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Abstract

Image reconstruction of low-count positron emission tomography (PET) data is challenging. 

Kernel methods address the challenge by incorporating image prior information in the forward 

model of iterative PET image reconstruction. The kernelized expectation-maximization (KEM) 

algorithm has been developed and demonstrated to be effective and easy to implement. A 

common approach for a further improvement of the kernel method would be adding an explicit 

regularization, which however leads to a complex optimization problem. In this paper, we propose 

an implicit regularization for the kernel method by using a deep coefficient prior, which represents 

the kernel coefficient image in the PET forward model using a convolutional neural-network. 

To solve the maximum-likelihood neural network-based reconstruction problem, we apply the 

principle of optimization transfer to derive a neural KEM algorithm. Each iteration of the 

algorithm consists of two separate steps: a KEM step for image update from the projection data 

and a deep-learning step in the image domain for updating the kernel coefficient image using 

the neural network. This optimization algorithm is guaranteed to monotonically increase the data 

likelihood. The results from computer simulations and real patient data have demonstrated that the 

neural KEM can outperform existing KEM and deep image prior methods.
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I. INTRODUCTION

TOMOGRAPHIC image reconstruction for positron emission tomography (PET) is 

challenging because of the ill-conditioned problem and low counting statistics [1]. The 

kernel method addresses this challenge by integrating image prior information into the 

forward model of PET image reconstruction (e.g., [2], [3], [4], [5], [6], [7], [8], [9]). The a 
priori information can come from composite time frames in a dynamic PET scan [2], [3], 

or from the co-registered anatomical images, e.g., magnetic resonance (MR) images [4], [5]. 

The derived kernel expectation-maximization (KEM) algorithm [2] has been demonstrated 

to be effective and is easy to implement [2], [3], [4], [5], [10].

To further improve the kernel method such as for higher temporal resolution dynamic PET 

imaging or for low-dose PET imaging, a straightforward approach would be adding an 

explicit regularization form on the kernel coefficient image to stabilize the solution [2]. This 

can be achieved using either conventional penalty functions (e.g., [12], [13], [14], [15]) 

or convolutional neural network (CNN) based penalties (e.g., [16], [17]). However, such 

regularization-based methods generally require a complex optimization algorithm, involve 

one or more hard-to-tune hyper-parameters, and need to run for many iterations for a 

convergent solution.

In this paper, we propose an implicit regularization for the kernel method by using 

CNN to represent the kernel coefficient image in the kernelized model. The use of CNN 

representation shares the same spirit of the work of Gong et al. [18], [19], [20] and others 

[21], [22], [23] that employs deep image prior (DIP) [24] for PET image reconstruction. 

Differently the CNN representation in this work is applied in the kernel coefficient space 

instead of the original PET activity image space, resulting in a modified kernel method with 

deep coefficient prior.

One challenge with solving the corresponding optimization problem is that the neural 

network is involved in the projection domain, resulting in a large-scale, nonlinear 

reconstruction problem. The alternating direction method of multipliers (ADMM) is a 

popular optimization approach to solving this kind of problems, e.g., in [18] and [21]. 

However, the hyper parameters associated with an ADMM algorithm are challenging to 

tune in practice. In this work, we derive an easy-to-implement iterative algorithm by 

using the principle of optimization transfer [26], [27], [28] for the neural network-based 

reconstruction. We call the new algorithm neural KEM to differentiate it from the original 

KEM algorithm.

There are also other ways to explore deep learning for PET reconstruction [29], [30], [31], 

[32], [33], such as the direct end-to-end mapping of PET image from projection [34] and 

unrolled model-based deep-learning reconstruction [35], [36]. All these approaches require 
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pre-training using a large population-based database, which is not always available. Similar 

to the original kernel method [2] and the DIP method [18], the proposed method does not 

require population-based pre-training but is solely based on the data of single subjects.

The remaining of this paper is organized as follows. Section II introduces the background 

materials of the kernel method and DIP method for PET image reconstruction. Section III 

describes the proposed neural KEM method that combines the kernel method with deep 

coefficient prior. We then present 2D and 3D computer simulation studies in Sections IV 

and V and a real patient data study in Section VI to demonstrate the improvement of the 

proposed method over existing methods. Finally discussions and conclusions are drawn in 

Sections VII and VIII.

II. BACKGROUND

A. PET Image Reconstruction

PET projection measurement y = yi i = 1
N  can be well modeled as independent Poisson 

random variables using the log-likelihood function [1],

L y x =
i = 1

N
yi log yi − yi − logyi!, (1)

where the expectation of the projection data, y = yi i = 1
N , is related to the unknown activity 

image x = xj j = 1
J  through

y = Px + r, (2)

where xj denotes the PET image intensity value in pixel j. N is the total number of 

detector pairs and J is the number of image pixels. P is the detection probability matrix 

and includes normalization factors for scanner sensitivity, scan duration, deadtime correction 

and attenuation correction. r is the expectation of random and scattered events [1].

