
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Towards Holistic Secure and Trustworthy Deep Learning

Permalink
https://escholarship.org/uc/item/87w4t4p2

Author
Chen, Huili

Publication Date
2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/87w4t4p2
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA SAN DIEGO

Towards Holistic Secure and Trustworthy Deep Learning

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Electrical Engineering (Intelligent Systems, Robotics & Control)

by

Huili Chen

Committee in charge:

Professor Farinaz Koushanfar, Chair
Professor Tara Javidi
Professor Truong Nguyen
Professor Jishen Zhao

2022



Copyright

Huili Chen, 2022

All rights reserved.



The Dissertation of Huili Chen is approved, and it is acceptable in quality and

form for publication on microfilm and electronically.

University of California San Diego

2022

iii



DEDICATION

To my beloved parents and boyfriend.

iv



TABLE OF CONTENTS

Dissertation Approval Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Intellectual Property Protection of Deep Learning Models . . . . . . . . . . . . . . . . . . . 2

1.1.1 Traceable Deep Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Usage Control of Deep Learning Hardware . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Lightweight and Robust Spectral Watermarking . . . . . . . . . . . . . . . . . . . . 4

1.2 Security Assessment of Deep Learning Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 Bit Flip Attacks against Deep Neural Networks . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Neural Trojan Detection for Safe Model Deployment . . . . . . . . . . . . . . . . 7

1.3 Deep Learning for Hardware Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.1 Attacking Logic Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 Detecting Hardware Trojans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Broader Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Chapter 2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 Multi-media Watermarking and Fingerprinting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Watermarking in Transformed Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.2 Multi-media Fingerprinting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Software Attestation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Generative Adversarial Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.3 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.4 Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Hardware Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.1 Disturbance Errors in DRAMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.2 Circuit Obfuscation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

v



2.4.3 Hardware Trojans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Chapter 3 DeepMarks: Secure Fingerprinting Framework for Deep Learning Models 36
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.2 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 DeepMarks Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.1 Fingerprint Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.2 Fingerprint Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.3 Computation Overhead Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 DeepMarks as a High-level API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.6 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6.1 DeepMarks Properties Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.6.2 Comparison with the State-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.8 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Chapter 4 DeepAttest: End-to-End Attestation of Deep Neural Networks . . . . . . . . . . . 62
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.1 Secure DNN Evaluation on Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.2 DNN Watermarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.3 Trusted Execution Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.4 Privacy-Preserving DNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.4 DeepAttest Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.1 DNN Attestation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4.2 Assumptions and Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5 DeepAttest Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.5.1 Off-line DNN Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.5.2 Online DNN Attestation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.6 DeepAttest Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.6.1 Shredder Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.6.2 Efficient Attestation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.7 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.7.1 Fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.7.2 Reliability and Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.7.3 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.7.4 Qualitative Overhead Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.7.5 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.7.6 Comparison with Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

vi



4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.9 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Chapter 5 SpecMark: Spectral Watermarking for Automatic Speech Recognition . . . . 96
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.4 SpecMark Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.4.1 Spectral WM Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.4.2 Spectral WM Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.5 Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.5.1 Fidelity and Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.5.2 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.5.3 Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.7 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Chapter 6 ProFlip: Targeted Trojan Attack with Progressive Bit Flips . . . . . . . . . . . . . . 110
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2.1 Inducing Bit Flips in Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.2.2 Quantized Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.2.3 Existing Bit Flip Attacks on DNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3 ProFlip Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.3.1 Salient Neurons Identification (SNI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.3.2 Trojan Trigger Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.3.3 Critical Bit Search (CBS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.4.2 Attack Effectiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.4.3 Comparison with Prior Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.4.4 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.7 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Chapter 7 DeepInspect: Trojan Detection and Mitigation for Deep Neural Networks . 133
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.2.1 Trojan Attacks on DNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.2.2 DNN Backdoor Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.3 DeepInspect Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.3.1 Overview of Trojan Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.3.2 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

vii



7.3.3 DeepInspect Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.4 Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.4.2 Detection Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.4.3 Overhead Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.5 Trojan Mitigation via Model Patching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.6 Summary and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.7 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Chapter 8 GenUnlock: Genetic Algorithm for Unlocking Logic Encryption . . . . . . . . . 152
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
8.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

8.2.1 Conventional Circuit Deobfuscation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
8.2.2 Hardware Acceleration of Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . 156
8.2.3 Circuit Emulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

8.3 GenUnlock Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
8.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
8.3.2 Notations and Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
8.3.3 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

8.4 GenUnlock Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
8.4.1 Training Data Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
8.4.2 Genetic Algorithm for Key Searching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

8.5 GenUnlock Hardware Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
8.5.1 GenUnlock Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
8.5.2 GenUnlock Circuit Emulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
8.5.3 GenUnlock Auxiliary Circuitry Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

8.6 Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
8.6.1 Unlocking Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
8.6.2 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
8.6.3 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

8.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
8.8 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Chapter 9 AdaTest: Reinforcement Learning for Hardware Trojan Detection . . . . . . . . 176
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
9.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

9.2.1 Hardware-assisted Security Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
9.3 AdaTest Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

9.3.1 Motivation and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
9.3.2 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
9.3.3 Global Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

9.4 AdaTest Algorithm Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
9.4.1 Circuit Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
9.4.2 Adaptive RL-based Test Pattern Generation . . . . . . . . . . . . . . . . . . . . . . . . 190

viii



9.5 AdaTest Architecture Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
9.5.1 Architecture Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
9.5.2 AdaTest Circuit Emulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
9.5.3 AdaTest Reward Computing Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

9.6 Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
9.6.1 Detection Effectiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
9.6.2 Detection Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
9.6.3 AdaTest Architecture Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

9.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
9.8 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

Chapter 10 Summary and Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

ix



LIST OF FIGURES

Figure 2.1. Constraint-based watermarking system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 2.2. Demonstration of a standard communication system with key-based chan-
nel encoding [Pat14]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 2.3. Modeling a digital watermarking scheme with non-blind detection using
communication systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 2.4. Demonstration of a DCT/DWT-based watermarking scheme. . . . . . . . . . . . 17

Figure 2.5. Demonstration of an averaging-based collusion attack against the digital
watermarking system. [WTWL04]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 2.6. Using digital fingerprinting for digital right management of multi-media
contents [WTWL04]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 2.7. Demonstration of a remote attestation protocol. . . . . . . . . . . . . . . . . . . . . . . 20

Figure 2.8. Illustration of an exemplar neural network. . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 2.9. Structure of an exemplar generative adversarial network. . . . . . . . . . . . . . . 24

Figure 2.10. Illustration of the agent-environment interaction in reinforcement learning. 25

Figure 2.11. High-level workflow of genetic algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 2.12. DRAM architecture. (a) A DRAM bank is consisted of multiple rows. (b)
Internal structure of a DRAM bank. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 2.13. Illustration of single-sided (a) and double-sided (b) Rowhammer attacks.
The aggressor rows and the victim rows are marked in red and blue color,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 2.14. Demonstration of IC camouflaging [RSSK13]. (a) Original layouts of a
regular 2-input NAND gate (left) and a NOR gate (right). (b) Camouflaged
layouts of the corresponding standard cells in (a). . . . . . . . . . . . . . . . . . . . . 31

Figure 2.15. Example of logic locking on c17 benchmark. The encrypted circuit (b)
yields consistent outputs as the original one (a) only when the two-bit key
K0K1 is set to 2′b10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 2.16. Demonstration of the Hardware Trojan attack. . . . . . . . . . . . . . . . . . . . . . . . . 33

x



Figure 3.1. DeepMarks Global Flow. DeepMarks consists of three main modules: FP
embedding, user identification, and colluder detection. . . . . . . . . . . . . . . . . 43

Figure 3.2. DeepMarks library usage and resource management for FP embedding,
user identification, and colluder detection. . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 3.3. Histogram of the weights at the selected layer in the fingerprinted model
(a) and the original model (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 3.4. Detection rates (a) and false alarm rates (b) of DeepMarks against finger-
print collusion attacks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 3.5. DeepMarks’ robustness against FP overwriting at a different (red color) or
the same layer (blue color). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 3.6. DeepMarks’ robustness against model fine-tuning. Adding excessive noise
incurs large increase of test error while the embedded FP might be removed. 56

Figure 3.7. Code-vector extraction accuracy (red color) and test accuracy (blue color)
for MNIST-CNN (a) and CIFAR10-WRN (b) benchmark under different
pruning rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 3.8. DeepMarks’ robustness of colluders identification against parameter prun-
ing attack. Detection rate (a, b) and false alarm rate (c, d) of DeepMarks
framework are not affected by a wide range of pruning rates. . . . . . . . . . . . 57

Figure 3.9. Effect of codebook design. DeepMarks is scalable and provides various
levels of detection performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 4.1. DeepAttest provides device-level IP protection and usage control for DNN
applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 4.2. Comparison of existing secure DNN techniques and DeepAttest. . . . . . . . . 67

Figure 4.3. DeepAttest’s global flow for on-device DNN attestation. . . . . . . . . . . . . . . 70

Figure 4.4. Security optimization using shredder storage . . . . . . . . . . . . . . . . . . . . . . . . 81

Figure 4.5. DeepAttest’s detection performance of fault injection. The relation between
the injection ratio and the minimal marked ratio with varying attack success
rate is shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Figure 4.6. Illustration of DeepAttest’s data pipeline and early termination for TEE-
based attestation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Figure 4.7. Reliability and integrity assessment of DeepAttest under noise. . . . . . . . . . 87

xi



Figure 4.8. DeepAttest’s normalized latency and energy overhead on TEE-supported
(a) CPU and (b) GPU platforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Figure 4.9. Runtime contribution breakdown of DeepAttest on Intel SGX without
dataflow optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Figure 4.10. Speedup of DeepAttest’s data pipeline optimization for secure FP extraction
on Intel SGX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Figure 4.11. Sensitivity of DeepAttest’s normalized overhead to the (a) attestation inter-
val f , (b) minimal marked ratio λm on CIFAR-WRN (tested on Intel-SGX).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Figure 4.12. Runtime (relative) breakdown of TEE attestation and evaluation with
varying kernel size on Intel-SGX without dataflow optimization. We
use conv(F,H) and FC(F,H) to denote a convolutional layer with size
(3,3,F,H) and a fuly-connected layer with size (F,H), respectively. . . . . . 91

Figure 4.13. Comparison of the theoretical secure memory copy size to the TEE required
by different secure DNN techniques on (a) CIFAR-WRN and (b) VGG16
benchmark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Figure 4.14. Comparison of relative latency between different secure DNN techniques
when the inference is run on CPU. VGG16 (a) and MobileNet (b) are
evaluated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Figure 4.15. Comparison of normalized latency incurred by different secure DNN meth-
ods when the inference is run on GPU. VGG16 (a) and MobileNet (b) are
assessed here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Figure 5.1. Global workflow of SpecMark watermarking framework for ASR systems. 101

Figure 5.2. SpecMark’s robustness against parameter pruning. . . . . . . . . . . . . . . . . . . . 106

Figure 5.3. SpecMark’s robustness against transfer learning. . . . . . . . . . . . . . . . . . . . . . 107

Figure 6.1. Demonstration of the proposed ProFlip attack. The top and the bottom part
shows the inference flow of a benign model and a Trojaned one, respectively. 112

Figure 6.2. Global flow of ProFlip. Given a victim model, we first identify salient
neurons associated with the target class. Trigger is then generated to control
Trojan activation. Finally, ProFlip performs iterative critical bits search to
identify vulnerable bits in the model parameters. . . . . . . . . . . . . . . . . . . . . . 116

xii



Figure 6.3. ProFlip’s performance when different parameters are selected for attack.
The curve color and the marker denote the benchmark and the selected
parameter, respectively. The dashed line denotes the ASR threshold. . . . . . 126

Figure 6.4. Performance of ProFlip’s progressive critical bits search. The most vulner-
able parameter (psens) and TAP for each benchmark are shown in Table 6.1.
The dashed line denotes the termination condition ASRt = 94%. . . . . . . . . . 127

Figure 7.1. Intuition of DeepInspect Trojan detection. The backdoored model (right)
contains a ‘shortcut’ from the source class to the attack target class. . . . . . 138

Figure 7.2. Global flow of DeepInspect framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Figure 7.3. Illustration of DeepInspect’s conditional GAN training. . . . . . . . . . . . . . . . . 141

Figure 7.4. (a) Deviation factors of DeepInspect’s recovered triggers for benign and
trojaned models. (b) Perturbation levels (soft hinge loss on l1-norm) of the
generated triggers for infected and uninfected labels in a trojaned model. . 145

Figure 7.5. Sensitivity analysis of Trojan detection to the size of triggers. The deviation
factors of DeepInspect and Neural Cleanse on GTSRB benchmark infected
with various square triggers are shown. The red dashed line indicates the
cutoff threshold for Trojan detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Figure 7.6. Sensitivity analysis of Trojan detection to the number of attack targets. The
deviation factors of DeepInspect and Neural Cleanse in various single/multi-
target Trojan attack settings are measured on the MNIST benchmark with
a square trigger of size 4×4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Figure 7.7. Detection speedup of DeepInspect compared to Neural Cleanse. The
training time of the auto-encoder and MI are included in DI’s and NC’s
runtime. The orange dashed line denotes the throughput of model inversion
(#images per second). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Figure 8.1. Example of XOR-based logic locking. The encrypted circuit (b) yields
consistent outputs as the original one (a) only when the two-bit key K1K2
is set to 2′b00. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Figure 8.2. Global flow of GenUnlock framework for logic unlocking. . . . . . . . . . . . . . 157

Figure 8.3. Overview of GenUnlock hardware design. The overall layout of the hard-
ware system (a) and the implementation of CNF Checking Engines (b) are
shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Figure 8.4. Pipelining optimization deployed in GenUnlock’s genetic algorithm accel-
erator for logic unlocking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

xiii



Figure 8.5. (a) Learning curve of GenUnlock for different logic encryption methods.
(b) Effect of GenUnlock’s ensemble-based logic unlocking using the top
three keys. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Figure 8.6. Average runtime comparison between GenUnlock and the baseline SAT
attack [SRM15]. ‘GenUnlock’ and ‘GenUnlock+HW’ denotes the latency
of our software implementation and accelerated FPGA implementation,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Figure 8.7. Resource utilization of the auxiliary circuitry with varying size of the
encryption key (a) and observable wires (b). The key length and wire
length is set to 100 and 400, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Figure 8.8. Scalability of GenUnlock to the number of CNF CEs. The speedup is near-
linear with NCE on large circuits where CNF checking is the computation
bottleneck. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Figure 8.9. Execution time of GenUnlock averaged across all benchmarks. Circuits
are encrypted using the logic locking technique in [RPSK12] with different
obfuscation overhead. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Figure 9.1. High-level usage of AdaTest for hardware-assisted security assurance
against Trojan attacks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Figure 9.2. Global flow of AdaTest framework for Hardware Trojan detection. . . . . . . 187

Figure 9.3. Overview of AdaTest architecture design. The overall layout of the hard-
ware system (a) and the implementation of Reward Computation Engines
(b) are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Figure 9.4. AdaTest’s hardware accelerator employs pipelining optimization to gener-
ate test patterns online for HT detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Figure 9.5. Trojan detection rates of AdaTest and prior works on various benchmarks. 203

Figure 9.6. The rare node coverage of AdaTest versus the number of executed iterations
on c3540 benchmark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Figure 9.7. Test set generation time comparison between AdaTest and prior works.
The runtime shown by the y-axis is represented in the log scale. . . . . . . . . 206

Figure 9.8. AdaTest’s scalability to the number of DAG reward computing engines.
The speedup is near-linear with NCE on large circuits where reward evalua-
tion is the computation bottleneck. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

xiv



LIST OF TABLES

Table 3.1. Requirements for an effective fingerprinting methodology of deep neural
networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Table 3.2. Benchmarks of DNN architectures. Here, 64C3(1) indicates a convolutional
layer with 64 output channels and 3×3 filters applied with a stride of 2,
MP2(1) denotes a max-pooling layer over regions of size 2×2 and stride
of 1, and 512FC is a fully-connected layer with 512 output neurons. . . . . . 51

Table 3.3. Fidelity requirement. The baseline accuracy is preserved after fingerprint
embedding in the underlying benchmarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Table 3.4. DeepMarks’ user identification in case of FP overwriting attack at a different
or the same layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Table 3.5. Efficiency evaluation of DeepMarks’ FP embedding and extraction in terms
of normalized runtime overhead. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Table 3.6. Performance comparison between DeepMarks and the state-of-the-art DNN
watermarking technique [UNSS17]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Table 4.1. Requirements for an effective and practical on-device attestation technique
for deep neural networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Table 4.2. Summary of the evaluated benchmarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Table 4.3. Fidelity requirement. The baseline accuracy is preserved after fingerprint
embedding in the underlying benchmarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Table 5.1. Requirements for an effective watermarking method of ASR systems. . . . . . 100

Table 5.2. Fidelity evaluation of SpecMark. The WER and CER of the pre-trained
baseline model and the watermarked variant are compared across different
datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Table 5.3. Integrity evaluation of SpecMark when performing watermark detection on
four different unmarked DeepSpeech models. . . . . . . . . . . . . . . . . . . . . . . . . . 108

Table 6.1. Summary of ProFlip’s performance. The target class is set as t = 2 in all
cases. Trigger area TAP = 9.76% on CIFAR-10 and SVHN, and 10.62%
on ImageNet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Table 6.2. Effectiveness of ProFlip’s trigger generation. The target class is set to t = 2
for all benchmarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

xv



Table 6.3. Performance comparison between ProFlip and TBT [RHF20]. For both
attacks, the target class is set to t = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Table 6.4. Vulnerability analysis of different target classes on ResNet-18 with CIFAR-
10. The trigger area is 9.76% in all cases. Both TA and ASR are measured
in percentage. The ASR threshold for termination is 94% in all cases. (%). 128

Table 6.5. Effect of trigger area on ProFlip when attacking ResNet-18 model with
CIFAR-10 dataset (target class t = 2). The column ‘TrigGen’ and ‘CBS’
denote trigger generation and critical bits search, respectively. . . . . . . . . . . . 129

Table 6.6. Effect of sample size on ProFlip’s performance when attacking ResNet-18
with CIFAR-10 (t = 2, TAP = 9.76%). The parenthesis in the last column
shows the number of bit flips in each iteration of critical bits search. . . . . . 130

Table 6.7. Performance trade-off of ProFlip with varying hyper-parameters γ1 in Trojan
loss. ResNet-18 model with CIFAR-10 is assessed with t = 2, and TAP =
9.76%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Table 6.8. Performance of the proposed defense against ProFlip. The attack results
before and after deploying the defense are denoted by ‘bef.’ and ‘aft.’,
respectively. Termination condition for CBS is set to ne = 30. . . . . . . . . . . . 131

Table 7.1. Summary of the assessed Trojan attacks. The settings and results of back-
door injection are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Table 7.2. Evaluation of DeepInspect’s Trojan mitigation scheme. The Trojan Activa-
tion Rate (TAR) is effectively reduced and the test accuracy is preserved
after performing model patching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Table 8.1. Summary of the evaluated circuit benchmarks. . . . . . . . . . . . . . . . . . . . . . . . . 169

Table 8.2. Resource utilization of the auxiliary circuitry on c432,c880, c2670 and des
benchmarks with default settings (10% overhead and NCE = 16) on Zynq
ZC706. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Table 9.1. Summary of the evaluated circuit benchmarks. . . . . . . . . . . . . . . . . . . . . . . . . 200

Table 9.2. Performance comparison summary of different Trojan detection techniques. 204

Table 9.3. Resource utilization of the auxiliary circuitry on c432,c880, c2670 and des
benchmarks with default settings (NCE = 16) on Zynq ZC706. . . . . . . . . . . . 206

xvi



ACKNOWLEDGEMENTS

First and foremost, I would like to thank my Ph.D. advisor, Professor Farinaz Koushanfar,

for her sincere support and valuable guidance throughout my Ph.D. study. Her dedication,

professional insights, and enthusiastic passion for ground-breaking research have taught me

valuable lessons and greatly influenced my life as an academic researcher. I will always be

grateful for her advice and support.

I would like to thank my committee members, Professor Jishen Zhao, Professor Tara

Javidi, and Professor Truong Nguyen for being part of my committees and for their insightful

suggestions on my dissertation. I also want to express my sincere gratitude to my mentor Dr.

Ro Cammarota at Intel Lab and Dr. Jie Ding at Amazon Alexa AI for their warm support and

guidance that helped me to work on the cutting-edge research directions. I was fortunate to

work with and learn from Professor Jishen Zhao, Professor Alexandra Dmitrienko, and Professor

Ahmad-Reza Sadeghi on the interdisciplinary research between security and machine learning.

I am grateful that I had the opportunity and pleasure to collaborate with brilliant people

throughout my Ph.D. experience. In particular, I would like to thank Dr. Bita Darvish Rouhani,

Cheng Fu, Xinqiao Zhao, Mohammad Samragh, Mojan Javaheripi, Hamid Ghasemzadeh, Siam

Hussian, and Shehzeen Hussain, Malhar Jere, Seira Hidano, Thien Nguyen, Yein Kim, and Diego

Garcia for all their help and the joyful time we had together.

Last but not the least, I would like to express my sincere gratitude to my beloved parents

for their unconditional love and persistent support, for always believing in me and for encouraging

me to dream big and work hard to pursue my goals.

The material in this dissertation is based on the following papers that are published in

conferences or journal venues.

Chapter 1 and 2, in part, has been published at (i) the Proceedings of the 2019 International

Conference on Multimedia Retrieval (ICMR) and appeared as: Huili Chen, Bita Darvish Rouhani,

Cheng Fu, Jishen Zhao, Farinaz Koushanfar, “DeepMarks: A Secure Fingerprinting Framework

for Digital Rights Management of Deep Learning Models”, and (ii) 2019 ACM/IEEE 46th

xvii



Annual International Symposium on Computer Architecture (ISCA) and appeared as Huili Chen,

Cheng Fu, Bita Darvish Rouhani, Jishen Zhao, Farinaz Koushanfar, “DeepAttest: An End-to-

End Attestation Framework for Deep Neural Networks”, and (iii) 2020 INTERSPEECH and

appeared as Huili Chen, Bita Darvish, Farinaz Koushanfar, “SpecMark: A Spectral Watermarking

Framework for IP Protection of Speech Recognition Systems”, and (iv) the Proceedings of the

IEEE/CVF International Conference on Computer Vision (ICCV), 2021 and appeared as Huili

Chen, Cheng Fu, Jishen Zhao, Farinaz Koushanfar, “ProFlip: Targeted Trojan Attack with

Progressive Bit Flips”, and (v) the Proceedings of the 28th International Joint Conference on

Artificial Intelligence (IJCAI), 2019 and appeared as Huili Chen, Cheng Fu, Jishen Zhao, Farinaz

Koushanfar, “DeepInspect: A Black-box Trojan Detection and Mitigation Framework for Deep

Neural Networks”, and (vi) 2019 IEEE/ACM International Conference on Computer-Aided

Design (ICCAD) and appeared as Huili Chen, Cheng Fu, Jishen Zhao, Farinaz Koushanfar,

“GenUnlock: An Automated Genetic Algorithm Framework for Unlocking Logic Encryption”,

and (vii) 2022 ACM Transactions on Embedded Computing Systems (TECS) and appeared as

Huili Chen, Xinqiao Zhang, Ke Huang, Farinaz Koushanfar, “AdaTest: Reinforcement Learning

and Adaptive Sampling for On-chip Hardware Trojan Detection”. The dissertation author was

the primary author of these materials.

Chapter 3, in part, has been published at the Proceedings of 2019 International Conference

on Multimedia Retrieval (ICMR) and appeared as: Huili Chen, Bita Darvish Rouhani, Cheng Fu,

Jishen Zhao, Farinaz Koushanfar, “DeepMarks: A Secure Fingerprinting Framework for Digital

Rights Management of Deep Learning Models”. The dissertation author was the primary author

of this conference paper.

Chapter 4, in part, has been published at the 2019 ACM/IEEE 46th Annual International

Symposium on Computer Architecture (ISCA) and appreared as Huili Chen, Cheng Fu, Bita

Darvish Rouhani, Jishen Zhao, Farinaz Koushanfar, “DeepAttest: An End-to-End Attestation

Framework for Deep Neural Networks”. The dissertation author was the primary author of this

material.

xviii



Chapter 5, in part, has been published at 2020 INTERSPEECH and appeared as Huili

Chen, Bita Darvish, Farinaz Koushanfar, “SpecMark: A Spectral Watermarking Framework for

IP Protection of Speech Recognition Systems”. The dissertation author was the primary author

of this material.

Chapter 6, in part, has been published at the 2021 Proceedings of the IEEE/CVF Interna-

tional Conference on Computer Vision (ICCV) and appeared as Huili Chen, Cheng Fu, Jishen

Zhao, Farinaz Koushanfar, “ProFlip: Targeted Trojan Attack with Progressive Bit Flips”. The

dissertation author was the primary author of this material.

Chapter 7, in part, has been published at the Proceedings of the 28th International Joint

Conference on Artificial Intelligence (IJCAI), 2019 and appeared as Huili Chen, Cheng Fu,

Jishen Zhao, Farinaz Koushanfar, “DeepInspect: A Black-box Trojan Detection and Mitigation

Framework for Deep Neural Networks”. The dissertation author was the primary author of this

material.

Chapter 8, in part, has been published at the 2019 IEEE/ACM International Conference

on Computer-Aided Design (ICCAD) and appeared as Huili Chen, Cheng Fu, Jishen Zhao,

Farinaz Koushanfar, “GenUnlock: An Automated Genetic Algorithm Framework for Unlocking

Logic Encryption”. The dissertation author was the primary author of this material.

Chapter 9, in part, has been published at 2022 ACM Transactions on Embedded Comput-

ing Systems (TECS) and appeared as Huili Chen, Xinqiao Zhang, Ke Huang, Farinaz Koushanfar,

“AdaTest: Reinforcement Learning and Adaptive Sampling for On-chip Hardware Trojan Detec-

tion”. The dissertation author was the primary author of this material.

This dissertation was supported, in parts, by the Office of Naval Research (ONR)

N00014-17-1-2500, MURI (FA9550-14-1-0351), National Science Foundation (NSF) Trust-Hub

(CNS-1649423, CNS-2016737), NSF-TILOS (CCF-2112665), Army Research Office (ARO)

W911NF1910317, and Semiconductor Research Corporation (SRC)-Auto (2019-AU-2899).

xix



VITA

2016 Bachelor of Science in School of Optical and Electronic Information, Huazhong
University of Science & Technology

2016–2018 Master of Science in Electrical Engineering (Intelligent Systems, Robotics &
Control), University of California San Diego

2016–2022 Graduate Research Assistant, University of California San Diego

2022 Doctor of Philosophy in Electrical Engineering (Intelligent Systems, Robotics &
Control), University of California San Diego

PUBLICATIONS

H. Chen, Jie Ding, Eric Tramel, Shuang Wu, Anit Kumar Sahu, Salman Avestimehr, and
Tao Zhang, “Self-Aware Personalized Federated Learning”, Conference on Neural Information
Processing Systems (NeurIPS), 2022.

H. Chen, Jie Ding, Eric Tramel, Shuang Wu, Anit Kumar Sahu, Salman Avestimehr, and Tao
Zhang, “ActPerFL: Active Personalized Federated Learning”, Federated Learning for Natural
Language Processing (FL4NLP), 2022.

H. Chen, Xinqiao Zhang, Ke Huang, and Farinaz Koushanfar, “AdaTest: Reinforcement Learn-
ing and Adaptive Sampling for On-chip Hardware Trojan Detection”, ACM Transactions on
Embedded Computing Systems (TECS), 2022.

X. Zhang, Huili Chen, Ke Huang, and Farinaz Koushanfar, “An Adaptive Black-box Backdoor
Detection Method for Deep Neural Networks”, arXiv preprint, 2022.

H. Chen, Cheng Fu, Jishen Zhao, and Farinaz Koushanfar, “GALU: A Genetic Algorithm
Framework for Logic Unlocking”, Digital Threats: Research and Practice, 2022.

T. Nguyen, Phillip Rieger, Huili Chen, Hossein Yalame, Helen Möllering, Hossein Fereidooni,
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Machine Learning (ML) models, in particular Deep Neural Networks (DNNs), have been

evolving exceedingly fast in the past few decades although the idea of DNNs was proposed

in the nineteenth century. The success of contemporary ML models can be attributed to two

key factors: (i) Data of various modalities is becoming more abundant for designers, which

makes data-driven approaches such as DNNs more applicable in real-world settings; (ii) The

computing power of emerging hardware platforms (e.g., GPUs, TPUs) is becoming stronger

due to the architecture advance. The increasing computation capability makes the training of

large-scale DNNs practical for complex data applications. While ML has enabled a paradigm

shift in various fields such as autonomous driving, natural language processing, and biomedical
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diagnosis, training high-performance ML models can be both time and resource-consuming. As

such, commercial ML models (which typically contain a tremendous amount of parameters to

learn complex tasks) are trained by large tech companies and then distributed to the end users or

deployed on the cloud for Machine Learning as a Service (MLaaS).

This supply chain of ML models raises concerns for both model designers and end users.

From the model developer’s perspective, he/she wants to ensure ownership proof of the trained

model in order to prevent copyright infringement and preserve the commercial advantage. For

the end user, he/she needs to verify the obtained ML model is not maliciously altered before

deploying the model. This dissertation introduces holistic algorithm-level and hardware-level

solutions to resolving the Intellectual Property (IP) protection and security assessment challenges

of ML models, thus facilitating safe and reliable ML deployment.

The key contributions of this dissertation are as follows:

• Devising an end-to-end collusion-secure DNN fingerprinting framework named Deep-

Marks that enables the model owner to prove model authorship and identify unique users in

the context of Deep Learning (DL). I design a fingerprint embedding technique that com-

bines anti-collusion codes and weight regularization to ensure the fingerprint is encoded in

the marked DL model in a robust manner while preserving the main task accuracy.

• Designing a hardware-level IP protection and usage control technique for DL applications

using on-device DNN attestation. The proposed framework DeepAttest leverages device-

specific fingerprints to ‘mark’ authentic DNNs and verifies the legitimacy of the deployed

DNN with the support of the Trusted Execution Environment (TEE). The algorithm and

hardware architecture of DeepAttest are co-optimized to ensure the process of on-device

DNN attestation is lightweight and secure.

• Developing a spectral-domain DNN watermarking framework named SpecMark that re-

moves the requirement of model re-training for watermark embedding and is robust against

transfer learning. I adapt the idea of spread spectrum watermarking in the conventional
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multi-media domain to protect the IP of model designers using spectral watermarking. The

effectiveness and robustness of SpecMark are corroborated on various automatic speech

recognition datasets.

• Demonstrating a targeted Trojan attack against DNNs named ProFlip that exploits bit

flipping techniques (particularly Row Hammer attacks) for Trojan insertion. Compared

to previous Neural Trojan attacks that require poisoned training to backdoor the model,

ProFlip can embed the Trojan after model deployment. To this end, I develop a new

layer-wise sensitivity analysis technique to pinpoint the vulnerable layer for attack and a

novel critical bit search algorithm that identifies the most susceptible weights bits.

• Designing a black-box Trojan detection and mitigation framework called DeepInspect that

can assess a pre-trained DL model and determines if it has been backdoored. DeepInspect

defense scheme identifies the footmark of Trojan insertion by learning the probability

distribution of potential triggers with a conditional generative model. DeepInspect further

leverages the trained generator to patch the model for higher Trojan robustness.

• Proposing a genetic algorithm-based logic unlocking scheme named GenUnlock that

outperforms prior satisfiability (SAT)-based counterpart with better runtime efficiency.

GenUnlock performs fast and effective key searching by algorithm/hardware co-design

and an ensemble-based method. Empirical results show that GenUnlock reduces the attack

runtime by an average of 4.68× compared to SAT-based attacks.

• Introducing a new logic testing-based Hardware Trojan detection framework named

AdaTest that combines Reinforcement Learning (RL) and adaptive sampling. AdaTest

achieves dynamic and progressive test pattern generation by defining a domain-specific

reward function for circuits that characterizes both the static and dynamic properties of the

circuit status. Experimental results show that AdaTest obtains a higher Trojan coverage

with a shorter test pattern generation time compared to prior arts.
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Chapter 1

Introduction

The evolution of computing architectures and the rapid growth of sensor deployments

have led to an unprecedented amount of data. This significant improvement in computing

capability and the increasing volume of data enable practical deployment of data-demanding

Deep Learning (DL) systems, particularly Deep Neural Networks (DNNs), in various real-world

applications. There are two critical concerns associated with the wide usage of DL models. From

the perspective of the model designer, he/she needs to protect the copyright of the pre-trained

DNNs for ensuring commercial advantage in the market. Protecting the Intellectual Property

(IP) of high-performance DL models is important since the training process requires tremendous

computation and proprietary labeled training data. From the viewpoint of the end user, he/she

obtains the pre-trained model from the third-party provider without additional information on

the training process. Such opaque access to the DNN renders backdoor insertion possible for

malicious model providers and might jeopardize the security of deployed DNNs.

This dissertation addresses the aforementioned two concerns for safe and reliable deep

learning. In particular, I propose holistic, end-to-end solutions to enabling DL model trac-

ing/attestation as well as security inspection with algorithm/software/hardware co-design. Fur-

thermore, I adapt Machine Learning (ML) techniques to solve long-standing hardware security

problems with better effectiveness and efficiency. In this section, I will review the challenges

and my proposed solutions to secure and trustworthy deep learning.
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1.1 Intellectual Property Protection of Deep Learning
Models

The complexity and size of deep learning models are increasing rapidly to accommodate

the performance requirement of contemporary data applications such as natural language process-

ing [YHPC18], protein structure prediction [SEJ+20], and autonomous driving [GTCM20]. For

instance, the GPT3 model from OpenAI has 175 billion parameters and the Switch Transformer

model from Google consists of 1.6 trillion parameters [Mar21]. As an example of the prohibitive

training overhead, the reinforcement learning-based device placement tool [MPL+17] takes

about 300 hours of GPU training. Such a high resource consumption makes it impractical for

end users to train their own DL model and also makes pre-trained DNNs valuable properties of

the model designer. Therefore, the model owner shall protect the IP of his/her profitable DNNs

so that illegal usages/copyright infringement of the model can be identified and traced.

In the following, I first discuss a new DL fingerprinting framework that enables traceable

DNNs and then present a hardware-bounded variant for on-device DNN attestation. In the last

subsection, I show a lightweight DL watermarking scheme using spread spectrum modulation.

1.1.1 Traceable Deep Neural Networks

The intellectual property concern of deep neural networks has received interest from both

the research community and industrial practitioners. Previous works have devised ownership

proof techniques for DNNs by embedding an owner-specific signature into the trained model.

Particularly, Uchida et al. [UNSS17] make the first attempt to extend multi-media watermarking

to deep learning models using weight regularization. Their paper [UNSS17] considers a scenario

where the model owner has full access to the deployed DNN (i.e., white-box setting). Later works

develop ‘backdoor-based’ watermarking approaches for DL models [ABC+18, GP18, LMPT20]

in the setting where the DNN is employed in a remote service (i.e., black-box scenario). While

the above DNN watermarking techniques provide ownership proof for pre-trained DNNs, they
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cannot attribute the illegal activity of DL model abuse to the true liability (which is the person

that violates the IP of the model owner).

I introduce DeepMarks [CRF+19], the first collusion-resilient fingerprinting framework

that enables unique user identification and digital right management for deep learning models.

In particular, DeepMarks allows the model owner to encode a user-specific fingerprint in the

corresponding distributed DNN. The unique fingerprint in each model allows the model designer

to trace the usage of individual copies of the same model. In addition, DeepMarks outperforms

existing DL watermarking techniques in terms of robustness against fingerprint collusion attacks.

I empirically demonstrate that multiple users that have different copies of the same DL model can

collaborate and perform analytical analysis to remove the owner’s signature from their marked

models [CRF+19]. On the contrary, DeepMarks deploys anti-collusion codes when designing

the fingerprints of users and can detect the ‘traitors’ who participate in the fingerprint collusion

attack given the manipulated DNN.

With the increasing popularity of large-scale deep learning systems, for example, Feder-

ated Learning (FL), it is common that multiple DNNs are distributed to a tremendous number of

edge users, making model usage tracing more challenging for DL model owners. With my pro-

posed DeepMarks framework, the model owner can keep track of the usage of individual DNNs

as well as detect malicious users who participate in the fingerprint removal attack. DeepMarks

sheds light on scalable IP protection and reliable tracing of deep learning models, thus building

the foundation for traceable large-scale DL deployment.

1.1.2 Usage Control of Deep Learning Hardware

While researchers have tried to adapt digital watermarking and fingerprinting techniques

to deep learning models [UNSS17, ABC+18, CRF+19, DRCK19], such protection of the intel-

lectual property is only limited to the software-level (i.e., only concerning the DNN program).

Nowadays, an increasing amount of intelligent devices with accompanying DL models are

deployed in various real-world applications. It is worth noting that developing deep learning
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accelerators [WGY+16, SQLC17] also requires extensive experts’ efforts and resource allo-

cation. Therefore, the IP of intelligent devices needs to be protected as well, suggesting that

software-level DL watermarking techniques are not adequate for this purpose. Particularly, exist-

ing DNN watermarking methods [UNSS17, ABC+18, DRCK19] do not consider the overhead

or the security of signature extraction when implemented on the hardware.

I design DeepAttest [CFR+19], the first on-device DNN attestation framework that

assures the legitimacy of the deployed model for a given DL hardware with the support of the

Trusted Execution Environment (TEE). As opposed to previous DNN watermarking techniques,

DeepAttest aims to provide hardware-bounded IP protection and usage control for the intelligent

devices by co-designing the algorithm and architecture for on-device signature extraction. To

control the activation of DNN attestation, I design a hybrid trigger that consists of a secure timer

in the TEE and a dynamic memory monitoring signal. This trigger scheme allows DeepAttest to

detect both static and dynamic data tampering attacks. Empirical results show that DeepAttest

achieves high detection rates of undesired model deployment and incurs negligible attestation

overhead in terms of runtime and energy.

State-of-the-art accelerators for deep learning applications require an enormous amount

of development efforts, which makes hardware-linked IP protection of these intelligent devices

indispensable. Leveraging DeepAttest, the hardware provider can restrict the usage of DL

devices and detect/prevent undesired usage or abuse. The algorithm/hardware co-optimization

principle enables lightweight and secure on-device attestation, making DeepAttest applicable to

resource-constrained devices in the real world scenario.

1.1.3 Lightweight and Robust Spectral Watermarking

The motivation and the importance of intellectual property protection of DNNs have

been discussed in the earlier sections. Recall that the white-box DL watermarking tech-

niques [DRCK19, UNSS17, WK21] embed the owner’s signature in the weight/activation distri-

bution via regularization, while black-box DL watermarking methods [ABC+18, GP18, CRK19]
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embed the signature in the output behavior of the model when given specific key inputs. Both

types of DNN watermarking techniques require model training/fine-tuning to encode the signa-

ture information in the protected model, thus incurring non-trivial overhead when the pertinent

DL model is complicated.

I introduce SpecMark [CRK20], a novel spectral-domain DNN watermarking framework

that does not require model training for signature embedding, thus is very lightweight and suitable

for large DNNs. Particularly, I adapt conventional spread-spectrum watermarking techniques

in the multi-media domain to the deep learning models. This new spectral DL watermarking

scheme automatically identifies the suitable frequency bins of the weight parameters that can

carry the signature information without affecting the normal task accuracy. More specifically,

the owner’s signature (typically a sequence of binary bits) is encoded in the significant spectrum

regions of the model weights by additive modulation. Given the unmarked model weights as

the reference, the model owner can extract the embedded signature from the weight spectrum

of the marked model for authorship proof. Empirical results show that SpecMark is not only

lightweight, but also robust against parameter tuning and transfer learning.

Nowadays, the size and the complexity of DNNs are increasing rapidly to satisfy the

demands of emerging applications. This trend implies that existing DL watermarking tech-

niques [ABC+18, DRCK19, CRK19, WK21] that require model training might incur non-

negligible overhead for watermark embedding. In addition, prior works have shown that strate-

gical fine-tuning can remove the signature in the marked model [CWD+19, GZQ+20], thus

defeating current DL watermarking techniques. SpecMark demonstrates superior efficiency

and robustness against these model transformations since we embed the signature in the high-

magnitude spectrum region of the weight parameters instead of modifying the model weights

directly. With the assistance of SpecMark, the model owners can protect the IP of their valu-

able DNNs without expensive re-training and prove the ownership even if the marked model

undergoes pruning, fine-tuning, or transfer learning.
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1.2 Security Assessment of Deep Learning Models

Deep learning models are widely employed in diverse applications such as biomedical

diagnosis, financial analysis, and autonomous driving due to their autonomy and unprecedented

performance. From the perspective of the end users, they obtain and deploy pre-trained DNNs

from the third-party model providers while the security of these models is unknown. There

has been a line of work focusing on the vulnerability of DNNs to various attacks, including

adversarial samples [MMS+17, AM18], Neural Trojan attacks [DS19, WPB+21], and data

poisoning attacks [CLL+17, SESL18]. In the following of this section, I first discuss a new

test-time threat against DNNs that exploits the vulnerability of DRAMs to disturbance errors.

Then, I introduce a novel black-box Neural Trojan detection framework that can assess the safety

of a pre-trained DNN against potential Trojan attacks.

1.2.1 Bit Flip Attacks against Deep Neural Networks

DNNs typically possess a large number of parameters to learn complex data applications.

For instance, as an exemplar of language models, BERT [TDP19] has 110 million parameters and

can handle question-answering tasks. Such a large capacity of DNNs, in turn, increases the attack

surface for parameter manipulation attacks [HRL+20, EBGLOUM22, HFK+19]. This type of

attack is feasible since the weights of DNNs are typically stored in the memory modules such as

DRAMs. However, the data stored in DRAMs are susceptible to disturbance errors (also known

as ‘Rowhammer attacks’) caused by frequent row activations [KDK+14, SD15, Mut17]. Hong et

al. [HFK+19] show that an adversary can launch untargeted attacks and divert the pre-trained DL

model by modifying a single bit of the floating-point DNN. Targeted Bit Trojan (TBT) [RHF20]

demonstrates that the attacker can embed the Trojan into Quantized Neural Networks (QNNs)

by gradient-guided vulnerable neuron identification and partial finetuning-based bit flipping.

However, TBT always exploits the last layer of the model for attack (which is not necessarily

optimal) and its success rate is sensitive to the number of modified neurons.
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I propose ProFlip [CFZK21], the first progressive Bit Flip Attack (BFA) framework that

achieves targeted Trojan insertion without poisoned model re-training. ProFlip consists of three

key steps: salient neuron identification, trigger generation, and progressive critical bits search.

Particularly, I adapt the adversarial saliency map [WX18] to find neurons associated with the

attack target class in the last layer. Furthermore, I propose a new parameter sensitivity metric for

QNNs that allows the adversary to select the most vulnerable layer for the attack. To search for a

few weight bits that are critical for the targeted Trojan attack, ProFlip computes the sensitivity

metric for each element in the attack parameter and estimates the corresponding optimal value

that maximizes the Attack Success Rate (ASR). Empirical results show that ProFlip achieves the

same level or higher ASRs (≥ 94%) compared to TBT [RHF20], while reducing the number of

bit flips by an average of 32×.

1.2.2 Neural Trojan Detection for Safe Model Deployment

The security concerns of end users when deploying pre-trained DL models have been

discussed in the previous section. Considering the supply chain of DNNs where model train-

ing is performed by third-party companies with sufficient computing power, Neural Trojan

attacks [DS19, LXS17, LMA+18] are of particular concern since the customers do not have any

knowledge about model training. A typical Neural Trojan attack consists of two components:

Trojan trigger and Trojan payload. The trigger is a pre-defined pattern in the input space. The

Trojan payload is the malicious behavior that the adversary desires to achieve. Prior works have

shown that the attacker can design a stealthy Trojan [LMA+18, CMN+20, CLMZ21] against

the victim model such that the Trojaned model performs normally on clean inputs, while it

malfunctions (i.e. payload activated) when the trigger is present.

I introduce DeepInspect [CFZK19a], the first black-box Trojan detection and mitigation

framework that can assess the security of the pre-trained model against Neural Trojan attacks.

To this end, I leverage a conditional Generative Adversarial Network (GAN) to emulate the

potential Trojan attack for each output class and characterize the decision boundary of the given
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model. Particularly, the conditional GAN learns to generate the trigger that can transform the

data prediction from the source class to the target class. The footprint of the GAN’s output

(i.e., the trigger) is used as the test statistics of hypothesis testing for anomaly detection. If an

outlier is detected, then the queried model is determined to be Trojaned. Experimental results

show that DeepInspect achieves higher Trojan detection rates compared to the prior art Neural

Cleanse [WYS+19] across various Trojan configurations.

With the capability of DeepInspect, the end users can evaluate the safety of the pre-trained

DNN obtained from the third-party model provider before deploying it in the field. This model-

level security assessment is particularly important since it can avoid unnecessary safety/privacy

breaches when employing the Trojaned model for critical tasks. DeepInspect is scalable to

applications involving high-dimensional data. To handle inputs with a large dimensionality,

DeepInspect proposes to incorporate an auto-encoder such that the conditional GAN learns

to recover the potential trigger in the embedding space (which has a much lower dimension).

