 

1W Non-Cumulative Informed 0.07986 0.10600 0.62372 0.60900 0.65095 0.66300 

2W Non-Cumulative Informed 0.08901 0.09800 0.53252 0.67000 0.56163 0.71500 

1M Non-Cumulative Informed 0.10526 0.10800 0.34622 0.59900 0.36078 0.65000 

2M Non-Cumulative Informed 0.12064 0.10800 0.14125 0.59800 0.12748 0.65500 

3M Non-Cumulative Informed 0.12525 0.09800 0.07442 0.67000 0.07080 0.71100 
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6M Non-Cumulative Informed 0.12986 0.11800 0.00502 0.52500 -0.00426 0.58000 

1Y Non-Cumulative Informed 0.13041 0.17200 -0.00344 -0.01400 -0.01577 -0.01500 
1D Limited Uninformed 0.12237 0.15300 0.11646 0.20000 0.25573 0.22700 

1W Limited Uninformed 0.11329 0.13000 0.24277 0.41900 0.25573 0.44000 
2W Limited Uninformed 0.11137 0.11700 0.26824 0.52700 0.27660 0.54100 
1M Limited Uninformed 0.10473 0.09900 0.35282 0.66100 0.60607 0.68100 
2M Limited Uninformed 0.08465 0.09000 0.57721 0.72300 0.61223 0.75900 
3M Limited Uninformed 0.08579 0.08000 0.56578 0.78300 0.59731 0.81300 

6M Limited Uninformed 0.08605 0.08100 0.56309 0.77600 0.60607 0.81300 

1D Limited Informed 0.12232 0.13100 0.11721 0.41200 0.35333 0.47200 
1W Limited Informed 0.10949 0.12200 0.29265 0.48700 0.35333 0.55300 
2W Limited Informed 0.10999 0.11100 0.28626 0.57400 0.28714 0.62700 
1M Limited Informed 0.10761 0.10700 0.31681 0.61000 0.36987 0.65400 
2M Limited Informed 0.10260 0.10200 0.37891 0.64600 0.43111 0.68900 
3M Limited Informed 0.09520 0.09800 0.46521 0.67300 0.49696 0.71300 

6M Limited Informed 0.09520 0.09300 0.46521 0.70300 0.41038 0.73500 

Expert's 0.06504 0.06900 0.75041 0.71400 0.77926 0.74400 

Fully Informed 0.10463 0.11600 0.35412 0.54300 0.31480 0.60200 
 
4.2.2. Informed vs. uninformed models 
Using the lagged daily data instead of the unlagged daily data improved performance statistics by 19-37% (Table 3). 
Improvement was more marked in both the informed and uninformed models when longer-term aggregations (1 
wk+) were used in the input predictor variables. The best performing of the cumulative models were those with the 
largest number of aggregation timescales considered (models 3 and 6, Table 4), with one exception: the 1-week 
cumulative informed SVR model (model 5) outperformed those with additional aggregation timescales. However, 
contrary to our hypothesis, the informed cumulative models did not consistently outperform the uninformed 
cumulative models. In fact, the informed cumulative models outperformed the uninformed models for relatively 
short aggregation timescales (up to 2 weeks for SVR and up to 1 day only for RFR), after which the uninformed 
models performed better (Figure 11). This pattern also held for the non-cumulative models and was similar to that 
observed in the limited models. Within the limited models, the informed models outperformed the uninformed 
models for up to 2-week aggregations with respect to RMSE (SVR and RFR) and up to 1 week with respect to NSE 
(for RFR only; NSE was never better for the informed limited SVR models compared to their uninformed 
counterparts) (Figure 11). Within individual classes of models, the best-performing uninformed models always 
outperformed the best-performing informed models with respect to RMSE and NSE (Table 4). 

Table 4. Performance metrics for select discharge forecast models. Rows are shaded by class (see Table 2), and the 
best-performing value of each metric for each class of models (support vector regression or random forest 
regression) is indicated in boldface font. 

