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FLAVOR CONSTRAINTS ON THEORY SPACE

E. H. SIMMONS AND R. S. CHIVUKULA

Department of Physics, Boston University,
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Boston, MA 02215, USA

E-mail: simmons@bu.edu, sekhar@bu.edu

N. EVANS

Department of Physics, University of Southampton,
Highfield, Southampton, SO17 1BJ, UK

E-mail: evans@phys.soton.ac.uk

Composite Higgs models based on the chiral symmetries of “theory space” can pro-
duce Higgs bosons with masses of order 100 GeV from underlying strong dynamics
at scales up to 10 TeV without fine tuning. This talk argues that flavor-violating in-
teractions generically arising from underlying flavor dynamics constrain the Higgs

compositeness scale to be
>
∼75 GeV, implying that significant fine-tuning is re-

quired. Bounds from CP violation and weak isospin violation are also discussed.

1. Introduction

The Standard Higgs Model employs a fundamental scalar doublet to break

the electroweak symmetry and provide fermion masses. Well-known diffi-

culties, including the hierarchy problem and the triviality problem, imply

that the Standard Higgs Model is just a low-energy effective theory.

Suppose that the Higgs field φ is actually a composite1 state arising

from underlying strong dynamics at a higher energy scale, Λ. We can

estimate the sizes of operators involving φ in the low-energy effective theory

using dimensional analysis2. A theory with light scalar particles in a single

symmetry-group representation depends3 on two parameters: Λ, the scale

of the underlying physics, and f , the analog of fπ in QCD. Our estimates

of the low-energy effects of the underlying physics will depend on κ ≡ Λ/f .

Regardless of the precise nature of the underlying strongly-interacting

physics that produces φ, there must be flavor dynamics at a scale
>∼ Λ

that gives rise to the different Yukawa couplings of the Higgs boson to

1
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ordinary fermions. If this flavor dynamics arises from gauge interactions it

will generally cause flavor-changing neutral currents (as in ETC models 4).

Similarly, there are likely to be couplings that violate CP and weak isospin.

This talk reviews the constraints5 which FCNC, CP-violation, and weak-

isospin violation place on composite Higgs models and applies the limits to

models developed 6,7 under the rubric of “theory space”8.

2. Composite Higgs Phenomenology

2.1. Flavor

Quark Yukawa couplings arise from flavor physics coupling the left-handed

doublets ψL and right-handed singlets qR to the strongly-interacting con-

stituents of the composite Higgs doublet. If these new flavor interactions

are gauge interactions with gauge coupling g and gauge boson mass M ,

dimensional analysis 2 estimates the resulting Yukawa coupling is 1 of or-

der g2

M2

Λ
2

κ . To produce a quark mass mq, the Yukawa coupling must equal√
2mq/v where v ≈ 246 GeV. This implies14

Λ
>∼ M

g

√√
2κ
mq

v
. (1)

If experiment sets a lower limit on M/g, eqn.(1) gives a lower bound on Λ.

Consider the interactions responsible for the c-quark mass. Through

Cabibbo mixing, these interactions must couple to the u-quark as well:

Leff = − (cos θcL sin θcL)
2 g

2

M2
(cLγ

µuL)(cLγµuL)

− (cos θcR sin θcR)
2
g2

M2
(cRγ

µuR)(cRγµuR)

− 2 cos θcL sin θcL cos θcR sin θcR
g2

M2
(cLγ

µuL)(cRγµuR) , (2)

where g and M are of the same order as those which produce the c-quark

Yukawa coupling, and θcL, θ
c
R relate the gauge and mass eigenstates.

The color-singlet products of currents in eqn. (2) contribute to D-meson

mixing. The left-handed or right-handed current-current operators yield14

(

M

g

)

LL,RR

>∼ fD

(

2mDBD

3∆mD

)1/2

cos θcL,R sin θcL,R ≈ 225TeV , (3)
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where ∆mD
<∼ 4.6× 10−11 MeV 10, and fD

√
BD = 0.2 GeV 11, θcL,R ≈ θC .

