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Abstract

False-belief task have mainly been associated with the ex-
planatory notion of the theory of mind and the theory-theory.
However, it has often been pointed out that this kind of high-
level reasoning is computational and time expensive. Dur-
ing the last decades, the idea of embodied intelligence, i.e.
complex behavior caused by sensorimotor contingencies, has
emerged in both the fields of neuroscience, psychology and
artificial intelligence. Viewed from this perspective, the fail-
ing in a false-belief test can be the result of the impairment to
recognize and track others’ sensorimotor contingencies and af-
fordances. Thus, social cognition is explained in terms of low-
level signals instead of high-level reasoning. In this work, we
present a generative model for optimal action selection which
simultaneously can be employed to make predictions of others’
actions. As we base the decision making on a hidden state rep-
resentation of sensorimotor signals, this model is in line with
the ideas of embodied intelligence. We demonstrate how the
tracking of others’ hidden states can give rise to correct false-
belief inferences, while a lack thereof leads to failing. With
this work, we want to emphasize the importance of sensorimo-
tor contingencies in social cognition, which might be a key to
artificial, socially intelligent systems.

Keywords: social cognition, sensorimotor signals, affor-
dances, false-beliefs, theory of mind.

Introduction
Social cognition benefits highly from our ability to infer and
predict others’ percepts and future actions. Such inferences
have been postulated to occur on two levels; low-level senso-
rimotor contingencies (SMCs) and high-level goal and mental
state inferences. While the former phenomenon has been ex-
plained with help of the simulation theory (ST) and embod-
ied cognition, the later inferences are commonly addressed
with help of the theory-theory (TT) and accounts of the the-
ory of mind (ToM) (Dindo, Donnarumma, Chersi, & Pezzulo,
2015). While the simulation theory is supported by biologi-
cal concepts such as mirror neurons, the ToM is rooted in
psychological approaches to social cognition.

One cornerstone of the theory of mind are “false-belief
tests”, which, according to the TT approach, necessitate the
ability to track and infer others’ mental states, beliefs and in-
tentions. Since both young children and autistic children fail
false-belief tasks to a great extent, these tests are usually pre-
sented as a measure of advanced social intelligence. A re-
cent proposal, however, views false-belief tasks in the light
of SMCs, with an emphasis on social affordances and work-
ing memory (Brincker, 2014). Instead of tracking and infer-
ring others’ mental states, which is computationally expen-
sive, the memory of past affordances, individual and shared,

could be involved in false-belief inferences. As social SMCs
and affordances belong to low-level cognitive mechanisms,
the tracking of these signals comes at a lower cost than men-
talizing. While executive functions are of relevance for false-
belief tasks, see e.g. (Devine & Hughes, 2014), we want to
emphasize the importance of the understanding and incorpo-
ration of others’ SMCs into action prediction.

In this work, we investigate whether low-level social SMC
signals can give rise to false-belief inferences, a phenomenon
commonly believed to be caused by high-level cognitive rea-
soning. To this end, we develop a computational model that
demonstrates how the tracking of social affordances allows
for false-belief inferences. In order to include the temporal
evolution of social interaction and make use of the predictive
nature of cognition as proposed by the ST, we make use of
a Bayesian generative model which, based on hidden vari-
ables and prior knowledge, selects the optimal action towards
a given goal. While the presented model is generally appli-
cable and not confined to false-belief tasks, we demonstrate
its generative power with help of the well-known Sally-Anne
test.

False-Belief Tasks and the Theory of Mind
The Sally-Anne story goes as follows. Sally and Anne are
playing with a marble and two boxes, box A and B. Sally
puts the marble into box A and leaves the room. In her ab-
sence, Anne takes the marble from box A and puts it into box
B. Upon Sally’s return, the question is: Where will Sally look
for the marble? In a clinical or research setting, this story is
often either demonstrated with help of a pair of dolls or il-
lustrated with a comic stripe. Participants, asked where Sally
will look for the marble, can give two answers. When pass-
ing the false-belief test, they successfully infer that Sally can
by no means know that Anne moved the marble. Thus, they
infer that Sally carries the false-belief that the marble is still
in box A, as this is the location where she put it. Failing the
false-belief test on the other hand implies that this inference is
not accomplished. Instead, the actual current location of the
marble, box B, is pointed out to be the goal of Sally’s next
action.