The maximum likelihood estimate of the activity image x is found by maximizing the 

Poisson log-likelihood,

x = arg max
x ≥ 0

L y x . (3)

A common way of seeking the solution of (3) is the maximum likelihood expectation 

maximization (ML-EM) algorithm [37].

B. Kernel EM for PET Reconstruction

The image estimate by standard ML-EM is commonly noisy due to the limited counting 

statistics of PET emission data. To suppress noise, the kernel method [2] incorporates an 

image prior into the forward projection of PET reconstruction by describing the image 

intensity xj using kernels,

Li et al. Page 3

IEEE Trans Med Imaging. Author manuscript; available in PMC 2023 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



xj =
l ∈ Nj

αlκ(fj, fl), (4)

where j defines the neighborhood of pixel j, e.g., by the k-nearest neighbors (kNN, [38]). 

κ(·, ·) is the kernel function (e.g., radial Gaussian) and f denotes the low-dimensional feature 

vector that is extracted at each pixel from the image prior z (e.g. the composite images in 

dynamic PET or anatomical image in PET/MR or PET/CT). The equivalent matrix-vector 

form of (4) is

x = Kα, (5)

where K is a sparse square kernel matrix with its (j, l)th element being κ(fj, fl). α denotes the 

corresponding kernel coefficient image.

Substituting the kernelized image model (5) into the standard PET forward projection 

model in (2) gives the following kernelized forward projection model for PET image 

reconstruction,

y = PKα + r . (6)

The maximium-likelihood estimate of α can be found by the kernel EM algorithm [2],

αn + 1 = αn

w · KTP T y
PKαn + r , (7)

where

w = KTP T1N, (8)

and 1N is a vector with all elements being 1. n denotes the iteration number and the 

superscript “T” denotes matrix transpose. The vector multiplication and division are 

element-wise operations. Note that the KEM update becomes the standard EM update if 

K is an identity matrix. Once α is estimated, the final reconstructed PET image is given by

x = Kα . (9)

Note that the same update equation (7) is also used by the sieves method [11]. The 

difference is that the sieves method uses a stationary Gaussian kernel [11], while the kernel 

method here uses data-driven spatially variant kernels that are derived from the image prior 

z.

The estimated kernel coefficient image α by the standard kernel method [2] may still suffer 

from noise, as demonstrated later in this paper. One possible way for improvement is to 

add an explicit penalty function to stabilize the estimation of α as indicated in the original 

kernel method [2], which however may result in a more challenging optimization problem 

and involves at least one more regularization parameter to tune.
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C. PET Reconstruction Using DIP

The DIP method for PET reconstruction is proposed in [18] based on the representation 

ability of CNNs. Instead of using the linear kernel representation in (6), the PET image x 
can be also described by a nonlinear representation using neural networks and the image 

prior data z,

x = β θ z , (10)

where β is a neural netwok model with z the input images and θ the network weights. After 

substituting the DIP model (10) into (2), the PET forward projection model becomes

y = Pβ θ z + r . (11)

The maximum-likelihood estimate of the unknown θ is obtained by

θ = arg max
θ

L y β θ z . (12)

Once θ is estimated, the PET activity image is calculated as

x = β θ z . (13)

To solve the resulting nonlinear optimization problem, Gong et al. [18] use the ADMM 

algorithm,

xn + 1 = arg max
x

L y x − ρ
2 x − β θn z + μ 2, (14)

θn + 1 = arg min
θ

β θ z − xn + 1 + μn 2, (15)

μn + 1 = μn + xn + 1 − β θn + 1 z , (16)

where the subproblem (14) is a penalized-likelihood image reconstruction problem and the 

subproblem (15) is an image-domain DIP learning using a mean-square error (MSE) loss 

function. ρ is a hyper-parameter. One well-known weakness of the ADMM algorithm is that 

ρ is usually difficult to tune.

III. PROPOSED NEURAL KEM

A. Kernel Method With Deep Coefficient Prior

In this work, we propose to describe the kernel coefficient image α in the kernel method as a 

function of neural networks,

α = β θ z , (17)
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where z and θ are again the input (e.g., the composite image prior in dynamic PET [2]) 

and weights of the neural network β, sharing the same spirit of the DIP model [18]. This 

provides a kernel representation with deep coefficient prior for PET image,

x = Kβ θ z . (18)

Fig. 1 shows a graphical illustration of the proposed model using neural network layers, of 

which the last layer is linear and has fixed network weights as determined by the kernel 

matrix K.