No. Model 

SVR (or 
Null) 
RMSE 

RFR 
RMSE 

SVR (or 
Null ) NSE RFR NSE 

SVR (or 
Null) 
LogNSE 

RFR 
logNSE 

1 Null Model 0.133   0.444   0.435   

2 1D Cumulative Uninformed 0.150 0.125 -0.329 0.459 -0.064 0.548 

3 6M Cumulative Uninformed 0.065 0.077 0.750 0.795 0.794 0.833 

4 1D Cumulative Informed 0.086 0.107 0.561 0.607 0.587 0.657 
5 1W Cumulative Informed 0.081 0.105 0.613 0.622 0.597 0.683 
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6 6M Cumulative Informed 0.086 0.097 0.565 0.677 0.613 0.724 

7 1W Non-Cumulative Uninformed 0.101 0.092 0.403 0.786 0.454 0.740 

8 1M Non-Cumulative Uninformed 0.099 0.085 0.418 0.750 0.452 0.785 

9 2M Non-Cumulative Uninformed 0.110 0.085 0.280 0.755 0.307 0.797 

10 1W Non-Cumulative Informed 0.080 0.106 0.624 0.609 0.651 0.663 

11 2W Non-Cumulative Informed 0.089 0.098 0.533 0.670 0.562 0.715 

12 2M Limited Uninformed 0.085 0.090 0.577 0.723 0.612 0.759 
13 3M Limited Uninformed 0.086 0.080 0.566 0.783 0.597 0.813 

14 1M Limited Informed 0.108 0.107 0.317 0.610 0.370 0.654 
15 3M Limited Informed 0.095 0.098 0.465 0.673 0.497 0.713 

16 6M Limited Informed 0.095 0.093 0.465 0.703 0.410 0.735 

17 Expert's 0.065 0.069 0.750 0.714 0.779 0.744 

18 Fully Informed 0.089 0.116 0.538 0.543 0.531 0.602 
 
4.2.3 Performance of aggregation timescales in isolation 
 
When individual timescales of aggregation were isolated with the non-cumulative models, the 1-week (NSE, RFR, 
model 7) or 1-month models (RMSE, RFR and SVR; NSE, SVR, model 8) performed best among the uninformed 
models, while the 1-week (SVR, model 10) or 2-week (RFR, model 11) timescales performed best among the 
informed models (Table 4). For the latter (informed) models, the top four most influential variables for the RFR 
were SWE or snowmelt from the two different stations, and evapotranspiration at Treeline (Tables 2.6 and 2.7), 
indicating that the model was dominated by the seasonal snowmelt dynamic. For the best-performing uninformed 
models, the top four most influential variables for the RFR were deep moisture at the four different stations (Tables 
2.8 and 2.9), indicating that the range of hydrological processes influencing deep moisture throughout the catchment 
dominated in the prediction of discharge. In further contrast to the informed models, snowmelt and SWE were 
among the least influential variables for the uninformed models. 

Table 5. Ranked variable importance metrics for the 1-week non-cumulative informed random forest regression 
discharge model. 

Predictor variable Importance 

TL SWE_mm 0.18 
TL ET (mm) 0.13 
TL SnowMelt_mm 0.12 
LG SnowMelt_mm 0.09 
LG ET (mm) 0.08 
LG SWE_mm 0.07 
TL AirTemperature_C 0.06 
LG AirTemperature_C 0.05 
LG VMC_P2_05 0.04 
LG VMC_P2_100 0.03 
LG VMC_P1_100 0.03 
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TL VMC_P4_05 0.02 
TL VMC_P3_100 0.02 
TL VMC_P4_65 0.02 
LG Precipitation_mm 0.02 
LG VMC_P1_05 0.01 
TL VMC_P3_05 0.01 
TL Precipitation_mm 0.01 
 
Table 6. Ranked variable importance metrics for the 2-week non-cumulative informed random forest regression 
discharge model. 