In an early study, Baron-Cohen et al. (Baron-Cohen,
Leslie, & Frith, 1985) showed that healthy children and chil-
dren with Down syndrome are able to pass the Sally-Anne
test in 85-86 % in all cases, while autistic children pass only
in around 20 % of all trials. These and other findings have
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led to the belief that autistic children lack the ability to infer
others’ mental states and to develop, if at all, this trait later
than their peers. Furthermore, even healthy children pass ex-
plicit false-belief tests only from an age of two-five, which is
interpreted as a developmental account of a theory of mind
(Apperly, 2012).

In the view of the TT and ToM, mind reading is the ability
of humans to understand others’ beliefs, desires, intentions
and mental states by logically reasoning about their behav-
ior with help of mental theories of the human mind. In the
Sally-Anne story, Sally’s desire to obtain the marble is hin-
dered by her false-belief about the location of the object. The
interpretation of ToM with respect to the role of mental states
and beliefs differs within the research community (Apperly,
2012). This difficulty is only enhanced due to the fact that
different false-belief tasks test varying aspects of ToM and
subjects show diverging performances in different tests.

Hence, we claim here that TT can not fully account for
the experimental evidence of false-belief tasks. Instead, the
understanding of others’ SMC signals as well as executive
cognitive processes and low-level action constraints, such as
spatial and temporal conditions and goal-directedness, have
to be considered (Butterfill & Apperly, 2013).

Computational Approaches to False-Belief
Tasks

In order to gain more understanding of the underlying dy-
namics of ToM, computational models can help to iden-
tify the essential variables that give rise to correct predic-
tions. We will here focus on three models concerned with
explicit (Goodman et al., 2006) and implicit (Berthiaume,
Onishi, & Shultz, 2008) false-belief tasks and a Human-
Robot Interaction (HRI) setting (Ferreira, Milliez, Lefevre,
& Alami, 2015). While ToM has also been addressed with
help of inverse reasoning, e.g. inversion of Partially Observ-
able Markov Decision Processes (POMDP) (Baker, Saxe, &
Tenenbaum, 2011), these approaches have not been applied
to a false-belief setting.

A probabilistic account of ToM has been developed by
Goodman et al. (2006). With the help of Bayesian networks,
two models, the copy theorist (CT) and the perspective the-
orist (PT), are compared. Both of these models incorporate
variables representing the world state, beliefs and desires of
an actor, while only the perspective theorist has access to
a variable indicating visual access. Manually defined, dis-
crete probability distributions over mutual influences of these
variables allow for the derivation of a posterior distribution
over beliefs and desires given the observed events and ac-
tions. Additionally, the surprise about an observation can be
determined. As the CT is less complex, it is not able to repre-
sent a false-belief, resulting in a high level of surprise when
Sally is looking into the original box. The PT on the other
hand, predicts the false-belief correctly. Due to hand-picked
probability distributions and the additional information of vi-
sual access, the PT succeeds in the false-belief task. However,

the superimposed structure, simplicity of the model and lack
of temporal dynamics prohibit reliable conclusions about the
applicability of this model.

In contrast to the probabilistic viewpoint Berthiaume et al.
(2008) approached the implicit ToM, the idea that humans au-
tomatically and implicitly track others’ mental states, with a
neural network. To train networks with different numbers of
hidden unit layers, they presented the models with the state
and action data of an implicit Sally-Anne version. The train-
ing data was corrupted by adding incorrect samples. While
networks with no hidden units were not able to capture false-
beliefs, deeper networks could more reliably predict the be-
havior of the agents. Due to the nature of neural networks, the
performance increased with an increasing amount of training
samples. Furthermore, the results hint that the networks rep-
resented the statistics of the generated training data, with er-
ror rates matching the added noise. Although implicit knowl-
edge should be more intuitive than explicit, conscious rea-
soning, it is dubious that this ability does only depend on cor-
relations of observations. Instead, the internal motivation to
predict the actions of other agents and to engage in interaction
seems to be an important factor.

