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Abstract

The distance and redshift of a type Ia supernova can be determined simultaneously
through its multi-band light curves. This fact may be used for imaging surveys
that discover and obtain photometry for large numbers of supernovae; so many
that it would be difficult to obtain a spectroscopic redshift for each. Using avail-
able supernova-analysis tools we find that there are several conditions in which a
viable distance–redshift can be determined. Uncertainties in the effective distance
at z ∼ 0.3 are dominated by redshift uncertainties coupled with the steepness of
the Hubble law. By z ∼ 0.5 the Hubble law flattens out and distance-modulus un-
certainties dominate. Observations that give S/N = 50 at peak brightness and a
four-day observer cadence in each of griz-bands are necessary to match the intrinsic
supernova magnitude dispersion out to z = 1.0. Lower S/N can be tolerated with
the addition of redshift priors (e.g. from a host-galaxy photometric redshift), ob-
servations in an additional redder band, or by focusing on supernova redshifts that
have particular leverage for this measurement. More stringent S/N requirements
are anticipated as improved systematics control over intrinsic color, metallicity, and
dust is attempted to be drawn from light curves.

Key words: cosmology:distance scale, supernovae:general

1 Introduction

Proposed wide-field imaging surveys will be able to discover and build light
curves of thousands to hundreds of thousands of high-redshift type Ia super-
novae (SNe Ia). SNe Ia are established as excellent distance indicators having
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been used for both for the measurement of the Hubble Constant [1] and for
the discovery of the accelerated expansion of the Universe [2,3]. There is thus
interest in exploring how supernovae in new surveys can be used to improve
the measurement of the expansion history of the Universe and provide further
insight into the physical cause of its acceleration.

Although planned facilities and surveys provide straightforward harvesting of
light curves for large numbers of supernovae, the corresponding spectroscopic
observations used for redshift determination, supernova typing, and diagnos-
tics are expensive. It is unclear whether there will be available spectroscopic
resources commensurate to the production of the imaging. In addition, those
surveys that target spectroscopy for a specific redshift range will still accumu-
late supernova light curves at other redshifts [4]. There is therefore interest in
the possibility of performing supernova cosmology analysis with photometric
data only. In this scenario, light curves not only fill their traditional role in
measuring distances but are also responsible for supernova typing and redshift
determination.

In this paper, we explore the feasibility of using survey photometry to simulta-
neously estimate distance and redshift using fits to a light-curve template. We
do not incorporate typing and assume that the supernova is already known
to be type Ia. We use an effective distance-modulus uncertainty as the met-
ric of interest. Barris and Tonry [5] describe an alternative approach to the
same problem using Bayesian statistics and marginalizing over redshift, ob-
taining distance precisions close to the intrinsic corrected SN Ia magnitude
dispersion. Other papers have considered other combinations of information
derivable from photometric data only: Johnson and Crotts [6] and Kuznetsova
and Connolly [7] for photometric supernova typing; Sullivan et al. [8] for si-
multaneous typing and redshift determination with early light curves; and
Wang [9] for supernova photometric redshifts. The effect of supernova redshift
uncertainties on the determination of dark-energy parameters is examined in
Huterer et al. [10].

This paper is organized as follows: §2 describes our approach towards estimat-
ing distance modulus and redshift uncertainties for photometric survey data
through light curve fitting. In §3 we specify the properties of the six surveys
that we consider: all share a four-day cadence but have differing depths that
correspond to obtaining a signal-to-noise (S/N) of either 25 or 50 for a fiducial
z = 0.325, 0.731, or 1.11 supernova at peak brightness in each band. Interest-
ing features of our results are discussed in §4 and conclusions are presented in
§5.
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2 Approach

Our objective is to determine how well the distance and redshift of a single
supernova can be determined from a set of photometric data. We use a param-
eterized description of the time-evolving spectral energy distributions (SEDs)
for SNe Ia incident to the observer. An individual supernova is characterized
by the date of explosion and redshift in addition to the parameters of the SED
model. The survey is described by the observing cadence, photometric noise,
and bands of observation. Model-parameter uncertainties from light-curve fit-
ting are estimated using the Fisher information matrix. These parameters are
in turn propagated into a covariance matrix for the distance modulus and
redshift. The covariance matrix is distilled into an effective distance modulus
uncertainty to aid in the interpretation of the results. The Fisher analysis
provides a firm lower limit on the errors one can obtain: this limit is an ex-
cellent estimate of errors when the data uncertainties are small and Gaussian
distributed.

SALT2 [11] provides an empirical model for the time evolving SED of SNe Ia.
The model is constructed from a training set of spectroscopic and photometric
measurements of both low- and high-redshift supernovae. SALT2 models the
SED as a function of phase p and wavelength λ by

Nlnλ(p, λ; x0, x1, c) = x0 × [M0(p, λ) + x1M1(p, λ)] × ecCL(λ) (1)

where the model parameters x0, x1, and c correspond (approximately) to the
peak luminosity, light-curve shape, and observed color. The color parameteri-
zation simultaneously accounts for intrinsic supernova color variation and fore-
ground dust extinction. The functions M0, M1, and CL are constructed accord-
ing to the training set. The model covers supernova phases from [−20, +50]
days and the wavelength range [2000, 9200] Å. We work with photon rather
than energy fluxes since they, combined with transmission functions, describe
counter detectors and observer magnitude systems [12]. The use of densities
in ln λ rather than λ simplifies the description of redshifted spectra.