The proposed model (18) becomes the DIP model in [18] if the kernel matrix K is an 

identity matrix; the model is also equivalent to the standard kernel model [2] if the neural 

network β is an identity mapping. When a more complex neural network model (e.g., U-net) 

is used, the deep coefficient prior then introduces an implicit regularization to stabilize the 

estimation of the kernel coefficient image α.

By substituting the proposed image model in (18) into the standard PET forward projection 

model in (2), we obtain the following forward model for PET image reconstruction,

y = PKβ θ z + r . (19)

The unknown θ of the neural network is estimated from the projection data by maximizing 

the Poisson log-likelihood,

θ = arg max
θ

L y Kβ θ z . (20)

Once θ is estimated, the PET image is obtained by

x = Kβ θ z . (21)

B. Tomographic Reconstruction of Neural Networks Using Optimization Transfer

The optimization problem in (20) is challenging to solve because the unknown θ is non-

linearly involved in the projection domain. One possible solution is the ADMM algorithm 

as used in [18] but tuning the hyperparameter ρ is nontrivial in practice. Here we develop 

an easy-to-implement optimization transfer algorithm using a similar concept as used for 

nonlinear parametric PET image reconstruction of tracer kinetics [25], [26] and for joint 

image registration and reconstruction [27].

The basic idea of optimization transfer [28] is to construct a surrogate function Q(θ|θn) at 

iteration n, which minorizes the original objective function L(θ), as illustrated in Fig. 2. 

Following the concave property of the log function [28] (also see Eq. 9 in [26]) and treating 

PK as a single matrix A with its (i, j)th element being aij, we have the following inequality,
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log yi = log
j = 1

J
aijβj θ z + ri

≥
j = 1

J aijβj θn z
yi

n log βj θ z + ci
n,

(22)

where yi
n = Aβ θn z + r i. The iteration-dependent constant,

ci
n =

j = 1

J aijβj θn z
yi

n log yi
n

βj θn z + ri

yi
n log yi

n, (23)

is independent of the unknown parameter θ and is thus omitted hereafter.

Based on (22), an EM-type surrogate function Q(θ|θn) can be built for the original 

likelihood function L in a similar way as used in [26],

Q θ θn =
j = 1

J
wj αj

n + 1 log βj θ z − βj θ z , (24)

where wj corresponds to the jth pixel of w defined in (8). αn + 1 is an intermediate kernel 

coefficient image updated with

αn + 1 = αn

w · KTP T y
yn , (25)

which is one iteration of KEM defined by (7) with αn ≜ β θn z .

The surrogate Q(θ|θn) resembles an image-domain Poisson log-likelihood function (with a 

pixel-wise weight w). Using (22), it is straightforward to prove that the surrogate satisfies the 

following two conditions for optimization transfer [28],

Q θ θn − Q θn θn ≤ L y Kβ θ z − L y Kβ θn z , (26)

∇Q θn θn = ∇L y Kβ θn z , (27)

where ∇ denotes the gradient with respect to θ.

The original optimization problem in (20) is now equivalently transferred into the 

maximization of the surrogate function (24) at each iteration n,

θn + 1 = arg max
θ

Q θ θn , (28)

which performs an image-domain neural-network learning for seeking a β approximation 

to the intermediate kernel coefficient image αn + 1. The learning can be implemented using 

any existing optimization algorithm (e.g., the Adams optimizer) that is available in a deep-

learning software library such as PyTorch or TensorFlow. Because of Q(θn+1|θn) ≥ Q(θn|
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θn) and (26), the surrogate optimization guarantees convergence to a local optimum and a 

monotonic increase in the original likelihood L,

L y Kβ θn + 1 z ≥ L y Kβ θn z . (29)

C. Summary of the Algorithm and Implementations

A pseudo-code of the proposed algorithm is provided in Algorithm 1. Each iteration of the 

algorithm consists of two separate steps:

1. Image reconstruction: Obtain an intermediate kernel coefficient image update 

αn + 1 from the projection data y using KEM in (25);

2. Neural-network learning: Find a CNN approximation of the intermediate image 

αn + 1 using the image-domain maximum-likelihood optimization in (28).

We call this algorithm Neural KEM to reflect the fact that neural-network learning is used 

following the KEM update. Compared to ADMM, the Neural KEM algorithm does not need 

to tune a hyperparameter and is easier to use.