Furthermore, DeepInspect enables the end users to enhance the robustness of the pre-trained

DNN and mitigate the threat of Trojan attacks by provisioning additional ‘perturbed’ data with

correct labels using the converged conditional GAN. With our model patching scheme, the Trojan

activation rate can be effectively reduced to below 10%.

1.3 Deep Learning for Hardware Security

The data-driven nature of deep learning and its capability of automated representation

learning make it suitable for solving diverse problems. In this section, I will discuss my

interdisciplinary study between deep learning and hardware security. In particular, this section

shows how I adapt DL techniques to solve two long-standing hardware security problems: logic

locking and hardware Trojan detection.
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1.3.1 Attacking Logic Encryption

Logic encryption (also called logic locking) [YRSK15, YSN+17, HYR21] is an IP

protection technique for digital circuits that obfuscates the functionality of the circuit by inserting

additional key gates. The protected circuit only gives correct outputs when the ground-truth key

inputs are applied to the key gates. Therefore, logic locking allows the circuit designer to protect

his/her IP even if the netlist of the locked circuit is distributed to the foundry for fabrication.

However, prior works have shown that logic locking is susceptible to various attacks such as

functional analysis [CCB19, SS20], removal attacks [YMSR17b, YMSR17a], and satisfiability

(SAT) attacks [SRM15, AKHS19]. While SAT-based attacks can eliminate the equivalent class

of incorrect keys at each iteration (thus shrinking the key searching space), the worst-case

complexity has an exponential relation with the number of primary inputs.

I design GenUnlock [CFZK19b], the first Genetic Algorithm (GA)-based logic unlocking

attack framework that can find an effective decryption key for the given circuit. Instead of trying

to find the exact decryption key, GenUnlock aims to search for an ‘approximate’ unlocking key

that enables the locked circuit to produce the correct outputs with a high probability. Given oracle

access to an active (unlocked) circuit, GenUnlock formulates key searching as a combinatorial

optimization problem where the goal is to maximize the matching ratio of output signals between

the locked circuit and the corresponding unlocked one. I leverage the evolutionary nature of GAs

and explore the key searching space efficiently by designing a domain-specific fitness score for

logic unlocking. With algorithm/hardware co-design, empirical results show that GenUnlock can

achieve up to three orders of magnitude of runtime speedup and energy reduction compared to

the SAT-based attacks [SRM15].

1.3.2 Detecting Hardware Trojans

For digital circuits, Hardware Trojan (HT) [CNB09, TK10] is a type of attack that mali-

ciously modify the digital circuits to insert the desired payload. In addition, the adversary designs

9



a trigger signal to control the activation of the hardware Trojan. The Trojan trigger is stimulated

only in very rare conditions for ensuring attack stealthiness. The attacker can exploit HTs for dif-

ferent purposes including producing the wrong outputs (i.e., malfunctioning) or stealing private

information. Previous works have explored side-channel analysis [NDC+12, LHM14] and logic

testing [CWP+09, NFH18] primitives for hardware Trojan detection. However, side-channel

analysis-based methods yield high false positive rates when detecting small-scale hardware

Trojans, while logic testing-based approaches typically require a large number of testing patterns

(thus long detection time) to reach a sufficiently high Trojan coverage.

I propose AdaTest [CZHK22], the first reinforcement learning-based Automated Testing

Pattern Generation (ATPG) framework for hardware Trojan detection with the assistance of

adaptive sampling. AdaTest takes a progressive approach to generate the test inputs given the

netlist of the queried circuit. To achieve a high Trojan activation rate, I design a customized

reward function for HT detection by characterizing the circuit status using transition probabilities,

testability measures, and graph-level diversity. In each round, AdaTest generates multiple

tentative test inputs and selects the ones with high rewards to update the final test set. Empirical

results show that AdaTest attains more than 10% Trojan detection rate improvement compared

to prior arts [CWP+09, NFH18] while reducing the test set size by an order of magnitude.

Besides hardware Trojan detection, AdaTest allows the end users (or validation techni-

cians) to verify the security of a given circuit by checking its behaviors against the expected ones.

This capability is useful for other tasks such as built-in-self-test [McC85, AKS93]. Furthermore,

AdaTest is very lightweight since: (i) A compact set of test inputs are generated in a sequential

manner to attain high Trojan coverage rates; (ii) It leverages software/hardware co-design to

accelerate the bottleneck of AdaTest (which is the process of obtaining the circuit’s response on

the given inputs and computing the reward).
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1.4 Broader Impact

The broad goal of this dissertation is to provide a holistic solution to secure and reliable

deep learning for both model developers and end users. More specifically, I have designed

two model-level IP protection frameworks, DeepMarks [CRF+19] and SpecMark [CRK20],

that enable traceable DNN usage (i.e., user identification) and lightweight, training-free DNN

watermarking. Besides IP protection for DL models, I proposed ProFlip [CFZK21] and revealed

the vulnerability of DNNs to bit flipping-based Trojan attacks. The DeepInspect [CFZK19a]

framework I proposed allows end users to assess the security of pre-trained DNNs against Neural

Trojan attacks. Last but not the least, I have adapted deep learning to solve existing hardware

security problems. My proposed framework GenUnlock [CFZK19b] demonstrates an effective

and efficient attack against logic locking by leveraging genetic algorithms. AdaTest [CZHK22]

employs reinforcement learning and achieves a high Trojan coverage rate with a compact test set

for hardware Trojan detection.
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Chapter 2

Background

In this chapter, I first introduce the background of traditional digital watermarking and

fingerprinting techniques in the multi-media domain (Section 2.1). Then, I discuss the mechanism

of existing software attestation methods and the background of machine learning in Section 2.2

and Section 2.3, respectively. Last but not the least, I introduce three exemplar problems of

hardware security in Section 2.4.

2.1 Multi-media Watermarking and Fingerprinting

A digital watermark (WM) is an invisible identifier that is embedded as an integral part of

the host design and has been widely adopted in the multi-media domain for IP protection [Lu04,

CMB+07]. The host of the identifier can be images, video contents, and functional artifacts such

as digital integrated circuits [FK04, HK99, QP07].

Conventional digital watermarking techniques have two phases: WM embedding and

WM extraction. Figure 2.1 visualizes the workflow of a typical constraint-based watermarking

system. The original problem (e.g., image classification) is used as the ‘cover constraints’ to

hide the owner’s WM signature. To embed the watermark, the IP designer creates the stego-

key and a set of additional constraints that do not conflict with cover constraints. Combining

these two constraints yields the stego-problem that is solved to produce the stego-solution. It

is worth noting that the stego-solution simultaneously satisfies both the original constraints
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Figure 2.1. Constraint-based watermarking system.

and the watermarking-specific constraints. Therefore, the multi-media designer can extract the

watermark from the stego-solution and claim the authorship. An effective watermarking scheme

needs to meet a set of criteria including imperceptibility, robustness, verifiability, capacity, and

low overhead [SC13, BP13].

Digital watermarking belongs to the wide area of information hiding that communicates

information by embedding and retrieving it in digital data [PAK99, MO03]. There are various

motivations for information hiding, such as protecting the digital object from malicious usage (i.e.

digital watermarks), covert communication, or gaining side benefits for free [GGS14, Mem02].

Information hiding has four general properties:

• Fidelity describes the level of perceptual degradation induced by information embedding.

For instance, an image with the secret encoded shall not have a visually recognizable

difference from the original clean image.

• Robustness characterizes the resiliency of the embedded information against possible

distortion/manipulation of the information-carrying object (i.e., stego-solution). For

example, the image owner shall be able to recover his/her signature from the marked image

even if it undergoes image compression or filtering.

• Payload describes the amount of information that can be reliably embedded and extracted

from the marked object. It is worth noting that the payload of an information hiding

scheme shall be decided while complying with the fidelity and robustness constraint.

• Security of an information hiding scheme depends on the actual application. For instance,
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the security of digital watermarking requires that unauthorized users cannot detect/remove

the watermark from the marked host.

Information hiding techniques can be categorized based on different criteria. Based

on the data modality of the host object, it can be classified into images, texts, audio, software

programs, etc. According to the assumption of secret information extraction, it can be categorized

into blind detection (which does not need the original cover object) and non-blind extraction

(which requires the authentic host signal as the reference). Based on the resiliency requirement

of the embedded information, we can categorize information hiding into robust, fragile, and

semi-fragile variants.

One can model information hiding using a communication system. Figure 2.2 shows the

schematic diagram of a standard communication system. The input message m first undergoes

channel encoding with the given key. Then, an additive noise n in the communication channel is

applied, resulting in a noisy signal y. In the last step, the channel decoder recovers the message m′

from y. Analogously, Figure 2.3 shows how a digital watermarking scheme can be modeled from

the perspective of a communication system. In this scenario, a cover object c (or so-called the

host signal) is involved in watermark embedding, which produces the stego solution (cw). This

stego-solution undergoes unknown manipulation/distortion, which is modeled as the noise signal

n. The watermark decoder then recovers the message m′ using both the noisy stego-solution and

the original cover object [MK01, Pat14].

input 
message

m Channel 
Encoder

Channel 
Decoder

encoding 
key

x

noise

n

y

decoding 
key

m' output 
message

Figure 2.2. Demonstration of a standard communication system with key-based channel
encoding [Pat14].
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Figure 2.3. Modeling a digital watermarking scheme with non-blind detection using
communication systems.

2.1.1 Watermarking in Transformed Domain

We discuss general concepts in conventional multi-media watermarking in the above

section. Particularly, a digital watermarking scheme needs to be robust against perturbations

while respecting the fidelity criteria (i.e., cannot degrade the ‘quality’ of the original cover object).

Earlier works on digital watermarking focused on the spatial domain where the watermark

information is embedded directly in the host signal via (scaled) addition [HK99, Lu04, CMB+07].

These techniques typically use a pseudo-random signal with a small magnitude as the watermark.

To avoid visible changes caused by watermark embedding, the magnitude of the watermark

signal needs to be carefully designed.

Later works on multi-media watermarking have shown that watermark embedding can be

performed in the transformed domain instead of the spatial one. This means that the watermark

signal is encoded in the transformed host signal. For instance, the paper [CKLS96] proposes

to perform digital watermarking in the largest components of the Discrete Cosine Transform

(DCT) domain. Researchers have also investigated watermark embedding using Discrete Wavelet

Transform (DWT) since it shares similarities with the theoretical model of the Human Visual

System (HVS) [HN05, GM10, LZZ+08]. Particularly, DWT provides a multi-resolution rep-

resentation of an image by decomposing it into sub-bands of different frequencies/resolutions.

To reduce visual degradation, the DWT-based watermarking technique [GM10] embeds the
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watermark in the high frequency sub-bands of the host signal since the majority energy of the

cover object is distributed in the low frequency sub-band. Figure 2.4 shows the workflow of

digital watermarking schemes in the transformed domain.

Watermark 
Embedding

Cover Object

Watermark

DCT / DWT

DCT / DWT

Inverse 
DCT / DWT

Watermarked 
Object

Figure 2.4. Demonstration of a DCT/DWT-based watermarking scheme.

To enhance the security of digital watermarking, CDMA-based spread spectrum water-

marking is developed [CKLS96, CMB+07, GM10]. Traditional spread spectrum communication

transmits a narrow band signal over a much larger bandwidth so that the energy of the target

signal is distributed across different frequencies, which makes it difficult to detect the presence

of signal transmission. Inspired by the benefits of CDMA-based spread spectrum commu-

nication, prior works have proposed spread spectrum watermarking that considers the host

signal (e.g., images) and the watermark as the communication channel and transmission sig-

nal, respectively [CKLS97, KM03, PFPG09]. Experimental results show that spread spectrum

watermarking is robust and has strong anti-interference.

2.1.2 Multi-media Fingerprinting

While multi-media watermarking can address the IP ownership concern of the media

owner, it is not able to distinguish multiple copies of the object that carry the same watermark. In

the real-world setting, the IP owner also has the intention to identify and track each copy of the

marked object. Another challenge in the multi-user environment (e.g., distributed systems) is that

multiple users may collaborate to remove the watermark from the protected host object. Figure 2.5

shows an example of such collusion attacks against additive embedding-based digital watermarks.

It is worth noting that a naive adaptation of the previous digital watermarking techniques cannot

address the above challenge since watermarks have been shown to be susceptible to statistical
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Figure 2.5. Demonstration of an averaging-based collusion attack against the digital
watermarking system. [WTWL04].

attacks [KVH00, TTAH12, NR13]. Here, we discuss digital fingerprinting techniques that are

able to provide user-level tracking and resistance against collaborative signature removal attacks.

The main difference between digital watermarking and fingerprinting is that the water-

mark remains the same for all copies of the IP while the fingerprint is unique for each copy.

As such, digital fingerprinting address the ambiguity issue of the watermarking techniques and

enables the owner to trace back IP misuse to the liable users, thus achieving Digital Right

Management (DRM) [KK09, WTWL04, RET+17]. Figure 2.6 shows the usage of digital fin-

gerprinting for user tracing and collusion-resistant IP protection. The top part of Figure 2.6

illustrates the workflow of multi-media fingerprinting with the assistance of the codebook. The

middle row shows how two users can collaborate to construct a multi-media copy without any

fingerprint in the multi-user collusion attack. The bottom row of Figure 2.6 shows how the

digital fingerprinting scheme identifies the participants of collusion attacks based on the colluded

multi-media copy.

Digital fingerprinting techniques can be categorized into orthogonal and code modulated

fingerprinting based on the code construction methods. Orthogonal (or independent) fingerprint-

ing deploys orthogonal signals as the fingerprints for individual users [WWZ+03, WWZ+05,

KM09]. Prior works have suggested to use component-wise Gaussian distribution to generate

orthogonal fingerprints [CKLS96, PZ98]. The resiliency of orthogonal fingerprints against

collusion attacks are also theoretically studied in the papers [WWZ+03, WWZ+05, KM09]. Or-
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Figure 2.6. Using digital fingerprinting for digital right management of multi-media
contents [WTWL04].

thogonal fingerprinting is attractive due to its simple implementation and suitability for systems

with a small number of users. Coded fingerprinting constructs users’ fingerprints using the linear

combination of orthogonal basis signals. Code modulation has the following advantages: (i)

It can support more users for a given fingerprint dimensionality; (ii) The deployment of Anti-

Collusion Code (ACC) can improve the robustness of coded fingerprinting against fingerprint

collusion attacks [TWL02, TWWL03, YLCZ10].

2.2 Software Attestation

Software attestation is a technique for proving the identify of a program. The objective

of software-based attestation is to verify the integrity of code and data stored in the pertinent

hardware [Bar06, ASSW13]. There are two parties involved in software-based attestation: prover

and verifier. The prover wants to prove the identity of his code/data to the verifier by generating
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a ‘proof’ (or signature) based on the given program and its current state. The verifier is a trusted

party and is responsible for checking whether the proof from the prover satisfies the expected

condition [ASSW13, SL19]. Figure 2.7 shows the high-level workflow of a general remote

attestation scheme that relies on challenge-response pairs for integrity verification. Software

attestation is a sub-category of remote attestation where the main focus is the software program.

Challenge

Response

Attest

Prover Verifier

Verify

Figure 2.7. Demonstration of a remote attestation protocol.

Traditional software-based remote attestation is not concerned with the status of the un-

derlying hardware that supports the program. Later works have extended attestation techniques

to the Internet-of-Things (IoT) environment [SL19, ADD21] and embedded devices [SPVDK04,

KKP+14, NER+19]. For instance, PUFatt [KKP+14] binds software-based attestation to the

inherent hardware properties by leveraging a processor-based Physically Unclonable Func-

tion (PUF). The integration of PUF enables secure time-constrained remote attestation for

resource-constrained devices. VRASED [NER+19] proposes a hybrid attestation scheme using

software/hardware co-design. VRASED is ‘verifiable-by-design’ and obtains comparable se-

curity as hardware-based attestation. The paper [ADD21] provides a comprehensive survey of

existing software-based attestation methods in the context of IoT and compares their advantages.
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2.3 Machine Learning

In this section, we discuss background knowledge about deep learning, including deep

neural networks, reinforcement learning, and genetic algorithms.

2.3.1 Neural Networks

A Neural Network (NN) consists of multiple intermediate layers residing between the

input layer and the output layer. Each layer has various numbers of neurons. Consecutive layers

are connected by wires and each wire is associated with a numeric value denoting its weight.

Researchers have developed diverse layers types such as fully-connected layers, convolution

layers, embedding layers, activation layers, and pooling layers [Wan03, AMAZ17, AJO+18].

These layers can execute different kinds of computation on their inputs. As such, a neural

network essentially performs a sequence of computations on the given input to obtain the final

output. NNs are applicable in many problems such as regression, classification, and sequential

decision-making [DOM02, MHZ+08]. Depending on the requirement of the data labels, NNs

can be trained in supervised, semi-supervised, and unsupervised settings [AMHH15, DZDW18].

Figure 2.8 shows an example of a neural network. The input to this NN is a vector of

three elements x = (x1,x2,x3) and the output is also a vector z = (z1,z2,z3). The hidden layer

has four neurons. We denote the weight connecting the ith neuron in the input layer and the jth

neuron in the hidden layer as w1
i, j. Then, the activation value of neurons in the hidden layer can

be computed using the input and the weight values y j = σ(∑3
i=1 xi ·w1

i, j) where j = {1,2,3,4}

and σ() is the non-linear activation function. Similarly, the output of the NN is computed as

zk = σ(∑4
j=1 y j ·w2

j,k) where k = {1,2,3}. In the forward pass, the NN is given the input x and

performs the computations as described above to obtain the output z.

The ‘quality’ of a NN can be quantified by the loss and the goal of NN training is to

minimize the loss of the neural network on the training set. For supervised learning, the training

set D = {xi,yi}n
i=1 (n is the number of data points) is a collection of (labeled) data samples
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Figure 2.8. Illustration of an exemplar neural network.

where each sample is an input-output pair. Let us denote the function performed by the NN as

f and the associated parameter set as θ . The loss L ( f (θ ,x),y) describes how close the NN’s

output f (θ ,x) is compared to the ground-truth/expected result y on the given input sample x. For

instance, for a regression task, we can use Mean Square Error (MSE) as the loss function and

compute the loss as:

L ( f (θ ,x),y) =
1
n

n

∑
i=1

( f (θ ,xi)− yi)
2. (2.1)

For classification tasks, we can use Cross-Entropy (CE) loss as the loss function:

L ( f (θ ,x),y) =−1
n

n

∑
i=1

C

∑
j=1

yi, j · log(pi, j), (2.2)

where C is the total number of classes, pi, j is the probability that the NN predicts class j for the

ith input data xi, and yi, j is a binary value that indicates whether the predicted class j is correct

for the input xi. It is worth noting that the NN’s output f (θ ,x) in the loss evaluation is computed

by forward pass as discussed above.

Training a neural network f (θ) is essentially the process of learning the model parameters

θ by minimizing the empirical loss L ( f (θ ,D)). Recall that the data flow within the NN

is analogous to a series of functions. Therefore, prior works have explored the chain rule

and developed Gradient Descent as an iterative greedy algorithm to solve the optimization

problem [Erb93, WM03]. Particularly, in the tth iteration of NN training, the forward pass

is performed and the loss of the current model parameters is computed on the training set.
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To minimize the loss, the gradients of the loss with respect to each parameter in the NN are

calculated using the chain rule. Then, the model parameter θ is updated along the opposite

direction of the gradient with a proper step size α (which is called the ‘learning rate’) as shown

in the equation below:

θ
t+1
i = θ

t
i −α · ∂L

∂θ t
i
. (2.3)

Here, the subscript i is the index of the parameter within the NN, and the superscript t is the

iteration counter. This parameter update process (which is also called backpropagation) repeats

until the loss of the model converges.

2.3.2 Generative Adversarial Network

Machine learning models can be categorized into two types, generative models and

discriminative models, based on the probability distribution they capture. In terms of the

functionality, generative models can produce new data samples, while discriminative models

distinguish data instances from different classes [UB05, LBM06, Dev22]. Formally speaking,

given a set of input data X and the corresponding labels Y , a generative model learns the joint

distribution of the data P(X ,Y ), or P(X) if no labels are given. The discriminative model learns

the conditional probability P(Y |X). Therefore, the generative model describes the probability

of the data (by estimating its distribution), while the discriminative model characterizes the

probability of the data point coming from the specific class.

In the following of this section, I introduce a specific type of generative model called

Generative Adversarial Network (GAN). A typical GAN consists of two components: a generator

G and a discriminator D. The generator learns to approximate the distribution of real data and

intends to produce feasible data samples. The discriminator learns to differentiate real inputs from

the fake ones created by the generator [GPAM+20, Dev22]. Note that both the generator and the

discriminator are neural networks. These two components are trained simultaneously through

backpropagation [CWD+18, GPAM+20]. Figure 2.9 shows the schematic view of a standard
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GAN. The generator G takes the random noise vector z and optional auxiliary information (e.g.,

a specific class) as inputs, and returns synthetic data samples as outputs. The discriminator D

tries to differentiate real inputs from ‘fake’ ones produced by the generator.

Generator

Discriminator

Random 
Noise

Aux Info

Real Inputs

Samples

Discriminator 
Loss

Generator 
Loss

Figure 2.9. Structure of an exemplar generative adversarial network.

As shown in Figure 2.9, the generator maps the sampled random noise z to the input data

x via computing G(z;θg) where θg is the parameter of the generator network. Meanwhile, the

discriminator D(x;θd) outputs a single scalar (in the range of [0,1]) that quantifies the probability

of its input coming from the real data instead of from the generator G. More specifically, the

discriminator is trained to maximize the probability that it assigns correct labels to both the real

training samples and the synthetic ones produced by G. The generator G is trained to minimize the

value log(1−D(G(z))). In other words, the generator tries to learn the mapping θg that makes

the discriminator predicts ‘real’ on its output, i.e., forcing D(G(z)) to be close to 1. Therefore,

GAN training can be considered as a minmax two-player game where the generator and the

discriminator are dynamically competing against each other [OSGP+17, FG20, JWL+20]. The

minmax loss is computed as follows:

Ex[log(D(x)]+Ez[log(1−D(G(z)))]. (2.4)

The optimization problem of GAN training can be formulated as:

min
G

max
D

V (D, G) = Ex∼pdata(x)[log(D(x)]+Ez∼pz(z)[log(1−D(G(z)))]. (2.5)
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GAN training involves updating of two separate networks G and D as described in

Equation (2.5). To solve this challenge, alternative training is proposed and works as follows:

(i) The discriminator D is trained for certain epochs while fixing the parameters in G; (ii) The

generator G is trained for certain epochs while freezing the discriminator D. These two steps

are repeated until the GAN converges [GPAM+20, GSW+21]. Note that the generator is fixed

during the training of the discriminator since D needs to learn how to identify the ‘flaws’ in the

generator’s output in contrast to the real data. This task is well defined only when the generator

is kept constant. Similarly, the discriminator is fixed when training the generator since the goal

of this stage is to train G such that it can successfully ‘fool’ the discriminator. Setting a dynamic

discriminator will make a moving target for the generator to compete with, which will make the

GAN training unstable [CWD+18, GPAM+20, Dev22].

2.3.3 Reinforcement Learning

Reinforcement learning [KLM96, WVO12, SB18] is a machine learning technique that

is capable of solving complex problems in various domains. RL works sequentially in an

environment by taking an action, evaluating its reward, and adjusting the following actions

accordingly. In particular, an RL paradigm involves an agent that observes the environment and

takes actions to maximize the reward determined by the problem of concern [SB18, MKS+13].

Figure 2.10 shows the interaction between the agent and the environment in the RL paradigm.

Figure 2.10. Illustration of the agent-environment interaction in reinforcement learning.

We introduce the key concepts in an RL system below:

State. A state is a concrete and instantaneous situation in which the agent finds itself.
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This can be an instant configuration, a particular place, and a moment that puts the agent in

connection with other influential objects in the environment, such as the opponents or awards. It

is noteworthy that a state needs to contain all information to ensure that the system satisfies the

Markov property [PTLK18, Lei21].

Action Space. The action space of an RL system is a set of possible moves that the

agent can take to change to a new state. For example, in a video game, an action can be running

left/right, or jumping high/low.

Environment. The environment takes the agent’s current state and the action as its

inputs and returns the reward as well as the next state as the output. Depending on the problem

domain, the environment might be a set of physical laws or chemical reaction rules that processes

the actions and establish the corresponding outcomes.

Observations. The agent can obtain observations (emission of states) from the environ-

ment. In particular, the observation is a (stochastic) function of the state.

Reward. The reward is a numerical value that evaluates the fitness (measurement of

success) of an agent’s actions in the given state. From a given state, an agent takes action in the

environment and acquires the new state as well as the reward from the environment. A cumulative

reward is defined as the summation of discounted rewards: G(t) = ∑
n
k=0 γkR(t + k+ 1). The

discount factor γ (0≤ γ ≤ 1) tunes the importance of future rewards for the current state. The

key idea of RL is to find a series of actions that maximize the expected cumulative reward.

Policy. The policy of an RL algorithm is typically defined within the context of a

Markov decision process [OW12, SB18]. Given the state information, a policy is the suggested

action that the agent shall take in order to obtain a high reward.

2.3.4 Genetic Algorithms

Genetic Algorithms (GAs) are a popular subcategory of Evolutionary Algorithms (EAs)

and have wide applications in searching-related problems such as feature selection, Knapsack

problem, and hardware design optimization [TMKH96, DPAM02]. In GAs, a potential solution
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is called a chromosome and a set of possible solutions is called the population. The elements

contained in the chromosome are referred to as genotypes and the value of the genotype is

called phenotype [MG+95, Obi98]. The ‘goodness’ of a solution is quantified using the fitness

value where the definition of fitness is problem-specific. To model an optimization problem in

the GA paradigm, the designer needs to encode the chromosome in specific format depending

on the problem of interest. Common encoding forms include binary, integer, real, tree, and

permutation [Shi99, Kum13].

Inspired by natural evolution in the real world, a GA routine typically involves the fol-

lowing four genetic operations: fitness evaluation, population selection, crossover, and mutation.

Figure 2.11 shows the workflow of a standard genetic algorithm. We first initialize the solutions

as the first population and encode the solutions as chromosomes. In each generation, a subset of

chromosomes are selected as parents to participate in crossover and generate the new population.

In the next step, the new population goes through mutation. Finally, the fitness of each solution

in the population is evaluated. The solutions with high fitness scores have high probabilities of

being selected and produce offsprings in the next round of crossover.

new 
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solutions
encoding

1100101010

1011101110

0011011001

1100110001

evaluation
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110010 1110
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001100 1001
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Figure 2.11. High-level workflow of genetic algorithm.
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The convergence speed and quality of GAs depend on the distribution of the population.

Crossover and mutation increase the diversity of the population, which reduces the probability

of the GA getting trapped in local optima. In particular, the exploration and exploitation

of GAs shall be balanced dynamically. To address this problem, diversity is introduced to

evaluate the difference in individuals’ gene representation and control the balance mentioned

above [Shi99, Urs02, GG12].

As an instance of heuristic-based optimization methods, GAs feature the following

advantages: (i) They are applicable when the objective function is not smooth (in which case

derivative-based methods cannot be employed); (ii) They search from a population of solutions

simultaneously, thus are able to avoid local optima; (iii) They always yield a solution and

the solution gets better over time; (iv) The required computation is inherently parallel, which

makes them suitable for hardware acceleration. Thanks to these advantages, GAs have been

widely used in many real-world applications such as evolvable hardware [SKL06] and code-

breaking [Del04]. GAs are also used in parameter selection with large design space, such as

DNN structure exploration [SW15] and non-gradient-based training [SMC+17].

2.4 Hardware Security

In this section, we introduce preliminary knowledge about three hardware security

problems that are relevant to the contribution of this dissertation.

2.4.1 Disturbance Errors in DRAMs

Memory storage such as Dynamic Random-Access Memory (DRAM) is indispensable

for computing systems [DAR09, LNM+17]. Figure 2.12 shows the architecture of modern

DRAM chips. A DRAM chip consists of two-dimensional DRAM cells as shown in Figure 2.12

(a) where each cell includes a capacitor and an access transistor. A cell has two states (charged

or discharged) and each state denotes a binary value [KDK+14]. DRAMs are addressed using a

hierarchical scheme that indicates their hardware organization: channels, DIMMs, ranks, banks,
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Figure 2.12. DRAM architecture. (a) A DRAM bank is consisted of multiple rows. (b)
Internal structure of a DRAM bank.

rows, and columns [PGM+16]. Therefore, the DRAM address is multi-dimensional and can be

represented as < chan, DIMM, rank, bank, row, col >.

The susceptibility of commercial DRAMs to disturbance errors has been demonstrated

by Kim et.al in [KDK+14]. This paper finds out that repeated access to a DRAM row can

corrupt data in the neighboring rows, i.e., causing bit flips ‘0’ → ‘1’ (anti-cell) or ‘1’ → ‘0’

(true cell). This disturbance error in DRAMs is called the Rowhammer Attack (RHA) [KDK+14,

VDVFL+16, TGBR18]. Researchers have found that the disturbance errors in Rowhammer

attacks are mostly repeatable and stable [KDK+14, RGB+16], which means that the locations

of the vulnerable DRAM cells are fixed after device manufacturing. The root cause of RHAs is

that frequent row activation results in voltage fluctuations, which leads to charge loss of adjacent

rows. Exploiting the stability of RHAs, the adversary can perform precise bit flipping at the

desired location by profiling the DRAM memory layout [KGGY20, YRF20]. RHAs pose severe

security threats to computing platforms since they can evade common data integrity checks and

error correction techniques [MK19, GLS+18].

Figure 2.13 shows the schematic of two variants of Rowhammer attacks. Single-sided

RHAs perform frequent memory access (i.e., hammering) to one row (so-called the ‘aggressor

row’) which is adjacent to the ‘victim row’ (where bit flips are desired). Double-sided RHAs

simultaneously hammer two aggressor rows located on each side of the victim row [VDVFL+16,

GLS+18]. Therefore, double-sided RHA needs to know the DRAM addressing scheme, which is
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Figure 2.13. Illustration of single-sided (a) and double-sided (b) Rowhammer attacks.
The aggressor rows and the victim rows are marked in red and blue color, respectively.

not required by single-sided attacks. Existing works find out the attacker can trigger more bit flips

with double-sided [VDVFL+16, TGBR18] and many-sided [FVH+20, dRFV+21] Rowhammer

technique compared to the single-sided variant [KDK+14, AAA17].

2.4.2 Circuit Obfuscation

There are two common circuit obfuscation techniques to protect the IP of modern ICs.

IC camouflaging has been suggested to protect the layout design of the circuit against reverse

engineering attacks. Existing IC camouflaging techniques include the insertion of dummy

connections and/or cells, as well as doping modification [RSSK13, RPSK12]. The objective of

IC camouflaging is to decouple the correlation between the appearance and the corresponding

functionality of gates. Figure 2.14 shows an example of the layout-level circuit camouflaging.

The structure of gates with different functionalities (e.g., NAND and NOR) are different by

default as can be seen in Figure 2.14a. However, such a layout disparity can be hidden from the

attacker by adding redundant connections to both standard gates, resulting in two gates with an

identical appearance as shown in Figure 2.14b. As such, layout-level reverse engineering attacks

are invalidated since no useful information is leaked from the appearance of the circuit.

As another example of Design-for-Security, logic locking has been proposed to protect

the intellectual property of ICs by corrupting the functionality of the circuit when incorrect

key values are applied to the additional key gates [YS17, HYR21, KAFT22]. Compared to

IC camouflaging, logic locking is able to prevent attacks from untrusted fabrication foundries.

Existing logic locking techniques include performing XOR/XNOR operations of wires with
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(a) (b)

Figure 2.14. Demonstration of IC camouflaging [RSSK13]. (a) Original layouts of a
regular 2-input NAND gate (left) and a NOR gate (right). (b) Camouflaged layouts of
the corresponding standard cells in (a).

N00PI1

PI2

PI4

N01

PI3

PI5

N02PI2

PO1

PI3

PI3
N03

PO2
N01

(a)

K0

PI1 N00

PI2

PI4

N01

PI3

PI5

N02PI2

PO1

PI3

PI3
N03

PO2N01

N021

K1 N031

(b)

Figure 2.15. Example of logic locking on c17 benchmark. The encrypted circuit (b) yields
consistent outputs as the original one (a) only when the two-bit key K0K1 is set to 2′b10.

the key inputs [RKM08, RZZ+15], substituting a subset of gates with look-up-tables (LUTs)

that stores the key sequence [Bau09], and inserting multiplexers (MUXs) controlled by the key

bits [RZZ+15, RPSK12]. An example of logic locking is shown in Figure 2.15.

It is worth noticing that logic locking is applicable to both combinatorial and sequential

circuits. For the latter case, the Finite State Machine (FSM) can be locked by adding new states

to the original State Transition Graph (STG), adding trap states (i.e., black holes), or changing

the deepest state of the circuit to degrade the timing performance [DF19, KAFT22]. To quantify

the effectiveness of logic locking, output corruptibility is introduced as the metric that measures

how the functionality of a circuit is impacted by logic locking. The corruptibility is measured
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from two aspects when the designer applies an incorrect key to the locked circuit: (i) The number

of output pins that produce wrong values; (ii) The number of input patterns that will lead to

incorrect primary outputs. The exact value of output corruption is typically quantified using

Hamming Distance (HD) [CFZK19b, KAFT22].

While IC camouflaging and logic locking are effective in alleviating the vulnerability of

ICs in the semiconductor supply-chain, various attacks have been demonstrated to invalidate

these defense techniques. For instance, SAT-based attacks and their variants are able to find a

valid decryption key to activate the locked circuit [SRM15, AKHS20]. Removal attacks take a

different approach from SAT attacks and deobfuscate the circuit by identifying and removing the

protection circuitry consisted of the additional key gates [YMSR17a, CCB19].

Conjunctive Normal Form. It has been proven in theory that every Boolean function can be

converted into an equivalent formula in Conjunctive Normal Form (CNF) [BW05]. CNF takes

the form of a sequence of clauses that are connected by the AND operator. All variables inside the

same clause are connected by the OR operator. Representing a circuit netlist with CNF facilitates

the verification of whether a given set of constraints are satisfied [FM07, MV07]. As such, SAT-

based attacks typically use CNF of the circuit during computation [BW05, SLM+17, AKHS19].

Let us consider the following Boolean expression in the CNF form:

O = (x1∨¬x3)∧ (x2∨ x3∨¬x1). (2.6)

This circuit is equivalent to the CNF statements (in dimacs format) shown in Equation (2.7)

where each row of the numerical sequence corresponds to one clause in Equation (2.6).

p cnf 3 2

1 −3 0

2 3 −1 0

(2.7)

We refer the readers to [Sim04] for detailed steps of CNF conversion and interpretation.
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2.4.3 Hardware Trojans

The security of the third-party System-on-Chips (SoCs) has raised an increasing amount

of concerns due to the contemporary outsourcing-based supply chain. Hardware Trojans (HTs)

are malicious circuit modifications inserted in the circuit to perform the pre-defined adversarial

task (i.e., ‘payload’) e.g., circuit malfunction or private information leakage when its control

signal (which is called ‘trigger’) is activated [CNB09, BHBN14, MKG+15]. Figure 2.16 shows

an example of HT design where a logic-AND gate and an XOR-gate are used as the trigger and

payload, respectively. The payload flips the output signal when the trigger is activated, thus

disturbing the desired behavior of the original circuit.

Figure 2.16. Demonstration of the Hardware Trojan attack.

Hardware Trojans can be categorized using different criteria [CNB09, TK10, KRRT10].

For instance, based on the abstraction level where the malicious modification is performed,

HTs can be classified into system level, development environment level, register-transfer level,

gate level, transistor level, and layout level. According to the activation mechanism, HTs can

be categorized into always-on and trigger-controlled (via external or internal trigger signals).

Additionally, Hardware Trojans might be inserted into different locations such as the processor,

IO, and memory. The physical characteristics criterion defines the hardware realization of the

HTs and can be further divided into distribution, size, type, and structure. Particularly, Hardware

Trojans fall into two types of physical characteristics: functional class and parametric one.

Functional Trojans are implemented by adding or removing transistors/gates, while parametric

Trojans are realized by manipulating existing logic/wires in the circuit [CNB09, TK10].
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The collaborative nature of the supply chain also determines that HTs may be inserted by

different parties at different stages of the IC life cycle. For instance, the untrusted IP provider,

the circuit designer, or the manufacturing party might insert HTs in the circuit. Hardware Trojans

shall remain dormant in most cases to evade functional testing and HT detection, while it should

be successfully activated by the trigger to perform the attack. For this purpose, stealthy HTs

are designed with two main considerations: (i) Rare conditions are used to construct the trigger

signal; (ii) The HT is placed in a non-critical path to minimize its impact on the side channels

(e.g., delay, power, electromagnetic emission)

Detection of Hardware Trojans is challenging due to the facts that: (i) The number of IP

cores integrated within contemporary SoCs is large and the complexity of IP blocks is increasing,

which makes it difficult to identify small malicious changes introduced by HTs; (ii) The feature

size of integrated circuits is getting smaller and smaller, making physical inspection infeasible;

(iii) Hardware Trojans are designed to be active only in rare conditions, this intrinsic stealthiness

property implies that detecting HTs using random input patterns or test patterns designed for

detecting manufacturing faults is hard [CNB09, TK10].
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Chapter 3

DeepMarks: Secure Fingerprinting Frame-
work for Deep Learning Models

Deep neural networks are revolutionizing various critical fields by providing an unprece-

dented leap in terms of accuracy and functionality. Because of the expensive training procedure,

high-performance DNNs are considered the Intellectual Property (IP) of the model designer and

need to be protected. While DNNs are increasingly commercialized, the pre-trained models

might be illegally copied or redistributed after they are delivered to malicious users. In this

chapter, I introduce DeepMarks, the first end-to-end, collusion-secure fingerprinting framework

that enables the model owner to retrieve DNN authorship information and identify unique users

associated with the models in the context of deep learning.

DeepMarks consists of two main modules: (i) Designing unique fingerprints using anti-

collusion codebooks for individual users; and (ii) Encoding each constructed fingerprint (FP) in

the probability density function of the weights by incorporating an FP-specific regularization

loss during DNN training. We investigate DeepMarks’ performance on various datasets and

DNN architectures. Experimental results show that the embedded FP preserves the accuracy

of the host DNN and is robust against different model modifications that might be conducted

by malicious users. Furthermore, DeepMarks is scalable and yields perfect detection rates and

no false alarms when identifying the participants of FP collusion attacks under the theoretical

guarantee. The runtime overhead of FP retrieval from the marked DNN can be as low as 0.056%.
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3.1 Introduction

Recent advances in Deep Learning (DL) have enabled the paradigm shift in diverse

domains including autonomous transportation, nuclear engineering, and smart health [LBH15,

Sch15, FDFC+18]. Training a highly accurate DNN is costly since this requires: (i) Processing

massive amounts of data acquired for the target application; (ii) Allocating substantial computing

resources to fine-tune the topology and hyper-parameters of the deployed model. Given the

costly process of designing/training, pre-trained DNNs are considered the Intellectual Property

(IP) of the model owner and needs to be protected. As an increasing amount of pre-trained

DNNs are open-sourced/distributed on the Internet [Caf17, Ama22], IP protection and Digital

Right Management (DRM) of these public models are particularly important to maintain the

competitiveness of the model owner and facilitate reliable technology transfer.

Digital watermarks and fingerprints have been immensely leveraged to protect the au-

thorship of multi-media content and functional artifacts [KK04, QP07, RET+17]. However, the

extension of watermarking and fingerprinting techniques to the DL domain for reliable model

distribution is still in its infancy. Developing a practical DNN fingerprinting technique has the

following challenges: (C1) Fingerprint (FP) embedding shall not incur performance degradation

of the original model; (C2) FP detection shall yield a minimal false alarm rate to avoid the

incorrect accusation of innocent customers for misusing/stealing the model; (C3) The embedded

FP shall be sustainable to withstand potential model modifications and FP deconstruction attacks

conducted by malicious users. This chapter investigates how to tackle the above challenges and

presents DeepMarks as a promising solution for large-scale model distribution systems.

A holistic IP protection technique is expected to provide the following two capabilities:

(i) DNN ownership proof. The model owner shall be able to prove the authorship of her model

after the DNN is distributed to the users; (ii) Tracking/Identifying unique users. The model

owner can trace different customers that are using the same IP and determine which person has

misused the model if IP infringement is detected. These two properties are the requirements
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of IP protection and DRM, respectively. DNNs can be leveraged in either a white-box setting

(model internals are publicly known) or a black-box setting (only model outputs are known).

DeepMarks aims to provide secure and robust DNN fingerprinting in the white-box scenario,

which is a common practice considering the prevalence of DL models on the Internet.

Prior works have proposed DNN watermarking methodologies for model authentica-

tion in both the white-box [UNSS17, NUSS18, DRCK19] and the black-box setting [LMPT20,

ABC+18, ZGJ+18]. However, all existing watermarking methods only address the first require-

ment of DNN IP protection (ownership proof) while ignoring the second one (tracking unique

users). This is due to the fact that the above-mentioned DNN watermarking techniques typically

are not concerned with the co-existence of multiple users that might employ the same model

IP. This chapter demonstrates that the state-of-art DNN watermarking scheme [UNSS17] is

deficient to provide a robust fingerprinting solution. More specifically, we show that multiple

users can collaborate and construct an unmarked model that achieves a comparable accuracy as

the baseline model using their individually watermarked models. This type of attack is called the

‘FP collusion attack’ and can defeat the DNN watermarking approach in [UNSS17]. DeepMarks

is motivated to overcome this vulnerability of DNN watermarking schemes.

This chapter presents DeepMarks, the first provably secure DNN fingerprinting framework

that empowers coherent integration of robust digital markers into DL models. DeepMarks takes

the pre-trained DNN (which is the owner’s IP) together with a set of security parameters as its

inputs. Multiple functionality-preserved variants of the original model are returned as the outputs,

carrying unique fingerprints of individual users in the model distribution system. We address the

challenges (C1-C3) by designing collusion-aware fingerprints and encoding the FP information

in weights using a customized regularization loss during DNN re-training. The intuition behind

DeepMarks is that there are abundant redundancies existing in the pre-trained DNN due to

its high dimensionality. We leverage such redundancies and tackles DNN fingerprinting as an

auxiliary task of the original data application. As such, the designed fingerprint is integrated as

an inseparable part of the weight parameters, ensuring that the adversary cannot remove the FP
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without compromising the performance of the marked model.

DeepMarks framework is innovative in the sense that it is the first collusion-secure fin-

gerprinting framework with theoretical guarantees on detection performance. Unlike prior works

that only focus on addressing model ownership authentication for a single user, we consider

a large-scale model distribution system where multiple users might perform collaborative FP

deconstruction attacks. Such a scenario is more practical considering the real-world setting.

Furthermore, DeepMarks provides model ownership proof and digital right management simulta-

neously, thus providing the first full-fledged IP protection solution in the deep learning domain.

Our approach is generic and compatible with various applications as well as DNN architectures.

This work makes the following contributions:

• Enabling robust IP protection and digital right management for DNNs in model

distribution systems. We propose DeepMarks, a novel fingerprinting methodology that

encodes robust fingerprints in the probability density function (pdf) of weights for model

ownership proof and unique user tracing. DeepMarks is provably more robust against FP

collusion attacks compared to the state-of-the-art DNN watermarking scheme.

• Characterizing the requirements for an effective fingerprinting methodology in the

deep learning domain. We introduce a comprehensive set of metrics to assess the

performance of a DNN fingerprinting methodology. Such metrics provide new perspectives

for model designers and facilitate a coherent comparison of current and pending DNN IP

protection techniques.

• Investigating the performance of DeepMarks on various DNN benchmarks. We

perform extensive proof-of-concept experiments to corroborate the efficacy and robustness

of DeepMarks. Empirical results show that our framework yields perfect FP detection

rates and no false alarms given the properly selected security parameters.

We emphasize that enabling the model owners to prove model authorship and trace

back illegal model usages is important due to the prevalence of DNNs in critical fields. We are

39



motivated to address the pressing concerns about the IP and digital right management of valuable

DL models. DeepMarks opens a new axis for the growing research in secure deep learning and

sheds light on the unexplored limitations of DNN watermarking techniques.

3.2 Related Works

IP protection of valuable DNN models has been a subject of increasing interest to both

researchers and practitioners. Uchida et al. take the first step towards DNN watermarking and

propose to embed the watermark (WM) by adding constraints to the weight parameters. The WM

is later extracted from the marked layer assuming a white-box scenario [UNSS17]. To alleviate

the constraint that the parameters of the queried model are available during WM extraction,

several papers propose zero-bit watermarking techniques that are applicable in the black-box

scenario [LMPT20, ABC+18, ZGJ+18]. These works suggest different methods to generate

watermark images and labels as the ‘trigger set’, which is then used to tweak the decision

boundary of the pre-trained model for WM embedding. In this scenario, the WM existence is

determined by querying the remote model with the WM images and thresholding the accuracy

on the trigger set. It is worth noting that all of the above-mentioned papers consider a single-user

setting and are unaware of the potential collusion attacks in multi-user scenarios. In this chapter,

we present a collusion-secure DNN fingerprinting framework to address the limitations of DNN

watermarking, thus providing a holistic IP protection solution.