The examples introduced above function on the basis of
belief-desire inference on the one hand and correlations on
the other hand. As stated in the introduction, we propose
taking a sensorimotor approach towards false-belief infer-
ences. One recent example of this idea has been introduced
by Ferreira et al. (2015) in a HRI setting. Applying two in-
dependent POMDP for the robot and human action space re-
spectively, which use estimates of visual and reachable space
to determine hidden state information, this system is able
to interact with a human in a false-belief setting. By com-
paring manually designed and learned behavior, the authors
conclude that learning results in faster and more reliable pre-
dictions. Furthermore, a system that incorporates knowledge
about the humans belief space reacts faster towards misun-
derstandings. Nevertheless, the differences in performance
between belief incorporation and its absence are not signif-
icant. The advantages in conversation speed might be bal-
anced by the additional computational load during the learn-
ing period. Additionally, the focus lies on successful commu-
nication while predictive power and a deeper analysis of the
system are not presented.

A Sensorimotor Approach to Social Inference
The application oriented approach towards false-belief infer-
ence based on visibility and reachability by Ferreira et al.
(2015), points towards the explanatory power of sensorimo-
tor signals in a social context. Even Goodman et al. (2006)
and Berthiaume et al. (2008) conclude that visual access is an
important factor. Without this variable, both belief and desire
are not sufficient to account for false-belief inferences.

Thus, we propose that the theoretical considerations con-
cerning ToM in such simple false-belief tasks as the Sally-
Anne test need to be revised. Instead of high-level reasoning
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Figure 1: A simplified version of active inference: The agent
is connected to the world through sensorimotor channels. Ac-
tions are chosen to minimize the distance between approxi-
mated hidden state and goal state distributions. The hidden
states are thought to represent hidden causes of events in the
world.

about mental states we suggest that tracking of SMCs and
affordances over time is the primary factor for successful in-
ference.

Inspired by the ideas of predictive coding (Kilner, Friston,
& Frith, 2007) and active inference (Friston, Mattout, & Kil-
ner, 2011) in the context of social cognition, we propose a
generative model of optimal action selection which can also
be employed for optimal action prediction of a co-actor. Ac-
cording to active inference, the human mind is prone to min-
imize uncertainty about the world state and sees actions as
an inferential process to fit internal state distributions to goal
distributions. The coupling between an agent and the world
is accomplished through sensorimotor channels as shown in
Figure 1. Since both actions and hidden causes can give rise
to changes in the world, the hidden state distributions are ap-
proximating these hidden causes.

Assuming that interaction partners are equipped with a
similar probabilistic inference machine, others’ actions can
be predicted with help of prior knowledge about their social
SMC signals and hidden and goal states. Since the considera-
tion of other agents reduces uncertainty about future world
states significantly, these automatic mechanisms might ac-
count for many aspects of social cognition. Implicit tracking
of others’ sensory input and affordances is vital for both low-
level and high-level interaction. We propose that failing in
false-belief task is less caused by the lack of ToM than by the
inability to identify and memorize others’ social SMC histo-
ries. In this case, estimates of the hidden state distributions
of the co-actor are impaired and have to be approximated by
ones own internal distributions at the current time. As the
hidden state distributions differ in the context of false-belief
tasks, such an assumption leads to incorrect inferences. In
the following, we will introduce a generative model that can
imitate both of these behaviors.

The Model
Our generative model is based on a joint distribution over ob-
servations and hidden states. Actions based on the current
hidden state estimates will have an effect on the actual envi-
ronment. Optimal action selection is performed in two steps.
Firstly, the current observations are incorporated into the dis-
tribution over hidden states. Secondly, the optimal action,
which minimizes the distance between a given goal distribu-
tion and the updated hidden state distribution, is sought. The
found optimal action is then executed. In a Bayesian fash-
ion, prior beliefs can be incorporated into the hidden state
distribution and affect action selection in a top-down manner.
In a further step, this model can be used to predict the ac-
tions of an interaction partner by using the same mechanisms
but different distributions over hidden states. Thus, instead
of inferring beliefs and desires, action prediction is based on
approximations of hidden states that represent SMC signals.