The proposed algorithm is applicable to different neural network architectures that are 

suitable for image representation. In our work, a popular residual U-net (e.g., used in [18]) is 

used for neural network learning and is illustrated in Fig. 3. The network is available in both 

2D and 3D versions for learning 2D and 3D images, respectively. It consists of the following 

operations: 1) 3 × 3 (×3) 2D (3D) convolutional layer, 2) 2D (3D) batch normalization (BN) 

layer, 3) leaky rectified linear unit (LReLU) layer, 4) 3 × 3 (×3) convolutional layer with 

stride 2 × 2 (×2) for down-sampling, 5) 2 × 2 (×2) bilinear (trilinear) interpolation layer for 

up-sampling, 6) identity mapping layer that adds feature maps from left-side encoder path 

to the right-side decoder path. In addition, a ReLU layer is used before the output in order 

to satisfy the non-negative constraint on the kernel coefficient image. The total number of 

model parameters in the 3D U-net is about 1.3 million.

Algorithm 1

Neural KEM for PET Reconstruction

1: Input parameters: Maximum iteration number MaxIt, initial θ1.

2: forn = 1 to MaxItdo

3:  Obtain an intermediate coefficient image update:

αn + 1 = αn

w · KTP T y
PKαn + r ,

with αn = β θn z
4:  Perform a neural network learning by maximizing:

Q θ θn ≜ j wj αj
n + 1 log βj θ z − βj θ z

5: end for

6: returnx = Kβ θ z
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IV. VALIDATION USING 2D COMPUTER SIMULATION

A. Simulation Setup

We conducted a two-dimensional (2D) computer simulation study to validate the proposed 

method in dynamic PET image reconstruction. Dynamic scans were simulated for a GE 

DST whole-body PET scanner using a Zubal head phantom shown in Fig. 4a. The phantom 

is composed of gray matter, white matter, blood pools (18mm in long axis) and a tumor 

(15 mm in diameter). The detector system consists of 280 detector blocks, arranged as 

four rings of 70 blocks each. The width of the block is 38.35mm. The scanner consists 

of 10,080 BGO crystals. A one-hour dynamic scan was divided into 24 time frames: 4 × 

20s, 4 × 40s, 4 × 60s, 4 × 180s, and 8 × 300s. The pixel size is 3 × 3 mm2 and the 

image size is 111×111. The time activity curve of 18F-FDG in each region is shown in Fig. 

4b. Dynamic activity images were first forward projected to generate noise-free sinograms. 

Poisson noise was then introduced. Scatters were simulated using the SimSET package 

[39] using the cylindrical scanner model with no block and gap effects included. We also 

included 20% uniform random events. Attenuation map, mean scatters and randoms were 

used in all reconstruction methods to obtain quantitative images. The expected total number 

of events over 60 min was 8 million. Ten noisy realizations were simulated and each was 

reconstructed independently for comparison.

B. Reconstruction Methods

We compared the proposed neural KEM with four different reconstruction methods: (1) 

standard ML-EM, (2) KEM [2], (3) DIP reconstruction by ADMM [18], and (4) DIP 

reconstruction by the optimization transfer (OT) algorithm, which is equivalent to the neural 

KEM with K = I.

In the kernel-based methods (regular KEM and neural KEM), three 20-minute composite 

frames were used to generate the image prior data z as used in [2]. The radial Gaussian 

kernel function κ fj, fl = exp − fj − fl
2/2σ2  was used. Pixel intensity values extracted from 

the composite images were used to form the feature vector f for generating the kernel matrix 

K using σ = 1 and kNN with k=48 which were the same as used in [2].

For the DIP reconstruction by ADMM [18], within each outer iteration, 4 iterations were 

used for solving (14) and 50 iterations were used for solving (15). These settings were 

empirically optimized for obtaining stable results according to image mean squared error 

(MSE; defined in next subsection) in our experiments. The effect of the ADMM hyper-

parameter ρ was also investigated and reported. ρ = 0.05 was chosen for nearly optimal 

image MSE.

The input of CNN in both the DIP methods and neural KEM was set to the composite image 

prior z. A ML-EM image was also tested but resulted in worse results. For implementation, 

the tomographic reconstruction step was implemented in MATLAB and the neural-network 

learning step was implemented in PyTorch, both on a PC with an Intel i9-9920X CPU 

with 64GB RAM and a NVIDIA GeForce RTX 2080Ti GPU. The Adam algorithm was 

used with a learning rate 10−3 for neural network learning. All reconstructions were run for 
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60 iterations with a uniform initial image. The subiteration number for the neural network 

learning step was empirically optimized to be 150 in both the DIP by OT and neural KEM 

method for image MSE. The effect of this subiteration number was also investigated.

C. Evaluation Metrics

Different methods were first compared using image MSE defined by

MSE xm = 10 log10 xm − xm
true 2/ xm

true 2 dB , (30)

where xm is an image estimate of frame m obtained with one of the reconstruction methods 

and xm
true denotes the ground truth image. The ensemble bias and standard deviation (SD) 

of the mean intensity in regions of interest (ROIs) were also calculated to evaluate ROI 

quantification,

Bias= 1
ctrue c − ctrue , SD= 1

ctrue
1

Nr − 1 i=1

Nr

ci − c , (31)

where ctrue is the noise-free intensity and c = 1
Nr i = 1

Nr
ci denotes the mean of Nr realizations. 

ci is the mean ROI uptake in the ith realization and Nr = 10 in this study.