3.3 Problem Formulation

While cloud-based DNN services are widely adopted in various applications, white-

box DL model deployment provides a more powerful utilization alternative that encourages

research communities and industrial developers to improve existing DL techniques. DeepMarks

is motivated to protect the IP of white-box DNNs in a model sharing system. To the best

of our knowledge, there is no prior work on DNN fingerprinting. In this chapter, we define
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fingerprinting as the task of designing a v-bit binary code-vector cj ∈ {0,1}v for each user and

embedding it in the parameters (e.g., weights) of one/multiple layers in the host neural network.

Here, j = 1, ...,n is the index for each distributed user and n is the total number of users. The

objective of fingerprinting is two-fold: (i) Claiming the ownership of a specific DNN, and (ii)

Tracing the unintended usage of the model conducted by the distributed users.

In the following of this sections, we introduce a set of requirements for effective DNN

fingerprinting and discuss potential attacks that might render the embedded FPs ineffective.

3.3.1 Requirements

Table 3.1 summarizes the requirements for an effective fingerprinting technique in the DL

domain. In addition to fidelity, efficiency, security, reliability, integrity, and robustness require-

ments shared between fingerprinting and watermarking, a successful fingerprinting methodology

should also satisfy uniqueness, scalability, and collusion resilience criteria. Uniqueness is the

Table 3.1. Requirements for an effective fingerprinting methodology of deep neural networks.

Requirements Description
Fidelity The accuracy of the target neural network shall not be degraded as a

result of fingerprint embedding.
Uniqueness The fingerprint need to be unique for each user to achieve unambiguous

identification.
Efficiency The overhead of fingerprint embedding and extraction shall be negligible.
Security Fingerprint embedding shall leave no tangible footprint in the host neural

network; thus, an unauthorized individual cannot detect the presence of
a fingerprint in the model.

Robustness The fingerprint shall be robust against potential fingerprint destruction
and model modification attacks.

Reliability Fingerprint extraction shall yield minimal false negatives to ensure high
detection rates.

Integrity The fingerprinting methodology should yield minimal false alarm (a.k.a.,
false positive). This means that the probability of an innocent user being
accused as a colluder should be very low.

Scalability The fingerprinting methodology should be able to support numerous
users in the distributed system.

Generality The fingerprinting technique should be applicable to various datasets
and network architectures.
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intrinsic property of fingerprints that enable unambiguous user identification. Scalability is a key

factor to support model ownership authentication and DRM in large-scale systems. Collusion

resistance is a desired property considering the practicality of collusion attacks.

3.3.2 Threat Model

Corresponding to the robustness requirement in Table 3.1, we discuss four types of DL

domain-specific attacks that the DNN fingerprinting technique should be resistant to: model

fine-tuning, parameter pruning, fingerprint collusion, and fingerprint overwriting attacks.

Parameter Pruning. Genuine users may leverage parameter pruning to reduce the memory and

computation overhead of the DNN [HPTD15, LWL17] while adversaries may apply pruning

to remove the FP. As such, an effective fingerprinting technique shall be resistant to parameter

pruning that incurs the change of model parameters.

Model Fine-tuning. Fine-tuning might be performed by honest users for transfer learning, or by

malicious attackers to remove the FP. Since the parameters that carry the FP are altered during

fine-tuning, the embedded FP should be robust against this modification.

Fingerprint Collusion Attack. A group of users who have the same host neural network

with different embedded fingerprints may perform collusion attacks to construct a functional

model where no fingerprints can be detected by the owner. In this work, we focus on evaluating

DeepMarks’ robustness against the FP averaging attack.

Fingerprint Overwriting. Assuming an active adversary knows the deployed fingerprinting

methodology, he may embed a new FP to destroy the original one inserted by the authentic model

owner. While the location where the original FP is embedded shall be a secret to the malicious

parties, it is conceivable that the attacker can embed the new FP into multiple layers of the target

DNN to increase the success rate of destroying the original FP.
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3.4 DeepMarks Framework

Figure 3.1 demonstrates the global flow of DeepMarks framework. DeepMarks performs

DNN fingerprinting by embedding the designated fingerprint information in the probability

distribution of weights at selected layers. The fingerprinted model is assumed to be deployed

in a white-box setting where the model internals are transparent to the public. Such an as-

sumption is practical considering the popularity of model sharing/distribution in the real-world

setting. There are two types of FP modulation schemes in the multi-media domain: orthogonal

modulation [WWZ+05, KM09], and coded modulation [WTWL04, YLCZ10]. Since coded

fingerprinting achieves better collusion resilience and can be considered a general case of or-

thogonal fingerprinting [TWL02, TWWL03], we focus on code-modulated fingerprinting in

this work. Note that DeepMarks is orthogonal to the existing code modulation schemes and

can be further augmented when advanced modulation methods are integrated. To enable model

Figure 3.1. DeepMarks Global Flow. DeepMarks consists of three main modules: FP
embedding, user identification, and colluder detection.
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ownership authentication and digital right management, DeepMarks allows the model owner

to retrieve the embedded fingerprints for user identification as well as colluder detection after

distributing the fingerprinted models.

3.4.1 Fingerprint Embedding

DeepMarks’ regularization-based FP embedding is inspired by constraint-based water-

marking systems in the multi-media domain [KLMS+98, KLMS+01, AHTA03]. More specifi-

cally, the original problem (e.g., image classification) is used as the cover constraint and FP em-

bedding is incorporated as the additional stego constraint. We leverage the over-parameterization

of high dimensional DNNs to enforce the stego constraints. As such, DeepMarks helps to

alleviate model over-fitting and preserve the performance of the original model. Embedding

FPs in the training-from-scratch fashion is impractical for large-scale distributed systems since

the fingerprinting process is required for each copy of the target DNN. DeepMarks tackles this

viability concern by treating FP embedding as a post-processing step implemented via fine-

tuning the pre-trained model with the FP-specific regularization loss. Particularly, FP embedding

is formulated as an off-line, one-time process performed locally by the owner before model

distribution. We demonstrate the construction and embedding of code-modulated FPs based on

DeepMarks framework as follows.

(I) Fingerprint Construction. DeepMarks ensures provable collusion resilience by taking

advantage of the Anti-Collusion Code (ACC) theory when constructing the codebook. ACC

is proposed in [WTWL04] for collusion-resistant coded fingerprinting and has the following

property: the composition of any subset of K or fewer code-vectors is unique. This property

allows the owner to identify a group of K or fewer colluders from the composition precisely. A

K-resilient AND-ACC codebook is a matrix where the element-wise composition is logic-AND

and allows for the accurate identification of K unique colluders from their composition.

To generate ACC of binary values, DeepMarks deploys Balanced Incomplete Block

Design (BIBD) [YLCZ10]. A (v,k,λ )-BIBD has b = λ (v2− v)/(k2− k) blocks with block size k.
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The BIBD can be represented by its corresponding incidence matrix Cv×b where each element:

ci j =


1, if ith value occurs in jth block

0, otherwise.

By setting the number of concurrent occurrences to one (λ = 1) and assigning the bit complement

of columns of the incidence matrix Cv×b as the code-vectors, the resulting (v,k,1)-BIBD code

is (k−1)-resilient and supports up to n = b users [TWWL03]. Note that DeepMarks is generic

and compatible with other anti-collusion code design schemes. Here, we focus on illustrating the

feasibility of DeepMarks and leave advanced codebook construction to future work.

DeepMarks generates code-modulated fingerprints as follows. Given the designed inci-

dence matrix Cv×b, the coefficient matrix Bv×b for FPs is computed from the linear mapping

bi j = 2ci j−1. The FP of the jth user is then generated from an orthogonal matrix Uv×v and the

coefficient matrix Bv×b as:

fj =
v

∑
i=1

bi jui, (3.1)

where bj ∈ {±1}v is the coefficient of user j. U is generated from element-wise Gaussian

distribution for security consideration [WTWL04].

(II) Fingerprint Insertion. The FP obtained from Equation (3.1) is embedded in the selected

layers of the pre-trained model by incorporating an FP-specific embedding loss term to the

conventional loss function (L0):

L = L0 + γ MSE(fj−Xw). (3.2)

Here, MSE is the mean square error function, γ is the embedding strength that controls the

contribution of FP embedding loss, X is the owner’s secret projection matrix generated from

standard normal distribution N (0,1). The vector w is the flattened averaged weights of the

target layers that carry the FP information.
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As a proof-of-concept analysis, we embed the FP (fj) in a convolutional layer of the

host DNN. The weight is a 4D tensor W ∈ RD×D×F×H where D is the kernel size, F and H

is the number of input and output channels, respectively. We average the weight W over the

output channel dimension and stretch the result to a vector w. The FP is embedded in the vector

w ∈ RN where N = D×D×F is the embedding dimension. The additive FP embedding loss

LFP = MSE(fj−Xw) is minimized together with the conventional loss during DNN training to

encode the FP fj in the pdf of weights in the selected layer. We assume that the three matrices

U, C, X, and the layers selected for FP embedding are secret security parameters that are only

known to the owner. The main difference between DeepMarks’ FP embedding and transfer

learning is that the latter one involves training with a new dataset.

3.4.2 Fingerprint Extraction

In this section, we described how DeepMarks extracts the embedded fingerprint from the

marked model for two purposes: identifying unique users and detecting participants of fingerprint

collusion attacks.

User Identification

DeepMarks uniquely identifies each individual user by recovering his/her associated

code-vector assuming the availability of model parameters. To do so, DeepMarks undergoes four

main steps: (i) Acquiring the weights in the marked layers to reconstruct the FP vector f̃j = Xw̃j;

(ii) Recovering the correlation score vector from the FP vector and the owner’s secret basis

matrix by computing b̃j = f̃j
T

U; (iii) Decoding the ACC code-vector c̃j from the element-wise

hard-thresholding of b̃j; (iv) Comparing the recovered code-vector c̃j with each column in the

owner’s codebook C where the matching position uniquely identifies the user. We use Bit Error

Rate (BER) computed between the true code-vector and the recovered one to assess DeepMarks’

performance of FP extraction. The user identification process is considered successful if there

exists one unique matching (BER=0 for a column in C).
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To illustrate DeepMarks’ workflow for user identification, let us consider a (7,3,1)-BIBD

codebook shown in Equation (3.3). The FPs for 7 users (shown in Equation (3.4)) are constructed

using the columns of the codebook C and the basis matrix U as described earlier.

C =



0 0 0 1 1 1 1

0 1 1 1 0 1 1

1 0 1 0 1 0 1

0 1 1 1 1 0 0

1 1 0 0 1 1 0

1 0 1 1 0 1 0

1 1 0 1 0 0 1



, (3.3)



f1 =−u1−u2 +u3−u4 +u5 +u6 +u7,

· · ·

f6 =+u1 +u2−u3−u4 +u5 +u6−u7,

f7 =+u1 +u2 +u3−u4−u5−u6 +u7,

(3.4)

Note that for user 1, her coefficient vector can be recovered by computing the correlation scores:

b̃1 = f1
T [u1, ...,u7] = [−1,−1,+1,−1,+1,+1,+1].

The corresponding code-vector is then extracted by the inverse linear mapping ci j =
1
2(bi j +1),

resulting in c̃1 = [0,0,1,0,1,1,1]. The recovered c̃1 is exactly the same as the first column of C,

indicating the effectiveness of DeepMarks framework for user identification.

Colluder Detection

In this section, we describe how DeepMarks deploys the intrinsic asset of AND-ACC for

colluders detection. We focus on the FP averaging attack, which is a typical and cost-effective

FP collusion attack, in our evaluation. Furthermore, we consider the worst-case scenario where

the colluders know the positions of the embedded layers. As a result, the colluders can perform
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element-wise average on their weights and produce w̃avg to answer the owner’s inquiry. The

owner then computes the colluded correlation vector b̃avg as follows:

f̃avg = Xw̃avg, (3.5)

b̃avg = (̃favg)
TU. (3.6)

DeepMarks leverages hard-thresholding detectors for colluder identification. The ACC

code-vector is decoded from the correlation vector b̃avg = [b̃1
avg, ..., b̃

v
avg] by comparing each

element with an owner-defined threshold τ:

c̃i
avg =


1, if b̃i

avg > τ,

0, otherwise.
(3.7)

Given the AND-ACC code-vector of the colluders c̃avg, the remaining problem is to find the

subsets of columns from the codebook C such that their logic-AND composition is equal to c̃avg.

For a (v,k,1)-BIBD-ACC, at most (k−1) colluders can be uniquely identified [TWWL03] with

theoretical guarantee.

As an example, we demonstrate DeepMarks’ colluder detection scheme using the code-

book in Equation (3.3). Assuming user 6 and user 7 collaboratively generate the averaged

fingerprint as follows:

favg =
1
2
(f6 + f7) =

1
2
(2u1 +2u2−2u4),

where individual FPs are defined in Equation (3.4). The owner computes the colluders’ correlation

vector as follows:

bavg = (favg)
TU = [1,1,0,−1,0,0,0].
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The corresponding code-vector is then extracted according to decision rule in Equation (3.7),

resulting in cavg = [1,1,0,0,0,0,0] One can observe that the logic-AND composition of column

6 and column 7 in the codebook C is exactly equal to cavg, while all the other compositions

(of two or more columns) do not satisfy the constraint. This example shows that DeepMarks

correctly identifies all participants of the collusion attack without any false alarms.

3.4.3 Computation Overhead Analysis

We discuss the overhead of a DNN fingerprinting technique from two perspectives: FP

embedding, and FP extraction. Since FP embedding locally performed locally by the owner

before model distribution, there is no communication overhead involved. The computation

overhead is determined by the additional operations to compute the FP-specific loss LFP =

MSE(f j−Xw) during DNN training, which has complexity O(vN + v). To extract the FP, the

queried user sends the vector w̃N×1 of the marked layer to the owner, thus the communication

overhead is O(N). The computation overhead is incurred by two matrix multiplications: f̃ =

Xv×N · w̃N×1, b̃ = f̃T
1×v ·Uv×v with complexity O(vN) and O(v2), respectively. We provide the

quantitative runtime overhead results in Section 3.6.

3.5 DeepMarks as a High-level API

DeepMarks minimizes the required data movement to ensure maximal data reuse and a

minimal overhead caused by fingerprint embedding. To do so, we integrate the computation of

additive loss term to the DNN tensor graph so that the gradients with respect to the FP embedding

loss are computed during the regular back-propagation and all computation for FP embedding is

performed homogeneously on GPU. Separately modeling the fingerprinting graph significantly

slows the DNN training process since the weight parameters need to be completely transferred

from the original DNN graph during the forward pass to compute the FP loss and update the

parameters of the FP graph. This approach, in turn, further presses the already constrained

memory. Our homogeneous solution reuses the weights within the original graph with minimal
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memory overhead.

Figure 3.2 shows the prototype of functions for the three main modules in DeepMarks

framework. DeepMarks library enables the owner to construct an anti-collusion codebook by

providing a function called construct ACC codebook that takes in the total number of users

(n) and the desired resilience level (K) specified by the owner. To embed the FP in the pre-

trained model, a customized weight regularizer FP weight regularizer is applied to compute

LFP and returns the total regularized loss. Our accompanying library is equipped with functions

hard thresholding and f ind matching position to identify the queried user and the function

f ind ACC subset to detect colluders. DeepMarks’ customized library supports acceleration

on GPU platforms. Our provided wrapper can be readily integrated within well-known DL

frameworks including TensorFlow, Pytorch, and Theano.

Figure 3.2. DeepMarks library usage and resource management for FP
embedding, user identification, and colluder detection.
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3.6 Evaluation Results

In this section, we present the evaluation of DeepMarks on image classification tasks using

two popular types of DL models: Convolutional Neural Networks (CNNs) and Wide Residual

Networks (WRNs). The benchmark datasets and topologies are summarized in Table 3.2. We use

ReLU as the activation function in all benchmarks. Recall that DeepMarks leverages strategical

regularization during DNN training, thus is generic and applicable to various DNN architectures

such as Multi-layer Perceptrons (MLP) and Recurrent Neural Networks (RNN). We want to

emphasize that DeepMarks does not require prior knowledge about the number of colluders (k)

in the detection stage. All participants of the collusion attack are automatically identified by

DeepMarks as discussed in Section 3.4.2, rendering the detection scheme useful in practice.

Table 3.2. Benchmarks of DNN architectures. Here, 64C3(1) indicates a convolutional
layer with 64 output channels and 3×3 filters applied with a stride of 2, MP2(1) denotes
a max-pooling layer over regions of size 2×2 and stride of 1, and 512FC is a fully-
connected layer with 512 output neurons.

Dataset Model Type Architecture
MNIST CNN 784-32C3(1)-32C3(1)-MP2(1)-64C3(1)-64C3(1)-512FC-10FC

CIFAR10 WRN Please refer to [ZK16]

Experimental Setup. To evaluate the performance of DeepMarks coded fingerprinting scheme,

we use a (31,6,1)-BIBD AND-ACC codebook that accommodates 31 users. We select the

embedding strength γ in Equation (3.2) such that the embedding loss satisfies LFP = 0.1 ·L0 in

the beginning of FP embedding. The total FP-regularized loss of the model is minimized during

regular back-propagation. DeepMarks employs the BER computed between the code-vector

recovered from the current weights and the ground-truth value as a ‘monitor’ to terminate FP

embedding when BER=0. In our experiments, we use γ = 0.1 and retrain the target DNN for 5

epochs with the learning rate at the last stage of original training across all benchmarks. The

threshold for code-vector extraction is set to τ = 0.85 without explicit hyper-parameter tuning.

We demonstrate a comprehensive examination of DeepMarks’ performance (Section 3.6) and the

comparison with the state-of-the-art DNN watermarking technique (Section 3.6.2) as follows.
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3.6.1 DeepMarks Properties Evaluation

In the following of this section, we assess DeepMarks’ performance based on the require-

ments discussed in Table 3.1.

Fidelity

DeepMarks meets the fidelity criterion by preserving the model’s functionality. To

study the effect of FP embedding on the functionality of the original task, we compare the

test accuracy of the pre-trained baseline model, the fine-tuned model with and without the FP

embedding loss. The results are summarized in Table 3.3. One can see from the comparison

that embedding FPs in the DNN does not induce accuracy drop and can even slightly improve

the accuracy of the target DNN. This is due to the fact that the additive embedding loss in

Equation (3.2) introduces regularization and alleviates model over-fitting.

Table 3.3. Fidelity requirement. The baseline accuracy is preserved after fingerprint
embedding in the underlying benchmarks.

Benchmark MNIST-CNN CIFAR10-WRN

Setting Baseline
Fine-tune without Fine-tune with

Baseline
Fine-tune without Fine-tune with

fingerprint fingerprint fingerprint fingerprint
Test Accuracy (%) 99.52 99.66 99.72 91.85 91.99 92.03

Security

DeepMarks respects the security criterion by preserving the intrinsic distribution

of weights. To prevent the adversary from detecting the existence of an FP in the model, security

requires the embedding of the fingerprint to leave no tangible changes in the distribution of the

model parameters. Figure 3.3 shows the histograms of weights at the selected layer with and

without the FP on the CIFAR10-WRN benchmark. The similarity between these two histograms

corroborates DeepMarks security.
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(a) (b)

Figure 3.3. Histogram of the weights at the selected layer in the fingerprinted model (a)
and the original model (b).

Robustness, Reliability, and Integrity

DeepMarks yields high detection rates and low false alarm rates for user identifica-

tion and colluder detection under various attacks. We consider two FP deconstruction attacks:

FP collusion and FP overwriting, and two model modification attacks: model fine-tuning and

parameter pruning as discussed in Section 3.3.2. For a given number of colluders, we run 1,000

random simulations to generate different colluders sets from all users and report the average

performance. When the colluder set is too large to be uniquely identified by the property of

ACC, we consider all feasible colluder sets that match the extracted code-vector resulting from

FP collusion. We detail the settings and results of each attack as follows.

(I) Fingerprints Collusion. The FP averaging attack is described in Section 3.4.2. Figure 3.4

shows the detection (true positive) rates and false alarm (false positive) rates of DeepMarks

when different numbers of users participate in the collusion attack. DeepMarks features ideal

detection rates and false alarm rates when the number of colluders is smaller than or equal to the

theoretical threshold (k−1) guaranteed by the ACC codebook. As such, DeepMarks satisfies the

reliability and integrity requirements in Table 3.1. The consistency with the theorem corroborates

that DeepMarks provides provable collusion resistance.
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(a) (b)

Figure 3.4. Detection rates (a) and false alarm rates (b) of DeepMarks against fingerprint
collusion attacks.

(II) Fingerprint Overwriting. Besides FP collusion, an active adversary that is aware of the

fingerprinting method may try to destroy the original FP by embedding a new one in the marked

DNN. To perform the attack, the adversary generates a new set of secret matrices (C, U, X),

constructs his own FP, and randomly selects a layer in the distributed model to embed the FP as

outlined in Section 3.4.1. In our experiment, we assume both the original FP and the new FP

deploy single-layer embedding for simplicity.

Table 3.4 summarizes the results of DeepMarks’ user identification performance when

the FP overwriting attack is performed on a different layer or the same layer as the original

FP. In our experiments, we assume all 31 users individually implement FP overwriting attacks

on their fingerprinted models and report the average metrics. DeepMarks retains perfect user

identification when the overwriting attack occurs at a different layer while incurs false negatives

(non-zero BER) when the same layer is attacked.

Table 3.4. DeepMarks’ user identification in case of FP overwriting attack at a
different or the same layer.

Overwrite Condition Overwrite Different Layer Overwrite Same Layer
Metrics Accuracy (%) BER Accuracy (%) BER

MNIST-CNN 99.68 0 99.69 0.06
CIFAR10-WRN 91.90 0 91.96 0.01
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We further assess DeepMarks’ collusion resilience against FP overwriting attacks and

show the results in Figure 3.5. In this case, the colluders first agree on which layers to embed

their FPs and obtain the overwritten models. Then the weights at the attacked layers are averaged

across colluders and used as the response to the owner’s query. Comparing Figure 3.5 with

Figure 3.4a, it can be seen that DeepMarks’ colluders detection performance is not degraded

by FP overwriting if the colluders embed their new FPs in different layers as the original one.

When the originally marked layer is attacked, the detection rate has a significant drop in case of

a small number of colluders. Although the colluders may embed new FPs in multiple layers to

increase the chance of finding the secret embedding position of the original FP, such an approach

introduces excessive regularization and might incur performance degradation.

(a) (b)

Figure 3.5. DeepMarks’ robustness against FP overwriting at a different (red color) or
the same layer (blue color).

(IV) Model Fine-tuning. Recall that the fine-tuning attack is implemented by re-training the

fingerprinted model on the user’s new dataset using only the conventional cross-entropy loss. We

simulate this process by adding random Gaussian noise with zero mean and different standard

deviations (std) to the weights of the marked DNN and extract the code-vector from the noisy

weights. Figure 3.6 shows the test error and BER of FP detection after injecting noise on the

fingerprinted model. Our key observation is that test error is more sensitive to noise compared to

BER, thus the malicious user cannot remove the FP while preserving the model’s performance.
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(a) (b)

Figure 3.6. DeepMarks’ robustness against model fine-tuning. Adding excessive noise
incurs large increase of test error while the embedded FP might be removed.

(III) Parameter Pruning. To prune the target layer, we use the pruning method in [HPTD15]

and set α% of the weights that possess the smallest absolute values to zero. The obtained mask is

then used to sparsely fine-tune the fingerprinted model on the training data with the conventional

cross-entropy loss to compensate for the accuracy drop induced by pruning. We first assess the

code-vector extraction (decoding) accuracy for individual users under different pruning rates and

show results in Figure 3.7. One can see that increasing the pruning rate leads to a drop in the

test accuracy, while the code-vector can always be decoded with 100% accuracy. The perfect FP

(a) (b)

Figure 3.7. Code-vector extraction accuracy (red color) and test accuracy (blue color) for
MNIST-CNN (a) and CIFAR10-WRN (b) benchmark under different pruning rates.

56



decoding suggests that: (i) DeepMarks is robust against pruning attacks and reliably identifies

the queried user; (ii) DeepMarks has no false alarms and satisfies the integrity criteria.

We further assess the robustness of colluder detection against parameter pruning. Fig-

ures 3.8 shows the detection rates and false alarm rates of DeepMarks under three different

pruning rates. Comparing Figure 3.8 with Figure 3.4, we can see that DeepMarks is robust and

tolerates up to 99% parameter pruning for both MNIST and CIFAR10 benchmarks.

(a) (b)

(c) (d)

Figure 3.8. DeepMarks’ robustness of colluders identification against parameter pruning
attack. Detection rate (a, b) and false alarm rate (c, d) of DeepMarks framework are not
affected by a wide range of pruning rates.

In summary, DeepMarks achieves high FP detection rates and low false alarm rates when

confronted with various FP deconstruction and model modification attacks. Therefore, Deep-

Marks satisfies the robustness, reliability and integrity criteria in Table 3.1. The performance

consistency across various benchmarks corroborates the generality of our framework.
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Scalability

DeepMarks is applicable to large-scale distribution systems. We define scalability of

a fingerprinting technique as the number of supported users per code bit: β = n
v . For a (v,k,1)

codebook, the maximum number of users is determined by the code-vector length v and the

block size k by n = v(v−1)
k(k−1) . Thus, the scalability metric can be computed as follows:

β =
v−1

k(k−1)
. (3.8)

It is straightforward to see that longer FPs provide better scalability for a fixed block size.

Equation (3.8) also shows the trade-off between the length of the code-vector v and the collu-

sion resilience level (k− 1). When the scalability is fixed, a higher resistance level requires

longer fingerprinting codes. Systematic approaches to construct various BIBDs have been

developed [CD06], providing a vast supply of ACCs for DeepMarks.

We assess DeepMarks’ performance with three different codebooks (13,4,1), (31,6,1),

(133,11,1) BIBD, and illustrate the comparison results in Figure 3.9. DeepMarks provides

various levels of user capacity and collusion resistance by allowing the owner to specify

(a) (b)

Figure 3.9. Effect of codebook design. DeepMarks is scalable and provides various levels
of detection performance.
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codebook parameters. Particularly, a larger codebook (e.g., (133,11,1)-BIBD ACC) accom-

modates more customers in the distribution system and yields better detection metrics. As such,

DeepMarks framework can be customized to provide guaranteed performance based on the

requirements of the IP owner.

Efficiency

DeepMarks fingerprinting framework incurs negligible overhead and is highly

efficient. We define the efficiency of embedding and extracting an fingerprint as the normalized

runtime overhead of retraining the target DNN and recovering the code-vector from the weights,

respectively. To quantitatively evaluate DeepMarks’ overhead as discussed in Section 3.4.3, we

measure the ratio of the FP embedding time to the original DNN training time, and the ratio of

the code-vector extraction time to the DNN prediction time. Table 3.5 summarizes the results of

DeepMarks’ normalized runtime, suggesting our efficiency.

Table 3.5. Efficiency evaluation of DeepMarks’ FP embedding and extraction in
terms of normalized runtime overhead.

Normalized Runtime Overhead (%) FP Embedding FP Extraction
MNIST-CNN 5.214 0.006

CIFAR10-WRN 2.562 0..056

3.6.2 Comparison with the State-of-the-art

In this section, we compare DeepMarks with the state-of-the-art DNN watermarking

method in literature. The work of [UNSS17, NUSS18] proposed a white-box digital watermark-

ing technique for DL models using constraint-based watermarking. The authors evaluate their

approach on CIFAR10-WRN benchmark and show that the embedded watermark tolerates up to

65% parameter pruning. For fair comparison, we also assess the performance of DeepMarks on

CIFAR10-WRN benchmark and encode the FP information in the same layer as reported in the

paper [UNSS17]. Compared to the prior watermarking method, DeepMarks is more robust

against parameter pruning attack since the embedded fingerprint remains even after 99%
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parameters are removed (shown in Figure 3.7b).

We further demonstrate the superior collusion resilience of DeepMarks compared to

the fingerprinting scheme that employs multiple distinct watermarks constructed by [UNSS17].

In our experiments, we assume there are 31 customers in the model distribution system and

use the open-source code [Uch17] to implement WM signature generation, WM embedding,

and WM extraction. The (31,6,1)-BIBD ACC codebook is selected for DeepMarks. Table 3.6

summarizes the comparison results. The test accuracy of the original unmarked CIFAR10-WRN

and the marked one are shown in Column 2 and Column 3, respectively. The BER of WM/FP

extraction is shown in Column 4, indicating that both methods can retrieve the digital marker

correctly for authenticating model authorship.

Table 3.6. Performance comparison between DeepMarks and the state-of-the-art DNN
watermarking technique [UNSS17].

Method
Baseline
Accuracy

Accuracy with
WM/FP

Average
BER

Colluded
Accuracy

Colluders
Detection Rate

Uchida et.al [19] 91.85% 92.15% 0 92.18% 3.84%
Ours 91.85% 92.03% 0 92.14% 100%

To assess the robustness of these two marking methods against FP averaging attack, we

assume that the first three users collude and average the weights in the embedded layer. The

result w̃avg =
1
3(w̃1 + w̃2 + w̃3) is used as the response to the owner’s query. In our experiment,

we assume user 1 produces the colluded DNN by replacing the weights in the marked layer w̃1

with w̃avg while keeping the weights in the other layers unchanged. The test accuracy of the

resulting colluded model is shown in Column 5 of Table 3.6, which is comparable to the baseline

and makes the collusion attack effective. Note that the DNN watermarking method in [UNSS17]

is unaware of potential collusion attacks and does not propose any collusion detection approach.

We implement colluder identification in the watermarking setting by randomly selection from

all feasible colluder sets that satisfy the constraint obtained from the colluded watermark. We

compare the detection rate of the collusion attack in the last column of Table 3.6.

In summary, DeepMarks outperforms the fingerprinting extension built on the state-of-
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the-art DNN watermarking technique [UNSS17] by achieving 100% detection accuracy, which

is significantly higher than 3.84%.

3.7 Summary

DNNs are facilitating breakthroughs in various fields and are increasingly commercial-

ized. Systematic IP protection and digital right management for pre-trained, ready-to-deploy

models has been a standing challenge. We take the first step to tackle this problem by proposing

DeepMarks, an efficient, end-to-end framework that is functionality-preserving and enables

coherent fingerprint insertion in the distribution of weights within the target DNN. We introduce

a comprehensive set of requirements for DNN fingerprinting and empirically corroborate that

DeepMarks respect all criteria. Evaluation results show that DeepMarks yields high detection

rates and low false alarm rates for model ownership proof and user tracing. Furthermore, Deep-

Marks is the first framework that is provably collusion-secure in a large-scale model distribution

system and is robust against various attacks. Our technique can be seamlessly integrated within

existing DL frameworks (e.g., TensorFlow, PyTorch, Theano), thus paving the way for model

designers to achieve reliable technology transfer. Future research directions include devel-

oping advanced codebook construction schemes to further improve collusion resistance, and

investigating collaborative fingerprint embedding among multiple users to improve efficiency.
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Chapter 4

DeepAttest: End-to-End Attestation of
Deep Neural Networks

Emerging hardware architectures for deep neural networks are increasingly commer-

cialized and shall be considered as the hardware-level Intellectual Property (IP) of the device

providers. However, these intelligent devices might be abused and such vulnerability has not

been identified. The unregulated usage of intelligent platforms and the lack of hardware-bounded

IP protection impair the commercial advantage of the device provider and prohibit reliable

technology transfer. This chapter is motivated to design a systematic methodology that provides

hardware-level IP protection and usage control for DNN applications on various platforms.

To address the hardware IP concern, we propose DeepAttest, the first on-device DNN

attestation technique that certifies the legitimacy of the DNN program mapped to the device

of interest. DeepAttest works by designing a device-specific fingerprint which is encoded in

the weights of the DNN deployed on the target platform. The embedded fingerprint (FP) is

later extracted with the support of the Trusted Execution Environment (TEE). The existence of

the pre-defined FP is used as the attestation criterion to determine whether the queried DNN

is legitimate. Our attestation framework ensures that only authorized DNN programs yield the

matching FP and are allowed for inference on the target device. DeepAttest provisions the device

provider with a practical solution to limiting the application usage of his/her manufactured

hardware and prevents unauthorized or tampered DNNs from execution.
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We take an Algorithm/Software/Hardware co-design approach to optimize DeepAttest’s

overhead in terms of latency and energy consumption. To facilitate the deployment, we provide

a high-level API of DeepAttest that can be seamlessly integrated into existing deep learning

frameworks and TEEs for hardware-level IP protection and usage control. Extensive experiments

corroborate the fidelity, reliability, security, and efficiency of DeepAttest on various DNN

benchmarks and TEE-supported platforms.

4.1 Introduction

Deep Neural Networks (DNNs) are increasingly adopted in various fields ranging from

biomedical diagnosis and nuclear engineering to computer vision and natural language processing

due to their unprecedented performance [CW08, FDFC+18]. Methodological and architecture-

level advancements have been proposed to improve the performance and efficiency of DNN

training/execution on diverse platforms [HMD15, CES16, SPS+18]. While the distribution of

intelligent devices facilitates DNNs’ deployment in the real world, IP concerns may arise in the

supply chain. The customers might misuse the device for illegal/unauthorized DNN applications.

In this work, we are motivated to provide hardware-level IP protection and usage control via

on-device DNN attestation to protect the commercial advantages of the device providers.

Prior works have identified the IP concern when deploying contemporary Deep Learn-

ing (DL) models. Various DNN watermarking techniques have been proposed to prevent

copyright infringement of software-level neural IP (consisting of the topology, parameters,

and configuration of the DNN) [UNSS17, DRCK19, CRF+19]. The watermark is embedded

in the distribution of model weights/activations [UNSS17, DRCK19], or the decision bound-

ary [ABC+18, CRK19]. Existing DNN watermarking techniques provide model ownership

proof at the software/functionality level while the authentication overhead and the potential

misuse of the underlying computing platform are not taken into account. Developing an efficient

and effective on-device DNN attestation methodology is challenging since the attestation scheme
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is required to: (i) Preserve the performance (e.g., accuracy) of the deployed DNN; (ii) Provide

reliable and secure attestation decision; (iii) Incur low latency and power consumption to ensure

its applicability in real-time DNN applications and resource-constrained systems.

We develop an end-to-end, on-device attestation framework called DeepAttest to address

the above challenges. DeepAttest, for the first time, extends IP protection to the hardware/device-

level by taking advantage of the Trusted Execution Environment (TEE). Figure 4.1 illustrates the

usage of our framework. DeepAttest takes the pre-trained model and security parameters from the

device provider as its inputs, thus can provide a trade-off between security level and attestation

overhead. A set of verifiable, functionality-preserved DNNs that carry the device-specific

fingerprint are returned as the outputs. Only the ‘marked’ models can pass our customized

attestation and are allowed to run inference on the pertinent device. DeepAttest effectively

detects malicious modifications and prevents unauthorized models from execution.

Figure 4.1. DeepAttest provides device-level IP protection and usage control for
DNN applications.

DeepAttest framework consists of two key phases: (i) Off-line marking stage: DeepAt-

test generates a device-specific fingerprint associated with each target hardware for the device

provider, and embeds it in the probabilistic distribution of the selected weighted within the

deployed DNN. (ii) Online attestation stage: DeepAttest designs a hybrid trigger to control the

activation of DNN attestation, thus can detect both static and dynamic data tampering. When

the attestation is triggered, DeepAttest securely extracts the fingerprint (FP) from the deployed

DL model with TEE’s support and compares it with the true value stored in the secure memory.

The queried DNN is determined to be legitimate and permitted for normal inference if it yields a
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matching FP. Otherwise, the DNN program fails the attestation and its execution is aborted.

By introducing DeepAttest, this work makes the following contributions:

• Enabling effective on-device attestation for DNN applications. The proposed end-to-

end attestation framework is capable of verifying the legitimacy of an unknown DNN

with high reliability (preventing unauthenticated DNNs from execution) and high integrity

(allowing legitimate DNNs to run normal inference).

• Characterizing the criteria for a practical attestation scheme in the domain of deep

learning. We introduce a comprehensive set of metrics to profile the performance of

pending DNN attestation techniques. The introduced metrics allow DeepAttest to provide

a trade-off between security level and attestation overhead.

• Leveraging an Algorithm/Software/Hardware co-design approach to develop an

efficient attestation solution. Our device-aware framework is equipped with careful

design optimization to ensure the minimal overhead and enhanced security of attestation.

As such, our solution provides a lightweight on-device DNN attestation scheme that is

applicable to resource-constrained platforms.

• Investigating DeepAttest’s performance on various DNN benchmarks and TEE-

supported platforms. We perform extensive experiments on DNNs with different topolo-

gies using TEE-supported CPU (Intel SGX) and GPU (via simulation) platforms.

DeepAttest opens a new axis for the growing research in secure DL. Our approach is

orthogonal to existing secure DL methods that aim to verify the correctness of DNN execution

or preserve the privacy of sensitive data. DeepAttest paves the way for on-device attestation and

platform-aware usage control for DNN applications.
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4.2 Related Works

4.2.1 Secure DNN Evaluation on Hardware

TEE Protection Mechanism. Modern CPU hardware architectures provide TEEs to ensure

secure execution of confidential applications using program isolation. Intel SGX [XSLH16],

ARM TrustZone [LIM09] and Sanctum [CLD+17] are examples of TEEs. TEEs are called

enclaves in SGX. To prevent malicious programs from interfering executions in TEE, data is

encrypted by Memory Encryption Engine (MEE) before it is put into the Enclave Page Cache

(EPC) located in the Processor Reserved Memory (PRM). We refer to this process as secure

memory copy. Programs inside the TEE can read or write data outside of the TEE, while

programs outside of the TEE is not allowed to access the EPC. TEEs on other platforms utilize

similar mechanisms to isolate the execution of the protected program by securing memory

access to the code and data of the confidential program. Besides the CPU-level TEE support,

Graviton [VVB18] proposes a new GPU architecture design that provides the TEE capability.

Comparison between Secure DNN Techniques. Figure 4.2 illustrates the comparison between

the state-of-the-art secure DNN techniques and DeepAttest in terms of platform requirement,

incurred workload in TEE, resistance to off-line/online data tampering, and capability of verifying

DNNs’ inference results. A quantitative overhead comparison is given in the last two columns.

Detailed explanations about the overhead are given in Section 4.7.6. Existing secure DNN

inference can be divided into two categories: full execution inside the TEE, and outsourcing

partial computations from the TEE to untrusted environments. DeepAttest identifies a new

security dimension named ‘device-level’ IP protection and usage control. Note that DeepAttest

is orthogonal to the techniques that provide verifiable results and privacy-preserving property.

We discuss the limitation of the contemporary secure DNN techniques below.

Fully TEE-based DNN Evaluation. A naive way to ensure trusted DNN inference

is to run all computations within the TEE [GTS+18, LLP+19]. However, such an approach

incurs a prohibitive overhead due to: (i) Limited PRM size in TEEs for execution. For instance,
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Figure 4.2. Comparison of existing secure DNN techniques and DeepAttest.

the enclave memory size of Intel SGX is 128MB, which is much smaller than the parameter

size of a contemporary DL model (e.g., 189MB for ResNet-101). As such, the weights need

to be reloaded for different inputs. (ii) Encryption and decryption by MEE. Data that is com-

municated with the secure memory needs to be encrypted/decrypted; (iii) Additional hardware

behaviors due to CPU‘s context switch [Har17]. Operations such as flushing Translation Looka-

side Buffer (TLB) [ACH+10] and out-of-order execution pipeline are necessary for security

consideration [CLD+17], which incurs extra overhead.

Outsource-based Secure DNN Inference. Slalom [TB18] is a framework for secure

DNN execution on trusted hardware that guarantees integrity. It partitions DNN computations

into non-linear and linear operations. These two parts are then assigned to the TEE and the

untrusted environment for execution, respectively. Freivalds’ algorithm [MR95] is used to

verify the integrity of linear computations performed on the untrusted GPU. Slalom reduces the

overhead compared to fully TEE-based inference. However, the main disadvantage of Slalom is

that it need to transfer intermediate results into the TEE to complete DNN forward propagation,

thus incurring large communication overhead.

TEE-based Attestation (Our Work). Unlike the previous methods, DeepAttest is

the first framework that can prevent both off-line and online data tampering. More specifically,

Slalom [TB18] and fully TEE-based DNN evaluation [GTS+18, LLP+19] can guarantee result

integrity and protect the weight parameters from online data tamper. However, these two methods

are vulnerable to off-line data tamper (e.g., fault injection) where the attacker modifies the data
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stored in the untrusted memory before it is used in the secure DNN inference.

4.2.2 DNN Watermarking

A line of research has focused on addressing the soft-IP concern of DL models using

digital watermarking [UNSS17, ABC+18, DRCK19, LMPT20]. The authors of [UNSS17]

encode the watermark (WM) in the transformation of model weights by adding constraints to

the original objective function. The works [ABC+18, LMPT20] extend DNN watermarking to

remote cloud service. Particularly, they design specific image-label pairs as the watermark set

and embed the WM in the model’s decision boundary. DeepSigns [DRCK19] presents the first

data-aware watermarking approach by embedding the WM in the dynamic activation maps.

All of the above-mentioned DNN watermarking techniques focus on software-level model

authorship proof. Note that a naive implementation of DNN watermarking on the hardware is

inadequate to provide an efficient and trustworthy attestation solution due to the unawareness of

resource management and potential attacks. As such, these methods are not suitable for hardware-

level IP protection. The works [ABC+18, LMPT20] require DNN inference of multiple inputs

on the local device and TEE-supported WM checking, which is prohibitively costly. Compared to

weight-based watermarking [UNSS17], DeepAttest’s fingerprint extraction from the DL model

involves fewer computations since no extra sigmoid function is required. In this work, we

develop an efficient on-device attestation scheme that ensures the legitimacy of the deployed

DNN with negligible overhead.

4.2.3 Trusted Execution Environment

Previous research [BW12, TMLL06] has paved the path for secure isolated execution on

general-purpose processors. Intel SGX [XSLH16] is the most widely used TEE with a user inter-

face. The vulnerabilities of SGX to potential attacks such as spectre[KHF+19], cache[GESM17]

or other side-channel attacks are later identified. Besides TEE for CPU platforms, a growing

amount of research has been done to provide TEE for other hardware platforms. For instance, Ty-
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Tan [BEMS+15] and TrustLite [KSSV14] are TEEs proposed for embedded systems. DeepAttest

is generic and can be extended to these computing platforms with TEE support.

4.2.4 Privacy-Preserving DNN

Beyond integrity violation and data tampering, privacy is another critical concern in

the DL domain. Various techniques have been suggested for Privacy-Preserving Machine

Learning (PPML) [RWT+18, HRGK18, HK19, RSC+19]. CryptoNet [GBDL+16] leverages

Homomorphic Encryption (HE) to achieve PP-inference with prohibitive latency due to extensive

computations. Gazelle [JVC18] accelerates the Levelled HE-based DL inference by exploring

SIMD optimization. Garbled Circuit (GC) is an alternative approach [SHS+15, RRK18] for

PPML. Compared to HE, GC-based PPML schemes have a smaller computation overhead but

require more communication [HTGW18, ARC19].

4.3 Motivation

Prior works have focused on model ownership proof using software-level DNN water-

marking [UNSS17, ABC+18, DRCK19]. Existing watermarking techniques are oblivious of the

computing platform and verification overhead, thus the security and efficiency of their execution

on the hardware are not guaranteed (detailed in Section 4.2). DeepAttest is motivated to address

the above deficiencies. We provide an attestation-based IP protection technique that is bounded

to hardware and restrict device usage for DNN applications. We identify three challenges of

developing a practical on-device DNN attestation method and detail each one below.

(C1) Functionality-preserving. The attestation scheme shall not degrade the performance

of the original DL model. Since authenticated DNNs are allowed for normal inference, their

functionality (e.g., accuracy) shall be preserved to provide the desired service.

(C2) Security and Reliability. On-device attestation shall be secure and yield reliable decisions

under a strong threat model. Note that the attack surface of device-level attestation is larger than

the one of software-level attestation.
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(C3) Low Overhead. The attestation protocol shall incur negligible overhead to ensure its

applicability in real-time data applications and resource-constrained systems.

The constraint C1 imposes the algorithm/software-level challenge on the design. Chal-

lenges C2 and C3 need to be resolved from algorithm/software/hardware all three levels. We

explicitly develop systematic design principles to tackle the identified challenges C1-C3 as

detailed in Section 4.4.

4.4 DeepAttest Overview

DeepAttest is the first DNN attestation framework for device IP protection & usage

control and is applicable to any computing platform with TEE support. Figure 4.3 illustrates

the global flow of DeepAttest. In the off-line marking stage, the device manufacturer obtains

the secret FP keys and a set of marked DL models. The FP keys are then stored in the secure

memory of the TEE on the target device. The user is required to purchase the marked DNN from

the device provider to pass the online attestation and execute normal inference. Deployment of

unauthorized DNN programs and malicious fault injection will be detected. The target device can

be used with a co-processor (e.g., ASIC, FPGA), in which case usage control can be extended to

it. On-device attestation can be performed on the co-processor if it has TEE support.