Predictor variable Importance 

TL SWE_mm 0.18 
LG SnowMelt_mm 0.11 
LG SWE_mm 0.10 
TL ET (mm) 0.10 
TL AirTemperature_C 0.09 
TL SnowMelt_mm 0.09 
LG ET (mm) 0.07 
LG VMC_P2_05 0.055 
LG VMC_P1_100 0.04 
LG VMC_P2_100 0.03 
LG AirTemperature_C 0.03 
LG Precipitation_mm 0.02 
TL VMC_P4_65 0.02 
TL VMC_P3_100 0.02 
TL VMC_P4_05 0.02 
TL VMC_P3_05 0.01 
LG VMC_P1_05 0.01 
TL Precipitation_mm 0.01 
 
Table 7. Ranked variable importance metrics for the 1-week non-cumulative uninformed random forest regression 
discharge model. 

Predictor variable Importance 
LG VMC_P2_100 0.18 
LG VMC_P1_100 0.17 
TL VMC_P3_100 0.17 
TL VMC_P4_65 0.13 
LG VMC_P1_05 0.05 
LG ET (mm) 0.05 
LG VMC_P2_05 0.04 
TL VMC_P3_05 0.04 
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TL VMC_P4_05 0.04 
TL ET (mm) 0.03 
TL AirTemperature_C 0.02 
LG AirTemperature_C 0.02 
LG Precipitation_mm 0.02 
TL Precipitation_mm 0.01 
TL SnowMelt_mm 0.01 
TL SWE_mm 0.01 
LG SWE_mm 0.00 
LG SnowMelt_mm 0.00 
 
Table 8. Ranked variable importance metrics for the 1-month non-cumulative uninformed random forest regression 
discharge model. 

Predictor variable Importance 

TL VMC_P3_100 0.19 
TL VMC_P4_65 0.18 
LG VMC_P1_100 0.13 
LG VMC_P2_100 0.10 
TL VMC_P4_05 0.08 
LG VMC_P2_05 0.08 
LG VMC_P1_05 0.05 
TL VMC_P3_05 0.05 
TL SnowMelt_mm 0.04 
LG ET (mm) 0.02 
TL SWE_mm 0.02 
LG Precipitation_mm 0.01 
TL Precipitation_mm 0.01 
TL ET (mm) 0.01 
TL AirTemperature_C 0.01 
LG AirTemperature_C 0.01 
LG SWE_mm 0.01 
LG SnowMelt_mm 0.01 
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Figure 11. Comparison of forecast performance metrics between uninformed and informed models for the 
cumulative, non-cumulative, and limited classes of models and for support vector regression (A, C, E) and random 
forest regression (B, D, F), over a range of aggregation timescales. Values for the null (day-of-year) model are also 
shown for comparison. 
 
4.2.4 Comparison of different model classes 
Performance relative to expert model baseline.  

Across the different classes of models, while all of the MLMs outperformed the day-of-year null model, very few of 
them outperformed the expert’s model. The uninformed 6-month cumulative SVR model (model 3) exhibited 
performance metrics equivalent to the expert’s model, though the RFR version performed slightly worse.  All other 
models performed considerably worse (Table 4). 
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Cumulative vs. non-cumulative models.  

Surprisingly, the best-performing informed non-cumulative models tended to outperform (SVR) or perform only 
slightly worse than (RFR) the best-performing informed cumulative models (Table 4). These results suggest that the 
additional timescales of aggregation may have induced overfitting and/or that the additional lagged, aggregated 
variables did not contain additional information useful for prediction. However, the outcome was reversed for the 
uninformed models, for which the multiple timescales of aggregation in the cumulative models resulted in 
considerably improved performance  

Full vs. limited models.  