D. Comparison for Reconstructed Image Quality

Fig. 5 shows the true activity images and reconstructed images at iteration 60 by five 

different reconstruction methods for frame 2 (early 20-s frame, low count level), frame 12 

(middle 1-min frame, moderate count level) and frame 24 (late 3-min frame, relatively high 

count level), respectively. The results of MSE in dB are included. As expected, kernel-based 

methods (regular KEM and neural KEM) achieved a better image quality with lower MSE 

as compared to the methods without kernel ((b), (d) and (e)). The DIP by ADMM [18] and 

DIP by OT both suppressed noise well but also led to over-smoothness. The proposed neural 

KEM was less noisy than the regular KEM due to the added level of regularization from the 

deep coefficient prior on α and demonstrated better detail preservation than the DIP methods 

due to the additional structural information embedded in the kernel matrix K.

Fig. 6(a) and Fig. 6(b) further show image MSE as a function of iteration number for 

the two different frames (frame 2 and frame 12). For the DIP reconstruction, the ADMM 

algorithm demonstrated a relatively faster convergence rate in early iterations than the KEM 

and DIP by OT. This is mainly because four sub-iterations were used for the tomographic 

reconstruction step in the ADMM algorithm while one sub-iteration was used for other 

algorithms. The DIP by OT was either comparable to (Fig. 6(b)) or better than (Fig. 6(a)) the 

DIP by ADMM. Note that here the DIP by ADMM and DIP by OT were not always close to 

each other. This can be explained by that the neural network model is nonlinear and different 

algorithms are not guaranteed to provide the same solution.

Fig. 6(c) shows the plots of image MSE for all time frames reconstructed by different 

methods with 60 iterations. Error bars were calculated over 10 noisy realizations. The 

DIP by ADMM showed a slightly unstable behavior across different frames. This is likely 
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because a single value of the hyperparameter ρ has varying efficacy for different time 

frames. The regular KEM was either equivalent to or slightly better than the DIP by OT. The 

proposed neural KEM further improved all the frames as compared to the regular KEM.

E. Comparison for ROI Quantification

Fig. 7 shows the trade-off between the bias and SD of different methods for ROI 

quantification in the blood and tumor regions. The two ROIs are the same as the anatomical 

regions marked in Fig. 4a. The curves were obtained by varying the iteration number from 

10 to 60 iterations with an interval of 10 iterations. As expected, the bias decreases as the 

iteration number increases in all the methods. For the blood ROI quantification, the DIP by 

OT was better than the DIP by ADMM because of the improved convergence and stability 

by OT in these three cases. For the tumor ROI quantification, the DIP by OT was either 

better than the DIP by ADMM in the low and medium cases (frame 2 and frame 12) or 

comparable in the high-count case (frame 24).

The proposed neural KEM achieved the lowest SD and bias simultaneously for frame 2 and 

frame 12 after 20 iterations, demonstrating its advantage for low- and medium-count frames. 

In the high-count case (frame 24), the traditional ML-EM achieved the lowest bias for small 

targets (i.e., the tumor and blood ROIs) due to a good recovery of the contrast at a high 

iteration number. The neural KEM was with a higher bias due to oversmoothness in this 

high-count case but it was still better than the regular KEM and DIP methods.

F. Effect of Method Parameters

To demonstrate the challenge for choosing a proper ADMM parameter ρ in the DIP method, 

Fig. 8(a) shows the iteration-based MSE result for a range of ρ values for frame 12. An 

inappropriate ρ resulted in instability and oscillations across iterations. ρ = 0.05 was a good 

choice for this frame but resulted in poor MSE for some of other frames, as shown in Fig. 

6(c). The OT algorithm avoids this difficult-to-tune parameter.

Similar to other methods that use neural network-based deep prior, the proposed neural 

KEM involves a sub-iteration number that needs to be determined for the neural-network 

learning step. Fig. 8(b) shows the effect of this sub-iteration number on the final image MSE 

for frame 2 (low-count), frame 12 (medium-count) and frame 24 (high-count). The result 

suggests a reasonable choice is 150 iterations, which also worked well for other frames. We 

also found that the CNN training is stable when the learning rate in the Adam optimizer 

ranges from 10−4 to 10−2.