Figure 4.3. DeepAttest’s global flow for on-device DNN attestation.
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In the following of this section, we present the Design Principles (DPs) of DeepAttest to

address the corresponding challenges in Section 4.3.

(DP1) Regularization-based DNN Fingerprinting. To preserve the functionality of the perti-

nent DNN program (C1), DeepAttest explores the over-parameterization of high dimensional

DNNs and utilizes regularization to encode the device-specific FP in the DL model. Regulariza-

tion [BNS06, SS01] is a common approach to alleviate model over-fitting [SHK+14, RSJ+18].

We detail the two key phases of DeepAttest’s algorithm/software design below.

Off-line DNN Marking. DeepAttest takes the pre-trained DL model and the owner-

defined1 security parameters as its inputs. DeepAttest then outputs the FP secret keys along with

the corresponding set of marked DNNs that are ready-to-be-deployed on the target device. Note

that FP embedding is a one-time task performed by the owner before the authorized models are

deployed on the target device. Furthermore, the secret FP keys stored in the secure memory

can be updated after device distribution. This is feasible since current TEEs typically support

remote attestation (RA) that allows secure memory update of the TEE. Details about off-line

DNN marking are given in Section 4.5.1.

Online DNN Attestation. DeepAttest utilizes a hybrid triggering scheme where a

TEE-based attestation process is instantiated when the static or the dynamic trigger is activated.

During the attestation phase, the marked weights data that carries the FP is copied to the secure

memory inside the TEE. The FP is then extracted from the weights within the TEE. Finally, the

Bit Error Rate (BER) between the recovered FP and the ground-truth one is computed. The

verified DNN with zero BER is allowed to run normal inference. Illegitimate DL models with

non-zero BERs are aborted. Details about the attestation protocol are discussed in Section 4.5.2.

(DP2) TEE-based Attestation. Hardware-bounded attestation has larger attack surface com-

pared to the one in software-level [MGDC+18]. The program might be corrupted by the adversary

in an untrusted execution environment. As such, the computation involved in attestation shall

1We use owner and device provider interchangeably in the paper.
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be performed securely. DeepAttest utilizes TEE-supported trusted hardware to guarantee the

security and reliability of the attestation result (addressing C2, detailed in Section 4.5.2).

(DP3) Algorithm/Software/Hardware Co-design. We present multiple design optimization

techniques to enhance the efficiency and security of DeepAttest. As a result, our framework

is applicable to real-time data applications and resource-constrained systems. DeepAttest’s

hardware optimization includes: (i) Data pipeline that hides the majority of the TEE latency

during attestation; (ii) Early termination that avoids unnecessary computation; (iii) Shuffled

data storage that provides stronger security against fault injection. These optimization address

challenge C3 as detailed in Section 4.6.

4.4.1 DNN Attestation Metrics

We introduce a comprehensive set of criteria to evaluate the performance of a DNN

attestation technique. Table 4.1 details the criteria for an effective DNN attestation methodology.

Fidelity requires that the functionality (e.g., accuracy) of the pre-trained model shall not be

degraded after the off-line DNN marking. Reliability and integrity means that the attestation

approach shall prevent unauthorized DNNs from executing (low false alarm rate of FP detection)

and allow normal inference of legitimate DNNs (high detection rate of the embedded FP),

respectively. A reliable attestation method is also desired to satisfy the security requirement such

that the attestation decision is trustworthy. Efficiency requires that the overhead (i.e., latency,

power consumption) incurred by attestation shall be negligible. Scalability and generalizability

ensure that the attestation method can be applied to DNNs of various size and diverse TEE-

supported hardware devices, respectively. DeepAttest satisfies all the requirements listed in

Table 4.1 as shown in Section 4.7.

4.4.2 Assumptions and Threat Model

DeepAttest’s Assumptions. We aim to design a robust attestation scheme that yields reliable

decisions in various situations. More specifically, we consider the following three adversarial
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Table 4.1. Requirements for an effective and practical on-device attestation technique
for deep neural networks.

Requirements Description
Fidelity Functionality of the deployed DNN shall not be degrade as a result of FP embed-

ding in the marking stage.
Reliability Online attestation shall be able to prevent unauthorized DNN programs (including

full-DNN program substitution and malicious fault injection) from executing on
the specific device.

Integrity Legitimate DNN programs shall yield the matching FP with high probability and
run normal evaluation.

Efficiency The online attestation shall yield negligible overhead in terms of latency and
energy consumption.

Security The attestation method shall be secure against potential attacks including fault
injection and FP forgery.

Scalability The attestation technique shall be able to verify DNNs of varying sizes.
Generalizability The DNN attestation framework shall be compatible with various computing

platforms.

levels: (i) Operating System (OS) is trusted and can lock the pages allocated for the weight data.

In this case, the weights in the main memory will not be tampered or evicted. (ii) OS cannot lock

the memory but is able to provide information about the pages associated with the weights (e.g.,

page fault or page modified); (iii) Hardware provides a trusted timestamp while the OS might

be corrupted (thus does not satisfy the requirements in (i) or (ii)). DeepAttest tackles with the

above scenarios by designing a hybrid trigger scheme using two sources, i.e., the OS and the

secure timer, as detailed in Section 4.5.2.

Threat Model. The adversary might try to bypass on-device attestation for gaining illegal profits.

We detail three potential attacks below and demonstrate the experimental results of DeepAttest’s

security in Section 4.7.

(i) Full-DNN Program Substitution. Untrusted users may attempt to misuse the dis-

tributed device by mapping illegitimate DL model to it. In this case, the adversary is assumed

to know the physical address of the deployed DNN (e.g., by eavesdropping) and substitutes

the original content with his target unauthorized DNN. DeepAttest is motivated to address the

susceptibility of the intelligent device to such attacks.

(ii) Fingerprint Forgery Attack. In order to successfully pass the attestation, the attacker
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might attempt to forge the device-specific signature stored in the secure memory inside the TEE.

More specifically, the adversary may use brute-force searching and try to find the exact secret

key used in FP embedding to reconstruct the device’s fingerprint and yield zero BER.

(iii) Fault Injection. Besides the program-level replacement, the attacker may also

conduct more fine-grained memory content modification attacks. We assume a strong attack

model where the adversary might know the memory allocation on the target device and randomly

selects memory blocks for malicious purpose (e.g., malware, pirating sensitive information).

Such local memory modification is stealthier than the DNN-program substitution discussed

above and poses potential threats to the intelligent device.

4.5 DeepAttest Design

DL models typically feature non-convex loss functions with many local minima that are

likely to yield similar accuracy [CHM+15]. DeepAttest takes advantage of the non-uniqueness

of non-convex problems to embed the device’s FP in the distribution of the selected weights.

The embedded FP is later extracted in the attestation phase as the identifier to determine the

legitimacy of the DNN. We use Convolution Neural Networks (CNNs) and Residual Networks

to illustrate DeepAttest’s workflow. Note that DeepAttest is generic and can be applied to other

network architectures. We detail the two key stages discussed in Section 4.4 below.

4.5.1 Off-line DNN Marking

Algorithm 1 outlines the steps involved in DeepAttest’s off-line DNN marking (i.e., FP

embedding) for one intermediate layer. The extension to multi-layer fingerprinting is straightfor-

ward. DeepAttest’s DNN marking consists of the following three steps:

1 Key Generation. Besides the position of the target layer that carries the FP, DeepAttest’s FP

keys consist of three components: a codebook C, an orthogonal basis matrix U , and a projection

matrix X . We explain the design of each component as follows:

(i) Devices Codebook: Given the code length v and the maximal number of supported users b
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specified by the owner, DeepAttest generates a codebook C ∈ Bv×b for the device provider. The

codebook is randomly generated where each column of C is a unique code-vector associated

with a specific device. The code-vector is stored in the secure memory within the TEE on the

target hardware.

(ii) Orthogonal Basis Matrix: The orthogonal matrix Uv×v is generated from element-wise

Gaussian distribution for security consideration [WTWL04]. The columns of U are used as the

basis vectors for FP construction in step 2.

(iii) Projection Matrix: The owner’s secret projection matrix Xv×N is generated from standard

normal distribution N (0,1) where N is the embedding dimension of the target layer. We

explicitly illustrate the design of the FP carrier for convolutional (conv) layers and fully-connected

(FC) layers below:

Convolutional Layer. The weight matrix of a conv layer is a 4D tensor W ∈RD×D×F×H

where D is the kernel size, F and H is the number of input and output channels, respectively. We

average the weight W over the output channel dimension and stretch the result to a vector w. The

FP is embedded in the projection of the vector w ∈ RN (detailed in step 3) where the embedding
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dimension is N = D×D×F .

Fully-Connected Layer. The weights of the FC layer is a 2D matrix WF×H where F is

the input dimension and H is the number of units. Similar to the processing for conv layers, we

average W over the last dimension and use the resulting vector w ∈ RN to carry the FP. Note that

the embedding dimension N = F here.

2 Fingerprint Construction. DeepAttest constructs code modulated FPs as follows. Given

the codebook Cv×b obtained in step 1, the coefficient matrix Bv×b for FPs is computed from the

linear mapping bi j = 2ci j−1 where ci j ∈ {0,1}. The FP of the jth user is crafted as the linear

combination of basis vectors in U (obtained in step 1) with bj ∈ {±1}v as the coefficient vector:

fj =
v

∑
i=1

bi jui, (4.1)

3 Model Fine-tuning. The FP designed from Equation (4.1) is embedded in the weight

parameters of the selected layer in the pre-trained model by incorporating the FP-specific

embedding loss to the conventional loss function (L0):

L = L0 + γ ·Mean Square Error(f−Xw). (4.2)

Here, γ is the embedding strength that controls the contribution of the additive FP

embedding loss LFP = Mean Sqaure Error(f−Xw). The vector w is the flattened averaged

weights of the target layers that carry the FP information. DeepAttest minimizes the FP-specific

loss LFP together with the conventional loss during DNN training to enforce the FP constraint

in the distribution of weights in the selected layer.

4.5.2 Online DNN Attestation

The secret FP keys generated in the off-line marking stage are stored in the secure

memory inside the TEE. The returned DL models that carry the device-specific FPs are deployed
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on the target platform and stored in the untrusted memory for later execution. Algorithm 2

outlines the two main steps in the online attestation stage. It takes the FP keys and the weights in

the marked layers as the inputs. The BER between the extracted FP from the queried weights and

the ground-truth FP (included in FP keys) is returned as the output. We detail each step below.

1 Hybrid Attestation Trigger. DeepAttest leverages a hybrid trigger mechanism for activating

DNN attestation as shown in Figure 4.3. A static trigger signal is generated when the OS detects

that a DNN program requests to start. it enables DeepAttest to prevent off-line data tamper

if the attacker tries to modify the memory content stored in untrusted environment. During

program execution, the dynamic trigger is generated from two sources: (i) Memory change

signal provided by OS monitoring. OS keeps monitoring the status change of pages allocated

for the DNN program and raises a dynamic trigger signal if any online data pages modification

is detected; (ii) A timestamp signal from the trusted timer [Int17]. The dynamic trigger from

the secure timestamp has a fixed interval and provides enhanced security when the OS memory

monitoring signal is tampered. Incorporating the dynamic triggering scheme is important to

77



enable online data tamper detection. The final trigger signal is the logic-OR of the static and

the dynamic signal. DeepAttest is able to detect both off-line and online data tamper due to the

incorporation of the static and dynamic trigger, respectively.

2 Secure Fingerprint Detection. When the trigger is enabled, the queried DNN program is

suspended until the attestation finishes. The fingerprint of the DL model is extracted with the

TEE support and compared with the true value stored in the secure memory. More specifically,

DeepAttest first acquires the weights of the marked layer by moving them from the untrusted

memory into the secure memory within the TEE. Meanwhile, OS locks the pages allocated

for the queried DNN program if it has the capability. The core of the online attestation is

recovering the code-vector c′ ∈ {0,1}v from the weight data W . This reconstruction involves

matrix multiplication and an element-wise hard-thresholding as shown in Algorithm 2. Note that

the recovering of each bit in c′ is independent, DeepAttest leverages this observation from two

perspectives (detailed in Section 4.6.2): (i) Data pipeline: DeepAttest utilizes data independence

for parallel computation, thus reduces the attestation latency; (ii) Scalability: DeepAttest allows

transferring partitioned blocks of the weight data into the secure memory in TEE. As such,

DeepAttest attestation can be applied to arbitrary large DL model and TEE platforms with

limited secure memory.

Attestation Case Study: We demonstrate how DeepAttest authenticates a DNN program using

the extracted FP below. Let us consider a codebook C7×7 shown in Equation (4.3). The FPs for

7 users shown in Equation (4.4) are constructed using the columns of the codebook C and the

basis matrix U as described in Section 4.5.1.
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C =



0 0 0 1 1 1 1

0 1 1 1 0 1 1

1 0 1 0 1 0 1

0 1 1 1 1 0 0

1 1 0 0 1 1 0

1 0 1 1 0 1 0

1 1 0 1 0 0 1



, (4.3)



f1 =−u1−u2 +u3−u4 +u5 +u6 +u7,

· · ·

f6 =+u1 +u2−u3−u4 +u5 +u6−u7,

f7 =+u1 +u2 +u3−u4−u5−u6 +u7,

(4.4)

Let us take the first device FP as an instance where the ground-truth FP (f1) is stored in

the secure memory. For a legitimate DNN program whose weights carry the FP vector f′ = f1, the

corresponding coefficient vector can be recovered by computing the correlation of the fingerprint

with the basis vectors:

b
′
= f

′T
[u1, ...,u7] = [−1,−1,+1,−1,+1,+1,+1].

The code-vector is then extracted by the inverse linear mapping ci j =
1
2(bi j + 1), resulting in

c′ = [0,0,1,0,1,1,1]. Since the recovered code-vector c′ exactly matches c1 (which is the first

column of the codebook in Equation (3.3)), DeepAttest returns BER = 0 and allows the queried

DNN program to execute normal inference. This example shows that DeepAttest respects the

integrity requirement in Table 4.1 and can effectively detect the embedded FP in the legitimate

DNN. Furthermore, the computation required to recover the FP code-vector is simple, rendering

DeepAttest lightweight.

Note that for the first device that has the device-specific code-vector c1), any DNN
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program that cannot yield a matching code-vector (which implies a non-zero BER) will be

aborted by our attestation protocol. As such, DeepAttest also satisfies the reliability requirement

by terminating unauthorized DNN programs. The secret FP keys are stored in the secure memory

inside the TEE and is tamper-resistant, suggesting DeepAttest’s security.

4.6 DeepAttest Optimization

DeepAttest framework integrates innovative hardware optimization techniques to ensure

high security (Section 4.6.1) and efficiency (Section 4.6.2). We explicitly discuss two design

optimization below.

4.6.1 Shredder Storage

DeepAttest utilizes a ‘shredder’ storage format instead of continuous storage to provide

stronger security against the fault injection attack. More specifically, DeepAttest shuffles the

weights and stores the resulting data in the untrusted memory. Note that the shuffling pattern

is determined by the owner in the off-line stage, thus the attacker has no knowledge about

the locations of the marked weights. This method is intrigued by the idea of Oblivious RAM

(ORAM) where the memory blocks are duplicated and shuffled to hide the memory access

pattern from adversary [GO96]. However, we consider a different scenario where data shuffling

is performed inside the model parameters to prevent fault injection.

Figure 4.4 illustrates the intuition of high attestation security using shredder storage.

When the marked weights are stored continuously, the adversary can easily find a safe position

to inject malicious memory blocks without overlapping with the marked region (shadowed area).

If the blocks containing the marked weights are shuffled, our online attestation scheme is more

likely to yield a non-zero BER and abort the program.

DeepAttest enforces a theoretical upper bound on the success rate (η) of the attacker

who aims to perform fault injection while ensuring BER = 0 for attestation. We formulate the

mathematical problem as follows. Assuming all weights of the deployed DNN takes N memory
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Figure 4.4. Security optimization using shredder storage

blocks where n of them carry the device-specific FP information. The attacker tries to inject k

segments of equal size (s blocks) into the memory while still pass online attestation. We assume

the attacker does not know the storing pattern of weights and randomly inserts his malicious

blocks into the memory. One can see that the intervals between the adjacent marked blocks

determine the success probability of the attacker. DeepAttest’s shredder storage independently

and randomly allocates each marked block, thus the distribution of the locations of the marked

blocks can be modeled as a Poisson Process with the rate λ = n
N . As such, the interval X between

two neighboring marked blocks is a random variable with the distribution function:

P(X ≥ s) = e−λ s. (4.5)

For n marked blocks, the corresponding interval sequence has length n+ 1, thus can be de-

noted as SX = {X1,X2, ...,Xn+1}. Recall that Xi are i.i.d and satisfies exponential distribution

parameterized by λ . To successfully insert a single segment, the adversary can only select the

intervals which have values equal or larger than the segment size s. The number of such intervals

satisfying the constraints {Xi ∈ SX ,Xi ≥ s} is a random variable with Binomial Distribution.

More specifically, B is a binomial distributed random variable where n+1 independent trials are
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conducted with the success rate p = P(X ≥ s) given in Equation (4.5) for each trial:

P(B = b) =Cb
n+1 pb(1− p)n+1−b. (4.6)

Combining the above analysis, the success rate of the attacker (parameterized by s and k) can be

computed as follows:

Pa =
n+1

∑
b=k

P(B = b) ·
Ck

b

Ck
n+1

. (4.7)

DeepAttest provides a tunable security level against fault injection by selecting the

parameter λ and the upper bound on the attack success rate Pa < η . Figure 4.5 illustrates the

detection performance of DeepAttest’s shredder storage. The x-axis is the injection ratio defined

as φ = k·s
N and the y-axis is the marked ratio λ = n

N . We can see from the figure that a larger

injection ratio or a larger marked ratio results in a lower attack success rate (i.e., data tampering

is more likely to be detected by DeepAttest). Figure 4.5 suggests the trade-off between the

resistance against fault injection (measured by the tolerated injection ratio) and the attestation

overhead (characterized by the marked ratio used in DNN fingerprinting).

Figure 4.5. DeepAttest’s detection performance of fault injection. The relation between
the injection ratio and the minimal marked ratio with varying attack success rate is shown.
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4.6.2 Efficient Attestation

Customized Attestation Interval. As described in Section 4.5.2, DeepAttest utilizes both

static and dynamic trigger signals to activate on-device DNN attestation. Such a hybrid triggering

mechanism provides a trade-off between security and efficiency. Intuitively, checking the FP with

a smaller interval gives stronger security while incurring larger overhead. The device provider

can leverage this trade-off to customize the configuration of the attestation trigger in her device

based on her resource budget and the desired security level.

Data Pipelining. Due to the limited size of enclave memory, we pipeline secure memory

copy and the FP computation in TEE as shown in Figure 4.6. To this end, we create two

pipelined TEE threads to move the partitioned weight data into the TEE and extract the FP,

respectively. The enclave memory occupied by FP extraction is freed once the computation is

finished and no intermediate results need to be stored. As such, the weight parameters of large

sizes can be easily fitted into the enclave memory. Note that our pipeline optimization is feasible

since the reconstruction of each bit in the FP is independent and parallelizable as discussed in

Section 4.5.2. Such a data partitioning scheme further improves DeepAttest’s scalability.

Early Termination. To further reduce the attestation overhead, we avoid unnecessary com-

putation and communication using early termination. More specifically, the online attestation

terminates and yields the abortion command once a mismatch between the extracted FP segment

and the pre-specified device-specific FP is detected as shown in Figure 4.6.

Figure 4.6. Illustration of DeepAttest’s data pipeline and early termination for TEE-
based attestation.
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4.7 Evaluation Results

We assess the performance of DeepAttest according to the requirements discussed

in Table 4.1. A codebook C31×31 that accommodates 31 users is used in our experiments.

Without explicit hyper-parameter tuning, we set the embedding strength to γ = 0.1 and fine-

tune pre-trained DNN for 5 epochs with the learning rate in the last stage for off-line DNN

marking. The threshold for code-vector extraction is set to τ = 0.85. We investigate DeepAttest’s

performance on Intel-SGX (TEE-support CPU platform) and Graviton-based TEE simulation

(GPU platform) [VVB18]. DeepAttest is orthogonal to the existing secure DNN evaluation

techniques shown in Figure 4.2 and we provide a horizontal overhead comparison in Section 4.7.6.

Details about the hardware platforms and DNN benchmarks are discussed below.

Experimental Setup. To evaluate DeepAttest on TEE-supported CPUs, we use a secure container

called SCONE [ATG+16] that is built upon Intel SGX [XSLH16] execution support. When the

hybrid trigger is activated, DeepAttest instantiates an attestation process as an enclave inside

the SGX engine. We use a host desktop with a i7-7700k processor and measure the energy

consumption using pcm-monitor utility.

For evaluations on trusted GPUs, we build a TEE simulator for GPUs based on the

architecture design proposed in Graviton [VVB18] since there are no existing TEE-supported

GPUs available. GPUs can use the device driver to monitor the state of pages inside its memory,

thus providing DeepAttest with the trigger signal for attestation. Our TEE-supported GPU

simulator restricts the secure memory size to 300MB using memory partition techniques. To

ensure isolation, our simulator performs encryption and decryption on the data interacting with

the secure memory. More specifically, the weight data stored in the untrusted DRAM is first

encrypted by our GPU simulator using authenticated encryption (AES in GCM mode) and

copied to the secure memory [VVB18]. The resulting data is then decrypted before it is used in

TEE-based FP extraction in the online attestation stage. The encryption and decryption latency

follows [Syn17]. We use Nvidia RTX 2080 as the GPU base and measure the power consumption
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using nvidia-smi utility.

DNN Benchmarks Summary. We corroborate DeepAttest’s effectiveness on various DNN

benchmarks and summarize them in Table 4.2. Since DeepAttest utilizes a hybrid trigger whose

overall activation interval is uncertain, we assume the average trigger interval is f = 100, meaning

that the attestation is run once every 100 images. We emphasize that DeepAttest enables the

owner to customize the trigger configuration and show the attestation overhead under different

intervals in Section 4.7.5. We set the minimal marked ratio to λm = 0.1, ensuring a maximal

success rate of fault injection η = 0.1 under injection ratio φ > 0.04 (Figure 4.5).

Table 4.2. Summary of the evaluated benchmarks.

Benchmark Dataset Model Size
(MB)

Multiply-Add
Operations

(Mops)

Marked Layer Size
(MB)

MNIST-CNN MNIST [LBBH98] 1.3 24 0.13 (10.1%)
CIFAR-WRN CIFAR10 [KH+09] 2.4 198 0.29 (12.3%)

VGG16 ImageNet [DDS+09] 276.7 25180 28.3 (10.2%)
MobileNet ImageNet [DDS+09] 8.4 569 1.05 (12.6%)

DeepAttest API. Our end-to-end solution provides a highly-optimized API compatible with

current DL frameworks and can perform the two key phases in Algorithm 1 and 2. Furthermore,

DeepAttest API provisions tunable security level and attestation overhead by allowing the owner

to specify the security parameters including the TEE platform (CPU/GPU/other co-processors)

for attestation, upper bound on fault injection success η , tolerated injection ratio φ , code-vector

length v, and the trigger configuration.

4.7.1 Fidelity

Table 4.3 shows the test accuracy of the baseline model and the corresponding marked

model for each benchmark in Table 4.2. The marked accuracy is the average value of the total

31 fingerprinted models. One can see that the accuracy of the marked model is comparable to

the one of the baseline model, indicating that DeepAttest’s off-line marking phase preserves the

functionality of the pre-trained model. Slight accuracy improvement can be observed in several
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benchmarks. This is due to the fact that adding regularization to the training process helps to

mitigate model over-fitting [SHK+14, DRCK19].

Table 4.3. Fidelity requirement. The baseline accuracy is preserved after fingerprint
embedding in the underlying benchmarks.

Benchmark MNIST-CNN [Kat16] CIFAR-WRN [UNSS17] VGG16 [SZ14a] MobileNet [HZC+17]
Setting Baseline Marked Baseline Marked Baseline Marked Baseline Marked

Test Accuracy (%) 99.52 99.66 91.85 92.03 91.20 91.23 85.83 85.75

4.7.2 Reliability and Integrity

Reliability. The reliability criterion requires that the unauthenticated DNN program shall

not be allowed for execution, which is equivalent to yielding a non-zero BER for the queried

model in the online attestation stage. We consider the following two sources of an illegitimate

DNN: (i) Arbitrary unmarked DNN programs. The malicious user may intend to overuse the

device by executing a DL model that is not authorized by the owner; (ii) Fault injection into an

authenticated DNN program. The adversary may perform fault injection on the legitimate DNN

for malicious purpose (e.g.,malware insertion). Note that the first scenario can be considered as

a special case of the second one where the faulty injection level is sufficiently large.

To evaluate DeepAttest’s reliability under the above unintended modifications, we add

random Gaussian noise with zero mean, different standard deviation (magnitude of noise) and

different spatial range (percent of modified elements) to the weight matrix in the marked layer.

Figure 4.7 shows the resulting BER of the extracted FP after adding noise to the weights in

the marked conv layer and the marked FC layer. One can see that the extracted BER becomes

non-zero for small values of noise range and noise magnitude, indicating that DeepAttest can

effectively forbid the maliciously modified DNN program from execution.

Integrity. The integrity criterion means that legitimate DNNs shall pass the attestation and run

normal inference. Such a requirement suggests that the attestation protocol shall yield a high FP

detection rate (BER=0) for marked models. Figure 4.7 indicates that DeepAttest respects the

integrity criterion since the BER is zero when no noise is added to the marked weights.
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Figure 4.7. Reliability and integrity assessment of DeepAttest under noise.

4.7.3 Security

DeepAttest is secure against fingerprint forgery attack. To construct a DNN program that

has the same device FP as the one stored in the secure memory inside the TEE, the adversary

needs to know: (i) The DNN marking method (i.e., Algorithm 1); (ii) The secret projection

matrix X , orthogonal matrix U , and the code-vector c; (iii) Memory addresses of the marked

weights stored in shredder storage format. Using brute force search to find all the above

information is prohibitively expensive. DeepAttest might be compromised if the underlying

TEE is attacked. For instance, Intel SGX has been identified to be vulnerable to side-channel

attacks [LSG+17, BMD+17]. To address the susceptibility, hardware- and software-based

defenses have been proposed [LSG+17, MAK+17]. DeepAttest is orthogonal to these methods

and can be further secured when integrated with them.

4.7.4 Qualitative Overhead Analysis

We provide a qualitative analysis of the DeepAttest’s overhead. Since the DNN marking

is an off-line, one-time process, we focus on the overhead in the online attestation phase

here. Recall that the weights in the marked layers are transferred from the untrusted memory

to the secure memory inside the TEE to extract the FP as outlined in Algorithm 2. The data

communication overhead is O(NH) where N is the embedding dimension and H is the number of
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output channels/units as described in Section 4.5.2. To reduce attestation computation overhead,

DeepAttest pre-computes the product XTU used in FP extraction (b←wT ·XTU in Algorithm 2).

As such, the computation complexity of online attestation is O(vN). The above overhead analysis

holds for both conv and FC layers.

4.7.5 Efficiency

We use the latency and energy consumption per image on the untrusted CPU/GPU as the

base value and measure the relative overhead of DeepAttest. As shown in Figure 4.8, DeepAttest

incurs on average 7.2% and 4.4% relative latency overhead on the TEE-support CPU and GPU

platforms across all benchmarks, respectively. The average energy overhead of DeepAttest

is 4.1% and 1.2% for CPU and GPU devices. The normalized energy overhead incurred by

DeepAttest is low since the power in the attestation is much smaller compared to one of DNN

inference on a given platform. The normalized overhead of DeepAttest depends on the DNN

architecture for both TEE-supported CPU and GPU platforms. More specifically, DeepAttest

incurs smaller latency and energy overhead on DL models with larger size (parameter count)

and more operations. This is due to the fact that small DNNs (e.g., MNIST-CNN) have lower

Figure 4.8. DeepAttest’s normalized latency and energy overhead on TEE-
supported (a) CPU and (b) GPU platforms.
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base overhead compared to large models (e.g., VGG16). Comparing the overhead on different

platforms, DeepAttest is more efficient when executed in the TEE in GPUs than CPUs.

Overhead Breakdown

To better understand the source and bottleneck of attestation overhead, we analyze the

individual runtime of secure memory copy and FP extraction computation. Figure 4.9 shows the

runtime contribution of these two processes. One can see that secure memory copy dominates

DeepAttest’s overhead in small benchmarks. This is due to the fact secure memory copy

involves data loading/encryption and assistant operations executed when entering and exiting

an enclave [Har17]. DeepAttest’s secure computation is lightweight since: (i) Secure memory

reading is faster than writing [WBA17]; (ii) The involved operations are simple (described in

Algorithm 2). The overhead of secure FP computation is affected by the dimensionality of the

marked weights, thus varies across different benchmarks as detailed in Section 4.7.5.

Figure 4.9. Runtime contribution breakdown of DeepAttest on Intel SGX without
dataflow optimization.

Optimization Improvements

We optimize DeepAttest’s dataflow using data pipeline as discussed in Section 4.6.2

to hide the latency of secure FP computation Figure 4.10 illustrates the effectiveness of data

pipeline to reduce the attestation latency. On average, DeepAttest’s optimized dataflow engenders

1.42× speedup and further improves its efficiency. Early termination optimization also helps

to reduce the overhead. According to Algorithm 2, it is intuitive that the amount of overhead
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saving benefited from early termination is approximately linear with respect to the position of

the first identified FP mismatch segment.

Figure 4.10. Speedup of DeepAttest’s data pipeline optimization for secure FP
extraction on Intel SGX.

Sensitivity Analysis

Sensitivity to attestation interval.

DeepAttest leverages a hybrid trigger mechanism to activate the attestation as discussed

in Section 4.5.2. Recall that we denote the average activation interval of the hybrid signal as f

(one round of attestation every f inputs). Figure 4.11 shows DeepAttest’s overhead with various

attestation interval f on CIFAR-WRN benchmark and Intel-SGX platform. One can see that

DeepAttest’s overhead decreases linearly when f increases. Higher trigger interval results in

smaller normalized attestation overhead for arbitrary DNNs. For instance, the relative latency

overhead drops to 1.1% on CIFAR-WRN when f = 800.

Figure 4.11. Sensitivity of DeepAttest’s normalized overhead to the (a) attestation
interval f , (b) minimal marked ratio λm on CIFAR-WRN (tested on Intel-SGX).

90



Sensitivity to the the marked ratio. The possible values of marked ratio λ for a specific

DNN are discrete since DeepAttest performs FP embedding with the granularity of a single layer.

Given the owner-specified security level η and the tolerant injection ratio φ , DeepAttest finds

the minimal marked ratio λm (Section 4.6.1) and the optimal combination of layers that yields

the minimal latency. A large marked ratio λ (i.e., percentage of marked weights) results in a

larger latency overhead as shown in Figure 4.11 (b). Note that λ also impacts the security level

of DeepAttest against fault injection as discussion in Section 4.6.1, thus providing a trade-off

between overhead and security.

Sensitivity to kernel size. DeepAttest’s overhead is affected by the kernel dimension of the

marked layer as we analyze in Section 4.7.5. Figure 4.12 shows the breakdown of relative

runtime overhead for TEE-based attestation and evaluation process as the kernel size changes.

For attestation of a conv layer, the runtime overhead is dominated by secure memory copy.

However, the runtime discrepancy between secure copy and secure computation becomes smaller

as the kernel size increasing since the contribution of the fixed overhead in secure copy (extra

hardware operations) is reduced. For TEE-based inference, the runtime of conv kernels is

dominated by secure computation. As for FC layers, secure memory copy is the performance

bottleneck for both TEE attestation and evaluation due to the large parameter size.

Figure 4.12. Runtime (relative) breakdown of TEE attestation and evaluation
with varying kernel size on Intel-SGX without dataflow optimization. We use
conv(F,H) and FC(F,H) to denote a convolutional layer with size (3,3,F,H) and a
fuly-connected layer with size (F,H), respectively.
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4.7.6 Comparison with Related Works

In this section, we compared DeepAttest with the state-of-the-art secure DNN evaluation

techniques listed in Figure 4.2. Note that DeepAttest aims to address a new security concern

(i.e., hardware-level IP protection and usage control) for DNN applications that has not been

identified by previous works. DeepAttest is orthogonal to the existing secure DNN techniques

that target at different vulnerabilities of DL models and can be easily integrated within them.

As such, we present a horizontal performance comparison to demonstrate the relative overhead

required by different security/privacy-protection DNN methods.

In our experiments, we use the open-sourced code of Slalom [TB18] to evaluate its

performance of verifying the integrity of DNN evaluation. Slalom requires the DNN weights

and the input data to be quantized in order to satisfy the finite-field assumption. We adhere to

the quantization technique and the pre-processing method that yields the highest throughput

in [TB18] throughout our experiments. We emphasize that our framework does not require any

model compression. As such, our assessment of DeepAttest’s overhead is conservative. We use

the trusted GPU simulator discussed in Section 4.7 in the experiments requiring TEE-supported

GPU. The design optimization discussed in Section 4.6 are used. We detail the comparison

between DeepAttest and related works below.

Comparison of Secure Memory Copy

Figure 4.13 illustrates the theoretical (minimal) size of secure memory copy required by

different secure DNN techniques assuming the TEE is not memory-bounded. Slalom [TB18]

incurs large overhead of secure memory copy since it outsources linear operations of DNN

inference to the untrusted GPU. Therefore, all intermediate activations need to be transferred into

the TEE to complete non-linear operations. This results in an approximately linear secure copy

size with respect to the number of evaluated images as shown in Figure 4.13 (a) and (b). Fully

TEE-based DNN evaluation only requires to transfer all weight data and input data, thus is less

sensitive to the number of inputs. DeepAttest’s memory copy size is not sensitive to the number
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Figure 4.13. Comparison of the theoretical secure memory copy size to the TEE required
by different secure DNN techniques on (a) CIFAR-WRN and (b) VGG16 benchmark.

of inputs since it adopts a hybrid triggering scheme where the attestation is performed every batch

of f images. Furthermore, the secure copy size of DeepAttest is small for a given attestation

interval due to the deployment of shredder storage optimization, which ensures security for a

smaller value of the marked ratio λ .

Comparison of Latency

Overhead on CPU-based Inference. Figure 4.14 shows the normalized latency required

by different secure DNN evaluation methods and DeepAttest where the baseline inference is

performed on the untrusted CPU. Implementing DNN inference fully inside TEE is on average

Figure 4.14. Comparison of relative latency between different secure DNN techniques
when the inference is run on CPU. VGG16 (a) and MobileNet (b) are evaluated.
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12.34× slower than the baseline evaluation on the untrusted CPU. Slalom [TB18] outsources

linear operations to the untrusted CPU and non-linear parts to Intel-SGX, resulting in an average

normalized latency of 1.72× to provide verifiable results. DeepAttest incurs negligible relative

latency of 0.7% and 1.9% on VGG16 and MobileNet respectively, thus is highly efficient.

Overhead on GPU-based Inference: Figure 4.15 shows the normalized overhead of different

secure DNN methods and DeepAttest where baseline inference is performed on untrusted GPUs.

Full DNN inference in TEE-supported GPUs results in an average normalized latency of 8.75×

due to the overhead of isolated execution and secure memory access. Slalom [TB18] outsources

linear operations to the untrusted GPU and computes the nonlinear part in Intel-SGX (TCPU),

resulting in a normalized latency of 6.43× and 5.69× on VGG16 and MobileNet, respectively.

Figure 4.15. Comparison of normalized latency incurred by different secure DNN methods
when the inference is run on GPU. VGG16 (a) and MobileNet (b) are assessed here.

DeepAttest can perform the FP extraction computation either in the trusted CPU or the

trusted GPU if the TEE exists on the pertinent GPU. More specifically, DeepAttest results in

19.1% and 15.7% additional latency overhead when attesting VGG16 and MobileNet on the

TEE-supported CPU (Intel-SGX), respectively. Alternatively, DeepAttest can attest the deployed

DNN program using the TEE support inside the GPU to avoid data communication between

CPU and GPU. In this case, DeepAttest incurs only 1.3% and 1.8% extra latency on VGG16 and

MobileNet, respectively.
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4.8 Summary

In this chapter, we present a systematic solution to device-level IP protection and usage

control for DNN applications. We propose DeepAttest, the first on-device DNN attestation

framework that verifies the legitimacy of the deployed DNN before allowing it to execute normal

inference. DeepAttest leverages an Algorithm/Software/Hardware co-design principle and

incorporates various design optimization techniques to minimize the overhead. Our framework

allows the device providers to explore the trade-off between security level and attestation

overhead by specifying security parameters including tolerance level of fault injection, marked

ratio, and trigger configuration. Extensive experimental results corroborate that DeepAttest

satisfies all criteria for a practical attestation scheme including fidelity, reliability, integrity,

security, scalability, and efficiency.
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Chapter 5

SpecMark: Spectral Watermarking for
Automatic Speech Recognition

Automatic Speech Recognition (ASR) systems are widely deployed in various appli-

cations due to their superior performance. However, obtaining a highly accurate ASR model

is non-trivial since it requires the availability of a massive amount of proprietary training data

and enormous computational resources. As such, well-trained ASR models shall be considered

the intellectual property (IP) of the model designer and need to be protected against copyright

infringement attacks.

In this chapter, I introduce SpecMark, the first spectral watermarking framework that

seamlessly embeds a watermark (WM) in the spectrum of the ASR model for ownership proof.

SpecMark identifies the significant frequency components of model parameters and encodes the

owner’s WM in the corresponding spectrum region before sharing the model with end-users. The

model builder can later extract the spectral WM to verify his/her ownership of the marked ASR

system. We evaluate SpecMark’s performance on DeepSpeech model with three different speech

datasets. Empirical results corroborate that SpecMark preserves the recognition accuracy of the

original system and incurs negligible overhead for both spectral WM embedding and extraction.

Furthermore, SpecMark can sustain diverse model modifications, including parameter pruning

and transfer learning. The training-free watermark embedding scheme in SpecMark makes it

applicable to resource-constrained systems.
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5.1 Introduction

Automatic Speech Recognition (ASR) is a technology that allows humans to interact

with machines using their voices. The emergence of Deep Learning (DL) techniques has

revolutionized ASR systems and enabled their commercialization. Voice assistants including

Google Home, Amazon Alexa, Microsoft Cortana, and Apple Siri are examples of ASR’s

wide deployment [HLZ+15, LSN+17, Hoy18, KB18]. The success of modern ASR systems

relies on the superior performance of the underlying DL models [HCC+14, AAA+16]. While

current research in this field mainly focuses on increasing the accuracy of ASR models, we take

an orthogonal perspective to ASR applications and investigate the copyright concerns of pre-

trained models. Training a highly accurate ASR model is expensive since this process requires:

(i) Access to an enormous amount of proprietary training dataset; (ii) Allocating extensive

computing resources and time [SK16, JPM+18]. As such, the resulting ASR system shall be

considered the Intellectual Property (IP) of the model developer and needs to be protected to

preserve the competitive advantage of the owner.

Regularization is a typical approach to increasing the generalization capability of a DL

model to unseen datasets [YYS+13, GHZZ18]. Prior works have explored regularization and

adapted digital watermarking for ownership proof of Deep Neural Networks (DNNs). Existing

DNN watermarking techniques can be categorized into two types based on the model deployment

scenario. A line of works assumes the model internals are known in the watermark (WM)

extraction stage (i.e., ‘white-box’ setting) and inserts the WM by training the DL model with

additional regularization loss terms [UNSS17, CRF+19, CFR+19, DRCK19]. In this case, the

WM is typically a binary sequence. For instance, [UNSS17] modulates the distribution of static

weights to encode the WM information. DeepSigns [DRCK19] explores the distribution of the

dynamic activation maps as the WM carrier.

Another line of research assumes the DL model is employed as a remote service (i.e.,

‘black-box’ setting) where only the input-output behavior of the model is known [ABC+18,
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ZGJ+18, CRK19, GP19, LMPT20]. Particularly, the model owner generates a secret WM key

set (i.e., input-output pairs) and uses it to finetune the model. In this case, the WM takes the form

of statistically biased responses and is encoded in the decision boundary of the model. Note that

both white-box and black-box watermarking methods discussed above require expensive model

re-training. These DL watermarking techniques are also shown to be vulnerable to strategic

model disturbance [CWB+21, XWL21]. Such limitations motivate us to design a more efficient

and resilient watermarking scheme for DNN IP protection.

Contributions. In this work, we propose SpecMark, the first systematic model-level spectral

watermarking framework that protects the IP of contemporary ASR systems. SpecMark encodes

the ownership information in the spectrum characteristics of the ASR model while preserving the

task accuracy of the marked model. More specifically, we propose to spread the watermark over

multiple random subsets of the significant spectra components of the model parameters to ensure

that SpecMark is robust and secure. Furthermore, our framework is highly lightweight since it

embeds the WM strategically in the spread spectrum (SS) of the ASR model without re-training

it. We validate the feasibility and robustness of SpecMark using DeepSpeech v2 [AAA+16]

on AN4, Command Voice, and LibriSpeech datasets. Our spectral watermarking technique

is compatible with existing DL-based ASR systems and paves the way for safe and reliable

deployment of ASR models.

5.2 Related Works

Prior works have identified the IP concern of DNNs and adapted digital watermarking

techniques for ownership authentication. We categorize existing methods into two types based

on the application scenarios of the DL model. We introduce each type in detail as follows.

White-box Watermarking. In the white-box setting,the pre-trained DL model for the intended

task (computer vision, speech recognition, etc.) is shared with the end-users. This means that

model internals including weight parameters and activation maps are publicly accessible. Such
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a deployment scenario is common with the increasing trend of knowledge exchange among

the research community. Uchida et al. [UNSS17] take the first step of DNN watermarking and

develops a customized regularization loss to embed the watermark in the weight distribution

of the selected layer. To improve security and robustness, DeepSigns [DRCK19] proposes to

insert the WM in the distribution of dynamic activations corresponding to the secret key input.

DeepMarks [CRF+19] uses weight regularization and incorporates anti-collusion codes for WM

design to enhance the watermark’s resistance against collusion attacks.

Black-box Watermarking. In the black-box setting, the pre-trained DL model is employed

as a remote service where the customer sends his data to the cloud server and receives the

corresponding output. Since the DL model is only available as an oracle, prior works suggest to

craft secret input-output pairs as the WM. To insert the WM in the model’s decision boundary,

the WM key set is used to finetune the model. As an example, the paper [LMPT20] proposes

to craft adversarial samples as the WM set, which results in high false alarm rates due to the

transferability of adversarial examples. To resolve the issue, DeepSigns [DRCK19] generates

random inputs and random labels as the WM key set.

Existing DL watermarking techniques have the following constraints: (i) Application do-

main. All of the above-mentioned DNN watermarking techniques demonstrate their effectiveness

on image classification tasks. However, the intrinsic time-evolving nature and the representation

form of speech signals distinguish ASR from image tasks. Such a discrepancy might render the

watermarking techniques less effective or invalid for ASR systems; (ii) High WM embedding

overhead. Current DNN watermarking primitives embed the WM via model re-training, which

might be prohibitively costly; (iii) Robustness. Current watermarking schemes are suscepti-

ble to strategic model disturbance such as transfer learning [CWB+21]. To address the above

limitations, we propose SpecMark, the first practical and resilient model-level watermarking

framework that is suitable for ASR systems.
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5.3 Problem Statement

We define the problem of ASR model watermarking in this section. SpecMark assumes a

white-box scenario where the model internals are known to the public. We formulate model-level

watermarking as a one-time, post-training step where the objective is to embed a WM (a binary

sequence in our work) in the parameter distribution of the ASR model. To be practical and

effective in real-world ASR systems, the watermarking technique shall satisfy a set of criteria.

We summarize these fundamental requirements in Table 5.1 and present a quantitative assessment

of SpecMark’s performance in Section 5.5.

Potential Attacks. The model owner inserts a secret watermark in his trained ASR model

and shares the marked variant with the public. However, the marked model might undergo

unintentional or deliberate model modifications in a practical deployment setting. The robustness

criterion in Table 5.1 requires that the WM shall be resistant to potential disruptions and

remains detectable. We consider three types of model disturbance attacks: (i) Parameter

pruning: Parameters with small magnitudes can be zeroed out for computation savings without

significant accuracy degradation [HMD15, HKM+17, LWL17]; (ii) Model fine-tuning: The

converged model can be fine-tuned to find better local optima [TSG+16, NKFL18, CWB+17];

(iii) Transfer learning: A pre-trained model might be re-trained on a new dataset for the intended

task [CMS12, TSK+18, SRG+16]. We corroborate the robustness of SpecMark spread spectrum

watermarking against these attacks in Section 5.5.

Table 5.1. Requirements for an effective watermarking method of ASR systems.