A bound5 on the scale of the underlying dynamics follows from eqn. (1):

Λ
>∼ 21TeV

√

κ
( mc

1.5GeV

)

, (4)

so that Λ
>∼ 74 TeV for κ ≈ 4π. The LR product of color-singlet currents

gives a weaker bound than eqn. (4). The LR product of color-octet currents,

Leff = − 2 cos θcL sin θcL cos θcR sin θcR
g2

M2
(cLγ

µT auL)(cRγµT
auR) , (5)

where T a are the generators of SU(3)C , gives a stronger bound5:

Λ
>∼ 53TeV

√

κ

(

1.5GeV

mc

)

. (6)

Analogous bounds on Λ can be derived from neutral Kaon mixing. How-

ever, because ms ≪ mc, while the d− s and u− c mixings are expected to

be of comparable size, these bounds on Λ are weaker than (4) 9.

2.2. Isospin

Weak-isospin violation is a key issue in composite Higgs models 9,13,14,15.

The standard one-doublet Higgs model has an accidental custodial isospin

symmetry 16, which implies ρ ≈ 1. While all operators of dimension ≤ 4

automatically respect custodial symmetry, terms of higher dimension that

arise from the underlying physics at scale Λ in general will not.

The leading custodial-symmetry violating operator

κ2

Λ2
(φ†Dµφ)(φ†Dµφ) (7)

gives rise to a contribution to the ρ parameter13

∆ρ∗ = −O(κ2 v
2

Λ2
) . (8)

The limit |∆ρ ∗ | <∼ 0.4% implies Λ
>∼ 4TeV · κ.

2.3. CP Violation

In the absence of additional superweak interactions to give rise to CP-

violation inK-mixing (ε), the flavor interactions responsible for the s-quark

Yukawa couplings must do so. This yields strong bounds on Λ. Recalling

Re ε ≈ ImM12

2∆M

<∼ 1.65 × 10−3 , (9)
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and assuming that there are phases of order 1 in the ∆S = 2 operators

analogous to those shown in eqn. (2), we find

Λ
>∼ 120TeV

√

κ
( ms

200MeV

)

. (10)

3. Composite Higgs Bosons from Theory Space

A set of “theory space” composite Higgs models 6,7 can be represented as

an N × N toroidal lattice of “sites” connected by “links”, using “moose”

or “quiver” notation 12. Each site except (1, 1) represents a gauged SU(3)

group, while the links represent non-linear sigma fields transforming as

(N, N̄)’s under the adjacent groups. At the site (1, 1), only the SU(2)×U(1)

subgroup of an SU(3) global symmetry is gauged. For simplicity, we will

assume the gauge couplings of the SU(3) gauge groups are the same for

every site (except (1, 1)). Calling the “pion decay constant” of the chiral-

symmetry-breaking dynamics f , dimensional analysis 2 then implies that

the scale Λ of the underlying high-energy dynamics which gives rise to this

theory is
<∼ 4πf .

The 2N2 Goldstone bosons of the chiral symmetry breaking dynamics

are incorporated into the sigma-model fields. As described in 6,7, N2−1 sets

of Goldstone bosons are eaten, N2−1 get mass from “plaquette operators”

which explicitly break the chiral symmetries, and two sets which are uniform

in the ‘u’ or ‘v’ directions, along the lattice axes, remain massless in the

very low-energy theory: Both the πu and πv fields contain SU(2) × U(1)

doublet scalars φu and φv with the quantum numbers of the Higgs boson.

A negative mass-squared for one or both Higgs bosons may be introduced

either through a symmetry-breaking plaquette operator at the site (1, 1) 6

or through the effect of coupling the Higgs bosons to the top-quark 7. In

either case, the resulting mass-squared of the Higgs is |mh|2 ≃ λv2

N2 .