Mathematical Notation To clarify the mathematical nota-
tion, let v ∈ Rn be a column vector of dimension n and vT

denote the transpose. Equivalently, let M ∈ Rn,m represent
a matrix with n rows and m columns. The dimensions of a
vector are indexed by vi for i ∈ [1, ..n], while a matrix entry is
indexed by mi, j for i ∈ [1, ..n] and j ∈ [1, ..m]. Furthermore,
let the index t ∈ [1, ..T ] indicate the time step ranging from 1
to T , such that vt is a vector at time t. The time index for a
single vector in a set of N vectors {vt}N is represented by vt,k
for k ∈ [1, ..N].

Our generative model consists of a discrete vector repre-
senting the actual world state w ∈ RNw . Due to the noise in-
herent in perceptual channels, let an observation o ∈ RNo be
a representation of the world state with added noise such that
for each dimension i we have

oi
t = wi

t + ε
i, ε

i ∼N (0,σi), (1)

where N (µ,σ) denotes the normal distribution with mean µ
and variance σ and σi is the variance belonging to the ith
dimension. Let the hidden states be represented by a set of Ns
normal distributions, denoted by {st}Ns , and each kth hidden
state consist of N f features such that

st,k ∼N (µk,Σk), (2)

with mean µk ∈ RN f and covariance matrix Σk ∈ RN f ,N f . Fi-
nally, an agent is equipped with a set of Na actions ak for
k ∈ [1, ..Na] that produce changes in the environment.

Integration of new observations In this discrete setting,
the joint probability distribution over hidden states and ob-
servations P(ot ,{st}Ns) at time t is defined as a mixture of
Gaussians

P(ot ,{st}Ns) = P(ot |{st}Ns)P({st}Ns) (3)

=
Ns

∑
k=1

P(ot |st,k)P(st,k). (4)
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Assume that the conditional distribution of the observation
given the hidden states is multinomial distributed. Let the
parameters of this distribution be a linear combination of the
observations with a weight vector ui ∈ RNo that depends on
the respective hidden state such that

P(ot |st,k) =
uT

k ot

∑
Ns
l=1 uT

l ot
. (5)

If the weight vectors have been determined, through learn-
ing or manual design, the update of the joint distribution
P(ot+1,{st+1}) is accomplished by inserting the new obser-
vation ot+1 into Eq. 3.

Optimal action selection Action selection is based on the
minimization of the distance between a given goal distribu-
tion Pgoal(o∗t+1) ∼ N (o∗t+1,σgoalI) and the joint probability
distribution P(ot+1,{st}Ns). Let this distance be defined as
the L2 vector norm of the distance between the mean vectors
of both distributions. Since this model is operating in a de-
fined action space, let us assume, that an action ak produces a
discrete, deterministic hidden state ŝt+1 = Q(st+1|{st}Ns ,ak),
where Q denotes a transition function. Then, Eq. 4 at time
t +1 turns into

P(ôt+1, ŝt+1) =
Ns

∑
k=1

P(ôt+1|ŝt+1)N (ŝt+1 : µk,Σk), (6)

where N (ŝt+1 : µk,Σk) denotes the kth Gaussian evaluated at
ŝt+1. Define p ∈ RNs to be a vector consisting of the eval-
uations of the Ns Gaussian distributions. Then, the approxi-
mated observation is given by

ôt+1 = U−T p, (7)

where the matrix U consists of the stacked weight vectors u.
The optimal action is therefore selected by determining which
resulting approximate observation minimizes the L2 vector
norm

a∗ = argmin
ak, k∈[1,..Na]

||(ôt+1|ak)−o∗t+1||22. (8)

When the optimal action is performed, it results in a change
of the environment as follows

ot+1 = P(ot+1|st+1)Q(st+1|{st}Ns ,a
∗). (9)

Action prediction Up to this point, the discussion was fo-
cused on the optimal action selection for a single agent. In a
joint setting, the same mechanism can be used to predict the
action of a co-actor. If the observing agent memorizes not
only its own past hidden state distributions, but also those of
its partner, the observer can use its internal models to make
inferences based on this information. As we assume the hid-
den states to represent SMC signals and affordances, many
of the hidden states are either identical or complementary,
such that the tracking of the additional states is computation-
ally cheap. Thus, we assume that any agent keeps a mem-
ory over its own hidden states up to the current time T , i.e.