Requirement Definition

Fidelity Preserve the functionality of the original model.
Robustness WM sustains possible model modifications.
Efficiency Low overhead for WM embedding and detection.
Reliability High detection rates of the embedded WM.
Integrity Low false positive rates of WM detection.
Security WM carrier is difficult to identify.
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5.4 SpecMark Methodology

Figure 5.1 shows the global workflow of SpecMark. From the high-level overview,

SpecMark takes the pre-trained ASR model and a set of secret WM keys as the inputs. The

marked variant of the ASR model is returned as the output. Our spectral watermarking framework

consists of two main phases: offline WM embedding and online WM detection. We detail the

procedures of each stage below.

Figure 5.1. Global workflow of SpecMark watermarking framework for ASR systems.

5.4.1 Spectral WM Embedding

SpecMark spreads the WM information in the significant spectrum components of the

target ASR model. Such an embedding mechanism features two advantages: (i) Security:

Spreading the WM information over many frequency bins ensures that the energy change on

a single bin is small and undetectable. The insertion location and content of the WM are only

known to the owner, making it difficult to find out by the attacker using random guesses. (ii)

Robustness: SpecMark’s WM is encoded in the important frequency regions of the ASR model.

Since feasible model modifications have to leave the significant spectra components intact to

maintain high accuracy, the attacker cannot remove our WM without performance degradation.
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We define the WM as a binary bit sequence b of length T where bk = {−1,+1} ,k =

1, ...,T . To provide security guarantee, SpecMark’s WM key has three components: (i) The layer

position (denoted by l) whose parameters are selected to carry the WM information; (ii) The

secret random seeds (s) that are used to determine the frequency bins modulated by the WM;

(iii) The secret reference pattern matrix UT×M where T is the length of the WM sequence and

M is the number of frequency bins controlled by each WM bit. The kth row of U is used as the

reference vector uk to carry the WM bit bk. Note that elements in each row of U have equal

probabilities of taking two values: ui, j = {−σu,+σu}. We detail each step of SpecMark’s WM

embedding stage shown in Figure 5.1 below.

Identify Significant Spectra Components. Given the layer position l in the WM key, Spec-

Mark performs DCT transformation on the corresponding weight parameter w and obtains the

frequency coefficients W = DCT (w). Since large values are less sensitive to additive alternations

than small values, we select the top N largest elements of W as the tentative WM insertion

locations and denote the resulting index set as IN . Note that M ≪ N such that the spectra

components controlled by each WM bit do not overlap with each other.

Encode WM in Random Spectra Subsets. To enhance watermarking security, SpecMark

embeds each WM bit in a random subset of spectra components with the highest values (found

by IN). The insertion location Ik (with size M) for the bit bk is determined by Equation (5.1)

where sk is the random seed from the WM key. To make the element-wise addition of frequency

components feasible, we then use Ic
k to zero-pad the secret reference vector uk as shown in

Equation (5.2). Here, Ic
k is the complement set of Ik where the whole set is the index range of

W . The padded variant ũk takes the corresponding value from uk only when its current index

exists in Ik. Finally, the entire WM sequence b is embedded in the significant part of the DCT

coefficients W using Equation (5.3).

Ik = RandomSelect(IN ,M,sk), (5.1)
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ũk = ZeroPad(uk, Ic
k ), (5.2)

W ∗ = W +
T

∑
k=1

bkũk, (5.3)

Perform Inverse Frequency Transformation. After embedding the WM in the selected bins

of the important spectrum of the ASR model, we convert the resulting frequency map back to the

spatial domain using inverse DCT: w∗ = iDCT (W ∗). The original weight parameter w of the

secret layer l is replaced with w∗ to obtain the marked ASR model.

5.4.2 Spectral WM Detection

In the online detection phase, the model owner queries the unknown ASR system and

obtains its internal weights. Since the owner knows the WM insertion locations and content, he

can concentrate the ‘weak’ WM signals spread over the particular frequency bins and extract the

WM for authorship proof. We detail each step of WM detection shown in Figure 5.1 below.

Transform Queried Data to Frequency Domain. Given the WM key, the model owner

performs DCT on the weight parameter of the layer l of the queried model W
′
= DCT (w

′
).

Compute Normalized Correlation. As the developer of the original ASR system, the model

owner has the DCT values W of the unmarked weights w. As such, he can compute the spectral

difference ∆W between the queried weight and the unmarked one in the DCT domain using

Equation (5.4). Then, the normalized correlation between ∆W and each reference vector uk is

computed using Equation (5.5). Note that the vector norm is ∥uk∥= σ2
u , since each element in

uk can only take the value of −σu or +σu.

∆W = W
′
−W , (5.4)

r
′
k =

∆W · ũk
∥ũk∥

. (5.5)

Determine WM Existence. After computing the normalized correlation rk (k = 1, ..,T )

individually, the corresponding binary WM bit bk is extracted by taking the sign of the correlation
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statistics as shown in Equation (5.6). Finally, we compute the Bit Error Rate (BER) between the

ground-truth WM sequence b and the extracted one b′ . SpecMark’s WM is successfully detected

for ownership authentication only when BER = 0.

b
′
k = sign(r

′
k). (5.6)

5.5 Evaluations

We present a comprehensive assessment of SpecMark’s performance according to the

watermarking requirements discussed in Table 5.1. The results are summarized in this section.

Experimental Setup. We demonstrate the effectiveness of SpecMark using the DeepSpeech

v2 model [AAA+16] and three different speech datasets: AN4, Command Voice, as well as

LibriSpeech [Nar20]. To implement SpecMark’s spread spectrum watermarking (detailed in

Section 5.4.1), we use the following configuration: WM sequence length T = 16, candidate

range of significant spectra components N = 5000, number of frequency bins controlled by

each WM bit M = 20, and reference strength σu = 0.5. The hidden-hidden weights of the third

LSTM layer of DeepSpeech is selected to carry the WM. Similar results are obtained when

other layers are used for SpecMark’s watermarking. We emphasize that no model re-training is

required by SpecMark to embed the WM, making our framework lightweight. We use the same

hyper-parameters (e.g., learning rate, batch size, and optimization level) as [Nar20] for three

WM removal attacks. We perform experiments on Nvidia Titan Xp with 12 GiB memory. We

repeat each set of experiments for 10 runs and report the average values in the following section.

5.5.1 Fidelity and Efficiency

Recall that fidelity requires the watermarking technique to preserve the accuracy of the

pre-trained model. For ASR tasks, we use Word Error Rate (WER) and Character Error Rate

(CER) as the performance metrics. Table 5.2 summarizes the performance comparison results

of the ASR system before and after SpecMark’s WM embedding. The last two rows show the
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Frobenius norm of the weight perturbation introduced by WM insertion in the spatial and the

DCT domain, respectively. One can see that SpecMark’s spread spectrum watermarking primitive

does not impact the accuracy of the original model, thus respects the fidelity criterion. This

is due to the fact that our framework induces negligible disturbance on the weight parameters

(small ∥∆w∥ in Table 5.2).

Table 5.2. Fidelity evaluation of SpecMark. The WER and CER of the pre-trained
baseline model and the watermarked variant are compared across different datasets.

Datasets AN4 Command Voice LibriSpeech

Models Baseline Marked Baseline Marked Baseline Marked

WER (%) 11.38 11.38 26.72 26.72 18.09 18.09
CER (%) 6.81 6.81 11.63 11.63 7.32 7.32
∥∆w∥ 0.20 0.20 0.16
∥∆W ∥ 9.11 9.11 7.07

As for the watermarking efficiency, we analyze the runtime overhead of SpecMark’s

WM embedding and detection procedure. According to SpecMark’s mechanism outlined in

Section 5.4, we can see that SpecMark has a fixed computational overhead for a specific

watermarking configuration and a given target ASR system. This implies that SpecMark’s

overhead is independent of the dataset dimensionality, suggesting that our framework is scalable

to large ASR tasks. In our experiments, the WM embedding and detection time is 97.67 and

10.98 millisecond for all three datasets, respectively. Compared with existing DL watermarking

techniques [DRCK19, UNSS17, CRF+19], SpecMark features the highest efficiency since no

model re-training is required.

5.5.2 Robustness

We discuss three possible attack scenarios in Section 5.3: parameter pruning, model

fine-tuning, and transfer learning. In the following of this section, we validate SpecMark’s

robustness against these attacks with empirical results.
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Robustness against Parameter Pruning

We perform standard parameter pruning (i.e., zero-out elements with the smallest magni-

tudes [HMD15]) on all convolutional and LSTM layers of the marked ASR model. Acceleration-

oriented pruning pipeline conducts model re-training to compensate for accuracy loss induced by

pruning. In our case, the attacker intends to use pruning for WM removal. It is very unlikely

that the attacker has the original training data and the computing power to perform model

re-training (otherwise he has less incentive to steal the ASR model.) As such, we measure the

test accuracy and BER (for WM detection) of the pruned model without re-training. Figure 5.2

shows SpecMark’s robustness against parameter pruning on LibriSpeech dataset. We can see

that SpecMark’s BER is less sensitive to parameter pruning compared to the accuracy metric

(WER and CER). As such, the adversary cannot remove the WM by excessive pruning while

acquiring a functional ASR model. In our experiments, SpecMark can tolerate up to 99%, 90%,

and 90% parameter pruning on AN4, Command Voice, and LibriSpeech datasets, respectively.

Figure 5.2. SpecMark’s robustness against parameter pruning.

Robustness against Transfer Learning

Transfer learning is a popular practice that leverages the features extracted by a pre-

trained DL model for a new task [CMS12, TSK+18]. More specifically, the user performs

model re-training on his new dataset instead of training a model from scratch. In our robustness
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evaluation, the DeepSpeech model is first pre-trained on LibriSpeech dataset and marked by

SpecMark. The transfer learning attack is then performed by re-training the marked model on

AN4 dataset using the same configurations in [Nar20]. Figure 5.3 shows the test accuracy of the

marked DeepSpeech model on the new dataset (AN4) and the BER of WM detection during the

transfer learning process. We can see that SpecMark’s SS WM remains detectable (i.e., BER=0)

even if the marked ASR model undergoes transfer learning. This transferability of SpecMark’s

WM makes it suitable for reliable technology exchange in the speech recognition domain.

Figure 5.3. SpecMark’s robustness against transfer learning.

Robustness against Model Fine-tuning

The nature of model fine-tuning determines that it introduces a smaller amount of

perturbation to the marked weights compared to parameter pruning and transfer learning. Our

evaluation results show that SpecMark still yields zero BER for the fine-tuned marked model

across all three datasets, thus is resilient against model fine-tuning attacks. The detailed results

are not shown here for simplicity.

5.5.3 Integrity

Recall that integrity requires the WM detection process to yield small false positive rates

(see Table 5.1). This property is important since falsely claiming the ownership of an ASR
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model might lead to law disputes. To assess the integrity of SpecMark, we extract the watermark

from unmarked ASR models following the procedures in Section 5.4.2. Table 5.3 shows the

integrity evaluation results on LibriSpeech dataset while similar results are obtained on the other

two datasets. ‘Unmarked1’ and ‘Unmarked2’ are models trained on the same dataset as the

marked one (LibriSpeech in this case). ‘Unmarked3’ and ‘Unmarked4’ are models trained on

different datasets (AN4 and Command Voice, respectively). We can see that SpecMark has no

false alarms since the BER is non-zero for each unmarked model (regardless of the underlying

training data). As such, our watermarking framework respects the integrity criterion.

Table 5.3. Integrity evaluation of SpecMark when performing watermark detection
on four different unmarked DeepSpeech models.

Models Marked Unmarked1 Unmarked2 Unmarked3 Unmarked4

BER 0. 1. 0.5625 0.5 0.6875

5.6 Summary

In this chapter, we propose SpecMark, the first spectral watermarking framework for

speech recognition systems. SpecMark tackles an important and timely problem of intellectual

property protection for ASR systems. For the first time, SpecMark demonstrates a lightweight,

secure, and robust watermarking primitive that is suitable for ASR applications. Our proposed

framework formulates model-level watermarking as a one-time, post-processing step and lever-

ages spread spectrum watermarking to address the problem. One key advantage of SpecMark

is that it does not require costly model re-training to embed the watermark within the ASR

model. SpecMark can be easily integrated within contemporary DL-based ASR systems without

impacting their accuracy on the intended tasks. Experimental results on DeepSpeech model and

various datasets corroborate that SpecMark respects the essential requirements for an effective

DNN watermarking approach.
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Chapter 6

ProFlip: Targeted Trojan Attack with
Progressive Bit Flips

The security of Deep Neural Networks (DNNs) is of great importance due to their

employment in various safety-critical applications. DNNs are shown to be vulnerable to Neural

Trojan attacks that manipulate model parameters via poisoned training and get activated by the

pre-defined trigger during inference.

In this chapter, we present ProFlip, the first targeted Trojan attack that can divert the

DNN’s prediction to the target class by progressively flipping a small set of bits in model

parameters. At its core, ProFlip consists of three key phases: (i) Determining significant neurons

in the last layer; (ii) Generating a trigger pattern for the target class; (iii) Identifying a sequence

of susceptible bits of DNN parameters stored in the main memory (e.g., DRAM). After model

deployment, the adversary can insert the Trojan by flipping the critical bits found by ProFlip

using bit-flipping techniques such as Rowhammer attacks. As the result, the tampered DNN

predicts the target class when the trigger pattern is present in any inputs. We perform extensive

evaluations of ProFlip on CIFAR10, SVHN, and ImageNet datasets with ResNet-18 and VGG-16

architectures. Empirical results show that, to reach an Attack Success Rate (ASR) of over 94%,

ProFlip requires only 12 bit flips out of 88 million parameter bits for ResNet-18 with CIFAR-10,

and 15 bit flips for ResNet-18 with ImageNet. Compared to the SOTA, ProFlip reduces the

number of required bit flips by 28× ∼ 34× while reaching the same or higher ASR.
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6.1 Introduction

Deep Neural Networks (DNNs) have empowered a paradigm shift in various real-world

applications due to their unprecedented performance on complex tasks. The deployment of

DNNs in safety-critical fields such as biomedical diagnosis, autonomous vehicles, and intelligent

transportation [LST+16, MGK+17, VM19] renders model security crucial. Prior works have

demonstrated the vulnerability of DNNs to a diverse set of attacks. For instance, adversarial sam-

ples are strategically crafted inputs that look normal to human beings while they can mislead the

model to produce wrong outputs during inference [GSS14, KGB+16, YHZL19]. Data poisoning

is a training-time attack that tampers with model weights by injecting incorrectly labeled data into

the training set [AZB16, MGBD+17, SESL18]. Neural Trojan [LXS17, LMA+18, GLDGG19]

is a targeted attack that manipulates both the model parameters and the inputs (i.e., adding the

trigger to input data). In this work, we focus on Neural Trojan attacks and aim to design an

efficient approach for Trojan insertion without poisoned training.

A typical Neural Trojan attack has two essential subroutines: trigger generation and

Trojan insertion [LMA+18, GLDGG19]. The trigger is a specific pattern in the input space (e.g.,

a white square at the image corner) that controls Trojan activation. The adversary can insert

the Trojan in the victim DNN by training the model with a poisoned dataset. In particular, the

poisoned data are clean inputs stamped with the trigger and re-labeled as the attack target class.

Trojan attacks have two goals: effectiveness and stealthiness. Effectiveness requires that the

infected DNN has a high probability of predicting the target class when the trigger is present in

the input. Stealthiness requires the Trojaned model to produce correct outputs on clean data.

Existing Trojan attacks assume that the adversary is the model developer (e.g., cloud

server) who has sufficient computing power for DNN training. The victims are end-users that

obtain the pre-trained models from third-party providers. Given access to the DNN supply chain,

the attacker can disturb the training pipeline and insert Trojan in model parameters. Recent works

have demonstrated parameter manipulation attacks against DNNs using bit-flipping techniques
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Figure 6.1. Demonstration of the proposed ProFlip attack. The top and the bottom part
shows the inference flow of a benign model and a Trojaned one, respectively.

such as Rowhammer attacks [KDK+14, VDVFL+16] and laser beams [ADM+10, CMD+19]

without poisoned training. Bit Flip Attacks (BFA) [HFK+19, RHF20, RHF19] eliminate the

requirement of training access compared toe previous Trojan attacks [GLDGG19, LMA+18],

thus posing a strong runtime threat to DNNs after model deployment.

ProFlip Overview. In this chapter, I present ProFlip, an innovative bit flip-based Trojan attack

that inserts the Trojan into a quantized DNN by altering only a few bits of model parameters

stored in memory (e.g., DRAM). Figure 6.1 illustrates the working mechanism of ProFlip attack

against the victim DNN after its deployment. The top part of Figure 6.1 shows the normal

inference flow of a clean model whose weights are subject to bit flip attacks. The bottom part

shows that after flipping the critical bits in memory (marked in red), the model is Trojaned and

yields incorrect outputs when the trigger is present in the input.

Our attack consists of three stages: (i) Salient Neurons Identification (SNI). Instead of

using gradient ranking as suggested in [RHF20], we use the forward derivative-based saliency

map to identify neurons important for the target class in the last layer. (ii) Trigger generation.

ProFlip generates the trigger pattern that can fool the DNN to predict the target class and
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stimulates salient neurons to large values simultaneously. (iii) Critical Bits Search (CBS).

ProFlip gradually/sequentially pinpoints the most vulnerable parameter bits of the victim DNN

in a greedy manner. In each iteration, our attack finds the most sensitive parameter element for

Trojan attacks and the optimal bit change for this element. ProFlip determines the sequence of

bit flips to ensure that the Trojaned DNN has a comparable accuracy as the benign model on

clean data while predicting the target class when the trigger is present in inputs. Our evaluation

results show that ProFlip only requires 12 bit-flips out of 88 million weight bits to achieve an

ASR of 94% for ResNet-18 with CIFAR10, and 15 bit-flips for ResNet-18 with ImageNet.

6.2 Related Works

6.2.1 Inducing Bit Flips in Memory

Memory storage components such as DRAM chips are indispensable for computing

systems [DAR09, LNM+17]. The susceptibility of commercial DRAMs to disturbance er-

rors has been demonstrated by Kim et.al in [KDK+14]. The paper finds out that repeatedly

accessing a DRAM row can corrupt data stored in neighboring rows, i.e., causing bit flips

‘0’ → ‘1’ or ‘1’ → ‘0’. This disturbance error in DRAMs is called Row Hammer Attack

(RHA) [KDK+14, VDVFL+16]. The root cause of RHA is that frequent row activation results

in voltage fluctuations, which leads to the charge loss of adjacent rows. Furthermore, the ad-

versary can perform precise bit flip at any desired location by profiling the DRAM memory

layout [YRF20]. RHAs pose severe security threats to the computing platforms since they can

evade common data integrity checks and error correction techniques [MK19, GLS+18]. Besides

RHA, laser fault injection can also induce single bit flip in memory [ADM+10, CMD+19].

6.2.2 Quantized Neural Networks

Model quantization is a widely-deployed technique that uses fixed-point representation

to improve the efficiency of DNN inference [SJK19, LTA16, WLW+16]. Quantized Neural

113



Networks (QNNs) reduce the storage and computation overhead of standard DNNs by using

fixed-point representation for model weights (and optionally activations). As such, QNNs

are suitable for resource-constrained platforms. The weight parameter of a layer in a N-bit

quantized DNN is represented and stored as a signed integer in two’s complement format, i.e.,

b = [bN−1, ...,b0] ∈ {0,1}N . In this work, we adopt uniform weight quantization scheme that

is identical to the TensorRT technique [Mig17]. To train QNNs with non-differential stair-case

functions, we apply straight-through estimator suggested in prior works [ZWN+16, RHF20].

For lth layer of the QNN, the binary vector b can be converted into a fixed-point real number:

Wl = (−2N−1 ·bN−1 +
N−2

∑
i=0

2i ·bi) ·∆l, (6.1)

where ∆l is the step size of the weight quantizer for layer l. Note that for a pre-trained QNN, the

step size of each layer is a known constant and can be computed based on the maximum absolute

parameter value and quantization bitwidth:

∆l =
max(abs(Wl))

2N−1−1
(6.2)

6.2.3 Existing Bit Flip Attacks on DNNs

Recently, bit flip attacks have been demonstrated to divert the DNN by manipulating

the bit representation of model parameters [HFK+19, RHF20]. We categorize BFAs into two

types based on the attack model: Adversarial Weight Attack (AWA) and Neural Trojan attack.

AWA only modifies specific weight bits and keeps the input sample unchanged, while Trojan

attacks require modification of both DNN parameters and input data (i.e., adding the trigger).

AWAs can be untargeted [HFK+19, RHF19] or targeted [RHL+21, BWZ+21]. Terminal brain

damage [HFK+19] demonstrates the first untargeted BFA on floating-point DNNs where the

vulnerable bits are found by simple heuristics. The authors use heuristics to find weight parameter

bits to modify for degrading the overall classification accuracy of the model.
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While the paper [HFK+19] observes that the exponential bits of floating-point DNNs are

suitable for BFAs, fixed-pointed DNNs are more widely used in practice due to their efficiency

and reduction of storage size. The paper [RHF19] proposes an untargeted BFA on fixed-pointed

DNNs by searching weight bits with large gradient magnitudes in an iterative in-layer and

cross-layers way. The authors extend this idea and present a targeted attack variant in [RHL+21].

Another work [BWZ+21] formulates the targeted adversarial weight attack as a binary integer

programming problem and solves it with Alternating Direction Method of Multipliers.

To the best of our knowledge, TBT [RHF20] is the only existing BFA that performs bit

flip-based Trojan attacks on quantized DNNs. TBT deploys Neural Gradient Ranking (NGR)

to find susceptible neurons and generates the Trojan trigger using Fast Gradient Sign Method

(FGSM). For Trojan insertion, TBT uses multiple epochs of gradient descent to finetune the

weight bits associated with the vulnerable neurons found by NGR.

Limitation of Prior Works. Our work falls into the same category as TBT [RHF20]. However,

TBT is impractical in real-world settings since it requires a large number of bit flips. For instance,

to achieve an ASR of 93.2% on CIFAR10, TBT requires to flip 413 bits of ResNet-18. since

it updates a pre-defined number of weight elements in the last layer to minimize the Trojan

insertion loss. Such a formulation is oblivious of the BFA overhead in terms of the required

number of bit flips. Furthermore, TBT does not provide insights on attack parameter selection.

Only the parameter of the last layer is considered by Trojan bits search. Our empirical results in

Section 6.4 show that the last layer of the DNN is not necessarily the optimal target for BFA.

Threat Model. To be consistent with prior works [RHF20], we assume that the adversary knows

the architecture and trained weights of the victim DNN. Besides this, the attacker also knows

the memory allocation of model parameters. This is essential to perform precise bit flips at the

desired locations. Furthermore, we assume the attacker has a small set of clean data samples that

belong to the same application domain as the victim model. To activate the inserted Trojan, the

attacker shall add the pre-defined trigger in the input during inference. Note that our attack does

not require information on the training data or access to the training pipeline.
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6.3 ProFlip Methodology

ProFlip is motivated to address the efficiency and effectiveness limitations of the work

TBT [RHF20] for critical bits search. We propose a systematic attack framework that progres-

sively identifies a sequence of vulnerable parameter bits for Trojan attacks. ProFlip consists of

three key stages as illustrated in Figure 6.2. We introduce each stage in the sections below.

Figure 6.2. Global flow of ProFlip. Given a victim model, we first identify salient
neurons associated with the target class. Trigger is then generated to control Trojan
activation. Finally, ProFlip performs iterative critical bits search to identify vulnerable
bits in the model parameters.

6.3.1 Salient Neurons Identification (SNI)

In the first stage, ProFlip identifies neurons important for the targeted Trojan attack using

the idea of adversarial saliency map [PMJ+16]. Particularly, our attack leverages the forward

derivative-based saliency map construction, which is also known as Jacobian Saliency Map

Attack (JSMA) [PMJ+16, WX18]. Algorithm 3 outlines the procedures of ProFlip’s SNI method.

ML and M1:L−1 denote the last layer of M and the model without the last layer, respectively. The

key step of SNI is computing the saliency map (line 9), which returns the top-2 coefficients in
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Algorithm 3. Salient neurons identification using adversarial saliency map
INPUT: Victim DNN (M) of L layers, target class t, a small set of clean data of size S

(D = {X ,Y}), perturbation added to each feature per step (θ ), maximum fraction of
perturbed features (γ).

OUTPUT: Indices of significant neurons in the last layer of the DNN (It).
1: for 0 < i < S do
2: Obtain activation map: a0

L−1←M1:L−1(Xi)

3: Initialize: a∗← a0
L−1, Γ = {1, ..., |a∗|}, Ii = [ ]

4: Value range: amax, amin = max(a∗), min(a∗)
5: while ML(a∗) ̸= t & ∥ δa ∥< γ do
6: p1, p2 = saliency map(∇ML(a∗), Γ, t)
7: Modify p1 and p2 in a∗ by θ

8: Remove p1 from Γ if a∗(p1) ̸∈ [amin,amax]
9: Remove p2 from Γ if a∗(p2) ̸∈ [amin,amax]

10: Update: Ii.add(p1, p2) , δa = a∗−a0
L−1

11: It = f ind intersection(I0, ..., IS−1)
12: return It

the search space (Γ) that maximize the saliency map. Without the loss of generality, ProFlip

considers increasing the values of the searched features (i.e., θ > 0) for targeted attack.

Note that the prior attack TBT [RHF20] deploys gradient ranking to locate significant

neurons, which requires the attacker to manually choose the number of gradients with the largest

magnitudes (wb) to keep. This attack hyper-parameter has a direct impact on the number of

required bit flips (nb), while it is unclear how to determine a proper value of wb to reduce nb.

ProFlip’s SNI method resolves this limitation since the adversarial saliency map automatically

select neurons that benefits the targeted attack.

6.3.2 Trojan Trigger Generation

We consider physically realizable trigger patterns in this work. Particularly, we consider

an attack scenario that the adversary can ‘stamp’ the input with a pre-defined trigger pattern (i.e.,

pixel values are replaced by the trigger in a constrained region). This type of trigger is effective

in practice and has been widely used in previous Trojan attacks [NIS, GLDGG19, CFZK19a,

WYS+19]. Trigger injection can be characterized by a generic function A(·) with three variables:
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clean input x, trigger mask m, and trigger values ∆:

x∗ = A(x, m, ∆),

x∗w,h,c = (1−mw,h) ·xw,h,c +mw,h ·∆w,h,c, (6.3)

where w, h, and c denote the width, height, and color channel dimension, respectively. The mask

of a physical trigger (m) is a 2D binary matrix shared across color channels.

The objective of ProFlip’s trigger generation is two-fold: (i) With the salient neurons It

identified in the SNI stage, the trigger is expected to stimulate these neurons to large values; (ii)

When the physical trigger is applied on clean inputs, the DNN shall predict the target class t.

These two goals are formulated as two adversarial loss terms below:

Lmse(M1:L−1(A(x, m, ∆)); c), (6.4)

Lce(M(A(x, m, ∆)); t). (6.5)

Here, the target value for salient neurons c is a large constant selected by the adversary. Note that

c is positive since ProFlip’s SNI stage employs a positive step size. We use Mean Square Error

(MSE) and Cross-Entropy (CE) loss functions to compute these two loss terms, respectively.

ProFlip formulates trigger generation as an optimization problem and solves it using

gradient descent:

Ltrig = λ1 ·Lmse(x,m,∆; c)+λ2 ·Lce(x,m,∆; t) (6.6)

min
m,∆

Ltrig(x,m,∆) for x ∈ X. (6.7)

Here, λ1 and λ2 are two hyper-parameters that control the weights of two loss terms in Ltrig.
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6.3.3 Critical Bit Search (CBS)

Bit Search Formulation. Given a victim model M, salient neurons It and the trigger ∆, we aim

to find a few bits of model parameters such that when these bits are flipped, the infected model

M∗ has a high Trojan ASR on poisoned inputs x∗. Mathematically, Prob[M∗(x∗) = t] shall be

large. We define the loss of critical bits search as follows:

LCBS = ∑x Lmse(M∗1:L−1(x
∗);c)+Lce(M∗(x∗); t). (6.8)

Challenges. A high-performance DNN has a tremendous amount of parameters [HZRS16,

SVI+16, DCLT18]. For instance, VGG-16 has 138 million parameters and the 8-bit quantized

variant needs 1,104 million bits for storage [SZ14b]. Randomly flipping a few bits in the QNN

yields a very low ASR [RHF19]. The large search space makes the exhaustive search of critical

bits infeasible. As such, developing an efficient and effective bit search algorithm is difficult.

Our Intuition. ProFlip addresses the challenges of critical bits search by shrinking the search

space progressively. In particular, our attack starts with the highest abstraction level (which

parameter in which layer to attack), then proceeds to a more fine-grained level (which element

in this parameter to attack), and finally determines the lowest bit level (what is the optimal value

of this element). Such a progressive approach allows us to constrain the number of bit flips (nb)

to a very small value while ensuring a high ASR.

CBS Workflow. ProFlip’s CBS starts with attack parameter selection (S1), which is a one-

time, offline process. Then, a sequence of vulnerable bits is identified in an iterative way. In

each iteration, the current most vulnerable element is identified (S2) and its optimal value is

determined (S3). The corresponding bits in this element are then flipped to reach the optimal

value and CBS proceeds to the next iteration. Our CBS pipeline terminates when the desired

ASR or the maximal number of allowed bit flips is reached. Algorithm 4 shows the procedure of

ProFlip’s critical bits search. We detail three key steps (S1 ∼ S3) of CBS below.
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Algorithm 4. ProFlip’s workflow of critical bits search.

INPUT: Victim DNN (M), target class t, trigger pattern {m, ∆}, a small set of clean data
(D = {X ,Y}), target ASR (ASRt), maximal allowed bits flips nmax).

OUTPUT: A sequence of bit flips for Trojan attack.
1: Initialize: nb = 0, ne = 0, sb = [ ], ASR=0
2: psens← select attack param(M, D)
3: while ASR < ASRt and nb < nmax do
4: elem← identi f y vuln elem(M, psens,D)
5: elem∗← f ind optim value(M, psens,elem,D)
6: f← compute bit f lips(elem,elem∗)
7: sb.add(f), nb+= |f|, ne+= 1
8: ASR← eval Tro jan attack(M, sb, D)

9: return sb

(S1) Attack Parameter Selection. ProFlip’s CBS first performs parameter-level sensitivity

analysis to determine the most vulnerable parameter. To this end, we introduce a new metric to

characterize the influence of a parameter on Trojan attacks. For a parameter in a QNN, we define

its fitness score F as the product of the gradient magnitude and the maximal allowed value change.

The rationale behind this definition is that: (i) Gradient magnitude of a parameter regarding

LCBS is a direct measurement of its sensitivity; (ii) BFAs intend to modify vulnerable parameters

to large values [RHF20, RHF19, HFK+19]. To maintain the quantization step size ∆l after bit

flips, the perturbation allowed on the original parameter (Wl) is bounded. Mathematically, we

need to ensure max(abs(Wl)) = max(abs(W ∗l )) where W ∗l is the perturbed parameter. As such,

our fitness definition incorporates this maximal value change.

Algorithm 5 outlines the detailed procedures of ProFlip’s parameter sensitivity analysis.

The loss LCBS is computed using Equation (6.8). The key step is computing the fitness score of

model parameters in line 9. In this work, we only consider parameters with negative gradients

(line 5) based on the empirical observations that bit flips that change parameters to extremely

large numbers are more effective than decreasing them [HFK+19, RHF20, RHF19].

(S2) Vulnerable Element Identification. After ProFlip performs parameter-wise attack sen-

sitivity analysis in (S1), we tackle a more fine-grained problem, i.e., which scalar element in
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Algorithm 5. Parameter-level sensitivity analysis.

INPUT: Victim DNN (M) with parameters P, target class t, trigger pattern {m, ∆}, a small
set of clean data (D = {X ,Y}), maximal magnitude of parameters in quantization Q.

OUTPUT: Index of the most vulnerable parameter.
1: Compute CBS loss LCBS
2: for p ∈ P do
3: Compute partial derivative ∂LCBS

∂p
4: for elem ∈ p do
5: if ∂LCBS

∂p |elem < 0 then
6: step← Qp− elem
7: else
8: step← 0

9: Fitness F(p,elem) = abs(∂LCBS
∂p |elem) · step

10: Optim. attack parameter: psens = argmax
p

F(p, elem)

11: return psens

the parameter is most favorable for the Trojan attack. This progressive vulnerability locating

paradigm is beneficial for minimizing the final number of bit flips. ProFlip leverages the fitness

score computed in (S1) to characterize each element in the identified sensitive parameter (psens).

The adversary can determine the most vulnerable element in the parameter psens as follows:

elem loc = argmax
elem

F(psens, elem). (6.9)

(S3) Optimal Value of Element. Recall that the Trojan attack needs to be both stealthy and

effective, we define the Trojan injection loss as follows:

Ltro j = γ1 ·Lce(M∗, D)+ γ2 ·LCBS, (6.10)

where LCBS is defined in Equation (6.8). γ1 and γ2 are two hyper-parameters that control the

attack trade-off. that control the trade-off between Trojan stealthiness and efficacy.

With the attack location information (psens, elem loc) found in (S1) and (S2), the

remaining question to launch BFA is to find which bits in the binary representation of this
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scalar element to flip. Equivalently, we can find the optimal value for this particular element.

This question can be mathematically formulated as follows:

b = quantize(M(psens, elem loc)),

b∗ = bits f lips([bN−1, ...,b0], mb), (6.11)

mb
∗ = argmin

mb

Ltro j(M∗, ∆; D), (6.12)

where mb is the bit mask vector that determines which bits in b shall be flipped to minimize

Ltro j. Since mb is a discrete variable, using gradient descent to solve the optimization problem

in Equation (6.12) is infeasible. One can enumerate all possible bit masks and select the one that

results in the lowest Ltro j with a computation complexity of O(2N).

Alternatively, ProFlip provides a complexity controllable solution using grid search.

More specifically, our attack divides the feasible value range of parameter psens ([−R,R] where

R = max(abs(psens))) into K parts and evaluates Ltro j on these K partitioning points. The cut

point with the smallest loss is used as the approximate optimal value elem∗ for the identified

element. Once elem∗ is determined, its binary representation b∗ and the corresponding bit

mask (mb
∗) can be computed. Finally, the required number of bit flips (nb) is calculated as the

Hamming Distance (HD) between the two binary strings:

nb = Hamming Distance(b, b∗). (6.13)

Note that ProFlip’s critical bits search is an iterative process as shown in Algorithm 4. The final

bit flip sequence is the sequential aggregation of results in all iterations.

Bit Trojan Activation. As shown in Figure 6.2, the vulnerable bits are identified when CBS

terminates. The attacker then deploys bit flip techniques such as Row Hammer [KDK+14,

MK19, VDVFL+16] to modify these critical bits in memory. Meanwhile, he shall apply the

trigger designed in Section 6.3.2 on the input of his interests to activate the Trojan.
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6.4 Evaluation Results

6.4.1 Experimental Setup

Datasets and Architectures. We investigate the attack performance of ProFlip on three datasets

used in TBT [RHF20]: CIFAR-10 [KH+09], SVHN [Uni], and ImageNet [Sta]. The first two

datasets have 10 classes and image dimension 32×32×3, while ImageNet has 1000 classes and

input dimension 224×224×3. We assume the adversary has a clean data batch (taken from the

training set) of size 256 in all experiments. Consistent with TBT [RHF20], we evaluate our attack

on two model architectures, ResNet-18 and VGG-16, with a quantization level of 8-bit. We

investigate ProFlip’s performance across all benchmarks in the majority of the experiments and

select ResNet-18 with CIFAR-10 as an exemplar in our ablation study (detailed in Section 6.4.4).

Evaluation Metrics. We use Test Accuracy (TA) after Trojan insertion (i.e., critical bits flipping)

to measure attack stealthiness. To assess attack efficacy, we use the attack success ratio (the

percentage of inputs that are mispredicted by the Trojaned model as the target class when the

trigger is applied) as the metric. Note that when evaluating the test accuracy and ASR, we use the

standard test set of each dataset. For trigger generation, we use Trigger Area Percentage (TAP) to

quantify the proportion of input replaced by the trigger [RHF20]. To characterize the efficiency

of our bit flip attack, we measure the total number of bit flips (nb) to reach a particular ASR. The

total number of elements changed (ne) is also measured. We emphasize that we assess ProFlip’s

ASR on unseen inputs from the test set, thus to corroborating its generalized effectiveness.

ProFlip Configuration. For salient neurons identification, we set default parameters as θ = 0.1,

γ = 0.5 and target class t = 2 in Algorithm 3 for all benchmarks. For trigger generation, we use

the same configuration as TBT [RHF20] where the trigger is a square pattern with a pre-defined

size locating at the bottom right of the image (i.e., trigger mask m is known). Therefore, the

optimization problem in Equation (6.7) only solves for the trigger value ∆. The hyper-parameters

are set to λ1 = λ2 = 1 and c = 10 in Ltrig. We use a default trigger area TAP = 9.76% for

experiments on CIFAR-10 and SVHN, and TAP = 10.62% on ImageNet. For critical bits search,
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the thresholds are set to ASRt = 94% and nmax = 100 by default. We use a partitioning number

K = 20 for grid search to find the optimal element value in all experiments. When computing

Ltro j in Equation (6.10), we use a fixed value of γ2=1 and set γ1 such that γ1Lce ∼ 0.1 · γ2LCBS.

Baseline Attack. We use TBT [RHF20] as our baseline attack since this is the only work that

has the same attack objective and scenario as ProFlip. Note that TBT requires the adversary

to specify the number of weights changed (wb) when determining the bit flips [RHF20]. For

quantitative comparison, we use the open-sourced implementation of TBT [ASRF20] and the

configuration suggested in the paper [RHF20].

6.4.2 Attack Effectiveness

In this section, we evaluate the performance of ProFlip from two aspects: (i) The

effectiveness of each design stage in Section 6.3; (ii) The end-to-end attack results in terms of

ASR and nb. We detail each aspect as follows.

End-to-end attack results. Table 6.1 summarizes ProFlip’s performance on all benchmarks.

The third and fourth columns show the test accuracy of the victim DNN before and after our

attack. For ImageNet, we report the top-1 test accuracy. The index of the vulnerable parameter

identified by ProFlip (psens) is shown in the sixth column. The total number of elements changed

(ne) and the total number of bit-flips are given in the last two columns. We can see that ProFlip

achieves a high ASR (over 94%) while preserving the accuracy on clean data (test accuracy drop

within ∼ 3%) across all benchmarks, thus satisfying the stealthiness and effectiveness criteria of

Neural Trojan attacks.

Table 6.1. Summary of ProFlip’s performance. The target class is set as t = 2 in all
cases. Trigger area TAP = 9.76% on CIFAR-10 and SVHN, and 10.62% on ImageNet.

Dataset Model Test Acc.(%) ASR psens ne nbBefore After

CIFAR-10
ResNet-18 93.1 90.3 97.9 62 2 12
VGG-16 89.7 88.1 94.8 45 3 16

SVHN VGG-16 98.6 95.3 94.5 45 5 20
ImageNet ResNet-18 69 67.6 94.3 60 3 15
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Results of SNI. Recall that ProFlip starts with salient neurons identification. For ResNet-18

model where the second to the last layer (ML−1) has 512 neurons, ProFlip saliency map-based

method identifies 30 and 36 significant neurons on CIFAR-10 and ImageNet, respectively. For

VGG-16 model where layer ML−1 has 4096 neurons, ProFlip’s SNI finds 35 and 154 salient

neurons on CIFAR-10 and SVHN, respectively. To validate the effectiveness of our SNI method,

we measure the ASR of the model when the salient neurons (It) are set to the pre-specified

large value c = 10 while other neurons are set to random values within the range of [amin,amax].

Empirical results show that ProFlip achieves ASR of 100% on all benchmarks.

Results of trigger generation. We employ SGD with a learning rate of 0.1 and train the trigger

∆ in Equation (6.7) for 100 epochs. The batch size is 128 for ResNet-18 with CIFAR-10, and 64

for the other benchmarks. Table 6.2 shows the results of our trigger generation method where

the ASR quantifies the efficacy of the trigger. Note that the trigger’s ASR is the initial ASR for

ProFlip’s critical bits search, thus an effective trigger helps to reduce nb for the desired ASR.

Table 6.2. Effectiveness of ProFlip’s trigger generation. The target class is set to
t = 2 for all benchmarks.

Dataset Model TAP (%) ASR (%)

CIFAR-10
ResNet-18 9.76 50.96
VGG-16 9.76 84.63

SVHN VGG-16 9.76 83.46
ImageNet ResNet-18 10.62 44.22

Results of parameter-level sensitivity analysis. We implement Algorithm 5 and show the

results (psens) in Table 6.1. For ResNet-18 with CIFAR-10 and ImageNet, both psens = 62 and

psens = 60 correspond to the weight parameter of the model’s last dense layer. For VGG-16

with CIFAR-10 and SVHN, psens = 45 corresponds to the bias vector of the second to the last

convolution layer in the model. Note that TBT [RHF20] always selects the weight of the last

linear layer to attack in all experiments. To justify the effectiveness of ProFlip’s attack parameter

selection, we compare the performance of our critical bits search when different parameters are

selected for attack on two VGG-16 benchmarks. Figure 6.3 shows the comparison results where
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two different parameters, psens = 45 (found by ProFlip) and psens = 60 (found by TBT [RHF20])

are used by our BFA. One can see that our parameter-level sensitivity analysis successfully

identifies the vulnerable parameter that allows the BFA to reach a high ASR in a few iterations

(marked by the curve with stars), thus helps to reduce the number of bit flips nb.

Figure 6.3. ProFlip’s performance when different parameters are selected for attack.
The curve color and the marker denote the benchmark and the selected parameter,
respectively. The dashed line denotes the ASR threshold.

Results of critical bits search. To illustrate the progressive nature of ProFlip’s CBS, we

measure the ASR of our attack as the iteration proceeds. Figure 6.4 illustrates the evolving attack

effectiveness of ProFlip on the benchmarks in Table 6.1. Note that ProFlip modifies a single

element in each iteration (see Algorithm 4), thus the total number of elements changed ne in

Table 6.1 is the same as the final number of iterations shown in Figure 6.4. Note that the initial

ASR of CBS is the ASR of the previous trigger generation stage. The starting points of curves in

Figure 6.4 are obtained from the last column of Table 6.2. We can see that ProFlip’s critical bits

search effectively improves the ASR in the iterative process and converges in a few iterations.

6.4.3 Comparison with Prior Works

In this section, we compare the performance of ProFlip with the only existing counterpart:

TBT [RHF20]. For both attacks, we set the Trojan target class as t = 2. The trigger area
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Figure 6.4. Performance of ProFlip’s progressive critical bits search. The most
vulnerable parameter (psens) and TAP for each benchmark are shown in Table 6.1. The
dashed line denotes the termination condition ASRt = 94%.

percentage is set to TAP = 10.62% for the ImageNet benchmark and TAP = 9.76% in other

cases. Besides using ASRt = 97% for ImageNet experiment to match TBT, other parameters of

ProFlip are the same as the ones used for Table 6.1. TBT reports multiple attack outcomes on

ResNet-18 model with CIFAR-10 since different hyper-parameters wb are used [RHF20]. For a

fair comparison, we report the result of TBT when it achieves the same level of test accuracy

and ASR as ProFlip on the Trojaned model. Table 6.3 summarizes the performance comparison

results across all benchmarks.

Table 6.3. Performance comparison between ProFlip and TBT [RHF20]. For both
attacks, the target class is set to t = 2.

Dataset Model TA (%) ASR (%) nb
Ours TBT Ours TBT Ours TBT

CIFAR-10
ResNet-18 90.3 89.1 97.9 93.2 12 413
VGG-16 88.1 86.1 94.8 93.5 16 557

SVHN VGG-16 95.3 73.9 94.5 73.8 20 565
ImageNet ResNet-18 68.3 69.1 97.4 99.9 19 568

There are two observations from Table 6.3: (i) ProFlip is effective and efficient. Our

attack reduces the number of bit flips nb by an average of 31.8× compared to TBT, thus is more

practical and threatening. (ii) ProFlip is more generally effective and stealthy across different

datasets and model architectures compared to TBT. For VGG-16 model with SVHN dataset,
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TBT [RHF20] can only achieve an ASR of 73.8% while flipping more than 500 bits. This large

parameter change also leads to a test accuracy drop of 25.7%, which may reveal the Trojan

attack. ProFlip achieves an ASR of 94.5% with 3.3% test accuracy drop by flipping only 20 bits.

The root cause of TBT’s deficiency on the SVHN benchmark is its incorrect selection of the

vulnerable parameter. We show in Figure 6.3 that the BFA achieves a higher ASR with psens = 45

(found by ProFlip) compared to psens = 60 (found by TBT), suggesting the importance of attack

parameter selection for bit flip attacks.