V. VALIDATION USING 3D COMPUTER SIMULATION

A. Simulation Setup

We also performed a fully-3D computer simulation study using an XCAT heart phantom for 

a GE Discovery 690 PET scanner. This scanner has 13,824 LYSO crystals, arranged in 24 

ring detectors. The detection unit is composed of blocks consisting of 9 × 6 crystals, each 

containing a total of 64 blocks per ring. The sinogram size is 381 × 553 × 288 and the 

image size is 137 × 137 × 47. The voxel size was 4.0 × 4.0 × 3.3 mm3. A one-hour dynamic 
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18F-FDG scan was simulated using 49 time frames: 30 × 10s, 10 × 60s, and 9 × 300s. Here 

the framing scheme is adapted to capture the fast kinetics in the heart. The TACs of different 

regions were extracted from a real patient FDG PET scan to generate noise-free dynamic 

activity images. The images were then forward projected to generate noise-free sinograms. 

No time-of-flight information was simulated. To reduce time, SimSET-based simulation was 

not used for scatter simulation here. Instead, scattered and random events were simulated 

using a 40% uniform sinogram. Poisson noise was then generated with 1.25 billion expected 

events over 1 hour. Ten noisy realizations were simulated.

B. Reconstruction Methods

For the kernel methods, the kernel matrix K was built using four composite frames (one 

5-min frame, one 15-min frame and two 20-min frames). Here compared to the 3 composite 

frames used for the 2D simulation study, the first 20-min was divided into two shorter 

composite frames to better capture the early dynamic information for reconstructing the 

data of higher temporal resolution. The kNN search was performed in a 9×9×9 local region 

with k = 50 nearest neighbors to reduce the computation time. The 3D version of U-net 

was used in the neural network-based methods with the 4 composite images as the network 

input. Similar to the 2D simulation study, 150 iterations were used for the neural-network 

learning step within each outer iteration. The proposed neural KEM was compared with 

ML-EM, regular KEM and DIP by OT using the image MSE and ROI bias-SD metrics. All 

the methods were run for 60 iterations starting from a uniform initial image.

C. Evaluation Results

Fig. 9 shows the true 3D activity images and reconstructed images at iteration 60 by 

different reconstruction methods for frame 6 (early 10-s frame, low-count level) and frame 

49 (late 5-min frame, high-count level). The proposed neural KEM achieved the lowest 

image MSE for both frames.

Fig. 10(a) shows the plots of image MSE for all frames reconstructed by different 

methods with 60 iterations. The two kernel-based methods (regular KEM and neural KEM) 

demonstrated a substantial improvement as compared to the ML-EM and DIP methods. 

The neural KEM was further better than the regular KEM particularly for those low-count 

frames.

Fig. 10(b) and fig. 10(c) show the trade-off between the bias and SD of different methods for 

ROI quantification in an aorta ROI of 3077 voxels and a myocardium ROI of 3744 voxels, 

respectively. The result of this 3D simulation study here is consistent with that of the 2D 

simulation study. The DIP method demonstrated a poor ROI bias-SD performance for the 

myocardial ROI quantification even though the associated image MSE was better than the 

ML-EM. In comparison, the proposed neural KEM achieved the best trade-off among the 

different reconstruction methods.
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VI. APPLICATION TO REAL PATIENT DATA

A. Patient Data Acquisition

We have further applied the neural KEM to dynamic PET imaging for a real patient dataset. 

A cancer patient scan was performed on the GE Discovery 690 PET/CT scanner at the UC 

Davis Medical Center. The PET scan started right at the injection of 10 mCi 18F-FDG and 

lasted 60 minutes. As our simulation studies have indicated that the neural KEM mainly 

benefits low-count frames, here we focus on high-temporal resolution dynamic imaging. The 

one-hour data are divided into 97 time frames following the schedule 60 × 2s, 18 × 10s, 10 

× 60s, and 9 × 300s. A CT scan was acquired for attenuation correction. The projection data 

size was 381 × 553 × 288 and the image size was 192 × 192 × 47. All data corrections, 

including normalization, attenuation correction, scatter correction and random correction, 

were extracted using the vendor software and included in the reconstruction process. Similar 

to the 3D simulation study, four composite frames (one 5-min frame, one 15-min frame and 

two 20-min frames)) were used to build the kernel matrix for this high-temporal resolution 

reconstruction. Other algorithm settings were also the same as used for the 3D simulation 

study described in Section V.B.

For ROI analyses, three ROIs were manually drawn on the corresponding CT images in the 

descending aorta, the tumor, and the kidney cortex regions. The volume of the blood ROI, 

tumor ROI and kidney ROI is 9 cm3, 12 cm3, and 15 cm3, respectively.

B. Results of Reconstructed PET Images

Fig. 11 shows the comparison of different reconstructions for a late 5-minute frame (t = 

3300 − 3600s) and two early 2-s frames (t = 18 − 20s, t = 36 − 38s). Each reconstruction is 

shown in the transverse and coronal views.