Figure 2: The Sally-Anne story enacted by our generative
model. For the purpose of visualization, the noise has been re-
moved. Dark squares indicate a value of 1 and white squares
a value of 0. In the upper row, the dynamics of the story in
the world state are depicted, while the lower row shows the
hidden states of both agents in the view of Anne. Since Sally
is gone for several time steps, her hidden states are unknown
to Anne.

{s1:T}own, and an approximation of its partners hidden states,
i.e. {ŝ1:T}other. This approximation is based on the infor-
mation made available by the observations and prior assump-
tions. Since the perceptual channels of the observed agent
are inaccessible, the input can only be estimated. But as both
agents share the same environment, these estimations can be
made under low uncertainty.

Experiment
The main goal of this work is to demonstrate that low-level
sensorimotor signals can account for inferences in a false-
belief task which are usually explained by high-level reason-
ing based on ToM. As the generative model presented above
allows predictions of others’ actions based on approximations
of hidden states which represent these low-level signals, we
can apply it to the Sally-Anne test. Following the idea of past
affordance tracking, suggested by Brincker (2014), we aim to
show that both passing and failing this false-belief task can
be accounted for by prior assumptions about others’ past af-
fordances. In this scenario, we need to incorporate the two
agents Sally and Anne, the objects box A, box B and marble
and finally the room itself.

World Representation In order to test our generative
model in a false-belief setting, we need to specify the vari-
ables world state and hidden state and the transition function
describing effects of applied actions. While the former two
variables are defined to be binary, with feature 0 = false and
1 = true, the later represents changes in the hidden states and
world state.

Let the world state be defined as a vector with Nw = 6,
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representing the features marble in box A, marble in box B,
marble held by Sally, marble held by Anne, Sally present and
Anne present.

Furthermore, let each hidden state consist of N f = 9 fea-
tures, box A is clearable, box A is fillable, box B is clearable,
box B is fillable, marble is takeable, marble is puttable, room
is leavable, agent X is holding and agent X is present.

Finally, let the Na = 4 actions be defined as agent X
takes marble from box Y, agent X puts marble into box Y,
agent X leaves room and agent X enters room, where X
∈ {Sally, Anne} and Y ∈ {A, B}.

We defined the parameters of the Gaussian distribution in
the mixture model and the mapping parameters of the multi-
nomial distribution and the transition function manually. In
a more application oriented setting, these parameters could
also be learned either with help of learning by demonstration
or self-learning.

Sally-Anne test As our generative model is generally ap-
plicable, we were able to let the model itself enact the Sally-
Anne story instead of predefining the variables manually. By
defining the goal observations at each time point t according
to the Sally-Anne story, the model determined the optimal
action and updated the distributions in accordance with the
mechanisms described above. This procedure was iteratively
performed up to the point, where Sally returns to the scene.
Fig. 2 illustrates the Sally-Anne story in this format.

What will Sally do next?

Upon Sally’s return, we ask the question “What will Sally
do next?”. In order to answer this question, we made use
of Anne’s inferential model since this agent has knowledge
about the current situation and Sally’s past hidden states.
Given that Sally has been absent, her hidden state represen-
tation at time t, i.e. {ŝt}Sally is unknown to Anne. However,
with the aim to predict her next action given that she wants to
hold the marble, the hidden states need to be approximated.
Anne has two alternatives. Either she replaces the missing

Figure 3: Predictions of the box that Sally would select based
on Anne’s generative model. To the left, the mapping ap-
proach demonstrates that the inference of a false-belief fails,
while the tracking approach to the right correctly predicts the
box into which Sally had put the marble before leaving.

information with her own representation at time t

{ŝt}Sally = {st}Anne (10)

or she recalls Sally’s representation at time τ < t when Sally
was last present in the room, i.e.
τ = max

t ′
(t ′ ∈ [1, ...t] : {ŝ9

t ′}
Sally == 1|t ′ < t),

{ŝt}Sally = {ŝτ}Sally. (11)

While this approach is similar to the copy theorist (Eq.
10) and the perspective theorist (Eq. 11) as introduced by
Goodman et al. (2006), notice that our approach is not based
on the notion of beliefs and desires. Furthermore, we intro-
duce temporal dynamics which make a fluent interaction pos-
sible, while Goodman et al. (2006) work in a static environ-
ment with predefined variables and distributions. Since our
idea is not following the TT approach but the ideas of ST, our
agents can not be viewed as theorists. Therefore, we denote
the approach of Eq. 10 as mapping and the past affordance
incorporation in Eq. 11 as tracking.