6.4.4 Ablation Study

Sensitivity to Target Class. We investigate the vulnerability of different target classes (TC)

against ProFlip attack. Table 6.4 shows the evaluation results on ResNet-18 model with CIFAR-

10 dataset. We use the same attack parameters (λ1 = λ2 = 1, γ1 = 2, γ2 = 1, TAP = 9.76%)

besides varying the target class t in this set of experiments. One can see that the most susceptible

class of ResNet-18 is t = 6 where we only need to modify a single parameter (ne = 1) by flipping

4 bits (nb = 4). While the susceptibility varies with different target classes, ProFlip is generally

effective (high ASR) and efficient (low nb) in all attack scenarios.

Table 6.4. Vulnerability analysis of different target classes on ResNet-18 with CIFAR-10.
The trigger area is 9.76% in all cases. Both TA and ASR are measured in percentage.
The ASR threshold for termination is 94% in all cases. (%).

TC TA ASR ne nb TC TA ASR ne nb
0 90.1 96.3 3 10 5 86.7 94.3 3 9
1 91.1 94.8 3 7 6 92.21 96.9 1 4
2 90.9 94 2 12 7 89 94.7 2 6
3 89 96.2 3 12 8 91.4 95.2 2 5
4 87.8 95.2 3 11 9 90.5 97.3 2 5

Sensitivity to Trigger Area. The trigger area has a direct impact on the ASR of ProFlip’s trigger

generation, thus also influences the critical bits search in the next stage. We vary the size of the

square trigger while keeping the other hyper-parameters unchanged. Table 6.5 illustrates how

ProFlip performance changes with the trigger area. We measure the ASR after trigger generation

and critical bits search to show the impact of TAP on each stage. It can be seen that a larger TAP

128



results in a higher ASR of trigger generation. This is because the trigger dimension increase,

thus providing a larger optimization space when solving ∆ in Equation (6.7).

Table 6.5. Effect of trigger area on ProFlip when attacking ResNet-18 model with
CIFAR-10 dataset (target class t = 2). The column ‘TrigGen’ and ‘CBS’ denote trigger
generation and critical bits search, respectively.

TAP (%) TA (%)
ASR (%) ne nbTrigGen CBS

6.25 91.40 25.65 91.13 9 42
7.91 89.61 34.54 94.10 2 8
9.76 89.80 50.96 96.5 2 12
11.82 92.32 66.3 96.6 1 3

We can also observe that the total number of modified elements ne (which is also the

number of attack iteration) varies with the trigger area. This is due to the fact that a higher

ASR inherited from the trigger generation stage provisions a better initialization for ProFlip’s

critical bits search, thus helps to reduce ne. Note that a smaller value of ne does not guarantee a

smaller nb, since the required number of bit flips in each element (|f| in Algorithm 4) is different.

This fact is validated in the second and the third rows of Table 6.5 where ne = 2 in both cases.

When TAP = 7.91%, ProFlip sequentially modifies two elements by flipping 3 and 5 bits in each

element (nb = 8), respectively. In the case where TAP = 9.76%, ProFlip changes two elements

by flipping 5 and 7 bits in each element (nb = 12).

Sensitivity to Attack Sample Size. Our threat model assumes the adversary has a small set

of clean data sample D to assist the attack design. We investigate how ProFlip’s performance

changes when the size of the available data varies. Table 6.6 shows the experimental results on

ResNet-18 model with CIFAR-10 dataset. We use the default configurations of ProFlip in this

experiment. One can see that our attack is effective even when as few as 64 images are available.

In general, a larger sample size is beneficial to ensure higher test accuracy and higher ASR for

the Trojan attack. ProFlip finds vulnerable bits in two iterations (ne = 2) in all settings while nb

differs slightly. The results in the last three rows are the same since our CBS pipeline identifies

the same vulnerable elements and the same optimal values in these three cases.
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Table 6.6. Effect of sample size on ProFlip’s performance when attacking ResNet-18
with CIFAR-10 (t = 2, TAP = 9.76%). The parenthesis in the last column shows the
number of bit flips in each iteration of critical bits search.

Data Size TA (%) ASR (%) ne nb
64 89.0 95.7 2 8 (6+2)
128 88.4 96.3 2 7 (5+2)
256 90.3 97.9 2 12 (5+7)
512 90.3 97.9 2 12 (5+7)

1024 90.3 97.9 2 12 (5+7)

6.5 Discussion

Trade-off between Stealthiness and Effectiveness. ProFlip allows the adversary to explore the

trade-off between Trojan stealthiness and effectiveness by setting the hyper-parameters γ1 and

γ2 when computing Ltro j in Equation (6.10). A larger value of γ1 or γ2 gives higher weight to

stealthiness and effectiveness, respectively. We assess the trade-off between these two attack

goals by changing γ1 while using a fixed value of γ2 = 1. Table 6.7 shows the evaluation results

on ResNet-18 and CIFAR-10 dataset. It can be observed that the test accuracy of the Trojaned

model increases as γ1 grows, while the ASR shows a decreasing trend. We can also see that

ProFlip’s critical bits searching is robust to a wide range of γ1, since the number of modified

elements remains the same (ne = 2) and the variation of nb is small.

Table 6.7. Performance trade-off of ProFlip with varying hyper-parameters γ1
in Trojan loss. ResNet-18 model with CIFAR-10 is assessed with t = 2, and
TAP = 9.76%.

γ1 TA (%) ASR (%) ne nb
1 89.44 97.68 2 11 (5+6)
2 89.44 97.68 2 11 (5+6)
4 90.30 97.88 2 12 (5+7)
8 90.38 96.31 2 12 (6+6)

Potential Defense. We propose a potential defense against ProFlip with two goals: (i) Reducing

the ASR, and (ii) Increasing the BFA overhead in terms of nb. We make a key observation from

Figure 6.3 that selecting the most susceptible parameter for attack is crucial for BFA. As such,

we propose to ‘hide’ the top vulnerable parameters of a DNN by performing decomposition
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on them. Existing matrix/tensor decomposition methods [ZYL+17, KPY+15, ZWLZ19] can

be used for this purpose. With the defense, the decomposed components are stored in memory

instead of the raw parameter values. In this case, the adversary will attack the less vulnerable

parameters that are stored in the raw format.

The overhead of our proposed defense depends on two factors: the complexity of the

employed decomposition technique, and the number of layers selected for decomposition. As

such, the defense overhead can be controlled by tuning these two factors. We implement this

defense scheme by decomposing (thus protecting) the most vulnerable parameter identified by

Algorithm 5. Table 6.8 compares ProFlip’s performance before and after applying the defense.

One can see that the proposed defense can effectively reduce the ASR of ProFlip while increasing

the bit flip overhead nb. We observe that the SVHN-VGG16 benchmark is more vulnerable

compared to the other three, since its increase of nb with defense is the smallest. However, our

defense can provide stronger robustness and increase nb from 20 to 124 by decomposing the

top-3 sensitive parameters of the VGG-16 model.

Table 6.8. Performance of the proposed defense against ProFlip. The attack results
before and after deploying the defense are denoted by ‘bef.’ and ‘aft.’, respectively.
Termination condition for CBS is set to ne = 30.

Dataset Model ASR (%) ne nb
bef. aft. bef. aft. bef. aft.

CIFAR-10
ResNet-18 97.9 73.7 2 30 12 111
VGG-16 95.4 90.4 4 30 18 128

SVHN VGG-16 94.5 91.2 5 9 20 41
ImageNet ResNet-18 94.3 67.1 3 30 15 127

6.6 Summary

In this chapter, we present ProFlip, the first practical, progressive bit flip-based targeted

Trojan attack that can disturb a DNN after its deployment. ProFlip identifies the vulnerable

bits in the model parameters with a gradual refinement of granularity, allowing the adversary

to shrink the large search space efficiently. ProFlip outperforms the prior art in terms of both
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attack effectiveness and efficiency by yielding a higher attack success rate with fewer bit flips.

Our attack engenders over 94% ASR across various benchmarks and reduces the number of bit

flips by 31.8× on average compared to the previous work. ProFlip discloses the vulnerability of

DNNs against bit-flip attacks at runtime and encourages the development of defense methods for

fully-fledged model protection.
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Chapter 7

DeepInspect: Trojan Detection and Mitiga-
tion for Deep Neural Networks

Deep Neural Networks (DNNs) are vulnerable to Neural Trojan (NT) attacks where the

adversary injects malicious behaviors during DNN training. This type of ‘backdoor’ attack is

activated when the input is stamped with the trigger pattern pre-defined by the attacker. As the

attack outcome, the backdoored model yields an incorrect prediction when the Trojan is activated.

Due to the wide application of DNNs in critical fields, it is indispensable to inspect whether the

pre-trained DNN has been trojaned before deploying it in the field.

In this chapter, we aim to address the security concern of unknown DNNs to Trojan

attacks and ensure safe model deployment. We propose DeepInspect, the first black-box Trojan

detection solution with minimal prior knowledge of the model. DeepInspect learns the probability

distribution of potential triggers from the queried model using a conditional generative model,

thus retrieving the footprint of backdoor insertion. In addition to Trojan detection, we show

that DeepInspect’s trigger generator enables effective Trojan mitigation by model patching. We

corroborate the effectiveness, efficiency, and scalability of DeepInspect against the state-of-the-

art Trojan attacks across various benchmarks. Extensive experiments show that DeepInspect

offers superior detection performance and lower runtime overhead compared to the prior art.
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7.1 Introduction

Deep Neural Networks (DNNs) have demonstrated their unprecedented performance and

are increasingly employed in various critical applications including face recognition, biomedical

diagnosis, and autonomous driving [PVZ15, RDGF16, EKN+17]. Since training a highly

accurate DNN is time and resource-consuming, customers typically obtain pre-trained Deep

Learning (DL) models from third parties in the current supply chain. Caffe Model Zoo 1 is

an example platform where pre-trained models are publicly shared with the users. The non-

transparency of DNN training opens a security hole for adversaries to insert malicious backdoors

by disturbing the training pipeline. In the inference stage, any input data stamped with the trigger

will be misclassified into the attack target class by the infected DNN. For instance, a trojaned

model predicts ‘left-turn’ if the trigger is added to the input ‘right-turn’ sign.

This type of Neural Trojan (NT) attack (also called ‘backdoor’ attack) has been identified

in prior works [LMA+18, GLDGG19] and features two key properties: (i) Effectiveness: any

input with the trigger is predicted as the target class with high probability; (ii) Stealthiness: the

inserted backdoor remains hidden on legitimate inputs (i.e., no triggers present in the input).

These two properties make NT attacks threatening and hard to detect. Existing works [CCB+18,

CTPB18, JSF+20] mainly focus on identifying whether the input contains the trigger assuming

the queried model has been infected (i.e., ‘sanity check of the input’).

Detecting Trojan attacks for an unknown DNN is difficult due to the following challenges:

(C1) The stealthiness of backdoors makes them hard to identify by functional testing (which uses

the test accuracy as the detection criteria); (C2) Limited information can be obtained about the

queried model during Trojan detection. A clean training dataset or a gold reference model might

not be available in real-world settings. The training data contains personal information about

the users, thus it is typically not distributed with the pre-trained DNN. (C3) The attack target

specified by the adversary is unknown to the defender. In our case, the attacker is the malicious

1Model Zoo: https://github.com/BVLC/caffe/wiki/Model-Zoo
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model provider and the defender is the end user who acquires the pre-trained DNN from the

third-party supplier. This uncertainty of the attacker’s objective complicates NT detection since

brute-force searching for all possible attack targets is impractical for large-scale models with

numerous output classes.

To the best of our knowledge, Neural Cleanse (NC) [WYS+19] is the only existing work

that focuses on examining the vulnerability of the DNN against backdoor attacks. However,

backdoor detection in NC relies on a clean training dataset that does not contain any maliciously

manipulated data points. Such an assumption restricts the application scenarios of their method

due to the private nature of the original training data. To tackle the challenges (C1-C3), we

propose DeepInspect, the first practical Trojan detection framework that determines whether a

given DNN is backdoored (i.e., ‘sanity check of the pre-trained model’) with minimal information

about the queried model. DeepInspect (DI) consists of three main steps: model inversion to

recover a substitution training dataset, trigger reconstruction using a conditional Generative

Adversarial Network (cGAN), and anomaly detection based on statistical hypothesis testing.

The technical contributions of this chapter are summarized below:

• Enabling Neural Trojan detection of DNNs. We propose the first backdoor detection

framework that inspects the security of a pre-trained DNN without the assistance of clean

training data or a ground-truth reference model. The minimal assumptions made by our

threat model ensure the wide applicability of DeepInspect.

• Performing comprehensive evaluation of DeepInspect on various DNN benchmarks.

We conduct extensive experiments to corroborate the efficacy, efficiency, and scalability of

DeepInspect. We demonstrate that DeepInspect is provably more reliable compared to the

prior NT detection scheme [WYS+19].

• Presenting a novel model patching solution for Trojan mitigation. The triggers recov-

ered by the conditional generative model of DeepInspect shed light on the susceptibility
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of the queried model. We show that the defender can leverage the trigger generator for

adversarial training and invalidating the inserted backdoor.

7.2 Related Works

A line of research has focused on identifying the vulnerabilities of DNNs to various

attacks including adversarial samples (which are malicious inputs crafted to fool the model during

DNN inference) [MMS+17, RSJ+18], data poisoning (which injects poisoned data samples

during the training phase to degrade the model’s performance on legitimate inputs) [RNH+09,

BNL12], and backdoor attacks (which tampers with the training process to divert the behavior of

the infected model when the trigger is present) [LMA+18, GLDGG19]. We target at backdoor

attacks in this work and provide an overview of the state-of-the-art NT attacks as well as the

corresponding detection methods below.

7.2.1 Trojan Attacks on DNNs

We introduce two state-of-the-art Trojan attacks in this section. BadNets [GLDGG19]

takes the first leap to identify the vulnerability in DNN supply chain. The paper demonstrates

that a malicious model provider can train a DNN that has high accuracy on normal data samples

but misbehaves on attack-specified inputs. Two types of backdoor attacks, single-target attack

and all-to-all attack, are presented in the paper assuming the availability of the original training

data. These two attacks are implemented by training the model on the poisoned dataset where a

subset of clean inputs are stamped with the trigger and their corresponding labels are changed to

the attack target class.

TrojanNN [LMA+18] proposes a more advanced and practical backdoor attack that is

applicable when the adversary does not have access to the clean training data. Their attack first

specifies the trigger mask and selects neurons that are sensitive to the trigger region. The value

assignment for the trigger mask is obtained such that the selected neurons have high activations.

The training data is then recovered assuming the confidence score of the target model is known.
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Finally, the model is partially retrained on the mixture of the recovered training data and the

trojaned dataset crafted by the attacker.

7.2.2 DNN Backdoor Detection

Neural Cleanse [WYS+19] takes the first step to assess the vulnerability of a pre-trained

DL model to backdoor attacks. The authors utilize Gradient Descent (GD) to reverse engineer

the possible trigger for each output class and uses the trigger size (l1 norm) as the criteria to

identify infected classes. However, Neural Cleanse has the following limitations: (i) It assumes

that a clean training dataset is available for trigger recovery using GD; (ii) It requires white-box

access to the queried model for trigger recovery; (iii) It is not scalable to DNNs with a large

number of classes since the optimization problem of trigger recovery needs to be repeatedly

solved for each class. DeepInspect, on the contrary, simultaneously recovers triggers in multiple

classes without a clean dataset in a black-box setting, thus resolving all of the above constraints.

As such, DeepInspect features wider applicability and can be used as a third-party service that

only requires API access to the model.

7.3 DeepInspect Framework

7.3.1 Overview of Trojan Detection

The key intuition behind DeepInspect is shown in Figure 7.1. Here, we consider a

classification problem with three classes. Let ∆AB denote the perturbation required to move all

data samples in class A to class B and ∆A denote the perturbation to transform data points in all

the other classes to class A: ∆A = max(∆BA,∆CA). A trojaned model with attack target A satisfies:

∆A≪ ∆B,∆C while the difference between these three values is smaller in a benign model. The

process of Trojan insertion can be considered as adding redundant data points near the legitimate

ones and labeling them as the attack target. The movement from the original data point to the

malicious one is the trigger used in the backdoor attack. As a result of Trojan insertion, one can
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Figure 7.1. Intuition of DeepInspect Trojan detection. The backdoored model (right)
contains a ‘shortcut’ from the source class to the attack target class.

observe from Figure 7.1 that the required perturbation to transform legitimate data into samples

belonging to the attack target is smaller compared to the one in the corresponding benign model.

DeepInspect identifies the existence of such ‘small’ triggers as the ‘footprint’ left by Trojan

insertion and recovers potential triggers to extract the perturbation statistics.

Figure 7.2 illustrates the overall workflow of DeepInspect. Supposing the inspected DNN

has N output classes, DI first employs model inversion (MI) [FJR15] to generate a substitution

training dataset {XMI,YMI} containing all classes. Then, a conditional GAN is trained to generate

the possible Trojan trigger where the queried model is deployed as the fixed discriminator D.

Particularly, DI constructs a conditional generator G(z, t) where z is a random noise vector and t

is the target class. G is trained to learn the trigger distribution, i.e., the queried DNN shall predict

the attack target t on the superposition of the inversed data sample x and G’s output. Lastly, the

perturbation level (magnitude of change) of the recovered triggers is used as the test statistics for

anomaly detection. Our hypothesis testing-based Trojan detection is feasible since it explores

the intrinsic ‘footprint’ of backdoor insertion.

138



Figure 7.2. Global flow of DeepInspect framework.

7.3.2 Threat Model

DeepInspect examines the susceptibility of the queried DNN against NT attacks with

minimal assumptions, thus addressing the challenge of limited information (C2) mentioned in

the previous section. More specifically, we assume the defender has the following knowledge

about the inquired DNN: dimensionality of the input data, number of output classes, and the

confidence scores of the model given an arbitrary input query. Furthermore, we assume the

attacker has the capability of injecting arbitrary type and ratio of poison data into the training set

to achieve his desired attack success rate. Our strong threat model ensures the practical usage

of DeepInspect in real-world settings as opposed to the prior work [WYS+19] that requires a

benign dataset to assist backdoor detection.

7.3.3 DeepInspect Methodology

DeepInspect framework consists of three main steps: (i) Model inversion: the defender

first applies model inversion on the queried DNN to recover a substitution training dataset

{XMI,YMI} covering all output classes. The recovered dataset is used by GAN training in the

next step, addressing the challenge C2; (ii) Trigger generation: DI leverages a generative model

to reconstruct possible trigger patterns used by the Trojan attack. Since the attack objective

(infected output classes) is unknown to the defender (C3), we employ a conditional generator

that efficiently constructs triggers belonging to different attack targets; (iii) Anomaly detection:

after generating triggers for all output classes using cGAN, DI formulates Trojan detection as

an anomaly detection problem. The perturbation statistics in all categories are collected and an

outlier in the left tail indicates the existence of the backdoor.
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Model Inversion

Recall that our threat model assumes no clean training dataset is available during Trojan

detection. As such, we employ model inversion to recover a substitution training set {XMI,YMI}

which assists generator training in the next step. [FJR15] demonstrates that data can be extracted

from a pre-trained model and formulates model inversion as an optimization problem. The

objective function of MI is shown in Equation (7.1), which is iteratively minimized via GD.

c(x) = 1− f (x; t)+AuxIn f o(x). (7.1)

Here, x is the input data, t is the target class for the current trigger recovery, f is the probability

that the queried model predicts class t when given the input x, AuxIn f o(x) is an optional term

incorporating auxiliary constraints on the input.

Trigger Generation

The key idea of DeepInspect is to train a conditional generator that learns the probability

density distribution (pdf) of the Trojan trigger whose perturbation level serves as the detection

statistics. Particularly, DI employs cGAN to ‘emulate’ the process of the Trojan attack:D(x+

G(z, t)) = t. Here, D is the queried DNN, t is the examined attack target, x is a sample from

the data distribution obtained by MI, and the trigger is the output of the conditional generator

∆ = G(z, t). Note that existing attacks [LMA+18, GLDGG19] that use fixed trigger patterns

can be considered as a special case where the trigger distribution is constant-valued.

Figure 7.3 shows the high-level overview of our trigger generator. Recall that DeepInspect

deploys the pre-trained model as the fixed discriminator D. As such, the key challenge of trigger

generation is to formulate the loss to train the conditional generator. Since our threat model

assumes that the defender knows the input dimension and the number of output classes, he can

find a feasible topology of G that yields triggers ∆ with a consistent shape as the inversed input

x. To emulate the Trojan attack, DI first incorporates a negative log likelihood loss (nll) shown in
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Figure 7.3. Illustration of DeepInspect’s conditional GAN training.

Equation (7.2) to quantify the quality of G’s output trigger to fool the pre-trained model D:

Ltrigger = Ex[nll(D(x+G(z, t)), t)]. (7.2)

In addition, a regular adversarial loss term is integrated to ensure the ‘fake’ image

xt = x+G(z, t) cannot be distinguished from the original one by D:

LGAN = Ex[mse(Dprob(x+G(z, t)), 1)]. (7.3)

Here, mse denotes the ‘mean square error’ loss function. Lastly, we limit the magnitude of G’s

output by adding a soft hinge loss on its l1 norm with a defender-selected threshold:

Lpert = Ex[max(0, ||G(z, t)||1− thres)] (7.4)

Bounding the perturbation magnitude is a common practice to stabilize GAN training [IZZE17].

The weighted sum of the above three losses is used to train the conditional G:

L = Ltrigger + γ1 ·LGAN + γ2 ·Lpert . (7.5)

We select hyper-parameters γ1,γ2 to ensure that the output trigger of G achieves at least 95%

attack success rate. We argue that DeepInspect is operational in a black-box setting since our

trigger recovery process does not need any information about model internals.
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Anomaly Detection

DeepInspect explores the observation that one can find a trigger with an abnormally

smaller perturbation level for the target class compared to other uninfected classes in a trojaned

model. After generating triggers for each class using the trained generator in the second step,

DI deploys hypothesis testing and robust statistics to detect the existence of outliers in trigger

perturbations. More specifically, we use a variant of ‘Double Median Absolute Deviation’

(DMAD) [Ros13] as the detection criteria. Our DMAD scheme first computes the median m of

all test statistic points S and uses it to split the original list of trigger perturbations. The absolute

deviation of all data points in the left subgroup Sle f t from the group median is then computed

and denoted as dev le f t. The product of the population deviation and a consistency constant

(1.4826 for normal distribution) is denoted as mad.

We define the ‘deviation factor’ (d f ) of a data point as the ratio between its absolute

deviation from the median and the MAD value d f = dev le f t
mad . Assuming the distribution of

the perturbation statistics satisfies normal distribution, DI employs a cutoff threshold c = 2 to

provide a significance level of α = 0.05 for our hypothesis testing [Ros13]. Any data points

in Sle f t with d f values larger than c are marked as outliers and their corresponding labels are

identified as suspicious attack targets. Note that the cutoff value c can be selected to ensure a

defender-specified significance level using the tail distribution of normal variables (also called

‘Q-function’). Let L denote the random variable (RV) for the perturbation level with mean µ and

std σ . Then, the corresponding normalized random variable C = L−µ

σ
follows standard normal

distribution N (0,1). The relation between the significance level α and the cutoff threshold c is

described as follows:

α = Prob(L≤ l) = 1−Prob(L > l) = 1−Prob(C > c)

= 1−Q(c) = 1− 1√
2π

∫
∞

c
exp(−u2

2
)du, (7.6)
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where c = l−µ

σ
. DI leverages DMAD to estimate the population std σ and replaces the mean

value µ with the sample median. Thus, the normalized RV C can be used to model the deviation

factor, meaning that the threshold c obtained from Equation (7.6) also applies to d f with the

same significance level α . DI provides tunable detection performance by allowing the defender

to specify the significance level used in Equation (7.6).

7.4 Evaluations

We perform extensive experiments to investigate DeepInspect’s performance on various

benchmarks. We present a quantitative comparison with the prior work and detection overhead

analysis in Section 7.4.2 and Section 7.4.3, respectively.

7.4.1 Experimental Setup

We assess DeepInspect against two popular Trojan attacks, i.e., BadNets [GLDGG19]

and TrojanNN [LMA+18]. These two attacks are used in Neural Cleanse [WYS+19] as well.

We first evaluate DI’s performance on the backdoor insertion method presented in

BadNets [GLDGG19]. In this attack, the trigger is a white square at the bottom right corner of

the image. We add the trigger to a subset (∼15%) of the original training dataset (containing all

classes) and relabel them as the attack target class t. The backdoor is embedded by training the

model with the mixture of the manipulated set and the rest of the clean dataset. We implement

BadNets attack on MNIST and GTSRB benchmarks. We also evaluate DI against the TrojanNN

attack. The paper [LMA+18] designs a specific trigger that stimulates selected neurons in the

target DNN to high activation values instead of hard-coded relabelling a portion of the modified

training data. We implement TrojanNN attack in [LMA+18] using their open-source code with

square and watermark triggers on VGGFace [OMPZ] and ResNet-18 [HZRS16], respectively.

In our experiments, we add ∼10% of manipulated data to the original training dataset such that

all of our trojaned benchmarks obtained using BadNets attack method achieve above 95% Trojan

activation rate. Table 7.1 summarizes the settings and results of the above two Trojan attacks.
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Table 7.1. Summary of the assessed Trojan attacks. The settings and results of
backdoor injection are shown.

Benchmark # of Labels
(attack target t)

Input
Dimension

Trigger Size
(Ratio%)

Test
Acc (%)

Trojan Activ
Rate (%)

MNIST 10(5) 28x28x1 4x4(1%) 98.8% 100.0%
GTSRB 43(18) 32x32x3 4x4(1%) 96.1% 98.9%

ResNet-18 1000(500) 224x224x3 40x40(3%) *85.9% 98.3%
Trojan Square 2622(0) 224x224x3 ≈3512(7%) 70.8% 99.9%

Trojan WM 2622(0) 224x224x3 ≈3512(7%) 71.4% 97.4%
* Top-5 accuracy

7.4.2 Detection Performance

We investigate DeepInspect’s performance following the three steps outlined in Sec-

tion 7.3.3. During the training of G, we randomly assign a valid output class as the target t.

Model inversion is employed to recover 10,000 images covering all classes for each benchmark.

The topology of the conditional generator for MNIST and GTSRB are derived from [Kan17].

For a DNN with high input dimensionality (ResNet-18, Trojan Square and Trojan WM fall

into this case), a generator with more layers is required to match the image size. Training

of such a generative model is prohibitively costly and unstable. To tackle this challenge, we

train an auto-encoder on the inversed dataset to find an embedding space for the input. The

converged decoder is then inserted between G and D shown in Figure 7.3. As such, G learns to

generate triggers in the smaller embedding space. We deploy the auto-encoder on the last three

benchmarks in Table 7.1 to alleviate the dimensionality concern in our trigger recovery.

We repeat each Trojan detection experiment for 10 times and report the average metrics.

To validate the feasibility of DeepInspect’s anomaly detection, we measure the deviation factor

for both benign and trojaned models and show the results in Figure 7.4 (a) where the red dashed

line denotes the decision threshold. The queried model is determined to be ‘infected’ if its

deviation factor is larger than the cutoff threshold. Using a significance level of α = 0.05

(corresponding to the cutoff threshold c = 2), DI yields d f > 2 for all infected models and

d f < 2 for all benign models as shown in Figure 7.4 (a). Therefore, DI satisfies ‘effectiveness’

criterion by achieving 0% false positive rates and 0% false negative rate across all benchmarks.
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Figure 7.4. (a) Deviation factors of DeepInspect’s recovered triggers for benign and
trojaned models. (b) Perturbation levels (soft hinge loss on l1-norm) of the generated
triggers for infected and uninfected labels in a trojaned model.

The large gap of deviation factors between an infected DNN and the corresponding

benign one indicates that d f is an effective metric for Trojan detection. To corroborate the key

intuition utilized by DI (shown in Figure 7.1), we measure the perturbation levels of the triggers

recovered by DI’s conditional generator and visualize their distributions in Figure 7.4 (b). It can

be observed that the perturbation magnitude of the infected label (denoted by the triangle) is

substantially smaller than the one of uninfected classes, thus can be used by robust statistics in

our detection. Furthermore, the distribution of our test statistics recovered for the uninfected

labels has a smaller dispersion compared to the ones in Neural Cleanse [WYS+19], yielding

more reliable detection results.

In the following of this section, we compare the detection performance of DeepInspect

and Neural Cleanse in various settings. We use the open source code of [WYS+19] for imple-

mentation. Since NC assumes the availability of a clean dataset, we perform their proposed

detection method on the inversed dataset obtained from the same model inversion procedure as

DI to ensure a fair comparison.
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Sensitivity to Trigger Size

The size of the trigger pattern used by the attacker affects the detection performance

of both DI and NC since it impacts the test statistics. More specifically, DI leverages the soft

hinge loss of the recovered triggers as the statistics while NC uses the l1 norm as the decision

criteria. Here, we use square triggers of various sizes on the GTSRB benchmark and compare

the detection performance of two methods in Figure 7.5. One can see that NC yields three false

negatives on triggers of size 2×2, 12×12, and 16×16. Moreover, the deviation factor of NC

shows a decreasing trend as the trigger size increases, suggesting that the detection statistic is

sensitive to the trigger size. DI yields no false negatives across all benchmarks, thus is less

sensitive to the increase of the trigger size compared to NC. Similar trends are observed on

MNIST benchmark and results are not shown here.

Figure 7.5. Sensitivity analysis of Trojan detection to the size of triggers. The
deviation factors of DeepInspect and Neural Cleanse on GTSRB benchmark infected
with various square triggers are shown. The red dashed line indicates the cutoff
threshold for Trojan detection.

Sensitivity to Number of Trojan Targets

We evaluate DI’s performance on single-target Trojan attack in the previous section. Here,

we consider a more advanced backdoor attack where more than one output classes are infected

using the same trigger. We name this type of attack ‘multi-target’ Trojan. More specifically, the

target label t for each input stamped by the trigger is randomly selected from a set of classes T .

The backdoor is considered to be activated if the model’s prediction belongs to the attack target
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set T . We use the Trojan insertion method in BadNets [GLDGG19] and perform the single/multi-

target backdoor attack on MNIST benchmark. The infected model achieves a comparable test

accuracy as the uninfected baseline and above 98% Trojan activation rate. Figure 7.6 shows

the sensitivity of DI and NC to the number of attack target labels (denoted as |T |). NC yields

false negatives on all three multi-target Trojan benchmarks (|T |= 3,5,7) while DI successfully

detects the Trojan in the queried model when |T | = 3 and 5. Similar results are observed on

GTSRB benchmark and are not shown here.

Figure 7.6. Sensitivity analysis of Trojan detection to the number of attack targets. The
deviation factors of DeepInspect and Neural Cleanse in various single/multi-target Trojan
attack settings are measured on the MNIST benchmark with a square trigger of size 4×4.

7.4.3 Overhead Analysis

We evaluate DI’s runtime overhead and compare it with the prior work here. Recall

that DI leverages a conditional generator to recover trigger patterns belonging to multiple

classes simultaneously. Furthermore, we demonstrate that DI can incorporate an auto-encoder to

accelerate Trojan detection on large benchmarks. On the contrary, NC [WYS+19] formulates

trigger recovery as an optimization problem and deploys gradient descent to search for the trigger

in each target class individually. NC is not compatible with the auto-encoder since it recovers

the two-dimension mask and three-dimension trigger pattern separately.

Figure 7.7 shows the overall relative runtime comparison between DI and NC. We

implement both detection methods on Nvidia RTX2080 GPU with 8GiB memory and recover

5 images in each class during model inversion. The runtime of MI can be computed from
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Figure 7.7. Detection speedup of DeepInspect compared to Neural Cleanse. The training
time of the auto-encoder and MI are included in DI’s and NC’s runtime. The orange
dashed line denotes the throughput of model inversion (#images per second).

the throughout shown in Figure 7.7. Empirical results show that NC is 1.7× and 1.2× faster

than DI on MNIST (N = 10) and GTSRB (N = 43) benchmark, respectively. However, DI

engenders 5.3× and 9.7× speedup over NC on ResNet-18 (N = 1000) and VGGFace benchmarks

(N = 2622, denoted as ‘Trojan Square’ and ‘Trojan WM’ in Figure 7.7). It can be seen that our

framework yields higher speedup compared to NC on large benchmarks. As such, DI features

better efficiency and scalability for DNNs with numerous output classes in the real-world setting.

Discussion

Let us consider the number of source and target classes used in Trojan insertion, current

DI addresses all-to-one/all-to-multiple scenarios. DeepInspect can be easily extended to detect

other Trojan attacks with different mechanisms. A white-box adaptive adversary can strategically

select the source and the target class such that the magnitude of required perturbation for misclas-

sification is not noticeably smaller than other unaffected classes. Such an attack might lower d f

at the cost of reduced effectiveness. DI can be adapted to detect clean-label attacks [SHN+18]

by evaluating the required perturbation for each source-target class pair. We also evaluate DI

when the clean dataset is available during Trojan detection and show that DI’s performance is

comparable to Neural Cleanse [WYS+19].
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7.5 Trojan Mitigation via Model Patching

Recall that DeepInspect effectively detects the occurrence of the backdoor attack by

training a conditional generator to learn the pdf of potential triggers. In other words, once we

complete the training G as outlined in Section 7.3.3, we have a generative model that is capable

of constructing diverse trigger patterns for any target class. As such, DeepInspect’s generator

facilitate ‘adversarial learning’ that can be used to improve the robustness of the benign model,

or ‘patch’ the infected DNN for disabling Trojan attacks.

Here, we demonstrate how DeepInspect can be used as a remedy scheme to mitigate the

Trojan attack with the identified target class t. We perform model patching by fine-tuning the

trojaned DNN with the mixture of the inversed training set {XMI,YMI} and the patching dataset{
Xpatch,Ypatch

}
. The patching set is obtained as follows: DeepInspect’s conditional generator

trained in the detection phase (Section 7.3.3) is utilized to constructs a series of trigger images

∆t = G(z, t) for the target class t. The patching data is then acquired by ‘stamping’ a subset of

the inversed data with the reverse engineered triggers Xpatch = X subset
MI +∆t . The labels of the

patching inputs are the same as the ones of the corresponding recovered data Ypatch = Y subset
MI .

In our experiments, we use 15% of {XMI,YMI} to construct the patching set. Another 10% of

the inversed data is taken as the validation set to find retraining configurations (e.g., batch size,

learning rate). Finally, adversarial training is employed on the infected model for 10 epochs with

the original loss in the data application.

Table 7.2 summarizes the results of DeepInspect’s model patching on various infected

DNNs without clean data. One can see that our Trojan mitigation scheme effectively decreases

the activation rate of the embedded trigger while preserving the model’s performance on the

normal dataset. The patched model has a deviation factor smaller than the cutoff threshold c = 2

used in DeepInspect’s anomaly detection (Section 7.3.3), thus is able to pass model sanity check

and safe to deploy. We want to emphasize that the TAR after patching can be further decreased

to ∼3% assuming clean data is available.
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Table 7.2. Evaluation of DeepInspect’s Trojan mitigation scheme. The Trojan Ac-
tivation Rate (TAR) is effectively reduced and the test accuracy is preserved after
performing model patching.

Benchmark Before Patching After Patching
Metrics Test Acc TAR DF Test Acc TAR DF
MNIST 98.8% 100.0% 3.59 99.1% 7.4% 1.56
GTSRB 96.1% 98.9% 3.15 97.1% 8.8% 1.42

ResNet-18 85.9% 98.3% 3.82 86.6% 9.4% 1.67
Trojan Square 70.8% 99.9% 6.91 70.1% 9.7% 1.79
Trojan WM 71.4% 97.4% 6.68 70.9% 8.9% 1.82

7.6 Summary and Future Work

In this chapter, we present DeepInspect, the first practical solution for Trojan detection

and mitigation in the deep learning domain with minimal prior knowledge about the queried

model. DeepInspect takes the pre-trained DNN as its input and returns a binary decision

(benign/trojaned) on the sanity of the model. Unlike the prior work that relies on a clean dataset

for Trojan detection, DeepInspect is able to reconstruct potential Trojan triggers with only

black-box access to the queried DNN. DeepInspect leverages a conditional generative model

to learn the probability distribution of triggers for multiple attack targets simultaneously. Our

hypothesis testing-based anomaly detection allows the defender to leverage the trade-off between

the detection rate and the false alarm rate by specifying the cutoff threshold. We perform an

extensive evaluation of DeepInspect against two state-of-the-art Trojan attacks to corroborate its

high detection rates and low false alarm rates compared to the previous work. In addition to the

superior backdoor detection performance, DeepInspect’s conditional trigger generator enables

an effective Trojan mitigation solution, i.e., patching the model using adversarial training.

We discuss two future research directions here. DeepInspect can be adapted to detect

more sophisticated Trojan attacks (e.g., large-size triggers and multi-target backdoors). For

multi-target Trojan attacks, the loss Ltrigger can be modified to allow multiple target classes

given the same manipulated input when training the generator. Also, the runtime of DI’s trigger

recovery can be optimized by incorporating more advanced GAN training strategies.
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Chapter 8

GenUnlock: Genetic Algorithm for Un-
locking Logic Encryption

Logic locking inserts additional key gates to the original circuit for protecting the intel-

lectual property of integrated circuits (ICs). Prior works have identified the vulnerability of logic

locking to satisfiability (SAT)-based attacks. However, SAT attacks are ineffective on circuits

with SAT-hard structures. In this chapter, I introduce GenUnlock, the first Genetic Algorithm

(GA)-based logic unlocking attack that addresses the limitation of SAT attacks. GenUnlock

formulates logic unlocking (i.e., identifying the correct key) as a combinatorial optimization

problem and tackles it using genetic algorithms. Multiple key sequences form the population

and undergo the following main operations: circuit fitness evaluation, population selection,

crossover, and mutation. The key sequences with high fitness scores ‘survive’ the selection and

are transformed into the offspring. GenUnlock’s evolutionary process of key searching features

high scalability, exploration efficiency, and parallelizable fitness evaluation.

We take an Algorithm/Software/Hardware co-design approach to optimize GenUnlock’s

runtime overhead. Particularly, we (i) Pipeline each computation stage by automatically construct-

ing auxiliary circuitry for constraints checking, sorting, crossover, and mutation; (ii) Employ

hardware emulation on programmable hardware to accelerate circuit fitness evaluation. We

evaluate GenUnlock’s performance on various benchmarks and demonstrate that it achieves up

to 1014.1× speedup and is 3974.3× higher energy efficiency compared to SAT attacks.
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8.1 Introduction

Integrated circuits (ICs) are indispensable for various real-world applications ranging

from domestic electronics, autonomous vehicles to medical devices and deep learning sys-

tems [CES16, SCL+16]. The supply chain of modern ICs involves the participation of multiple

parties, thus is vulnerable to potential attacks such as IC piracy, overproduction, and counterfeit-

ing [TJ09, PBR18]. Logic locking and circuit camouflaging have been suggested as obfuscation

techniques to protect the Intellectual Property (IP) of ICs. IC camouflaging aims to prevent

layout-level Reverse Engineering (RE) attacks by adding dummy contacts/cells to the standard

gates [RSSK13, LSM+17]. As a result, the functionality of the circuit is decoupled from its ap-

pearance. Logic locking intends to protect the functionality of the circuit by inserting additional

key gates to the original circuit [YRSK16, YMRS16] such that the output is correct only when

the decryption key is applied. Figure 8.1 illustrates an example of XOR-based logic locking.

(a) (b)

Figure 8.1. Example of XOR-based logic locking. The encrypted circuit (b) yields consistent
outputs as the original one (a) only when the two-bit key K1K2 is set to 2′b00.

A line of research has focused on the security of logic locking. SAT-based attacks and their

variants can break obfuscated circuits with the state-of-the-art logic locking methods. Traditional

SAT attacks work by eliminating incorrect keys with distinguishing input patterns (DIPs) found

by SAT solvers [SRM15]. However, SAT-based attacks have the following drawbacks: (i) They

are not scalable to large benchmarks since the size of the DIP constraints increases over iterations;

(ii) The computation of SAT solving is difficult to parallelize; (iii) They cannot activate circuits
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with SAT-hard designs (e.g., an internal ‘and-tree’ structure) since a DIP can only eliminate a

single incorrect key in this case [SRM15]. Developing an efficient and effective logic unlocking

methodology is challenging since the approach is desired to: (i)Be generic to negate arbitrary

logic encryption techniques and unknown circuit structures; (ii) Provide the trade-off between

the attack success rate and runtime overhead; (iii) Demonstrate scalability on large circuits.

We propose GenUnlock, the first genetic algorithm-based framework for logic unlocking.

GenUnlock takes the netlist of the encrypted circuit and the corresponding black-box accessible

active IC as its inputs. A set of feasible key sequences are returned as the outputs of GenUnlock.

Our framework consists of two main phases: (i) Training data generation. We first generate

the training dataset by querying the active IC and collecting corresponding outputs. (ii) Key

evolution. A set of keys are instantiated as individuals in the population and ‘evolve’ with GA

training. GenUnlock provisions the trade-off between the unlocking accuracy and execution

time. Compared to the existing SAT attacks, GenUnlock can efficiently find approximate keys

that yield correct outputs with high probability. The approximate keys can be used to attack

fault-tolerant applications such as deep learning systems and block-chain mining.

GenUnlock is devised based on an Algorithm / Software / Hardware co-design approach.

We deploy a diversity-guided genetic algorithm to ensure the stable convergence of the GA. Fur-

thermore, GenUnlock incorporates hardware emulation and pipelining as optimization techniques

to accelerate GenUnlock’s computation on FPGAs. To the best of our knowledge, GenUnlock

is the first logic unlocking framework that provides hardware design and optimization. This

chapter makes the following contributions:

• Demonstrating the first genetic algorithm-based key searching method to invalidate

logic locking. GenUnlock’s diversity-guided key evolutionary facilitates the exploration

of key space, thus is more scalable and generic than the traditional SAT attacks.

• Enabling logic unlocking with performance trade-off. GenUnlock allows the adver-

sary to explore the trade-off between attack effectiveness and runtime, thus revealing an
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undiscovered threat on fault-tolerant applications.

• Leveraging an Algorithm/Software/Hardware co-design approach to devise an effi-

cient attack scheme. GenUnlock provides a scalable and high-performance hardware

design that advances the deobfuscation speed to a higher level. Our hardware design

incorporates various optimization techniques including computation pipelining and circuit

emulation on programmable hardware.

• Investigating the performance of GenUnlock on various circuits. We conduct an

extensive evaluation of GenUnlock and compare the results with the state-of-the-art SAT

attacks to corroborate our efficacy and efficiency.

GenUnlock opens a new axis for the growing research in hardware security by shedding

light on the potential of deploying genetic algorithms to address challenging problems in the

hardware domain. Our approach is alternative to the existing SAT-based attacks and provide a

new attack dimension for (approximately) unlocking the encrypted circuit. GenUnlock provides

a flexible attack mechanism that yields a set of feasible keys for circuit unlocking with improving

effectiveness over time. Furthermore, the returned population after convergence (i.e., key se-

quences) enables ensemble-based circuit evaluation that exhibits superior unlocking performance

compared to one when a single key is used.

8.2 Related Works

8.2.1 Conventional Circuit Deobfuscation

The SAT-based attack on logic locking is first introduced in [SRM15]. In their proposed

method, a distinguishing input pattern is found by the external SAT solver in each iteration

and is added as the constraints on the correct keys. The SAT algorithm terminates when no

DIPs can be found, ensuring the full unlocking of the encrypted circuit. Later on, an active

learning-based approached called ‘AppSAT’ is suggested in [SLM+17] where random queries
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are incorporated as constraints on the key in the iterative algorithm in addition to DIPs found

by the SAT solver. As a result, AppSAT alleviates the limitation of SAT attacks on ‘SAT-hard’

circuits. Various attacks targeting at sequential circuit have also been studied [CB08]. In this

work, we mainly focus on GenUnlock’s performance on combinational benchmark. Note that

our attack framework and hardware optimization techniques are generic and applicable to the

encrypted sequential circuits.

8.2.2 Hardware Acceleration of Genetic Algorithms

GAs have been adapted to FPGA platforms for various applications. The paper [GTL14]

proposes an automated framework for general-purpose GA acceleration on FPGAs. As for

application-specific GA acceleration, Santos et al. [dSAF13] focus on accelerating cognitive

radio application. Bolchini et al. [BLM10] target at accelerating GA for design exploration.

Existing works mainly focus on accelerating particular GA benchmarks and their fitness functions

do not characterize the goal of logic unlocking. Also, fitness evaluation is not the bottleneck of

computation latency in the existing GA acceleration benchmarks. As opposed to these works,

GenUnlock customizes its hardware design to our particular defined problem (Section 8.3.2).

We tailor the GA for attacking encrypted circuits and develop FPGA design optimizations to

accelerate our proposed algorithm.

8.2.3 Circuit Emulation

FPGAs have been widely used as configurable platforms for emulating certain behaviors

of circuits due to their programmable features. One of the most useful application scenarios is

logic verification for HDL code before ASIC tape-out [HYS+06]. Bhattacharya et al. [BBM12]

propose a technique that uses FPGAs for emulating mixed-signal circuits. Experiments on

quantum circuit are typically performed on FPGAs using emulation methods [KZR04]. Biancolin

et al. [BKK+19] propose to accelerate the DRAM simulation process by emulating the behavior

of memory using FPGAs.
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8.3 GenUnlock Overview

Figure 8.2 shows the global flow of GenUnlock. GenUnlock consists of two stages: (i)

Offline pre-processing phase that generates training data for GA; and (ii) Key searching phase

that performs key evolution. The one-time pre-processing phase is performed via oracle access

while the key searching phase is accelerated on FPGA.