4. Constraints on Theory Space

4.1. Flavor and CP

Because the light quarks and leptons transform under the SU(2) × U(1)

gauge interactions at a site in theory space6,7, Yukawa couplings of these

fermions to the composite Higgs bosons are generated. The FCNC and CP-

violation limits derived in Section 2 therefore apply. Because the composite

Higgs bosons are delocalized over the N2 sites of theory space, the lower
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bound on Λ is a factor of
√
N stronger. From D-meson mixing, we have

Λ
>∼ 21TeV

√

κN
( mc

1.5GeV

)

, (11)

so that Λ
>∼
√
N · 74 TeV for κ = 4π. From CP-violation (ǫ), we have

Λ
>∼ 120TeV

√

κN
( ms

200MeV

)

, (12)

meaning Λ
>∼
√
N · 425 TeV for κ = 4π.

A significant advantage of theory space models is supposed to be their

ability to produce a light Higgs without fine-tuning. We must check how

compatable this is with the FCNC and CP-violation constraints above.

The most important corrections to the Higgs boson masses arise from

the interactions added to give rise to the top-quark mass. The fermion loop

Coleman-Weinberg17 contribution to the Higgs mass-squared is of order

|δm2

H | ≃ Ncy
2
tM

2

16π2
≈ Ncy

4
t

(16π2)2
Λ2 , (13)

where Nc = 3 accounts for color. In this case, the absence of fine-tuning

(δm2
H/m

2
H

<∼ 1) implies

Λ
<∼ 16π2

√
λv√

Ncy2tN
≈ 22TeV

√
λ

N
. (14)

Comparing eqs. (14) and (11) we see that remaining consistent with

the low-energy constraints makes fine-tuning inevitable for large N . Even

for the smallest N , some fine-tuning will be required. For example, for

N = 2 (N =
√
2) fine-tuning on the order of 1% (3%) is required by the

bound on D-meson mixing. If the bound from CP violation (10) must also

be satisfied, the fine-tuning required is of order .04% (0.09%).

5. Weak Isospin Violation

The kinetic energy terms for the light composite Higgses include isospin-

violating interactions5

Lkin ⊃ − 1

6Nf2

[

(∂µφ
†
uφu)

2 − (∂µφ
†
uφu)(φ

†
u∂

µφu) + (φ†u∂
µφu)

2
]

+u↔ v .(15)

The resulting contribution to the ρ parameter is5

∆ρ⋆ = α∆T =
v2

4N2f2

(

1− sin2 2β

2

)

. (16)
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Current limits derived from precision electroweak observables 15 require

that ∆T
<∼ 0.5 at 95% confidence level for a Higgs mass less than 500 GeV.

The bound in eqn. 16 implies that

Λ ≃ 4πf
>∼ 25TeV

N

(

1− sin2 2β

2

)1/2

. (17)

Comparison with eq.(14) shows that the underlying strong dynamics cannot

be at energies ≪ 10 TeV, even if the high-energy theory contains approxi-

mate flavor and CP symmetries that avoid the limits of eqs. (4, 10).

6. Discussion

Theory space models propose to provide a naturally light composite Higgs

boson without relying on approximate symmetries of the high-energy un-

derlying strong dynamics. This talk argues that the low-energy structure of

composite Higgs models does not automatically make them invulnerable to

constraints from FCNC, CP-violation, or weak-isospin violation. Assump-

tions about symmetries of the underlying dynamics are required (see, e.g.,

discussion in ref. 5).

For theory space models based on an N ×N toroidal lattice6,7,19,18, the

lower limit from FCNC on the scale of strong dynamics is Λ ≥ 74TeV
√
N ,

implying a minimum bound of 105 TeV. However, if fine-tuning of the higgs

mass is to be avoided in such models, Λ ≤ 22TeV
√
λ/N ; preventing FCNC

then leads to fine-tuning at the level of 10/N3%. The lower limits on Λ

from weak isospin violation are weaker than those from FCNC (but hard

to avoid), while those from CP-violation can be much stronger.
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