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Fracture permeability and seismic wave scattering —Poroelastic Line&lip Interface
model for heterogeneous fractures

Seiji Nakagawa and Larry R. Myer, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
Summary

Schoenberg’s Linear-slip Interface (LSI) model for single, caanpl viscoelastic fractures has
been extended to poroelastic fractures for predicting seismic s@atéering. However, this
extended model results in no impact of the in-plane fracture peidihean the scattering.
Recently, we proposed a variant of the LSI model considering tbeeogeheity in the in-plane
fracture properties. This modified model considers wave-inducedureagoarallel fluid flow
induced by passing seismic waves. The research discussed papleis applies this new LSI
model to heterogeneous fractures to examine when and how the pdityneéla fracture is
reflected in the scattering of seismic waves. From nuniesicaulations, we conclude that the
heterogeneity in the fracture properties is essentiathierscattering of seismic waves to be
sensitive to the permeability of a fracture.

Introduction

Schoenberg originally formulated the Linear-Slip Interface (L®bDdel for predicting the
frequency- and compliance-dependent scattering of seismic wavesflét, two-dimensional
fracture (Schoenberg, 1980). This original model is for a viscoekaatitire and a background.
The applicability of the model has been demonstrated by manyatabprexperiments (e.g.,
Pyrak-Nolte et al. 1990; Myer et al., 1990; Hsu and Schoenberg, 1993).

For examining the effect of pore fluids, poroelastic version ofitbdels have been developed,
for open fractures (Bakulin and Molotkov, 1997) and fractures cloggedgeillje materials
with a range of permeability (Nakagawa and Schoenberg, 200&e Tloeoelastic LS| models,
however, predicted that the scattering of seismic waves areffeoted by the in-plane (or
fracture-parallel) permeability of a fracture, becauspermeabililty terms appear in the models
(Note that the “clogged-fracture” model predicts dependency owutef-plane [or fracture-
normal] permeability of the fracture, owing to the gouge layer.)

The primary reason for this apparent lack of sensitivity to pdifitgamay be that these
poroelastic LSI models assume a fracture with a homogenesitubwtion of fracture properties
including mechanical compliance, width (opening), fluid properties, andngability.
Heterogeneous distributions of these properties can result irasectéocal gradients of wave-
induced fluid pressures, which can enhance the fluid flow within Hwtuire. (e.g., Dvorkin et
al., 1994; Pride and Berryman, 2003ab)
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Recently, we developed a new poroelastic LSI model including thetufeaparallel
permeability, considering the heterogeneity of a fractNekégawa, 2009). In the following, we
will first review this poroelastic LSI model. Using this magdelmerical examples of seismic
wave reflection will be given for one-dimensional fracturethvd range of permeability. A
particular focus will be on the differences in the fast P wave scatteringafer and supercritical
COy-saturated fractures.

Poroelastic LS| Model for Heterogeneous Fractures

The primary assumption of the LSI models is that the local scodla fracture—such as fracture
asperity height, contacting patch diameter and spacing—are madleisthan the wavelengths.
This allows us to neglect inertia-related quantities, reguith simple, quasi-static relationships
between wave-induced displacement and stress across a fracture.

We assume a flat, infinite fracture with possible partial @cist between the two surfaces. On
this fracture, we assume a Cartesian coordinate system hweith,t2 plane aligned with the
fracture plane. For simplicity, we also assume that the flownaachanical property of the
fracture is rotationally invariant around the 3 axis.

First, continuity conditions for stress and fluid pressure are given by:
[75] =0, [725] = 0,75 = 0,[—pf]: 0. o

The square brackets indicate the difference in the related gquématit shear and one normal
total stresses;s, i=1,2,3, and fluid pressurgx-in the above equations) across a fracture. Next,
the constitutive relationships between solid displacement jumpsar(lsigps) and stress and
pressure are given as:

[Ul] =TT
[uz] =ThTss ) (2)
[us] = Mg {133_ a(-p; )}

where 731 is the shear complianceyg is the dry (or drained) normal compliance of a fracture.
The third equation indicates the effective stress law, which includes the Bistddefficient a.

The final condition to be specified is for a jump in the fluid flusptcemenfw,] in the

fracture-normal direction (fluid exiting the fracture). Welimsathat this can be viewed as a fluid
mass or volume conservation relationship, which is given by:

[W3]:—a[u3]+77M (-p)+F . (3)
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The first term in the right hand side is for the fluid squeezedioetto the closure of a fracture;
the second term is for the expansion of fluid and minerals withiracufe (therefore, this
includes the fluid/mineral compliange defined by Nakagawa and Schoenberg, 2007); and the
third termF is for the influx of fluid by the fracture-parallel flow, which should be given by:

F=-v@.(WPh, )= -0,(Wh, ) -2,(Wh, ) (4)

hy is the local hydraulic width of the fracture. The averdge displacementr (i=1, 2) in the
fracture is related to the fluid pressure via

:%@w{“—m>_pﬁ}, (5)

Ui 2

W = (o)

=l

wherek;j(o) is the frequency-dependent permeability of the fractgns, the fluid viscositypr is
the fluid density, and; is the averaged acceleration of fracture surfaces. Thiseemtten term

is generally small and can be ignored, as other intertizecelarms in the LSI model (quasi-
static model). Using these equations, the LSI model for a poricglasterogeneous fracture is
obtained as:

T (X, %) =T (X, X,) 5 (6)
U+(XL,X2)—U7(X1,X2): TI(XPXZ)‘I” (xl!xz)l (7)

where the superscripts “ +” and “-“ indicate the opposite sides of the faetul

U
T
n= TTng ~AT\g (8)