Figure 8.2. Global flow of GenUnlock framework for logic unlocking.

Phase I: Training data generation. This phase consists of the following two tasks:

1 Generate input vectors. Given the netlist of the encrypted circuit, GenUnlock crafts input

vectors and filter the ones that result in the same circuit outputs when different keys are applied.

2 Query active IC. The remaining input patterns from step 1 are then used to query the active

circuit. We collect the input/output (IO) pairs from the active IC to construct the training dataset

for GenUnlock’s logic unlocking.

Phase II: Key evolution. Once we generate the training data for the target circuit in Phase I,

GenUnlock performs three subroutines during the key evolution phase (bottom of Figure 8.2).

1 Circuit fitness evolution. Key sequences with high fitness scores are maintained and

transformed to offsprings at each iteration. The fitness of each key is evaluated by the ratio of

output matching on the training dataset when the specific key is applied. We convert the netlist

representation to conjunctive normal form (CNF) to facilitate fitness evaluation.
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2 Population diversity computation. GenUnlock separates genetic operations into two groups

(‘exploitation’ or ‘exploration’) and determines which branch to take depending on the population

diversity. Since the key is a binary-valued sequence in the domain of logic locking, we use the

dispersion (i.e., variance) of the population as the measurement of diversity.

3 Diversity-guided GA execution. GenUnlock applies genetic operations on the current

population (i.e., key sequences) based on the computed diversity. As opposed to traditional GAs

that perform all genetic operations in each iteration, GenUnlock’s dynamic, diversity-aware GA

execution demonstrates better convergence.

8.3.1 Motivation

Prior works on circuit deobfuscation heavily rely on external SAT solvers to find distin-

guishing input patterns and eliminate incorrect keys [SRM15, SLM+17, AKHS19]. However,

the existence of SAT-hard problems [CM97] makes it challenging to apply SAT attacks in these

scenarios. For instance, the SAT attack in [SRM15] fails to unlock the c2670 and c6880 bench-

mark since these circuit contains an internal ‘and-tree’ structure. To address the above limitation,

we propose GenUnlock that can attack circuits with SAT-hard structures.

Real-world Use Cases. Existing works mainly aim to unlock circuits with perfect accuracy

and may incur prohibitive runtime overhead to break large circuits. Here, we emphasize that

fast, approximate decryption of the target circuit might be more threatening than slow, full

decryption. This is particularly true for fault-tolerant applications. Let us consider block-chain

mining as a real-world example where the signature of cryptocurrency is extracted from AES

and hashing operations [Hei18] on the hardware miner. The signature is continuously checked

against the pre-defined template to determine whether the cryptocurrency is legitimate. As

such, it is sufficient for the user to find a key that yields correct outputs with high probability

in order to obtain financial benefits. Emerging ASIC accelerators for DNNs are also inherently

fault-tolerant. As such, minor computation errors coming from the approximate key to unlock

the DNN hardware accelerator will cause negligible accuracy degradation.
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8.3.2 Notations and Metrics

Problem Statement and Notation. Our objective is to design a systematic methodology for

unlocking arbitrary unknown, encrypted circuit. We denote the original unlocked circuit and

its encrypted version as Co and Ce. The primary input, output vector and the encryption key of

the circuit are denoted as I⃗ ∈ BM, O⃗ ∈ BN , and K⃗ ∈ Bk, respectively. The functionality of the

circuit is represented by the following deterministic mapping: Co(⃗I) = O⃗ and Ce(⃗I, K⃗) = O⃗. The

quality of a decryption key is quantified by the output fidelity (OF) that defines the probability of

the output vector of Ce being consistent with the one of Co given any input I⃗:

OF(K⃗; Co, Ce) = Prob
∀⃗I∈BM

[ Ce( I⃗, K⃗) =Co (⃗I)]. (8.1)

We consider logic unlocking as successful if the OF of the identified key is higher than the

attacker-defined threshold OF > (1− ε). Note that two different key sequences might result in

the same circuit behavior (i.e., same mapping Ce). Consistent with [SRM15], we define that K⃗1

and K⃗2 belong to the same equivalence class of keys if the condition Ce(⃗I, K⃗1) = Ce(⃗I, K⃗2) is

satisfied for any I⃗ ∈ BM.

Performance Metrics. We use two main metrics to assess the performance of the logic unlocking

scheme. On the one hand, effectiveness is the intrinsic criterion of circuit obfuscation that requires

the resulting key to yield correct output values with high probability. On the other hand, efficiency

requires that the attack method on logic encryption shall yield low runtime overhead. These two

metrics are quantified by the attack success rate (defined in Equation (8.1)) and the execution

time, respectively. GenUnlock, for the first time, provides the trade-off between effectiveness

and efficiency by generating a set of keys with evolving quality over time. In addition, we also

use resource consumption as a metric to evaluate our hardware design. A detailed, quantitative

analysis of these metrics is given in Section 8.6.
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8.3.3 Threat Model

We aim to develop an effective and scalable circuit deobfuscation scheme that is generally

applicable to decrypt any target IC protected by arbitrary logic encryption methods. More

specifically, we make the following assumptions about GenUnlock framework:

(i) The attacker has black-box access to the active IC. We assume that the adversary can

purchase the unlocked circuit from the market and obtain oracle access to it. Therefore, the

attacker can obtain the circuit’s response to arbitrary inputs, which is the basis of GenUnlock’s

training data generation(Phase I in Figure 8.2).

(ii) The attacker knows the netlist of the encrypted circuit. We assume the attacker can

reverse engineer the netlist of Ce from a physical circuit by performing depackaging, delayering

and imaging [HYH99]. The obtained netlist is converted to CNF and used in circuit fitness

evaluation (Phase II in Figure 8.2).

8.4 GenUnlock Methodology

Prior works have identified that there might be more than one correct keys to unlock the

given circuit [SRM15]. This is due to the fact that logic locking schemes, by default, do not

guarantee the uniqueness of the decryption key. GenUnlock leverages this fact and processes

multiple keys representing different equivalence classes in each iteration, thus features higher

efficiency for space exploration. Note that GenUnlock is oblivious of the underlying encryption

schemes used by the defender, thus is genetic and applicable to arbitrary ICs. In the following of

this section, we detail the two key phases of GenUnlock framework.

8.4.1 Training Data Generation

Algorithm 6 outlines the procedures of GenUnlock’s one-time, offline training data

generation. Adhering to our assumptions in Section 8.3.3, we collect ground-truth input/output

pairs (SI,SO) using oracle access to the active IC.
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Algorithm 6. Training Data Generation.
INPUT: Active circuit (Co) with oracle access; Netlist of target encrypted circuit (Ce);

Number of desired IO pairs (T ); Size of primary inputs (M) and the encryption key (k).

OUTPUT: A set of input/output pairs (SI,SO) as the training data for genetic algorithms.
1: Initialization: SI ← /0, SO← /0, i← 0.

2: while i < T do
3: I⃗← generate random inputs(M)

4: K⃗1, K⃗2← generate random keys(k)
5: O⃗1←Ce(⃗I, K⃗1), O⃗2←Ce(⃗I, K⃗2)

6: if O⃗1 ̸= O⃗2 then
7: i← i+1
8: SI ← add element(SI, I⃗)
9: O⃗←Co(⃗I)

10: SO← add element(SO, O⃗)

11: Return: Obtained IO pairs (SI,SO) for GA training.

Note that a naive implementation of challenge-response pairs collection is not desirable

since the resulting training data may not be able to distinguish different key sequences in Phase II.

More specifically, the individuals in the population might demonstrate comparable fitness on the

training data, impairing the convergence of the genetic algorithm. To alleviate this concern, we

estimate the distinguishing capability of each input (⃗I) by comparing the outputs of the encrypted

circuit (Ce) when two different random keys are applied. Only inputs that result in different

outputs are maintained in the final training set (line 4-10 in Algorithm 6). The attacker can obtain

a more accurate approximation of the input’s distinguishing capability using more keys at the

cost of higher computation complexity. It is worth noting that more than two key sequences can

be used to obtain a more accurate approximation of the distinguishing ability of the input at the

cost of higher computation complexity.

8.4.2 Genetic Algorithm for Key Searching

The workflow of GenUnlock’s logic unlocking is detailed in Algorithm 7. GenUnlock de-

ploys a dynamic, diversity-aware genetic algorithm for efficient and effective solution searching.
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Diversity evaluates the difference of individuals’ gene representation and it has been identified as

the key factor that determines the trade-off between the convergence speed and the solution’s

optimality of genetic algorithms [Urs02, Shi99, DPAM02]. The intuition behind GenUnlock is

that we compute the diversity of the current population at the beginning of each epoch (iteration)

to determine the ‘gene flow’ as shown in Figure 8.2. Diversity-guided GA dynamically alternates

between the ‘exploitation’ mode (population selection and crossover) and the ‘exploration’

mode (mutation) in order to ensure a fast and stable convergence. We use the dispersion of the

Algorithm 7. Genetic Algorithm for Logic Unlocking.
INPUT: Netlist of target encrypted circuit (Ce); Size of the encryption key (L); Training

dataset (SI,SO); GA parameters, including the population size (P), maximum number
of generations (G), number of high-fitness (h) and low-fitness individual (l) for selection,
number of child (c) for each pair of parent, and mutation rate m; Diversity threshold
(dlow,dhigh); Error tolerance of the attack (ε).

OUTPUT: A set of feasible key values (
{

K⃗
}

) that can unlock the circuit Ce.
1: Initialization:

SK = K⃗1, ..., K⃗P← generate population(L, P).
i← 0

2: while i < G and FK < 1− ε do
3: FK ← evaluate population f itness(SK, SI, SO)

4: div← compute population diversity(SK)

5: if div < dlow then
6: GA mode← ‘explore′

7: else if div > dhigh then
8: GA mode← ‘exploit ′

9: if GA mode == ‘exploit ′ then
10: SK ← select next generation(SK, FK, h, l)
11: SK ← crossover(SK, c)
12: else if GA mode == ‘explore′ then
13: SK ← mutate population(SK, m)

14: if FK > 1− ε then
15: break ▷ Check termination condition
16: i← i+1
17: Return: Obtained a set of circuit deobfuscation keys SK .
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key sequences in the population as the measurement of the diversity metric. The formula of

computing diversity is given in Equation (8.2).

div(SK) =
1
P

P

∑
i=1

√√√√ k

∑
j=1

[SK(i, j)− S̄K( j)]2, (8.2)

where S̄K( j) is the sample average of all individuals at jth bit:

S̄K( j) =
1
P

P

∑
i=1

SK(i, j). (8.3)

Here, P is the population size, k is the key length, SK ∈ BP×k is the current population, and

SK(i, j) denotes the jth bit of the ith individual in the population SK . The population diversity can

be controlled by tuning the GA parameters such as the number of individuals with high/lower

ones after selection (h, l), or the mutation rate m. In the following of this section, we discuss the

four main steps involved in GenUnlock’s GA methodology as outlined in Algorithm 7.

1 Fitness Evaluation. The fast and accurate computation of fitness scores is the backbone of

genetic algorithms. The definition of fitness is task-specific. Since our objective is to find (a set

of) feasible decryption keys with high OF, we use the matching ratio of the specific key on the

training data as the fitness measurement as shown in Equation (8.4). To facilitate the computation,

GenUnlock first automatically constructs auxiliary comparator components that are added to

the netlist of Ce, resulting in an evaluation netlist Caux
e . Each comparator is implemented as

an XNOR gate with two inputs where one of them comes from the ground-truth output in the

training dataset. The auxiliary netlist is then converted to CNF to facilitate the computation of

the fitness score using Equation (8.4).

FK =
# matched CNF clauses

# total CNFclauses
(8.4)

2 Population Selection. As a step of ‘exploitation’, the diversity of the population decreases
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after population selection. Particularly, a large value of h suggests a high selection pressure,

thus increases the probability of premature convergence due to the fact that the new generation

will be occupied by the clones of better-fitted individuals. GenUnlock determines high-fitness

individuals using the tournament selection technique [MG+95]. A random subset of the current

population is selected to participate in each round of the tournament. The individual with the

highest fitness score is maintained in the next generation. Such a selection process repeats until

the size of the resulting new generation reaches the desired number of high-fitness individuals

(h). GenUnlock also incorporates several (l) ‘lucky’ individuals with relatively low fitness in the

next generation in order to increases the randomness and help GA escape local optima.

3 Crossover. Crossover (also called ‘breeding’) is the other step in ‘exploitation’. In this

process, the ‘genome’ (encoding) of the parents are recombined to produce the offsprings. Since

GenUnlock targets to find a binary-valued key sequence that unlocks the circuit, the encoding

of individuals is not required. Crossover consists of the following two subroutines: (i) Parent

pairing: given the current population, GenUnlock randomly assigns two individuals as a pair of

parents without repeating the use of an individual. (ii) Offspring generation: each bit of the child

sequence is obtained from a uniform random sampling of the corresponding bit from its parents

(i.e., 50% probability inheriting the bit from either of the parents).

4 Mutation. To prevent GenUnlock’s genetic algorithm from being trapped in local optima,

mutation is of critical importance to maintain a certain level of diversity of the population.

As such, mutation is performed in the ‘exploration’ mode of GenUnlock when the population

diversity is lower than the pre-defined threshold. There are two key parameters in the mutation

process: the chance of mutation and the level of mutation. The first parameter determines the

probability that mutation occurs on a particular individual. The second parameter dictates how

many bits in the key sequence will be flipped as a result of mutation. The above two parameters

affect the convergence speed of the genetic algorithm. A high chance and/or a large magnitude

of mutation will result in a larger fluctuation of the fitness scores of the population, making the

training of genetic algorithms unstable.
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8.5 GenUnlock Hardware Optimization

We empirically identify that circuit fitness evaluation is the bottleneck of GenUnlock’s

runtime. To accelerate circuit evaluation, We deploy circuit emulation on the programmable

hardware to obtain the response of the encrypted circuit (Ce) for the given inputs and the tested

key. Furthermore, GenUnlock framework automatically constructs the customized auxiliary

circuitry to pipeline each computation stage and reduce the runtime of key searching. To further

improve the efficiency, we present various hardware optimization techniques to speed up the

circuit decryption process. GenUnlock’s evolutionary process of key sequences accelerates the

exploration of key space and features the following advantage over traditional SAT attacks: (i) It

is more scalable to large benchmarks since the size of the optimization problem does not increase

after each iteration; (ii) It has higher probability of finding the equivalent class of the true keys

used in logic locking since multiple key sequences representing different equivalent classes are

evaluated in each generation; (iii) The circuit fitness evaluation procedure for a population of

key sequences in GenUnlock’s GA framework can be parallelized, thus decreasing the runtime

overhead. We explicitly discuss our hardware design optimizations as follows.

8.5.1 GenUnlock Architecture

GenUnlock leveraged an Algorithm/Software/Hardware approach to accelerate the key

searching process for the target circuit as outlined in Figure 8.2. Particularly, GenUnlock maps the

netlist of the encrypted circuit with the auxiliary part to the FPGA and perform circuit evaluation

O⃗ =Caux
e (⃗I, K⃗) directly. Given the input vector from the training data and the key sequence from

the population, acquiring the circuit’s response from the configured FPGA (circuit emulation)

is significantly faster than the same process running on a host CPU (software simulation). In

addition, GenUnlock parallelizes the computation of circuit emulation and pipelines each stage

of GA operations. Population fitness evaluation and key evolving are performed in an online

approach to minimize data communication between the off-chip DRAM and the FPGA.
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GenUnlock Hardware Overview. Figure 8.3 illustrates the overview of GenUnlock’s hardware

architecture consisted of a computing engine for circuit emulation and an auxiliary circuitry for

genetic operations. To reduce the data communication between the off-chip DRAM and the

FPGA, we perform all computations of key evolution on-chip. Note that we do not include a

random number generator (RNG) in GenUnlock’s hardware design. Instead, GenUnlock stores

a set of random numbers pre-computed on CPU using the inherent variation of the operating

system. There are two main reasons behind our design choice: (i) The hardware implementation

of a True RNG incurs non-trivial overhead, thus is not desired; (ii) Offloading random number

generation to CPU typically provides stronger randomness compared to the one generated on

FPGA. The results of circuit emulation are used for computing fitness scores using Equation (8.4)

during CNF evaluation. The clause checking process in CNF evaluation is parallelized by

accommodating multiple Checking Engine (CE) in GenUnlock’s design. The workload for each

CE is partitioned evenly offline.

After accumulating the fitness for each key sequence, the sorting engine permutes

the key index based on their corresponding fitness. Note that sorting is the main step of

population selection. We implement a lightweight sorting engine following the ‘even-odd

sort’ algorithm [CELT78] for genetic selection, incurring a linear runtime overhead with the

population size P. The population diversity is computed as follows. First, the average key is

calculated along with circuit emulation as every key is read from the buffer. The div metric

is then computed during sorting using l1 norm instead of l2 norm in Equation (8.2) to reduce

Figure 8.3. Overview of GenUnlock hardware design. The overall layout of the hardware
system (a) and the implementation of CNF Checking Engines (b) are shown.
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computation complexity. Note that this change does not affect the performance of GenUnlock.

It is worth noting that GenUnlock does not employ a central control unit to coordinate

the entire computation flow. Instead, each part of the design shown in Figure 8.3 follows a

trigger-based control mechanism [PPA+13]. More specifically, each module is controlled by the

status flag from its previous computation stage. For example, the sorting engine in GenUnlock

begins to function when the fitness accumulation process is detected to be completed. Such

a trigger-based control flow simplifies the control logic while respecting the data dependency

between different modules shown in Figure 8.2. We detail the design of GenUnlock’s circuit

emulation and auxiliary circuitry in the following of this section.

8.5.2 GenUnlock Circuit Emulation

We empirically observe from GenUnlock’s software implementation that circuit evalua-

tion (i.e., obtaining O⃗ =Ce(⃗I, K⃗)) dominates the execution time (Section 8.6). Due to the high

latency of evaluating a circuit netlist on CPU, we propose to use circuit emulation to improve the

attack efficiency. The first step of circuit emulation is rewriting the netlist of the target encrypted

netlist such that the values of all observable nodes can be recorded by registers. The rewritten

circuit is then connected with the auxiliary circuitry and mapped onto FPGA. In this way, we can

emulate the response of the target circuit Ce for any given input and key by directly applying the

known signals (including I⃗ and K⃗) on the circuit and collecting the corresponding values in the

registers. To further hide the latency of hardware evaluation, GenUnlock stores the emulation

results in a ping-pong buffer and decouples it from the other hardware components as shown in

Figure 8.3. More specifically, the CNF checking engine (CE) computes the fitness score of the

population using the data from one buffer. In the meantime, the emulator acquires observable

outputs of Ce given the next input/key pair (⃗I, K⃗) and stores the results into the other buffer.
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8.5.3 GenUnlock Auxiliary Circuitry Design

In this section, we discuss how the auxiliary circuitry is constructed for the target circuit

to accelerate the computation in GenUnlock’s GA workflow (shown in Figure 8.2).

Pipeline Evolution Epochs with Early Starting. GenUnlock’s hardware design aims

to maximize the time overlapping between execution stages and increase the throughput of key

evolution. Figure 8.4 shows how the ping-pong buffer enables pipelined execution of hardware

emulation and CNF evaluation. Furthermore, fitness evaluation and crossover/mutation of each

key in the population can be pipelined across different epochs. As shown in Figure 8.4, epoch

(i+1) starts circuit emulation and CNF evaluation when the previous epoch begins to breed new

keys for the next epoch. As such, the latency of crossover and/or mutation can be hidden by

circuit emulation and CNF evaluation.

Figure 8.4. Pipelining optimization deployed in GenUnlock’s genetic algorithm accel-
erator for logic unlocking.

Scalable CNF Checking Engine. Once circuit emulation is completed for the given

input/key pair (⃗I, K⃗), GenUnlock computes the fitness of the key using Equation (8.4). From

the hardware perspective, the fitness FK is computed by accumulating the ratio of satisfied CNF

clauses of the encrypted circuit Ce. Note that CNF checking dominates the GenUnlock’s latency

overhead due to the large size of CNF representation. We observe that independence typically

exists between different groups of wires and leverage this property by distributing the checking

of independent clause groups in CNF evaluation to different CNF checkers (shown in Figure 8.3

(b)). As such, each CE stores a subset of CNF clauses in the associated CNF buffer. The

accumulation of the ultimate fitness score completes when the last CE finishes CNF checking.
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Crossover and Mutation Logic. The crossover logic exchanges random elements

among two parent keys. The mutation logic randomly selects a subset of key bits and flip them

(i.e. XOR the key sequence with a binary random mask vector). The execution of crossover and

mutation can also be paralleled using multiple crossover and mutation processing units. In this

case, each of the unit handles different segments of the key sequence and performs crossover

and/or mutation. We use a default value of 1 for the number of the crossover/mutation unit since

this step is not the bottleneck of GenUnlock’s runtime.

8.6 Evaluations

We investigate GenUnlock’s performance on various benchmarks, including ISCAS’85

and Microelectronics Center of North Carolina (MCNC) [BBK89] as summarized in Table 8.1.

Table 8.1. Summary of the evaluated circuit benchmarks.

Circuit dataset #in #out #gate Key Length
(5%,10%,25%)

c2670 ISCAS-85 233 140 1193 (60,119,298)
c432 ISCAS-85 36 7 160 (8,16,40)
c499 ISCAS-85 41 32 202 (48,51,101)
c5315 ISCAS-85 178 123 2307 (115,231,577)
c7552 ISCAS-85 207 108 3512 (176,351,878)
c880 ISCAS-85 60 26 383 (38,96,192)
des MCNC 256 245 6473 (324,647,1618)
ex5 MCNC 8 63 1055 (106,264,528)
i9 MCNC 88 63 1035 (104,259,518)

seq MCNC 41 35 3519 (132,265,660)

Experimental Setup. We demonstrate the software implementation of Algorithms 6 and 7 in

python. Experiments are run on an Intel i7-7700k processor with 32 GB of RAM and the energy

consumption is measured using pcm-monitor utility. We use the open-sourced code of the SAT

attack [SRM15] as our baseline comparison. Note that [SRM15] is implemented in C++ and

tested on a more powerful CPU (Intel Xeon E31320). As such, our empirical results serve as a

conservative relative speedup comparison.
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Our FPGA prototype is implemented on Zynq ZC706 board using the high-level syn-

thesize tool Xilinx SDx 2018.2. GenUnlock’s CNF checking engine and the auxiliary GA

accelerator discussed in Section 8.5.1 are implemented using high-level programming language.

The SDx synthesize tool can automatically generate necessary AXI buses for data communication

between the off-chip memory and the FPGA. Our design is synthesized using a clock frequency

of 100MHz. The power of FPGA is measure at the socket using a power meter during the

execution of the GenUnlock. Throughout our experiments, we set the number of CEs to Nce = 16

and the encryption overhead to 10% with [RPSK12] as our default setting. As for GenUnlock’s

GA, we use a key population size P = 80 and the total number of generations G = 50. The

number of high-fitness and low-fitness individuals are set to h = 54 and l = 6 for selection. Each

pair of parents produces c = 4 children during crossover. The mutation rate is set to 2% (see

Algorithm 7 for details). We generate 50 input/output pairs from the active IC to construct the

training data as outlined in Algorithm 6.

In the later of this section, we evaluate the effectiveness and the efficiency metrics of

GenUnlock in Section 8.6.1 and Section 8.6.2, respectively.

8.6.1 Unlocking Capability

We assess the effectiveness of GenUnlock for logic unlocking on the benchmarks in

Table 8.1. Each experiment is repeated 20 times to collect the statistics of the performance

metrics. The maximum execution time is set to 10 hours (3.6×104 seconds). During this period,

GenUnlock is able to unlock 10 out of 10 benchmarks (100% attack success rate) with the best

key, while the baseline method [SRM15] can only break 7 out of 10 benchmarks (70% attack

success rate). In other words, GenUnlock framework finds a decryption key that yields an ideal

output fidelity OF = 1. Figure 8.5 shows how GenUnlock’s attack performance (quantified

by the loss 1−OF) evolves over time. Figure 8.9 shows the runtime statistics of GenUnlock

software implementation on CPU for unlocking various circuit benchmarks. One can see that

GenUnlock’s capability of logic unlocking increases over time.
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For large and complex circuits such as des, c2670 and c7552, traditional SAT-based

method [SRM15] takes very long to find distinguishing input patterns using the external SAT

solvers (≥ 10 hours). As such, SAT attacks fail to unlock the circuit with a very high probability

when the design of the encrypted circuit turns out to be a SAT-hard problem (e.g., containing an

internal ‘and-tree’). Figure 8.5a shows the encryption-agnostic property of GenUnlock. The loss

is computed as (1−OF). The convergence speed of GenUnlock depends on the adopted logic

encryption scheme while the GA can always return a set of keys with improving quality over time.

As opposed to the SAT attacks, GenUnlock is generic and is able to provide approximate keys

with high output fidelity for circuits with arbitrary structures. Figure 8.5b shows the effect of

GenUnlock’s ensemble-based logic unlocking with the top three key sequences. The validation

set is generated following the steps in Algorithm 6. It can be seen that the ensemble-based

unlocking yields a small error compared to GenUnlock attack using the single best key.

(a) (b)

Figure 8.5. (a) Learning curve of GenUnlock for different logic encryption methods. (b) Effect
of GenUnlock’s ensemble-based logic unlocking using the top three keys.

8.6.2 Efficiency

To evaluate the efficiency of GenUnlock framework, we compare its performance with the

state-of-the-art circuit deobfuscation method proposed in [SRM15]. Figure 8.6 shows the com-

parison between GenUnlock’s software (Section 8.3.2) / hardware (Section 8.5.1) implementation
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Figure 8.6. Average runtime comparison between GenUnlock and the baseline SAT at-
tack [SRM15]. ‘GenUnlock’ and ‘GenUnlock+HW’ denotes the latency of our software
implementation and accelerated FPGA implementation, respectively.

with the baseline [SRM15]. Note that we use the average runtime on each benchmark to visualize

the performance comparison in Figure 8.6. Several circuits cannot be decrypted by the baseline

algorithm within 10 hours. In this case, we use 10 hours as the estimated runtime of [SRM15]

in Figure 8.6. With dedicated hardware design support, GenUnlock delivers on average 4.68×

speedup compared to the baseline. For SAT-hard circuits (e.g., c2670,c7552,des), GenUnlock

engenders superior performance compared to SAT-based attacks, achieving 90×,13×, 2.1×

speedup on CPU and 1014×, 153×, 31.2× speedup on dedicated hardware.

Besides the latency comparison, we also measure the power consumption of different

circuit deobfuscation methods. The power consumption of ‘GenUnlock+HW’ on Zynq SoC

is measured via the socket when the application is running. On average, GenUnlock with

hardware optimization consumes 13.6W power while the software implementation of GenUnlock

consumes 53.3W power on CPU. Considering the runtime, the overall energy-efficiency of

GenUnlock is 18.3× higher than the SAT-based method. GenUnlock’s resource utilization

depends on the key length (k) and the size of the original circuit. Table 8.2 shows the resource

utilization of the assessed benchmark circuits.

8.6.3 Sensitivity Analysis

In this section, we discuss GenUnlock’s sensitivity with respect to the key size, the size

of observable wires, the number of CNF checking engines, and the encryption overhead.
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Table 8.2. Resource utilization of the auxiliary circuitry on c432,c880, c2670 and des
benchmarks with default settings (10% overhead and NCE = 16) on Zynq ZC706.

Benchmarks c432 c880 c2670 des

Data Transfer
(Kbits/epoch) 1.3 3.0 9.5 51.8

BRAMS 22 27 37 86
DSP48E1 0 0 0 0

KLUTs (emulator usage) 9.4 (0.3) 12.1 (0.3) 19.4 (1.1) 41.1 (4.6)
FFs (emulator usage) 4,397 (80) 5,734 (160) 6,689 (316) 12,972 (1176)

Sensitivity to Size of Key and Observable Wires

Figure 8.7 shows that the resource utilization of GenUnlock demonstrates an approxi-

mately linear dependency on the length of the encryption key length and the observable wires

(which are primary outputs in our case). This is because a larger number of observable wires

requires more comparator logic for each CNF checking engine as the index used in CNF checking

requires a longer bitwidth, thus resulting in a higher LUT utilization. We tune the depth of the

wire buffer and key buffer to accommodate the entire netlist.

(a) (b)

Figure 8.7. Resource utilization of the auxiliary circuitry with varying size of the encryption key
(a) and observable wires (b). The key length and wire length is set to 100 and 400, respectively.

Sensitivity to Number of CNF Checking Engines

Figure 8.8 shows the approximately linear relation between GenUnlock’s speedup and

the number of CEs. Our system can be scaled up by adding more CNF checking engines to
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parallel the clause checking process as GenUnlock’s computation bottleneck is CNF evaluation.

Nevertheless, the speedup saturates when NCE is sufficiently high such that the computation

overhead is dominated by crossover operation instead. GenUnlock broadcasts the observed

wire values to all the CEs via a shared data bus. Each CE scans the CNF buffer and obtains

the broadcast wire values for checking the satisfiability of the clauses. As such, increasing the

number of CEs does not lead to extra wire delay. However, more CEs suggests a higher overhead

during the fitness accumulation stage.

Figure 8.8. Scalability of GenUnlock to the number of CNF CEs. The speedup is near-
linear with NCE on large circuits where CNF checking is the computation bottleneck.

Sensitivity to Obfuscation Overhead

Encryption overhead is defined as the ratio of the additional key gates to the total number

of gates in the original circuit. Larger encryption overhead suggests that a longer key sequence

is used to encrypt the circuit. Figure 8.9 shows the execution time averaged across all assessed

benchmarks with varying obfuscation overhead. One can see that GenUnlock’s execution time

does not grow exponentially with the increase of the obfuscation overhead, suggesting the

scalability of GenUnlock framework to large circuits.

8.7 Summary

In this chapter, we introduce GenUnlock, the first genetic algorithm-based framework for

logic unlocking. GenUnlock leverages an Algorithm/Software/Hardware co-design approach and
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Figure 8.9. Execution time of GenUnlock averaged across all benchmarks. Circuits are
encrypted using the logic locking technique in [RPSK12] with different obfuscation overhead.

engenders superior performance improvement compared to traditional SAT-based attacks. More

specifically, GenUnlock is encryption-agnostic and is generic to arbitrary circuit designs. Our

framework yields a set of feasible keys that unlock the obfuscated circuit with an attacker-defined

output fidelity. Furthermore, GenUnlock, for the first time, provides the trade-off between

runtime overhead and output fidelity of the resulting keys.

In real-world settings, GenUnlock poses a threat to the rising amount of fault-tolerant

applications such as block-chain mining and deep neural networks. We devise various hardware

optimization techniques including circuit emulation and pipelining to further accelerate the

computation of GenUnlock. We perform comprehensive experiments to corroborate the efficiency

and effectiveness of GenUnlock across different circuit benchmarks. In future work, we will

consider using the learning-based algorithms to guide the mutation and crossover operations.
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Chapter 9

AdaTest: Reinforcement Learning for
Hardware Trojan Detection

This chapter presents AdaTest, a novel adaptive test pattern generation framework for

efficient and reliable Hardware Trojan (HT) detection. HT is a backdoor attack that tampers with

the design of victim integrated circuits (ICs), resulting in private information leakage or circuit

malfunction. AdaTest improves the existing HT detection techniques in terms of scalability and

accuracy in detecting smaller Trojans in the presence of noise and variations. To achieve high

trigger coverage, AdaTest leverages Reinforcement Learning (RL) to produce a diverse set of

test inputs. Particularly, we progressively generate test vectors with high ‘reward’ values in an

iterative manner. In each iteration, the test set is evaluated and adaptively expanded as needed.

Furthermore, AdaTest integrates adaptive sampling to prioritize test samples that provide more

information for HT detection, thus reducing the number of samples while improving the samples’

quality for faster exploration.

We develop AdaTest with a Software/Hardware co-design principle and provide an

optimized on-chip architecture solution. AdaTest’s architecture minimizes the hardware overhead

in two ways: (i) Deploying circuit emulation on programmable hardware to accelerate reward

evaluation of the test input; (ii) Pipelining each computation stage in AdaTest by automatically

constructing auxiliary circuit for test input generation, reward evaluation, and adaptive sampling.

Our architecture design is modular and is scalable to large circuits. We evaluate AdaTest’s
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performance on various HT benchmarks and compare it with two prior works that use logic

testing for HT detection. Experimental results show that AdaTest engenders up to two orders of

test generation speedup and two orders of test set size reduction compared to the prior works

while achieving the same level or higher Trojan detection rate.

9.1 Introduction

Integrated circuits (ICs) are indispensable components for a diverse set of real-world

applications including healthcare systems, smart home devices, industrial equipment, and Ma-

chine Learning (ML) accelerators [CES16, CLC+09]. The vulnerability of digital circuits may

result in severe outcomes due to their deployment in security-critical tasks. The design and

manufacturing process of contemporary ICs are typically outsourced to (untrusted) third parties.

Such a supply chain structure results in hardware security concerns, such as sensitive informa-

tion leakage, performance degradation, and copyright infringement [TW11, CB14]. Malicious

hardware modifications, a.k.a., Hardware Trojan (HT) attack [TK10, BHBN14] may occur at

each stage of the IC supply chain.

There are two main components in a HT attack: Trojan trigger and payload. The HT

trigger is a control signal that determines when the malicious activity of the HT shall be activated.

The Trojan payload is the actual effect of circuit malfunctioning which depends on the purpose

of the adversary, e.g., stealing private information or producing incorrect outputs [TK10]. The

attacker intends to design a stealthy HT that remains dormant during functional testing and

evades possible detection techniques. As such, the HT trigger is typically derived from the rather

rare activation conditions that are easier to hide for the intruder.

To alleviate the concerns about malicious hardware modifications, a line of research has

focused on developing effective HT detection methods. Existing HT detection techniques can be

categorized into two classes based on the underlying mechanisms: (i) Side-Channel Analysis

(SCA), and, (ii) Logic Testing. SCA-based HT detection explores the fact that the presence
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of the HT on the victim circuit will change its physical parameters (e.g., time, power, and

electromagnetic radiation), thus can be revealed by side-channel information [LHM14, LKG+09].

Such a mechanism determines that SCA-based approaches can detect non-functional HTs, while

they may have high false alarm rates when detecting small HTs due to the operational and physical

silicon variation, as well as measurement noise. Logic testing-based techniques intend to activate

the stealthy Trojan trigger by generating diverse test patterns [CWP+09, NFH18, SCN+15]. The

main challenge of logic testing-based HT detection is to increase the trigger coverage with a

small number of test patterns.

To enable practical trustworthy IC, efforts are also made on developing hardware to

detect potential HTs on-chip. For instance, [ZT11] proposes to use a Ring Oscillator Network

(RON) to monitor the power signature of the circuit and verify if the silicon chip is Trojan-free.

The suggested RON structure suppresses measurement noise and also compensates for process

variations. Statistic analysis is then used to detect the Trojan’s contribution to the circuit’s

transient power. A system-on-chip (SoC) level HT detection method using Reconfigurable

Assertion Checkers (RACs) is presented in [AG19]. This paper uses Property Specification

Language (PSL) for assertion-based verification. The paper [MRIP17] demonstrates how to

detect HTs on Pipelined Multiprocessor SoCs via continuous monitoring and testing of the

hardware behaviors.

In this chapter, we aim to simultaneously address three challenges of logic testing-based

HT detection: effectiveness, efficiency, and scalability. To this end, we propose AdaTest, the first

automated adaptive, reinforcement learning-based test pattern generation (TPG) framework

for HT detection with hardware accelerator design. Figure 9.1 demonstrates the high-level usage

of AdaTest to inspect if any hardware Trojans are inserted in the CUT. AdaTest takes the netlist

of the circuit under test (CUT) and user-defined parameters as its inputs. A set of test vectors

with high reward values are returned as the output of AdaTest.

AdaTest framework consists of two main phases: (i) Circuit profiling. Given the

circuit netlist, we first characterize each node in the CUT from two perspectives: the transition
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Figure 9.1. High-level usage of AdaTest for hardware-assisted security assurance against
Trojan attacks.

probability, and the SCOAP testability measures. These two properties are used to identify rare

nodes and quantify the fitness of each node, respectively. (ii) Adaptive test pattern generation.

AdaTest proposes an innovative reward function for test vectors using the following information:

the number of times that each rare node is triggered, the SCOAP testability measure of the rare

nodes, and the graph-level distance of the circuit (represented as directed acyclic graph) when

applying this test input and the historical ones. In each iteration, AdaTest gradually expands

the test set by generating candidate test inputs and selecting the ones that have high reward

values. AdaTest provisions a flexible trade-off between trigger coverage and test generation

time. To enable a hardware-assisted solution, we further design an optimized architecture

for AdaTest’s implementation to reduce the hardware overhead. More specifically, AdaTest

architecture pipelines the computation in online TPG and deploys circuit emulation to accelerate

the reward evaluation process.

Our technical contributions are summarized as follows:

• Presenting the first adaptive, reinforcement learning-based test pattern generation

framework for HT detection. AdaTest’s dynamic, progressive test generation approach

facilitates efficient exploration of the circuit input space, thus is more scalable compared

to the existing logic testing-based detection methods.

• Enabling HT detection with performance trade-off. AdaTest provisions the defender
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with the trade-off between trigger coverage and test generation time, thus enabling un-

precedented detection flexibility.

• Leveraging an Algorithm/Software/Hardware co-design approach to devise an ef-

ficient detection scheme. To further accelerate HT detection, AdaTest incorporates

various optimization techniques, including computation pipelining and circuit emulation

on programmable hardware.

• Investigating the performance of AdaTest on various circuits. We perform an extensive

assessment of AdaTest and compare the results with the state-of-the-art logic testing-based

detection techniques. Empirical results corroborate the superior effectiveness, efficiency,

and scalability of AdaTest.

AdaTest opens a new axis for the growing research in hardware security by exploring the

idea of reinforcement learning (RL) and adaptive test pattern generation. The adaptive nature

of AdaTest ensures that the quality (measured by our reward function) of our dynamic test

set always improves over iterations as new test inputs are added to the test set. Furthermore,

AdaTest is generic and can be easily extended for other hardware security problems, such as logic

verification, efficient ATPG, functional testing, and built-in self-test. For example, the concept of

RL and adaptive test pattern generation presented in AdaTest can be used in an efficient ATPG

application where the RL reward function is designed to reflect the goal of the ATPG (such as

fault coverage of considered fault models).

Organization. Section 9.2 introduces preliminary knowledge and related works on Hardware

Trojan and its detection, as well as reinforcement learning. Section 9.3 discusses the challenges

of HT detection and the overall workflow of AdaTest framework. Section 9.4 presents our

test pattern generation algorithm that combines RL and adaptive sampling for fast exploitation.

Section 9.5 demonstrates our domain-specific architecture design of AdaTest. Section 9.6

provides a comprehensive performance evaluation of AdaTest on various circuits and comparison

with prior works on logic testing-based HT detection. Section 9.7 concludes the paper.
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9.2 Related Works

Previous HT detection techniques can be categorized into two broad types: destructive

and non-destructive methods. Destructive detection schemes perform de-packaging and de-

layering on the manufactured IC to reverse engineer its design layout, thus is prohibitively

expensive [EMGT15]. HT detection has been an important research direction and attracted

tremendous attention. Non-destructive HT detection includes two types: run-time monitoring

and test-time detection. Run-time approaches monitor the IC throughout its entire operational

life-cycle with the goal of detecting Trojans that pass other detection methods, providing the

’last-line of defense’. There are two classes of test-time HT detection techniques. We detail each

type as follows:

(i) Side-channel Analysis. SCA-based Trojan detection methods explore the influence of

the inserted HT on a particular measurable physical property, such as the supply current, power

consumption, or path delay. These physical traces can be considered as the ‘fingerprint’ of the cir-

cuit and allow the defender to detect both parametric and functional Trojans [LVHM15, LHM14].

Parametric Trojans modify the wires and/or logic in the original circuit while functional Trojans

add/delete transistors or gates in the original chip [WSTP08, KRR12, MKG+15]. However,

SCA-based HT detection has two limitations: (i) It cannot detect a small HT that causes a

negligible impact on the physical side-channel; (ii) The extracted circuit fingerprint is susceptible

to manufacturing variation and measurement noise, thus it might incur high false alarm rates.

(ii) Logic Testing. Compared to the side-channel-based approaches, logic testing methods

can only detect functional Trojans. However, they yield reliable results under process variation

and measurement noise. The main challenge of developing a practical and effective logic testing

technique for HT detection is the inordinately large space of possible Trojan designs that the

adversary can explore. Since the HT trigger is derived from a very rare condition that is unknown

to the defender, attempting to stimulate the stealthy Trojan with a limited number of test inputs

is difficult. Existing logic testing methods generate test patterns using simple heuristics, and
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thus cannot ensure high trigger coverage on complex circuits. Also, such heuristic-driven

test generation approaches are inefficient (long test generation time) and unscalable to large

benchmarks [CWP+09, BHBN14, TK10].

Besides SCA and logic testing, other HT detection techniques have also been explored.

For instance, FANCI [WSS13] presents a Boolean functional analysis method to identify suspi-

cious wires that are nearly unused in the circuit. For this purpose, FANCI introduces a concept

called ‘control value’ to characterize the influence of a specific wire on other wires. The wires

with small control values are flagged as suspicious. However, the wire-wise control value com-

putation in FANCI is unscalable on large circuits. VeriTrust [ZYW+15] suggests a verification

method to detect HT trigger inputs by examining the verification corners. Therefore, VeriTrust is

agnostic to the HT implementation styles.

Prior works on logic testing have explored various heuristics to improve trigger coverage

while reducing the test generation time. Conceptually similar to the ‘N-detection test’ in stuck-at

Automatic Test Pattern Generation (ATPG), MERO [CWP+09] leverages random test vectors

and mutates them until each rare node in the circuit is individually triggered at least N times.

Such a simple detection heuristic results in an unsatisfying trigger coverage, particularly Trojans

that are hard-to-activate.

To overcome the limitation of MERO, the paper [SCN+15] proposes to use Genetic Algo-

rithms (GA) and Boolean Satisfiability (SAT) to produce test inputs that excite regular rare nodes

and internal hard-to-trigger nodes, respectively. As the end result, [SCN+15] achieves a higher

trigger coverage compared to MERO, while it is inefficient due to the long test generation time.

TRIAGE [NFH18] further improves GA-based test generation by devising a more appropriate

‘fitness’ function that incorporates the controllability and observability factors of rare nodes.

However, the GA nature of TRIAGE limits its efficiency for test input space exploration and

the resulting test set might be unnecessarily large. TGRL [PM21] suggests training a machine

learning model for test patterns generation that combines rare signal stimulation as well as

controllability/observability analysis. Although TGRL claims to explore reinforcement learning,
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its test pattern generation pipeline does not involve sequential decision-making in standard RL

techniques. Instead, TGRL learns an ML model via stochastic gradient descent for ATPG.

We aim to develop an adaptive test pattern generation framework for logic testing with

a high Trojan coverage and a small test set size. Therefore, AdaTest belongs to the test-time

detection category introduced in Section 9.2. We choose reinforcement learning over other ML

techniques (e.g. neural networks) since the reward-oriented and progressive nature of RL makes it

appealing to our goal. Furthermore, to reduce the complexity of RL, AdaTest integrates adaptive

sampling to prioritize test patterns that provide more useful information for HT detection.

9.2.1 Hardware-assisted Security Solutions

Previous works have developed various techniques to ensure system-level security, such

as hardware architecture for on-chip Trojan detection and built-in self-test (BIST). The pa-

per [ZZT+15] proposes a hardware design of low overhead for HT detection by inserting 2-to-1

MUXs as test points. The number of MUXs is minimized leveraging the fact that the logic gates

have a large impact on the transition probability of the gates in their fan-out cone. BISA [XT13]

is a built-in self-authentication technique that fills the unused space in a circuit with functional

cells to extract the digital signature with logic testing. As such, Trojan insertion can be prevented

since it will yield a different signature.

A hardware implementation for a deterministic test generator is presented in LFS-

ROM [DCV93]. The paper suggests a design that uses a cyclic shift register, OR gate network,

and a MUX controlled by ripple counters. As the result, LFSROM achieves reduced hard-

ware cost for deterministic test pattern generation compared to the conventional ROM-based

design. [MP14] provides an FPGA prototype of low-power test pattern generation-based BIST

architecture. The low-power TPG is achieved using Linear Feedback Shift register (LFSR),

m-bit generator, gray code generator, NOR-gate network, and XOR array. The proposed BIST

hardware reduces the dynamic power consumption of testing by reducing the switching activity

among the test patterns without affecting the fault coverage.
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9.3 AdaTest Overview

In this section, we first discuss the limitations of prior works on Hardware Trojan

detection and our motivation (Section 9.3.1), then introduce our assumptions and threat model

for AdaTest framework (Section 9.3.2). We demonstrate the overall workflow of AdaTest test

pattern generation technique in Section 9.3.3. AdaTest is a hardware-friendly framework and we

present our architecture design in Section 9.5.