For the SVR forecasts, the limited models consistently performed worse than either the cumulative or non-
cumulative full models, regardless of performance metric. In contrast, for the RFR forecasts, the best-performing 
limited models tended to exhibit similar performance to the best-performing full models. Namely, the limited 
informed models exhibited better performance than both the cumulative and non-cumulative informed models, 
despite their much lower variable count compared to the cumulative models. Meanwhile, the best limited 
uninformed models performed slightly worse than the uninformed full models with respect to NSE and slightly 
better than the non-cumulative uninformed model but worse than the cumulative uninformed model with respect to 
RMSE.  

Collectively, these findings suggest that precipitation and temperature alone were sufficient to capture the 
mechanisms represented within the MLM “black box” predictive of discharge and that additional variables did not 
contribute additional information useful for prediction, or that the MLMs were subject to overfitting with the 
addition of more variables. Curiously, fewer timescales of aggregation (up to 3 months) were needed to generate the 
best forecasts for the limited uninformed model compared to the full cumulative uninformed model (up to 6 
months). 

Relative performance of fully informed model.  

In contrast to our hypotheses, the fully informed model (model 20 in Table 4) exhibited the worst performance of all 
the best-performing MLMs in each class with respect to all metrics. It should be noted that in contrast to all other 
models, the fully informed model considers lags up to two years, resulting in a limited training dataset. For the SVR 
models, the NSE was even worse for the fully informed model than for the null model (model 1), though the 
comparison was reversed for the RFR. For both the SVR and RFR, RMSE was better (i.e., lower) for the fully 
informed model than the null model. 

 
4.2.5 Random forest regression vs. support vector regression 
Comparing across equivalent models, RMSE was generally similar between the SVR and RFR models (Table 4), 
with the SVR models most often doing better with respect to RMSE. However, the RFR models consistently 
outperformed the SVR models with respect to NSE, suggesting that the SVR models may have been more biased for 
certain parts of the hydrograph, while fitting other parts of the hydrograph better than the RFR models. 

 
5 Discussion 
5.1 Discharge timing and controls inferred through information flow 
The TE analysis is consistent with the knowledge that DCEW is a snowmelt-dominated watershed. Both the high 
peak magnitudes of the significant relative transfer entropy for variables that are indicators of melt-driven 
streamflow contributions and the remarkably consistent ~90-day “seasonal” critical timescale over which that 
information transfer occurs point to snowmelt as a dominant mechanism for streamflow generation. 

  

Previous studies in the DCEW illuminate the mechanisms through which melt generates streamflow. As the melt 
begins, meltwater percolates downward to the shallow bedrock. Antecedent dry conditions may initially inhibit 
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gravity drainage to the deepest soil layers, so streamflow often remains disconnected from the dynamics of shallow 
soil moisture (McNamara et al., 2005; 2011). However, when hillslope-to stream connectivity of a near-bedrock, 
deep, saturated layer of soil is established, melt contributes to streamflow (McNamara et al., 2005). This mechanistic 
understanding of the primary driver of streamflow explains why integrated variables indicative of the water content 
of snow (SWE) and deep soil moisture of north-facing slopes (which contain the thickest, most sheltered soils) 
substantially reduce uncertainty in discharge approximately one season later. These are the category 1 variables 
discussed in section 3.4.1.2. The convergence of the seasonal critical timescale to around 90 days may be driven not 
just by the timescale of mean temperature changes but by the finding that at DCEW, spring rains may extend wet 
soil conditions by up to 90 days following snowmelt (Smith et al., 2011).  