For the 5-minute frame which has a relatively high count level, the ML-EM reconstruction 

had good contrast in the tumor region though still contained high noise in the normal liver 

parenchyma. The DIP by OT caused over-smoothness and demonstrated a distortion in the 

tumor as pointed by the arrow in Fig. 11(a). With a preserved tumor shape similar to that 

of the ML-EM, both the regular KEM and neural KEM suppressed noise well and provided 

similar results in this high-count reconstruction, though the latter may have a slightly higher 

risk of oversmoothing small targets or sharp edges for higher count data due to the additional 

regularization from the use of deep coefficient prior.

For the 2-s frames, the ML-EM reconstructions were extremely noisy. The DIP by OT 

significantly reduced noise but tended to over-smooth the images. In Fig. 11(b), KEM 

resulted in a discontinuous aorta while the proposed neural KEM showed a more natural 

shape. In Fig. 11(c), the neural KEM also showed a more continuous renal cortex, which 

may benefit parametric imaging as will be presented in the next subsection. To sum up, 

the proposed neural KEM not only suppressed the noise in the background regions but 

also preserved structural contrast and details, though it cannot exclude a potential risk of 

over-regularization similar to any other methods that includes a regularization. Here the 

neural KEM and DIP by OT showed different anatomical structures in these two low-count 

frames. While there is no ground truth and the ML-EM was too noisy to provide a reference, 
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the result from the high-count frame shown in Fig. 11(a) may imply the result by the neural 

KEM is more likely to be close to the truth of the low-count frames.

Fig. 12 further shows a quantitative comparison of different methods for ROI quantification 

in the blood ROI in frame 15 (where the uptake in the blood reaches its maximum), and in 

the tumor ROI and kidney ROI in the last frame (55-60 min). Here the ROI mean is plotted 

versus normalized background noise SD by varying the iteration number from 10 to 60. The 

proposed neural KEM achieved the best trade-off among all the other methods.

C. Demonstration for Parametric Imaging

Parametric imaging was also performed for the dynamic images of the same subject. 

Because different reconstruction methods mainly make a difference for early-time frames 

which have a low count level (Fig. 11), here we focused on parametric imaging of early-

dynamic data. A two-tissue compartment model with voxel-wise time delay estimation 

[41] was used to generate parametric images from the early-dynamic data. For each 

reconstruction method, the blood input function was derived from the descending aorta 

ROI.

Fig. 13 shows the parametric images of fractional blood volume vb and FDG delivery rate 

K1 generated from the early 120s data. The CT images are also shown for reference of 

anatomy. The ML-EM result suffered from heavy noise. The KEM result demonstrated a 

significant improvement but still suffered from noise-induced artifacts. The proposed neural 

KEM showed more complete and regular kidney cortex structures that seem consistent with 

the kidney anatomy and function [42]. The K1 by DIP was much lower in the kidney 

cortex region, which can be explained by the underestimation of the renal uptake in the 

DIP-reconstructed activity image as shown in Fig. 11(c) and Fig. 12(c).

VII. DISCUSSION

This work proposed an implicit regularization for improving the kernel method using 

deep coefficient prior and developed a neural KEM algorithm for neural-network based 

tomographic reconstruction. Because the loss function (24) used for the CNN learning is 

derived from the optimization transfer theory, the proposed neural KEM is thus guaranteed 

to monotonically increase the data likelihood. Compared to the ADMM used in most DIP 

reconstructions [18], [19], [21], [23], the optimization transfer algorithm does not introduce 

an additional hyperparameter. The results shown in Fig. 6 and Fig. 7 indicate a more stable 

performance of the optimization transfer algorithm than the ADMM.

Our studies showed mixed results for comparing DIP with the standard KEM, while DIP 

was reported superior over KEM in [18] for MRI-guided PET image reconstruction. This 

is likely due to the use of different sources of image prior (MRI vs composite images of 

dynamic PET) and the fact that dynamic PET consists of frames of a range of count levels. 

The KEM or DIP alone demonstrated an instability (too noisy or too smooth) for dynamic 

PET image reconstruction. By combining them together, the proposed neural KEM achieved 

a much better performance than each individual method.
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The neural KEM in this work focused on frame-by-frame image reconstruction in the 

spatial domain but can be potentially extended to more general cases. For example, a 

spatiotemporal kernel method [3] allows both spatial and temporal correlations to be 

encoded in the kernel matrix. The proposed neural KEM algorithm may be combined with 

the spatiotemporal kernel method to further improve the dynamic image reconstruction of 

high-temporal resolution data. In addition, the construction of a spatial kernel itself can 

also be modified by using a different kernel function, e.g., using a pre-defined wavelet 

representation [40] or a neural-network representation [43]. The kernel construction can be 

further trained using deep learning as demonstrated in our recent work [44]. It is worth 

noting that all these methods are aimed at improving K and are therefore complementary 

to the proposed neural KEM which improves α in (5). Our preliminary results from 

computer simulation (not shown) have suggested that the observed benefit of using the 

deep coefficient prior on α in this paper can be also transferred into those methods that use a 

modified or trained kernel. A detailed study will be reported in our future work.