9.3.1 Motivation and Challenges

Prior works have advanced logic testing-based Trojan detection using various meth-

ods [CWP+09, SCN+15, NFH18]. We discuss the limitations of these detection schemes below.

MERO. Inspired by the traditional ‘N-detect’ test used in stuck-at ATPG, MERO [CWP+09]

generates random test vectors to activate each rare node (identified as nodes with transition

probability smaller than the threshold θ ) to the corresponding rare value at least N times. MERO

has three main disadvantages: (i) Triggering all rare nodes for N times might be very time-

consuming or even impractical; (ii) It yields low trigger coverage for hard-to-trigger Trojans; (iii)

It only explores a small number of test vectors in the entire possible space due to its bit mutation

and test vector selection policy.

ATPG based on GA+SAT. The paper [SCN+15] combines genetic algorithms and SAT in

test pattern generation for HT detection. While it improves the trigger coverage compared to

MERO, [SCN+15] has two constraints: slow test set generation and large memory footprint.

TRIAGE. This paper [NFH18] integrates the benefits of MERO [CWP+09] and [SCN+15].

TRIAGE leverages the SCOAP testability parameters and advises the fitness function of GA

for HT detection. However, the evolutionary nature of GA determines that TRIAGE might be

‘trapped’ in the vicinity of a local optimum, thus exploring only a small portion of the whole test

inputs searching space.

We present AdaTest as a holistic solution to address the limitations of the previous works.
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To this end, we identify three main challenges of developing an efficient and effective logic

testing-based HT detection technique as follows:

(C1) High trigger coverage. The test vector set shall yield a high trigger coverage rate to ensure

that the probability of activating the stealthy Trojan is large. This property is critical for the

effectiveness criterion of HT detection.

(C2) Efficient test generation. The runtime overhead of test pattern generation shall be reason-

able while attaining a high trigger coverage. For hardware-assisted security, this implies that a

test set with a smaller size is preferred. This requirement assures the efficiency and practicality

of the HT detection method, particularly on large circuits.

(C3) Scalable to large benchmarks. The runtime consumed by the test pattern generation

technique shall not scale exponentially with the size of the examined circuit.

AdaTest tackles the above challenges (C1)∼ (C3) using an adaptive, RL-based input

space exploration approach. Furthermore, we provide architecture design for AdaTest-based

TPG in Section 9.5 to enable hardware-assisted security. We empirically corroborate the superior

performance of AdaTest compared to the above counterparts in Section 9.6.

9.3.2 Threat Model

As shown in Figure 2.16, A hardware Trojan consists of two parts: trigger and payload.

Figure 2.16 shows an example of HT design. AdaTest is applicable to both combinational and

sequential circuits. One can unroll sequential circuits into combinational ones and apply AdaTest

for test pattern generation. Without the loss of generality, we assume that the adversary uses a

logic-AND gate as the Trojan trigger that takes a subset of rare nodes as its inputs. An XOR gate

is used to flip the value of the payload node when the trigger is activated (i.e., each of the trigger

nodes has a logical value ‘1’).

We make the following assumptions about AdaTest framework:

(i) The defender knows the netlist of the circuit under test. We assume the party that executes

logic testing has the netlist description of the circuit to be examined. This netlist can be obtained
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by performing de-packaging, de-layering, and imaging [TJ09, LWS12, MZJ16, FSK+17] on

the physical circuit. While hardware obfuscation techniques such as camouflaging [YMSR16,

LSM+17, SSTF19, SPJ19] and logic encryption [YRSK15, YS17, XS18, TKL+20] could make

the trigger design of the Trojan harder to identify, we consider the scenario where the circuit

under test is not encrypted in our threat model since this setting is also used in previous Trojan

detection papers [CWP+09, SHS+17, YYC+20, PM21].

(ii) The defender can observe the ‘indication signal’ when the Trojan is activated. We

assume the defender can observe certain manifestations of the hidden Trojan when it is activated.

In particular, we assume the defender knows the correct response of the CUT to a given test input

and observes the primary outputs of the CUT for comparison. Note that AdaTest is compatible

with techniques that increase manifestation signals (e.g., test point insertion).

9.3.3 Global Flow

Figure 9.2 illustrates the global flow of AdaTest. AdaTest framework consists of two

stages: (i) Circuit profiling phase (offline) that computes the transition probabilities and SCOAP

testability parameters of the netlist; (ii) Adaptive RL-based test set generation phase (online) that

progressively identifies test vectors with high reward values.

Phase I: Circuit Profiling. This stage includes the following:

(1) Compute Transition Probabilities. Given the netlist of the circuit under test, AdaTest

first computes the transition probability of each internal node in the netlist. In particular, we use

the method in [STP11] and assume that each primary input has an equal probability of taking a

logical value of 0 and 1. We make this assumption about the primary input values since previous

Trojan detection papers [STP11, BHBN14, XFJ+16, LLZ16] use the same assumption when

computing the transition probability. Mathematically, the transition probability of a node is

computed as Ptrans = p(1− p) where p = Prob(node = 1). Ptrans of each node is then compared

with a pre-defined threshold θ to identify the rare nodes. Identifying rare nodes is important

for HT detection since the defender does not know the exact set of trigger nodes used by the
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Figure 9.2. Global flow of AdaTest framework for Hardware Trojan detection.

attacker. As such, the activation status of rare nodes provides guidance to generate test inputs

that are likely to trigger the stealthy Trojan.

(2) Compute SCOAP Testability Parameters. Controllability and observability are im-

portant testability characteristics of a digital circuit. More specifically, ‘controllability’ describes

the ability to establish a specific node to 0 or 1 by setting the primary inputs. ‘Observability’

defines the capability of determining the value of a node by controlling the circuit’s inputs and

observing the outputs. The testability parameters are useful for Trojan detection since they allow

AdaTest to distinguish the quality of different rare nodes.

Phase II: Adaptive RL-based test pattern generation. After the CUT is profiled offline in

Phase 1, AdaTest performs adaptive test input generation as shown in the bottom of Figure 9.2.

We outline each step as follows:

(1) Initialize Test Set. AdaTest first generates an initial test vector set that is used

in the later steps. A naive way to do so is random initialization, which may not be optimal

for HT detection. To improve the trigger coverage in the later runs, AdaTest employs SAT to

find a number of test inputs that activate a subset of rare nodes. We call this method ‘smart

initialization’ and empirically corroborate its effectiveness in Section 9.6.1.

(2) Generate Candidate Test Inputs. In each iteration of AdaTest’s adaptive test vector

generation, we first produce a sufficient number of candidate test input patterns that might
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improve the detection performance when added to the current test set. AdaTest deploys random

test generation for this purpose.

(3) Evaluate Reward Function. AdaTest applies the candidate test inputs on the

examined circuit and collects the observations, i.e., the netlist status represented as a directed

acyclic graph (DAG). We incorporate transition probabilities and SCOAP testability parameters

from Phase 1 as well as a novel DAG-level diversity measure to define our reward function.

(4) Adaptive Sampling to Update Test Set. Inspired by the selection step in genetic

algorithms, we design an adaptive sampling module that picks ‘high-quality’ test patterns for fast

and efficient input space exploration. In particular, after computing the reward value of each test

input in the candidate test vectors, AdaTest selects the ones with the highest scores and append

them to the current test set.

At the end of each iteration, AdaTest checks the termination condition and decides

whether or not the progressive test generation process shall continue.

Performance Metrics. We use effectiveness and efficiency as two main metrics to assess the

performance of a Trojan detection scheme. In particular, we measure effectiveness from two

aspects: trigger coverage and Trojan coverage (i.e. detection rate). The efficiency property is

measured by the test set generation time and test set size. AdaTest, for the first time, provides the

trade-off between effectiveness and efficiency by adaptively generating a set of test patterns with

evolving quality over time. We provide quantitative analysis of the above metrics in Section 9.6.

9.4 AdaTest Algorithm Design

The key to ensuring a high probability of Trojan detection using logic testing is to

generate a test set that can trigger the circuit to diverse states, in particular, the rare nodes

in the circuit. To this end, AdaTest leverages three important characteristics of the circuit:

the transition probabilities, the SCOAP testability measures, and the DAG-level diversity. In

particular, AdaTest employs an RL-driven test pattern generation approach that uses the above

188



three properties to progressively generate test inputs. Inspired by the selection stage in genetic

algorithms, we integrate an adaptive sampling module that progressively expands the current

test set (used as historical information) with high-quality test patterns. This response-adaptive

design is beneficial for statistical search of the HT trigger in the circuit input space, thus improves

the efficiency of AdaTest’s RL-based pipeline. We detail the two main phases of AdaTest shown

in Figure 9.2 in the following of this section.

9.4.1 Circuit Profiling

Algorithm 8 outlines the steps of the circuit profiling phase in AdaTest. This stage obtains

two informative properties of the circuit: the transition probabilities and testability measures. In

particular, we use random testing and logic simulation to estimate the transition probability Ptrans

of each node in the netlist Cn. To further investigate the rewards of different rare nodes, AdaTest

also computes the SCOAP parameters of the nodes using the technique in [GT80]. This step can

be considered as an offline, pre-processing step before executing the genetic algorithm-based

circuit deobfuscation scheme.

Algorithm 8. Circuit Profiling.
INPUT: Netlist of the circuit under test (Cn); Number of random tests (H); Threshold on

transition probability (θ ) for rare nodes.

OUTPUT: The set of rare nodes (R); Computed testability parameters T P =
(CC0,CC1,CO).

1: Initialize rare node set: R← /0
2: Generate random inputs: I← RandGen(Cn, H).
3: Perform logic simulation: O← LogicSim(Cn, I).
4: for node in Cn do
5: Compute frequency: p =CountOnes(O,node)/H
6: Estimate transition probability: Ptrans = p(1− p)
7: if Ptrans < θ then
8: R← R∪node
9: Obtain SCOAP parameters:

(CC0, CC1, CO)←ComputeSCOAP(Cn)

10: Return: Obtained rare node set R, SCOAP testability parameters T P = (CC0,CC1,CO).
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AdaTest’s circuit profiling stage characterizes the static reward properties of the circuit

in terms of the transition probabilities of rare nodes and testability measures. We call these two

properties ‘static’ since they are independent of the circuit input for a given circuit netlist. As

such, our profiling phase can be performed offline. The above two properties are indispensable

for the reward computation step in Phase 2 of AdaTest since: (i) Transition probabilities and

rare nodes shed light on the potential trigger nodes exploited by the malicious adversary. The

defender knows that a subset of rare nodes are used to design the stealthy Trojan while he

has no knowledge about the exact trigger set. As such, rewarding the activation of rare nodes

encourages the test vectors to stimulate the possible HT. Note that the Trojan activation condition

is equivalent to knowledge of the exact trigger set and both are assumed to be unknown to the

defender. (ii) Testability parameters provide more fine-grained information about the quality

of individual rare nodes in the context of HT detection. One can compare the fitness of two

test inputs by counting and comparing the number of activated rare nodes corresponding to

each test vector. However, such a naive counting mechanism neglects the intrinsic difference

between the quality of individual rare nodes. In principle, a rare node with higher controllability

and observability shall be assigned with higher reward values. As such, AdaTest integrates the

SCOAP testability measures to quantify the reward of each activated rare node.

9.4.2 Adaptive RL-based Test Pattern Generation

AdaTest deploys a progressive, reinforcement learning-driven algorithm for efficient and

effective test input space exploration with the goal of HT detection. Section 2.3.3 introduces the

basics of RL. We discuss how we map the Trojan detection problem to the RL paradigm below.

AdaTest’s RL Formulation of Trojan Detection:

State. The objective of AdaTest is to adaptively generate test patterns with high

effectiveness for Trojan detection in an iterative manner. As such, AdaTest defines a state as the

current test set in the present iteration.

Action Space. Recall that an action transforms the agent into a new state, which is
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the new test set according to our definition of the state above. Therefore, a feasible action for

AdaTest is to identify a set of new test input vectors in each iteration that improves the quality of

HT detection when added to the current test set.

Environment. For HT detection, the netlist of the circuit (Cn) can be considered as the

environment that converts the current state and the action, and returns the reward value.

Observations. The agent makes the observation of the environment before reward

computation. For Trojan detection problems, we model the DAG formed by the values of all

nodes in the netlist given a specific input vector as an observation of the circuit state.

Reward. The definition of the reward function directly reflects the objective of the

problem that one aims to solve. As such, for the task of logic testing-based HT detection, AdaTest

designs a composite reward function to encourage the generation/exploration of test inputs that

facilitate the excitation of the potential HT.

The mathematical definition of AdaTest’s dynamic reward function is given below:

Reward(Ti| Si) = λ1 ·Vrare(Ti, R)+λ2 ·Vscoap(Ti, R, T P)+λ3 ·VDAG(Ti| Si). (9.1)

Here, Si and Ti are the current test set (i.e., the state) and the newly generated test inputs in ith

iteration, respectively. R and T P are the set of rare nodes and the SCOAP testability parameters

identified in Phase 1 (static attributes). The hyper-parameters λ1, λ2, λ3 determine the relative

weighting of the three reward terms. The reward function Reward(Ti| Si) characterizes the fitness

of the specific test inputs Ti while considering the current test set Si. Evaluating the reward value

of Ti in the context of the historical test patterns (Si) makes AdaTest’s RL framework adaptive

and intelligent.

We detail how each term in AdaTest’s reward function is designed below. Inspired by

the ‘N-detect’ test, the first reward term in Equation (9.1) aims to activate each rare node in the
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circuit for at least N times. To this end, we define the rare node reward Rrare as follows:

Vrare(Ti, R) =−∑
r∈R

abs(N−Ctri(r)), (9.2)

where Ctri(r) is the number of times that the rare node r is activated to its corresponding rare

value up to the ith iteration.

The second reward term in Equation (9.1) leverages the SCOAP parameter T P =

(CC0,CC1,CO) from Phase 1 to encourage the stimulation of rare nodes with high control-

lability and observability. Given the current test set Si, we can obtain the set of activated rare

nodes Rtri (which is a subset of R). The SCOAP testability reward Vscoap is then computed:

Vscoap(Ti, R, T P) = ∑
r∈Rtri

CC(r)+CO(r). (9.3)

Here, CC(r) and CO(r) denote the controllability and observability of the rare node r when set

to its rare value. More specifically, CC(r) shall be converted to CC0(r) or CC1(r) depending on

the rare value of the node r.

Besides leveraging the static attributes identified in Phase 1 to define the rare node

reward Rrare and the SCOAP testability reward Rscoap, AdaTest further explores the graph-level

diversity extracted from the circuit netlist. In particular, AdaTest identifies the dynamic fitness

property, i.e., the DAG-level diversity that is jointly determined by the circuit netlist and the

test vector set. Such a DAG-level distance serves as a dynamic fitness measure since it is input-

aware. Recall that AdaTest leverages an RL paradigm and considers the value assignments of all

nodes when given the netlist Cn and a specific test input as the observation. We use the graph

representation of the circuit to abstract the observed netlist status. To facilitate the computation,

AdaTest flattens the DAG to an ordered sequence based on the circuit level information. The

distance between the two transformed DAG sequences is used as the DAG-level diversity measure.
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To summarize, we define the DAG diversity reward as follows:

VDAG(Ti| Si;Cn) = HammDist(DAG(Ti; Cn), DAG(Si; Cn)). (9.4)

Here, DAG(Ti;Cn) denotes the flattened ordered sequence of the DAG obtained when applying

the test inputs Ti to the circuit Cn. The diversity measurement function HammDist computes the

normalized pairwise distance of the flattened DAGs using the Hamming distance metric. Since

the DAG sequence of the circuit is binary-valued (0 or 1), AdaTest employs XOR function as

an efficient implementation of the HammDist function. It’s worth noting that this graph reward

VDAG is aware of historical test inputs (Si), thus providing guidance to select new inputs that

stimulate different internal nodes structure in the context of current test inputs Si.

Policy. The policy component of a RL algorithm suggests actions to achieve a high

reward given the current state. Recall that AdaTest defines the state and the action space as the

current set of test vectors and the expansion with the new test patterns, respectively. Therefore,

the policy module of AdaTest selects the most suitable test pattern candidates and add them to

the result test set (line 5&6 in Algorithm 9).

Algorithm 9 outlines the procedure of our adaptive test set generation framework. We

emphasize that AdaTest does not require explicit training on the training set, which is typically

required by machine learning models (e.g., gradient descent-based training). The RL nature

enables AdaTest to search for distinguishing test inputs with the guidance of the composite

reward. This makes our detection method fundamentally different from TGRL [PM21] that still

trains an ML model for test pattern generation.

We discuss how AdaTest leverages the RL paradigm formulated above to achieve logic

testing-based HT detection in the following of this section.

1 Smart Initialization. Recall that the intuition of logic testing-based Trojan detection is

to encourage the generation of test inputs that activate diverse combinations of rare nodes to

their corresponding rare values. Random test vectors might be unlikely to yield a high trigger
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Algorithm 9. Adaptive Reinforcement Learning based Test Input Pattern Generation.
INPUT: Netlist of circuit under test (Cn); Rare node set R; SCOAP testability parameters

T P = (CC0,CC1,CO); Size of candidate test inputs per iteration (M); Size of selected
test inputs per iteration (L); Maximal number of iterations (Imax); Percentage threshold
of rare nodes (p); Target activation times (N).

OUTPUT: A set of test patterns S for Trojan detection of the target circuit Cn.
1: Initialization:

S0 =
{

S⃗1
0, ..., S⃗

L
0

}
← SmartInitialize(L).

Iteration counter: i← 0
2: while i < Imax and HT is not activated do
3: Ti← GenerateTestCandidates(M; Cn)

4: Reward(Ti| Si)← EvaluateReward(Ti, Si; Cn)

5: T top
i ← SelectTopCandidates(Ti, Reward, L)

6: Update test set: Si+1← Si∪T top
i ▷ Adaptive sampling to expand test set

7: Ai←CountRareNodeActivation(Si; Cn)

8: if p% elements in Ai ≥ N & Ai.min()≥ 1 then ▷ Check termination condition
9: break

10: i← i+1
11: Return: Obtained a test set (Si) for logic testing-based HT detection of the circuit Cn.

coverage, especially on large circuits. To explore the above intuition, AdaTest leverages SAT

to generate the initial test set (line 1 in Algorithm 9) such that it is able to activate diverse rare

nodes specified by the defender. We empirically validate the advantage of our smart initialization

as opposed to the random variant in Section 9.6.1. It is worth noticing that while the defender can

identify rare nodes in the circuit by thresholding the transition probabilities, it might be infeasible

to find an input that stimulates all rare nodes to their rare values. Therefore, AdaTest tries to

generate test patterns that stimulate different combinations of rare nodes for Trojan detection.

2 Generate Candidate Test Patterns. AdaTest progressively identifies test inputs that are

suitable for HT detection using an iterative approach. To this end, AdaTest first generates a suffi-

cient number of candidate test vectors at the beginning of each iteration (line 3 in Algorithm 9).

These candidates are responsible for exploring the test input space and aim to find solutions with

high rewards. In our experiments, we adopt an adaptive sampling method to generate candidate

test patterns at each iteration. In particular, the sampling weights for the test vectors in the
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initial set S0 are uniformly assigned at iteration 0. In other words, at iteration 0, we perform a

uniform sampling to generate candidate test patterns. Then the sampling weights of test vectors

at iteration i+1 will be updated based on the normalized reward values evaluated at iteration

i. Test vectors with higher reward values will result in higher sampling weights, which in turn

increases the probability of the test vectors being included in the generated set S. The adaptive

sampling method allows us to optimize test pattern generation by favoring test patterns with

higher reward values thus enhancing convergence in our test pattern generation.

3 Evaluate Reward Function. The definition of reward is task-specific. Since our objective

is to generate test patterns that stimulate the circuit (particularly the rare nodes) to different

states for Trojan detection, AdaTest designs an innovative composite reward function as shown

in Equation (9.1). In each iteration, the reward values of the candidate test inputs are evaluated

(line 4 of Algorithm 9). Our compound reward function captures informative features that

are beneficial for HT detection from three aspects: the number of times that each rare node is

activated (Vrare), the SCOAP testability measures that quantify the fitness of different rare nodes

(Vscoap), and the graph-level diversity between the current test inputs and historical ones (VDAG).

4 Adaptive Sampling to Update Test Set. Recall that in AdaTest’s RL paradigm, the current

test set Si represents the ‘state’ variable. After obtaining the reward values of individual candidate

test input in Ti from Step 3, AdaTest updates the state by selecting a subset of Ti that has the

highest reward values and adding them to the current test set Si. This step is conceptually similar

to the selection stage in genetic algorithms. With the domain-specific definition of reward,

AdaTest adaptively samples high-quality test patterns from the randomly generated candidate

test inputs, therefore facilitating fast exploration of the circuit input space for HT detection.

5 Check Termination Condition. AdaTest’s adaptive test set generation terminates if any of

the following three conditions is satisfied: (i) p% of all rare nodes are activated for at least N

times and all rare nodes are activated at lease once (line 8 in Algorithm 9); (ii) The maximal

number of iteration Imax is reached (line 2 in Algorithm 9); (iii) The current test set Si activates

the hidden Trojan, i.e., all involved trigger nodes are activated to their corresponding rare values
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by Si (line 2 in Algorithm 9). Note that we include termination condition (iii) since our threat

model assumes that the defender can observe the manifestation of an activated Trojan.

Discussion. As summarized in Algorithm 9, our reinforcement learning approach does not

require model training. Instead, we progressively generate the set of test vectors using adaptive

sampling given the particular circuit with the goal of maximizing the RL rewards for Trojan

detection. From this perspective, our RL-based detection tool generates a specific test set for

the circuit under test. However, AdaTest is generic in the sense that it is agnostic to the circuit

structure and can be applied to various types of circuits. In other words, applying AdaTest to a

different circuit does not require any model training since we do not incorporate neural networks

in our RL detection pipeline shown in Algorithm 9.

9.5 AdaTest Architecture Design

Beyond the novel test generation algorithm discussed in Section 9.4, we design a Domain-

specific systems-on-chip (DSSoC) architecture of AdaTest for its practical deployment. The

bottleneck of AdaTest implementation is the computation of the test input’s reward Reward(Ti|Si)

according to Equation (9.1). Given the rare node-set R and SCOAP testability measures of the

circuit T P from offline circuit profiling (Algorithm 8), the online reward evaluation of a new test

input Ti involves three terms as shown in Equation (9.1): identifying the rare nodes stimulated by

Ti (for Vrare), obtaining the SCOAP values corresponding to each active rare node (for Vscoap),

and computing the DAG-level graph distance (for VDAG). Note that the third component requires

us to obtain the DAG with nodes value assignment when applying the test input on the circuit

DAG(Ti; Cn). This information is also sufficient to compute the first two reward terms. Therefore,

the main task for AdaTest’s on-chip implementation is to obtain the value-assigned DAG for a

new test input on the circuit (DAG(Ti; Cn)).

To accelerate circuit evaluation, AdaTest deploys circuit emulation on the programmable

hardware to obtain the response DAG(Ti; Cn). Furthermore, AdaTest constructs the customized
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auxiliary circuitry automatically to pipeline each computation stage and reduce the runtime

overhead. We design an optimized DSSoC architecture of AdaTest for efficient implementation

of our adaptive TPG method outlined in Algorithm 9.

9.5.1 Architecture Overview

The overall hardware architecture of AdaTest’s online test patterns generation is shown

in Figure 9.3 (a). AdaTest leverages Algorithm/Software/Hardware co-design approach to

accelerate the test inputs searching process shown in Figure 9.2 (Phase 2). More specifically,

AdaTest maps the netlist of the circuit under test (Cn) with the auxiliary part to the FPGA and

performs circuit evaluation to obtain the circuit’s response (DAG(Ti; Cn)) to the test input Ti. We

make this design decision to develop the hardware accelerator for AdaTest since acquiring the

circuit’s response from a configured FPGA (circuit emulation) is significantly faster than the

same process running on a host CPU (software simulation). In addition, AdaTest parallelizes the

computation of circuit emulation and pipelines at each step of the RL process. AdaTest performs

reward computation of the candidate test inputs and adaptive sampling in an online fashion to

minimize data communication between the off-chip memory and the FPGA.
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Figure 9.3. Overview of AdaTest architecture design. The overall layout of the hardware
system (a) and the implementation of Reward Computation Engines (b) are shown.

Note that we do not include a random number generator (RNG) in our architecture

design. Instead, AdaTest stores a set of random numbers pre-computed on CPU using the

inherent variation of the operating system. This design choice has two benefits: (i) The hardware

overhead of a True RNG is non-trivial and not desired; (ii) Random numbers generated from the
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CPU typically feature stronger randomness compared to the one generated on FPGA. The results

of circuit emulation are used for computing the reward values of test inputs using Equation (9.1)

during reward evaluation. The rare node evaluation and DAG distance computation process

in reward evaluation are parallelized by accommodating multiple Computing Engine (CE) in

AdaTest’s design. We also evenly partition the workload of each CE evenly offline.

After accumulating the reward for each candidate test input, our adaptive sampling

selects the ones with the highest rewards. This selection process is equivalent to sorting.

Therefore, AdaTest includes a sorting engine that permutes the key index based on their cor-

responding rewards. We implement a lightweight sorting engine based on the ‘even-odd sort’

algorithm [CELT78] for adaptive sampling, incurring a linear runtime overhead with the candi-

date test set size M.

It is worth noticing that AdaTest does not deploy a central control unit to coordinate the

computation flow. Instead, each design component in Figure 9.3 (a) follows a trigger-based

control mechanism [PPA+13]. Particularly, each module is controlled by the status flag from

its previous computation stage. For example, the adaptive sampling module (i.e., the sorting

engine) in AdaTest begins to operate when the accumulation of the reward value is detected

as completed. Our trigger-based control flow simplifies the control logic while satisfying the

data dependency between different components in Figure 9.2. We detail the design of AdaTest’s

circuit emulation and auxiliary circuitry as follows.

9.5.2 AdaTest Circuit Emulation

We empirically observe from AdaTest’s software implementation that circuit evaluation

(i.e., obtaining DAG(Ti;Cn)) dominates the execution time. Motivated to address the high latency

issue of evaluating a circuit netlist on CPU, we propose to use circuit emulation to improve

AdaTest’s efficiency. The first step of circuit emulation is to rewrite the netlist of the circuit

under test (Cn) such that the values of internal nodes can be recorded by registers. The rewritten

circuit is then connected with the auxiliary circuitry and mapped onto FPGA. In this way, we
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can emulate the response of the target circuit Cn for any test input by directly applying it to the

circuit and collecting the corresponding values in the registers. The collected signal values are

used to compute the three reward terms in Equation (9.1).

Furthermore, AdaTest optimizes the latency of hardware evaluation by storing the emula-

tion results in a ping-pong buffer (consisting of two buffers denoted with A and B) and decoupling

it from other hardware components as shown in Figure 9.3 (a). More specifically, the reward

computing engine (CE) calculates the reward of the candidate test input using the data from

buffer A. In the meantime, the emulator acquires the states of Cn given the next input Ti and

stores the results into buffer B.

9.5.3 AdaTest Reward Computing Engine

Pipeline with Early Starting. Our architecture design aims to maximize the overlapping time

between each execution stage of AdaTest to increase the throughput of TPG. As shown in

Figure 9.4, the ping-pong buffer enables pipelined execution of hardware emulation and reward

evaluation. Furthermore, reward evaluation and adaptive sampling can be pipelined across

different iterations. We can see from Figure 9.4 that epoch (i+1) can start circuit emulation and

reward evaluation when the previous epoch begins to generate new test inputs for the next epoch.

As such, the latency of candidate test input generation can be hidden by circuit emulation and

reward evaluation.

Compute T1 Circuit Emulation

Reward Evaluation I Compute T1

Adaptive Sampling

Compute T2 Compute T3

Compute T2

Sorting 
reward

Generate Test Inputs
 

Gen T'1 Gen T'2 Gen T'3
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Figure 9.4. AdaTest’s hardware accelerator employs pipelining optimization to generate
test patterns online for HT detection.

Scalable Reward Computing Engine. Once circuit emulation finishes for the current input

Ti, AdaTest begins to calculate the reward of this test input using Equation (9.1). From the
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hardware perspective, the reward term Vrare and Vscoap is computed by accumulating the number

of activated rare nodes and the corresponding SCOAP values from the circuit Cn, and the reward

VDAG is computed by accumulating the Hamming Distance (i.e., XOR) between the values in

the current DAG (DAG(Ti;Cn)) and the historical ones (DAG(Si;Cn)). Independence between

different groups of wire signals typically exists in circuits. AdaTest leverages this property

by distributing the computation involving independent groups of nodes to different reward

computing engines as shown in Figure 9.3 (b). As such, each CE stores a subset of DAG nodes’

values in the associated DAG buffer. The accumulation of the ultimate reward score completes

when the last CE finishes reward computing.

9.6 Evaluations

We investigate AdaTest’s performance for Hardware Trojan detection on various bench-

marks, including ISCAS’85 [HYH99], MCNC [Man12], and ISCAS’89 [BBK06]. The statistics

of the evaluated benchmarks are summarized in Table 9.1. To apply AdaTest on sequential

circuits in the ISCAS’89 benchmark, we unroll the circuit for two-time frames and convert it to a

combinational one [AH04, Yua15]. Note that the unrolling process duplicates the combinational

logic blocks, thus increasing the effective circuit size. The transition probability threshold (Ptrans)

Table 9.1. Summary of the evaluated circuit benchmarks.

Circuit dataset #in #out #gate # of rare nodes
(Ptrans < PT )

c432 ISCAS-85 36 7 160 14
c499 ISCAS-85 41 32 202 48
c880 ISCAS-85 60 26 383 74

c3540 ISCAS-85 50 22 1669 218
c5315 ISCAS-85 178 123 2307 169
c6288 ISCAS-85 32 32 2416 245
c7552 ISCAS-85 207 108 3512 266

des MCNC 256 245 6473 2316
ex5 MCNC 8 63 1055 432
i9 MCNC 88 63 1035 85

seq MCNC 41 35 3519 1356
s5378 ISCAS-89 35 49 2958 258
s9234 ISCAS-89 19 22 5825 398
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for rare nodes is set to PT = 0.1 for ISCAS’85 and MCNC benchmarks. As for two ISCAS’89

circuits, we use Ptrans = 0.0005 so that the number of rare nodes is at the same level as the

previous two benchmarks. The identification results are shown in the last column of Table 9.1.

To compare AdaTest’s performance with other logic testing-based Trojan detection

methods, we use trigger coverage and Trojan coverage as the metrics to quantify detection

effectiveness. To profile the detection efficiency, we use the number of test vectors and detection

runtime as the metrics. We empirically show that AdaTest achieves a higher Trojan detection

rate with shorter runtime overhead compared to the counterparts in the rest of this section.

Experimental Setup. Adhering to our threat model defined in Section 9.3.2, we first design

the HT and insert it to each benchmark listed in Table 9.1. We use a logic-AND gate as the

Trojan trigger and select three rare nodes with rare value 1 as the inputs. To fully character-

ize the performance of AdaTest, we devise various HTs for each circuit (i.e., using different

combinations of rare nodes as the trigger) and repeat the insertion for 50 times. Our Trojaned

benchmarks include ‘hard-to-trigger’ HTs with activation probabilities around 10−7 (e.g., c3540).

To compare the performance of AdaTest with prior works, we re-implement MERO [CWP+09]

and TRIAGE [NFH18] based on the methodology described in the paper using Python. Our

experiments are performed on an Intel Xeon E5-2650 v4 processor with 14.5 GiB of RAM.

MERO Configuration. We use the same parameter selection strategy in MERO for

re-implementation. Particularly, we set the size of random patterns to 2,500. The hyper-parameter

of MERO is N (desired number of times that each rare node shall be activated). A large value of

N achieves a higher detection rate while resulting in a larger test set. We use N = 1,000 in our

experiments since this value is suggested in MERO [CWP+09] .

TRIAGE Configuration. We use a population size of 100 and select 20 test inputs

with the highest fitness score in each generation. The probability of crossover and mutation is set

to 0.9 and 0.05, respectively. The termination condition in TRIAGE [NFH18] is used to evolve

the test patterns.

AdaTest Configuration. In AdaTest’s circuit profiling stage, we use the Testability
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Measurement Tool [Sam14] to compute the SCOAP parameters. The SAT-based smart initializa-

tion step of AdaTest’s Phase 2 is performed using the pycosat library [Sch17]. Our framework is

developed in Python language and does not require extensive hyper-parameter tuning. To ensure

the three reward terms in Equation (9.1) have comparable values within the range of [0,10], we

set the hyper-parameters to λ1 = 0.05, λ2 = 0.0001, λ3 = 0.00025. The candidate test size and

the step size in Algorithm 9 are set to M = 200 and L = 80 for all benchmarks, respectively. We

use the percentage threshold p = 95% to identify rare nodes and set the target activation times to

N = 20. The maximal iteration time is set to Imax = 500.

According to the performance metrics in Section 9.3.3, we use the trigger coverage

(percentage of trigger nodes identified by the test set) and the Trojan coverage (i.e., detection

rate) to quantify the effectiveness of HT detection. Meanwhile, we measure the test set generation

time and test set size of each technique for efficiency comparison. To obtain an accurate and

comprehensive performance measurement, we design 50 different HTs for each benchmark in

Table 9.1 while fixing the number of trigger nodes to 3. Each set of devised HTs is inserted

into the circuit independently. We run AdaTest detection on each Trojaned circuit for 20 times.

The trigger and Trojan coverage for each benchmark are computed as the average value over

50×20 = 1000 runs.

9.6.1 Detection Effectiveness

We assess the detection performance of AdaTest, MERO, and TRIAGE using the afore-

mentioned experimental setup. Figure 9.5 compares the Trojan coverage of the three HT detection

techniques on different benchmarks. One can see that our framework achieves uniformly higher

detection rates across various circuits. The superior HT detection performance of AdaTest is

derived from our definition of adaptive, context-aware reward functions in Equation (9.1).

We use two metrics to quantitatively compare the effectiveness of different HT detection

techniques: trigger coverage rate and Trojan detection rate. Note that AdaTest determine a

Hardware Trojan is present in the circuit if the set of test patterns generated using Algorithm 9
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Figure 9.5. Trojan detection rates of AdaTest and prior works on various benchmarks.

result in Trojan activation when the test inputs are applied to the circuit. Therefore, our detection

method does not have any false positives and we focus on evaluating the detection rates (which

corresponds to the false-negative rate).

Table 9.2 summarizes the HT detection results of three different methods on the bench-

marks in Table 9.1. The trigger coverage and Trojan coverage results are shown in the last two

columns. It can be seen that AdaTest achieves the highest Trojan coverage while requiring the

shortest test generation time across most of the benchmarks. More specifically, AdaTest achieves

an average of 15.61% and 29.25%. Trojan coverage improvement over MERO [CWP+09] and

TRIAGE [NFH18], respectively. The superior HT detection performance of our logic testing-

based approach is derived from the diverse test patterns found by AdaTest adaptive RL-driven

input space exploration technique (see Section 9.4.2). We not only encourage the activation of

rare nodes and differentiate their qualities using SCOAP testability parameters but also explicitly

characterize the graph-level distance of the CUT status under different test stimuli.

We measure the dynamic rare node coverage versus the number of executed iterations

to validate the time-evolving property of AdaTest framework. Figure 9.6 shows the coverage

results of AdaTest with random initialization and SAT-based smart initialization on the c3540

benchmark. We can make two observations from Figure 9.6: (i) AdaTest consistently improves

the rare node coverage over time (with either initialization method); (ii) SAT-based smart
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Table 9.2. Performance comparison summary of different Trojan detection techniques.

circuit Method # test vectors Runtime (s) Trigger coverage Trojan coverage

c499
MERO 1660 136.49 100.00% 100.00%
TRIAGE 250000 25.91 100.00% 100.00%
AdaTest 1010 13.60 100.00% 100.00%

c880
MERO 1332 352.54 100.00% 100.00%
TRIAGE 250000 1.75 82.29% 18.00%
AdaTest 429 0.43 100.00% 97.50%

c3540
MERO 1920 1577.36 100.00% 100.00%
TRIAGE 250000 25.85 100.00% 61.00%
AdaTest 905 22.61 100.00% 100.00%

c5315
MERO 9265 1660 100.00% 50.00%
TRIAGE 250000 37.14 100.00% 50.50%
AdaTest 1300 19.76 100.00% 100.00%

c6288
MERO 1906 1867.57 100.00% 100.00%
TRIAGE 250000 44.11 100.00% 91.50%
AdaTest 900 47.06 100.00% 99.50%

c7552
MERO 1916 18650.5 100.00% 50.00%
TRIAGE 250000 20.93 93.88% 5.00%
AdaTest 1600 39.79 98.08% 100.00%

s5378
MERO 1103 30960.11 100.00% 100.00%
TRIAGE 300 0.45 100.00% 100.00%
AdaTest 100 11.58 100.00% 100.00%

s9234
MERO 11 29737.84 100.00% 25.00%
TRIAGE 500 35.625 100.00% 100.00%
AdaTest 140 124.99 100.00% 100.00%

des
MERO 1120 34943.41 100.00% 100.00%
TRIAGE 2500 0.84 100.00% 100.00%
AdaTest 156.8 15.11 92.88% 100.00%

ex5
MERO 904 115.22 100.00% 100.00%
TRIAGE 2500 0.13 99.13% 100.00%
AdaTest 500 12.35 93.81% 100.00%

i9
MERO 268 808.56 100.00% 100.00%
TRIAGE 2500 0.09 100.00% 100.00%
AdaTest 600 12.15 94.58% 100.00%

seq
MERO 1776 3773.3 100.00% 66.67%
TRIAGE 250000 22.11 95.44% 2.00%
AdaTest 3700 20.72 94.58% 82.00%

initialization improves the convergence speed of AdaTest, thus reducing our test set generation

time. The first observation corroborates the efficacy of our RL-based progressive test pattern

generation method. The second observation reveals the importance of proper initialization for

fast convergence of RL exploration. Note that a shorter convergence time (i.e., a smaller number

of iterations in Algorithm 9) indicates s smaller test set returned by AdaTest, which is beneficial

to reduce the test generation time for higher detection efficiency.
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Figure 9.6. The rare node coverage of AdaTest versus the number of executed
iterations on c3540 benchmark.

9.6.2 Detection Efficiency

We characterize the efficiency of AdaTest for logic testing based HT detection using two

metrics: the test set size (space efficiency), and the test set generation time (runtime efficiency).

The quantitative efficiency measurements of three HT detection methods are shown in the third

and fourth columns of Table 9.2. It can be computed that AdaTest engenders an average of

2.04× and 155.04× reduction of the test set size compared to MERO and TRIAGE across all

benchmarks, respectively. The reduction of test set size has two benefits: (i) A smaller test set

features a lower memory footprint; (ii) For on-chip test pattern generation, a smaller test set

suggests a shorter test generation time.

Figure 9.7 compares the required test generation time of AdaTest, MERO, and TRIAGE

to achieve the coverage results on various benchmarks in Table 9.2. Note that we use log-scale

for the vertical axis since the range of runtime is diverse across different circuits. We can observe

that AdaTest is the most efficient HT detection method among the three and it also achieves

high Trojan coverage (last column of Table 9.2). More specifically, AdaTest engenders an

average of 366.26× and 0.63× test generation speedup compared to MERO [CWP+09] and

TRIAGE [NFH18], respectively. Note that although the runtime of TRIAGE is smaller, its Trojan

detection rate is 30% lower than AdaTest.
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Figure 9.7. Test set generation time comparison between AdaTest and prior works.
The runtime shown by the y-axis is represented in the log scale.

9.6.3 AdaTest Architecture Evaluation

The resource utilization of AdaTest depends on the input length and the circuit size. We

report the resource utilization results of the evaluated benchmarks in Table 9.3. Figure 9.8 shows

that AdaTest architecture achieves approximately linear speedup w.r.t. to the number of CEs.

Our hardware design can be scaled up by adding more reward computing engines to parallel the

circuit emulation process as AdaTest’s computation bottleneck is reward evaluation of the test

patterns. Nevertheless, the speedup saturates when NCE is sufficiently high. AdaTest broadcasts

the wire values of the circuit response (given a test input) to all CEs via a shared data bus. Each

CE scans the DAG buffer and obtains the broadcast wire values to compute the corresponding

reward. Therefore, increasing the number of CEs does not lead to extra wire delay. However,

more CEs suggest a higher overhead during reward accumulation.

Table 9.3. Resource utilization of the auxiliary circuitry on c432,c880, c2670 and des
benchmarks with default settings (NCE = 16) on Zynq ZC706.

Benchmarks c432 c880 c2670 des

BRAMS 26 36 65 237
DSP48E1 0 0 0 0

KLUTs (emulator usage) 14.9 (0.5) 25.5 (0.6) 61.1 (3.5) 267.9 (26.1)
FFs (emulator usage) 4,440 (80) 5,743 (160) 6,717 (317) 12,943 (1190)
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Figure 9.8. AdaTest’s scalability to the number of DAG reward computing engines.
The speedup is near-linear with NCE on large circuits where reward evaluation is the
computation bottleneck.

9.7 Summary

In this chapter, we present a holistic solution to Hardware Trojan detection using adaptive,

reinforcement learning-based test pattern generation. To formulate logic testing-based HT

detection as an RL problem, we design an innovative reward function to characterize the

quality of a test pattern from both static and dynamic aspects. AdaTest progressively expands

the test set by identifying test input vectors with high reward values in an iterative approach.

AdaTest integrates adaptive sampling to identify and encourage high-reward test patterns, thus

accelerating our RL-based input space exploration. Furthermore, AdaTest provides a flexible

trade-off between the Trojan coverage and the test set generation time by allowing the defender

to customize the termination condition for our adaptive test pattern generation.

We devise AdaTest using a Software/Hardware co-design approach. Particularly, we

develop a domain-specific system-on-chip architecture for efficient hardware implementation of

AdaTest. Our architecture optimizes reward evaluation via circuit emulation and pipelines the

computation of AdaTest. We perform extensive evaluations of AdaTest on various benchmarks

and compare its performance with two counterparts, MERO and TRIAGE. Empirical results

corroborate that AdaTest achieves superior effectiveness, efficiency, and scalability for HT

detection compared to prior works. AdaTest is a generic test pattern generation framework, we

plan to investigate its performance on other hardware security problems such as logic verification

and built-in self-test in our future work.
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Chapter 10

Summary and Future Research Directions

Effective and efficient security assurance techniques are critical for enabling reliable and

trustworthy machine learning deployment. Deep learning models are increasingly deployed in

various real-world applications ranging from computer vision and natural language processing to

biomedical diagnosis and financial analysis. Such a wide deployment raises concerns for both

DL model designers and end users. On the one hand, well-trained DL models are valuable assets

of the model owner and need to be protected against intellectual property infringement attacks.

On the other hand, the end users might be concerned about the safety of the pre-trained model

obtained from the third-party model provider since the training process is opaque to the users.

Besides the training-time threats, DL models are also vulnerable to inference-time attacks such

as adversarial samples and fault injection attacks. This dissertation addresses the IP protection

and security assurance challenges of deep learning by provisioning end-to-end, holistic solutions

that concurrently optimize the effectiveness and efficiency of the defense while adhering to the

resource/energy constraints from the underlying hardware. The research contributions of this

dissertation open future directions including:

• Devising platform-aware intellectual property protection frameworks for deep learn-

ing models. This research topic focuses on designing digital watermarking/fingerprinting

techniques suitable for the deep learning domain. I believe that the development of such

IP protection frameworks needs to take the model intrinsic and the deployment scenario
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(e.g., hardware constraints) into account simultaneously.

• Evaluating the robustness of machine learning systems from a wide spectrum. This

dissertation has investigated the vulnerability of deep learning systems to backdoor attacks

and bit flipping-based fault injection attacks. To ensure safe deployment, I believe it is

essential for both researchers and practitioners to explore diverse potential attack vectors

against DL models. Unveiling the susceptibility of DNNs is also the first step to enhancing

the robustness of the DL systems for reliable decision-making.

• Detecting potential attacks on model inputs or model internals. The synopsis of

my works has revealed training-time as well as run-time threats against DL models

and provided holistic defense solutions. My solutions enable effective and efficient

detection/mitigation of potential backdoor insertion and fault injection attacks. The

systematic defense frameworks in this dissertation are compatible with existing/future

defense methods against orthogonal attacks such as adversarial samples and membership

inference attacks. I believe that developing a coherent DL defense framework requires

strategical adaptation and re-assembly of contemporary defense techniques.

• Adapting machine learning techniques to solve long-standing hardware security

problems. This dissertation has shown the capability and superior performance of ML

techniques for solving existing hardware security problems. ML approaches are intrigu-

ing since they enable automated feature learning and have demonstrated unprecedented

performance compared to expert-engineered counterparts. Additionally, my solutions

suggest that future works shall explore software/hardware co-design to achieve optimal

performance of the ML model on the pertinent platform while constraining the overhead.
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