 

Category 2 variables (snowmelt, ET, and deep moisture from the LG south-facing slope) that significantly reduce 
uncertainty in discharge at 1-6 month timescales of aggregation and a seasonal lag are additional indicators of 
snowmelt-driven streamflow generation. Both melt rate and ET are substantially more variable at a daily frequency 
than SWE or deep soil moisture. Thus, while knowledge of a particular day’s SWE or deep soil moisture may reduce 
substantial uncertainty in the next season’s discharge, the same cannot be said of melt rate or ET, particularly since 
their signals must then be filtered through subsurface transport. Rather, it is the cumulative melt, together with the 
cumulative amount of ET depleting snow-water and moisture stores over the snowmelt season, that substantially 
reduce uncertainty in the next season’s streamflow. In this case, intermediate timescales of aggregation smooth daily 
variability in the net contribution of meltwater to deep moisture stores, which is important as the primary reduction 
in uncertainty in spring discharge comes from knowledge of the total contribution of snowpack to deep moisture.   

  

Category 3 variables (precipitation, air temperature, shallow soil moisture, and deep moisture for the TL south-
facing slope), which reduce uncertainty in discharge only when aggregated over one-year+ timescales, likely reflect 
baseflow contributions via deep groundwater, as influenced by long-term energy fluxes that determine the catchment 
water balance. More specifically, these variables collectively reflect net long-term water inputs to the catchment that 
percolate into baseflow and reemerge over a year later as streamflow at LG (Aishlin, 2006). It is further likely that 
the secondary peak information transfer at > 1-year lags exhibited by some of the other variables, most notably 
SWE, also reflect this mechanism of streamflow generation. In addition, ET, although classified primarily as a 
category 2 variable because of its peak information transfer at intermediate timescales of aggregation, may 
additionally be classified as category 3, as its information transfer passes through a minimum at the 6-month 
aggregation timescale but then increases at the 1-year timescale (Figure. 2.18E). As with the other variables 
mentioned above, ET contains information that reflects the long-timescale net catchment water balance, potentially 
consuming up to 53% of annual precipitation (Kelleners et al., 2010). Previous chloride mass-balance studies 
conducted at DCEW revealed that at the catchment scale, up to 11% of annual precipitation recharges deep 
groundwater (Aishlin, 2006), primarily through fracture flow (Miller et al., 2008). Meanwhile, a water balance 
model of DCEW suggested that up to 36% of precipitation may percolate deeply to groundwater, with only 11-16% 
transformed over shorter timescales into streamflow (Kelleners et al., 2010). Our analysis is also consistent with 
previous findings that in high-relief catchments, streamflow has a long (multi-year) memory (Godsey et al., 2013; 
McGuire & McDonnell, 2006; Nippgen et al., 2016), and old groundwater may contribute substantially to baseflow 
(Jasechko et al., 2016). 

Other, less-dominant processes also contribute to streamflow generation in the DCEW. Late-summer rains may 
generate streamflow if deep moisture connectivity is established prior to freezing (McNamara et al., 2005). 
Similarly, depending on the timing of spring rain events following the melt and whether they coincide with 
connected conditions in deep soil moisture, these rain events can also contribute to streamflow (Williams et al., 
2009). These processes are spatially heterogeneous and highly variable interannually (Williams et al., 2009; 
McNamara et al., 2005) but may be partially represented in the low but significant transfer of information from 
water balance-relevant variables to discharge at short timescales. However, they are not captured by our machine-
learning analysis, which uses predictor variables lagged only at the peak, as discussed below. 

 
5.2 Effects of info-informed forecast on model performance 
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When considering short histories (i.e., one day, one week) of each predictor variable as inputs, our hypothesis that 
TE-informed MLMs performed better than uninformed MLMs was upheld. However, as longer variable histories 
were considered, either in isolation or together with other aggregation timescales, this hypothesis broke down, and 
unlagged, aggregated inputs primarily resulted in better forecasts than lagged, aggregated inputs. The one exception 
was that the informed non-cumulative SVR models outperformed their uninformed counterparts. A combination of 
factors may explain this surprising result, which we discuss in the subsections below.  