Results
For the sake of reliability, we performed N = 1000 trials of
the Sally-Anne test. Due to the induced noise in the mapping
from world state to observation and the variance of the Gaus-
sian distributions representing the hidden states, the model
did occasionally fail to complete the Sally-Anne story up to
the point where Sally returns, i.e. it selected incorrect actions.
These trials were omitted and replaced by a newly generated,
successful trial. The average of the predicted location where
Sally will look for the marble is depicted in Fig. 3 for both
the mapping and the tracking approach. While the mapping
approach incorrectly predicted that Sally would look at the
actual location in 89 % of all trials, the tracking approach
correctly inferred Sally’s behavior in 91 % of all trials. These
results match closely those found in e.g. healthy (tracking)
and autistic (mapping) children as reported in Baron-Cohen
et al. (1985).

Discussion
In this work, we presented a generative model based on social
SMCs which can be employed for both optimal action selec-
tion and prediction. Instead of mental state, belief and desire
inferences, we hypothesize that SMCs can account for com-
plex social behavior such as the recognition of a false-belief.
In this context, the tracking of others’ past affordances gives
rise to successful inferences, while a failure of these basic
sensorimotor functions results in incorrect predictions.

Why would the inference and tracking of others’ SMCs be
of advantage compared to belief and desire inferences? First
of all, the two approaches have not to be seen as contradictory
but as complementary. While the social SMC approach might
be involved to a great extent in social behavior, high-level rea-
soning is also a non-negligible part of interaction. Instead, we
argue for a shift from pure ToM reasoning towards the inte-
gration of essential, sensorimotor functions. As shown in this
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work, social SMC signals can account for complex interac-
tion scenarios, while a lack or impairment of these functions
leads to the impoverished social capabilities found in infants
and autistic children. A focus on the entanglement between
low- and high-level cognition in a social context might reveal
important information for medical and therapeutic research.

One could argue that the memory of the world state alone
would result in the same predictions. Instead of inferring an
affordance space, the mere knowledge where the marble had
been when Sally was present could suffice. It is important
to keep in mind, that the world and agent are two separate
entities, coupled through sensorimotor channels. Thus, the
agent has no direct access to the location of the marble but
only to the hidden state representation of hidden causes in
the environment. Without the inference of the co-actor’s rep-
resentation, successful prediction is impaired since the rep-
resentations of observer and observed are entwined but not
identical.

How can such representations of others be acquired? Sim-
ilar to other computational approaches towards false-belief
tests, such as Berthiaume et al. (2008) and Goodman et al.
(2006), we defined many parameters manually. However,
with a sufficient amount of training data, the model could be
learned in an adaptive fashion and be generally applicable in
dynamic interaction scenarios. As two agents share a consid-
erable amount of the hidden state space, shared latent variable
models are one method that could be applied to this method.
While Ferreira et al. (2015) implemented a dynamic, socially
interactive system, they did not account for this redundancy in
the data. A putative future extension of the presented model
is therefore an actively learning system which detects shared
and individual latent manifolds in the action space that effec-
tively encode action possibilities. Such an approach is both
data efficient and reduces the complexity of high-dimensional
interaction spaces. Models based on social SMCs can then be
employed in interactive agents that are able to master com-
plex scenarios as e.g. a false-belief setting.

Conclusions
The Theory of Mind has a long tradition to account for com-
plex, social behavior. Mental state inferences and the rea-
soning about beliefs and desires are viewed as a mile stone in
mental development. Advances of the idea of embodied intel-
ligence however have started to give a complementary expla-
nation of social phenomena. In this work, we demonstrated
how the tracking of others’ SMCs and affordances can be in-
volved in certain false-belief inferences. This low-level ap-
proach to high-level cognition can clear the way for artificial
agents in which social intelligence emerges naturally through
the coupling between action and perception. Furthermore, a
deeper insight in the underlying dynamics of social interac-
tion results in valuable information for medical and psycho-
logical research and applications. In conclusion, sensorimo-
tor signals are vital for social interaction. Their incorpora-
tion into theoretical frameworks of social intelligence is an

important step towards an embodied understanding of social
communication.
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