1
~anyy QT 1y +$V(2) ’(S(W)V(Z))

T = |:'[31 Ty, Tz —Ps :|T (x3— £0), (9)
ut=[u U, U wy (x> 20), (10)
s() =k(@)h, /7, , k(@) =[k(@)] . (11)

The two-dimensional gradient operator®, in the (4,4) term in the compliance matkix
indicates that the above matrix equation involves first and secondtdes$vaf fluid pressure.
Previously, for a thin, homogeneous fracture, fheerm was neglected because it is of order
O(h) which vanishes for small fracture thicknésg-hydraulic fracture thickness,). However,
heterogeneity in the fracture properties may result in lage gradients in both fluid pressure



Poroelastic Heterogeneous Fracture Model

and the permissivity tensa(w), which increases the overall magnitude of fherm for a small
but finite hy. In the following, we will examine some examples of heterogenkacisires when
this is the case.

2D Simulations

The boundary conditions in equations (6)-(11) can be implemented in adiffgence model

or a finite element model for computing seismic wave scattdryna fracture with an arbitrary
distribution of fracture properties (e.g., Coates and Schoenberg, 198%). we will use an

alternative technique based upon wavenumber-domain integration, proposekiigyaWa et al.

(2004). The application of this technique for poroelastic fracturesshasn by Nakagawa
(2009) and will not be discussed here.

1D Fracture models

In the following examples, we will assume a flat, one-dimensioaeture with periodic fracture
(hydraulic) width and compliance distributions shown in Figure 1. Th&gpaend material
properties are assumed to be those typical for medium-porosity @aadstg., Berea), except
two extreme cases of low and high permeability are exantit@dD and 10 D). (Note: The dry
normal and shear compliance values are assumed to be equal, yaadetipeoportional to the
hydraulic fracture width.) For examining the effect of fractpegmeability on seismic wave
scattering, the local fracture permeability, which is a fioncof the local fracture width, is
specified using the Biot's dynamic permeability for a flat, gpearallel channel (Biot, 1956)
multiplied with a range of reduction factoRs (=1/1000, 1/100, 1/10, and 1). Therefore, in
equation (11)k(o)=R-k(®)nu caa WhErek(o).. «oma 1S the permeability of a fracture modeled as

an open, parallel, flat channel. Biot-Willis coefficienof the fracture is assumed to be 1.

= = = = = = - £ = === = = =

Poroelastic back- Spatially varying fracture
ground medium compliance and (hydraulic)
fracture thickness

Figure 1. Wave scattering simulation for a periodic, heterogeneous, one-dimensichakfra
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Figure 2: Hydraulic fracture width profile for a single period
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Figure 3: Fracture compliance profiles
Water and super-critical CO, saturated fracture

First, we examine the case when the fracture is saturatedat®y (density=992 kg/f bulk
modulus=2.46 GPa, viscosity=0.50 cP, at T265and P=15 MPa) (Figure 4). In this case, the
permeability of the background affects the reflection of normallgident fast P waves
significantly. However, the permeability of the fracture ftdghs no visible impact on the
scattering of fast P waves, for both normal and obliqu8 {#&idence cases.

When the fluid within the fracture is substituted by supecaiitCQ (density=653 kg/m bulk
modulus=0.0726 GPa, viscosity=0.05 cP), the scattering behavior becometiftpreat for the
low-permeability background cases (Figure 5). Instead of monotonmeases in the reflection
coefficient amplitudes with frequency, the frequency response carelit a small peak at a
transition frequency depends on the fracture permeability. Témsition frequency does not
seem to shift for the different angles of incidence.

High and Low-frequency-limit behavior of low background-permeability fractures

In the high-frequency limit, the fluid in the fracture is nddwakd to move. In this case, the (4,4)
term in the compliance matrix in equation (8) becomes
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&g + 1 + U1V - (¢@)V P) > o yg + 7 -

In the low-frequency limit, the fluid has enough time to flow witkie fracture and relax the
induced pressure differences. In this case, the fluid/solid compligncan be further replaced

by its spatial average;( -7, )-
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Figure 4: Reflection coefficient amplitudes of fast P waves for aewsaturated fracture.
R=1/1000-1 indicate reduction factors for the reference fragm@eability given for an open
fracture with a given local width.
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Figure 5: Reflection coefficient amplitudes of fast P waves forupes-critical CQ saturated
fracture. R=1/1000-1 indicate reduction factors for the referaactufe permeability given for
an open fracture with a given local width.
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Figures 6 shows both low and high-frequency limits of fast P-wefeetion amplitudes. From
Figure 6b, there is a significant difference in the refbacamplitudes between the low and high-
frequency responses for the £€aturated fracture. Permeability of a fracture determihes
transition frequency at which the behavior of the fracture change&dretthe two limits. In
contrast, the two limiting responses are very similar foratew saturated fracture (Figure 6a).
Because of this, the permeability difference does not affect therswatiesponse.

Conclusions

We extended the Schoenberg's Linear Slip Interface model toesobeheous poroelastic
fracture. The new model contains fracture permeability in the-gpdaallel direction. From
numerical simulations, we found that the direct impact of the fracture petityeedm be seen in
the frequency response of reflection amplitudes (for fast P waveasa supercritical C&illed
fracture, transition from the low-frequency response to high-frequa&sponse can be seen as a
peak in the response. However, a fracture filled with water d@glilvio significant differences
for a wide range of fracture permeability values.
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Figure 6: High and low-frequency limit behavior of water and supercti@-filled fractures.
Compare to the latter, the both limiting cases for the water-saturattarésare nearly identical
(for each incidence angle), resulting in little sensivity of skesmic reflection to the fracture

permeability.
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