5.2.1 Limited set of mechanisms for streamflow generation represented in informed models 
First, the TE analysis suggested that, for the 6-month-or-less timescales of aggregation considered in the MLMs, the 
peak information transfer and peak lags associated with each variable were representative of the seasonal-scale 
snowmelt dynamics. Furthermore, at least some of the variables in the full models transfer large amounts of 
information to discharge at the seasonal-scale snowmelt lag for any of the aggregation timescales considered 
(Figure. 2.17). Thus, as additional aggregation timescales are added as candidate variables to a MLM and those 
variables are lagged in accordance with a TE analysis, the seasonal snowmelt dynamics may be better resolved, but 
those dynamics remain the only streamflow-generating process that can be captured by the model. Hence, the 
additional input variables introduced by including additional timescales of aggregation are redundant in the set of 
processes the MLM is able to represent. For this reason, in addition to the shortened training dataset required, the 
fully-informed model ended up being the worst-performing class of MLMs considered (Table 4), as it effectively 
was only able to represent the seasonal-scale snowmelt dynamic. 

In contrast, as longer timescales of aggregation are added to a cumulative, uninformed (unlagged) MLM, 
streamflow-generating processes operating over a wider range of timescales may effectively be captured by the 
model. The longer timescales of aggregation (one-month+) begin to tap into the timescales that are part of the broad 
seasonal snowmelt peaks in the TE analysis, while the shorter timescales of aggregation enable the model to 
represent rapid streamflow-generating processes that compose a small fraction of the information contained in the 
annual-scale hydrograph but that may be highly important in determining the magnitude of peakflow events 
(Williams et al., 2009). Whether these processes generate streamflow and how much streamflow they generate may 
be a function of preexisting catchment connectivity (Smith et al., 2011), whether temperatures hit the freezing point 
before or after connectivity is established (McNamara et al., 2005), whether and for how long temperatures drop 
below freezing during the early snowmelt season (McNamara et al., 2011; Williams et al., 2009), and whether a 
snowpack exists during a rain event (Williams et al., 2009). Thus, depending on the recent histories of the spatial 
distribution of soil moisture, temperature, and snowpack, a precipitation event may generate large or very little 
amounts of streamflow at short to intermediate timescales. These dynamics may be well-represented in a MLM that 
considers the interaction of multiple variables at these timescales.  

In contrast to the MLMs, TE does not highlight short-to-intermediate timescales as important. Indeed, the reduction 
in uncertainty in future discharge from knowing the recent history of any one of the involved variables in isolation 
may be small in a limited data record (e.g., just 16 years here), as the number of times any particular combination of 
connectivity, prior temperature, and prior snowpack present during a precipitation or melt event would presumably 
be small. Notably, almost all variables begin transferring significant information to discharge at lag times of over a 
week (Figure. 2.16 and 2.17), around the timescale of aggregation at which the uninformed models begin to perform 
better than the informed models. However, for the reasons articulated above, this information transfer is very low 
relative to the snowmelt peak, which unfailingly occurs in every year of the dataset.   

5.2.2 Importance of interactive effects 
The ability of the MLMs to represent interactive effects among predictor variables at short timescales, in contrast to 
the pairwise TE analysis, almost certainly plays a large role in explaining the surprising patterns in our results. 
Recent histories of a suite of variables that collectively reflect longer-term histories of water supply and spatial 
distribution (e.g., multiple soil moisture measurements, SWE) logically have high predictive power for streamflow 
in a way that knowledge of any one of these variables does not. As a case-in-point, the NSE for the non-cumulative 
uninformed 1-week model (0.786, RFR, model 7) was almost as high as that of the best-performing cumulative 
uninformed model (model 2.5), which included aggregation timescales of up to 6 months (0.795, RFR). Variable 
importance rankings for the 1-week non-cumulative uninformed RFR model (Table 5) indicated that the deep soil 
moisture values from all stations were the four most influential variables in the model, with moisture from the two 
LG stations the most influential.   
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In contrast to the RFR models, performance of the non-cumulative uninformed SVR models were consistently worse 
than their cumulative counterparts (Table 4), suggesting that RFR, with its decision-tree structure, may have 
modeled variable interactions (essential for predictive skill when considering a limited time range) more effectively 
than SVR. A superior ability to model variable interactions in physically meaningful ways may also explain why 
NSE metrics for the RFR models generally exceeded those of the SVR models.  