Compared to the standard KEM, the neural KEM introduces a nonlinear step (i.e., the 

neural network learning step), which brings the image quality improvement but adds extra 

computational cost. For example, the standard KEM took 30 minutes while the neural KEM 

took 70 minutes for reconstructing one frame in the real data study. A potential way to 

reduce the computational burden is to accelerate the speed of the neural network learning 

step either by improving the learning algorithm or by using pretraining for a better initial.

In this study, we demonstrated the performance of the proposed algorithm on conventional 

PET scanners. The recent advent of total-body PET scanners (e.g., [45], [46], [47], [48], 

[49]) has made it even more feasible to pursue low-dose dynamic imaging and high-

temporal resolution dynamic imaging, especially for the entire body simultaneously. Our 

future work will also implement and evaluate the proposed neural KEM on total-body PET 

for parametric imaging.

VIII. CONCLUSION

In this paper, we have developed a neural KEM algorithm that combines the kernel method 

with deep coefficient prior. The algorithm is enabled by optimization transfer, leading to an 

easy-to-implement modularized implementation. Computer simulations and real patient data 

have demonstrated the improvement of the neural KEM over conventional KEM and DIP 

methods for dynamic PET imaging.
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Fig. 1. 
Graphical illustration of the kernel representation with deep coefficient prior.
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Fig. 2. 
Illustration of optimization transfer used in this work. The surrogate function Q(θ|θn) 

minorizes the original likelihood function L(θ). Q(θ|θn) is designed to be easier to optimize. 

The solution θn+1 guarantees a monotonic increase in L.
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Fig. 3. 
Illustration of the modified residual U-net β(θ|z) used in this work.
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Fig. 4. 
Digital phantom and time activity curves used in the simulation studies. (a) Zubal brain 

phantom; ‘B’ represents the blood ROI and ‘T’ is the tumor ROI. (b) Regional time activity 

curves.
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Fig. 5. 
True activity images and reconstructed images by different reconstruction methods for frame 

2 (top row), frame 12 (middle row) and frame 24 (bottom row). (a) True images, (b) 

ML-EM, (c) KEM [2], (d) DIP by ADMM [18], (e) DIP by OT, (f) Proposed neural KEM.
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Fig. 6. 
Plots of image MSE for different reconstruction methods. (a-b) image MSE as a function of 

iteration number for frame 2 (a) and frame 12 (b); (c) image MSE of all time frames. The 

error bars in (c) were obtained from 10 realizations.
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Fig. 7. 
Plots of bias-SD trade-off for ROI quantification in frame 2, 12 and 24 by varying the 

iteration number from 10 to 60 (i.e., from rightmost to leftmost on each curve). (a) Blood 

ROI quantification, (b) tumor ROI quantification. A zoom-in is included for frame 2 in (a).
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Fig. 8. 
Effect of (a) ADMM hyper-parameter ρ of the DIP method and (b) CNN learning 

subiterations of the neural KEM on the image MSE.
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Fig. 9. 
True activity images and reconstructed images by different methods in a 3D computer 

simulation study. A low-count case (frame 6, top row) and a high-count case (frame 49, 

bottom row) are shown. Each image is shown in transverse and coronal views.
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Fig. 10. 
Quantitative results from the 3D simulation study. (a) Plots of image MSE across all frames; 

(b-c) Plots of bias-SD trade-off for ROI quantification by varying the iteration number from 

10 to 60 (i.e., from rightmost to leftmost on each curve). (b) Aorta ROI in a low-count case 

(frame 6), (c) myocardium ROI in a high-count case (frame 49).
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Fig. 11. 
3D image reconstructions of (a) a late frame at t = 3300 – 3600s and two early HTR frames 

at (b) t = 18 – 20s and (c) t = 36 – 38s by different methods. Here different frames are 

displayed for visualizing different targets of interest, i.e. tumor in (a), aorta in (b), and 

kidney in (c). Each reconstruction is shown in the transverse and coronal views.
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Fig. 12. 
Plots of ROI mean of (a) the blood region, (b) tumor, and (c) kidney cortex versus liver 

background noise by varying iteration number from 10 to 60.
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Fig. 13. 
Parametric images of (a) vb and (b) K1 generated from the early-dynamic images 

reconstructed using ML-EM, KEM, DIP and the proposed neural KEM. Each image is 

shown in transverse and coronal views.
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