With fewer variables, provided those variables are the ultimate drivers of streamflow generation, the interactive 
effects that are primarily responsible for individual peakflow events may be represented in a MLM through the 
inclusion of diverse timescales of aggregation. Among our limited, uninformed models, those with up to 3-month 
timescales of aggregation (i.e., up to the critical ~90-day seasonal timescales) were the best performing, with a 
performance only slightly lower than the best cumulative model for RFR (NSE of 0.783 for model 13 vs. 0.795 for 
model 3), though the difference was more pronounced for SVR (NSE of 0.577 for model 12 vs. 0.750 for model 3). 
In these models, presumably the longer aggregation timescales for precipitation and temperature would represent the 
total availability of snowpack and meltwater, while the shorter timescales may effectively capture the distribution of 
that water through the subsurface. Explicit inclusion of soil moisture, however, may improve the model’s ability to 
represent catchment connectivity. This improvement is apparent in the performance of the expert’s (which considers 
temperature, precipitation, and soil moisture) SVR (NSE of 0.779, model 17) relative to the best limited model (NSE 
of 0.612, model 12). However, for the RFR, the greater diversity of timescales in the best limited model (NSE of 
0.783, model 13) appeared to be more important for representation of these dynamics than the inclusion of soil 
moisture in the expert’s model (NSE of 0.716, model 17). 

5.3 Information theory-informed machine learning models and the hydrologic modeling pendulum  
 
On whole, the TE-informed identification of critical timescales is consistent with a conceptualization of the 
catchment as a nonlinear filter for signals from precipitation (Kirchner et al., 2000; 2001). Predictor variables tend to 
transfer significant amounts of information to discharge over a majority of timescales examined, reflecting both a 
range of mechanisms for streamflow generation and heterogeneous flow paths that encompass both active and 
passive storage (McNamara et al., 2005; 2011; Tetzlaff et al., 2014; 2011). Recognition of the physical importance 
of a wide range of timescales bodes poorly for the development of purely data-driven models at first glance, as 
practical considerations demand selection of a discrete set of timescales at which the input variables will be 
represented. When only the timescales of peak information transfer are used to guide the selection of inputs for 
MLMs, only the dominant streamflow-generating process or processes will be represented in the model, potentially 
resulting in predictions that capture the broad, low-frequency characteristics and timing of the annual hydrograph 
but missing higher-frequency components that are affected by interactions among several of the predictor variables. 
While an info-flow analysis may thus serve as a quantitative guide for ensuring representation of dominant 
processes in the simplest of models (e.g., here, those with very short histories of the variables considered), it may 
undercut the full predictive power of an MLM when only peaks of information transfer are considered in the 
curation of input datasets and timescales. 

Rather, our analysis suggests that processes through which predictive variables causally impact streamflow 
generation occur over a wide range of timescales, implying that more timescales with significant information flow to 
discharge should be represented in the model, than just those that transfer the most information. Our initial 
restrictive approach may be a reason why the uninformed MLMs that spanned a wider range of hydrological 
process-relevant timescales generally outperformed the informed MLMs.  

 

Several other possibilities exist for improving the potential for information-flow analyses to meaningfully inform 
MLMs. Partitioning information flow into synergistic, unique, and redundant components (Goodwell and Kumar, 
2017a), or the use of partial transfer entropy statistics, which evaluate the reduction in uncertainty contributed by a 
predictor variable given knowledge of all other predictors (Rinderer et al., 2017), may help to resolve the effect of 
interactions between multiple predictor variables and discharge and illuminate important timescales that emerge 
when the combined effects of hydrologic drivers are considered . Including longer block-lengths (i.e., longer 
histories) in the computation of TE may result in a downweighting of the relative importance of the seasonal-
timescale snowmelt dynamics compared to the intermediate-timescale rain or melt dynamics that both the MLMs 
and previous experiments (e.g., McNamara et al., 2005; Williams et al., 2009) indicate are important in this 
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catchment. Further, more years of data may allow discharge uncertainty reduction due to particular combinations of 
moisture/connectivity and precipitation or melt inputs to be better resolved. Unfortunately, all three of these options 
increase the data requirements for the TE analysis, making it less applicable to a wide range of catchments. 

An alternative for improving the relevance of the TE analysis to MLM that does not increase data requirements 
would be to formulate additional composite variables that better represent the key hydrologic drivers of a catchment. 
For instance, soil moisture from all stations and depths, potentially in combination with other monitored variables, 
may be integrated into a metric representative of catchment connectivity. Soulsby et al. (2016), for example, used a 
dynamic saturation area as a measure of connectivity in a simple tipping-bucket physical model of the Girnock Burn 
catchment. Even though connectivity still must interact with rainfall or snowmelt to generate streamflow, this more 
proximal variable by itself may still be sufficient to reduce substantial uncertainty in discharge at short timescales in 
a way that single soil moisture measurements at specific locations within the catchment were not. 

Despite the shortcomings of our present TE analysis for improving MLM-based forecasts of discharge, there 
remains strong potential for info-flow analyses to advance physically-based or data-driven models to more central 
locations in the hydrologic modeling pendulum through model benchmarking. Namely, a model that performs well 
for the “right” reasons (e.g., Kirchner, 2006) should exhibit similar patterns of information transfer among modeled 
variables as those resolved among sensor variables. In comparing timescales and relative magnitudes of information 
flow between models and data, a hydrologist takes advantage of a powerful tool for model selection and diagnostics. 
Such an analysis may particularly benefit selection from among multiple well-performing MLMs in which 
overfitting is a common hazard, such as those considered here. 

6.Summary and Conclusions 
In this work we evaluated the ability of transfer entropy to reveal the dominant catchment processes that drive 
streamflow and analyzed how the inclusion of these variables and the timescales over which they reduce uncertainty 
in discharge affected model performance. Our transfer entropy analysis suggested that the seasonal accumulation of 
snowpack and the interaction of snowmelt with soil moisture stores and energy fluxes driving evaporative losses 
were the dominant controls on seasonal discharge patterns, which agrees well with previous mechanistic-based 
studies that have evaluated controls on catchment discharge. Using the dominant variables and their timescales from 
the transfer entropy analysis, we formulated a number of classes of machine learning models to forecast catchment 
discharge. The effects of the info-informed versus uninformed model formulations were mixed. In general, the info-
informed formulations improved the ability of the model to capture the dominant processes (i.e. accumulation, 
snowmelt, and evaporative losses) but limited the ability of the models to capture a wider range of processes known 
to be important for controlling streamflow generation (e.g. catchment connectivity and higher frequency variations 
driven by daily snowmelt and rainfall). Instead of models based on predictor variables lagged at the dominant 
timescale for transfer of information to discharge, models that included a wider range of timescales were better able 
to capture the range of processes relevant to local peakflow events. Furthermore, our modeling results also suggest 
that formulations using precipitation and temperature aggregated across multiple relevant timescales, when 
combined with the nonlinear architecture of machine learning models, perform close to, if not as well as more 
complex models that include variables known to be important in controlling discharge. 

Although our simple test of the use of information theory to improve predictive models of discharge yielded mixed 
results, we suggest that transfer entropy will continue to be a useful tool in model formulation and evaluation. 
Rather than being used to identify a single dominant timescale for inclusion in the model, we suggest that info-flow 
analyses should be interpreted as highlighting a range of timescales that are important to include.  These analyses 
may also improve forecasts through the identification of the dominant processes controlling catchment discharge 
and their potential use in model benchmarking and selection.         
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