The residual dispersion of the training set data from the model gives a quan-
titative estimate of how well SALT2 represents supernovae. SALT2 treats the
dispersion of the template light curves of an average x1=0, c = 0 supernova
as

σdisp(N(p, λ)) = N(p, λ)
√

V 0(p, λ)DS(p, λ) (2)

where λ is the effective wavelength of the band in the SN-frame and the
functions for variance, V 0, and dispersion scaling, DS, are provided with the
software distribution 1 . Correlations between the residuals within a light curve,

1 http://supernovae.in2p3.fr/∼guy/salt/index.html
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though non-zero, are not quantified. Dispersion in colors are given [11] by a
wavelength-dependent, phase-independent magnitude dispersion

σcol(λ) =



















0.022
(

λ−λB

λU−λB

)3
if λ < λB,

0.018
(

λ−λV

λR−λV

)2
if λ > λV ,

0 if λB ≤ λ ≤ λV .

(3)

The survey data are described by the band of observation and photometric
uncertainty. Each supernova is observed with an undisrupted cadence in all
bands. Observations are tuned to provide a fixed signal-to-noise at peak bright-
ness in each band for an average x1 = 0, c = 0 supernova, and assume a sky
dominated background for calculating the noise off-peak. This noise model
approximately describes data from a ground-based rolling supernova search
(e.g. Astier et al. [13]).

The supernova light curves are modeled using the SALT2 SED model with
the addition of parameters for the date of explosion t0 and redshift z

f(t, X;p) =
∫

TX(λ)Nlnλ

(

t

1 + z
− t0,

λ

1 + z
; x0, x1, c

)

d ln λ (4)

where TX is the transmission of band X. The complete parameter set for the
light-curve model is p = {t0, z, x0, x1, c}.

Parameter uncertainties from light-curve fitting are determined through the
Fisher information matrix F [14]. Every data point in all useful bands are
included in the calculation. Note that for the surveys we consider, photometric
noise is independent of the light-curve parameters. Any independent redshift
prior uncertainties are added to the Fzz element. The covariance matrix of the
parameters is the inverse of the Fisher matrix F−1.

In SALT2, light-curve parameters are used to calculate the distance modulus
through the relation

µ = −2.5 log(x0) + αx × x1 − β × c + const (5)

with α = 0.13 and β = 1.77. The covariance matrix U of the parameters
η = {µ, z} is given by

Uij =
∑

k,l

∂ηi

∂pk

∂ηj

∂pl

(F−1)kl. (6)

Cosmological parameter fitting can proceed with the likelihood function de-
pendent on the µ−z covariance matrix for each supernova. However, to avoid
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analysis of this non-Gaussian likelihood and provide intuitive insight, we con-
sider the limiting case where redshift uncertainties are small. Taylor expanding
the theoretical prediction of the distance modulus µγ around the observed red-
shift, the probability distribution function to first order is Gaussian with a χ2

for the one parameter µ with an effective variance

(σµ,eff )
2 = Uµµ +

(

dµγ

dz

)2

Uzz + 2
dµγ

dz
Uµz . (7)

(See §A for a sketch of the derivation.) In this fashion, uncertainties in z
and their correlation with µ are incorporated into an effective uncertainty
in distance modulus. We use the distance modulus for a photon-counting
magnitude system that is related to the standard distance modulus by µγ =
µ−2.5 log (1 + z). As dµγ(z)/dz > 0 for most all cosmologies of interest, posi-
tive correlations in µ and z increase the effective distance modulus uncertainty.

3 SN Model and Survey Specification and Results

We adopt a baseline description of SALT2 and the supernova survey. The
covariance matrix of the SALT2 templates between points i and j (with phases
pi and pj observed in bands Xi and Xj) is based on the residuals given by
Equations 2 and 3:

Vij =







σi,dispσj,dispsinc
(

π
pj−pi

5 days

)

+ σi,colσj,col if Xi = Xj,

0 if Xi 6= Xj.
(8)

We have modeled the day-to-day correlations in the residuals with the sinc(x) =
sin x/x function with a time scale of 5 days; this keeps the intrinsic light curves
smooth and provides both positive and negative correlations. Residuals in dif-
ferent bands are uncorrelated. Operationally, this covariance matrix of the
model dispersion is added to that of the photometric data.

We consider only data at supernova phases covered by the SALT2 model;
observations around peak brightness provide most of the leverage in light-
curve fits with our sky-limited background.

Observations are modeled as being made in the Megacam griz-bands of the
Canada-France-Hawaii Telescope with the transmissions provided with the
SALT2 software distribution.

As SALT2 is not well trained at wavelengths smaller than the U -band and as
SNe Ia have little emission at these low wavelengths, we do not use observa-
tions in this regime. This naturally defines three specific redshifts to consider,
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Table 1
Supernova-frame effective wavelengths in microns for observer griz-bands. The three
redshifts in the table correspond, respectively, to matches of observer gri to the
restframe U .

redshift g r i z

0.325 0.36 0.47 0.58 0.69

0.731 0.28 0.36 0.44 0.53

1.118 0.23 0.29 0.36 0.43

Table 2
µ–z covariance and effective µ uncertainties: Peak S/N = 25, four-day cadence

σprior(z) = none σprior(z) = 0.01 σprior(z) = 10−3

zSN U σµ,eff U σµ,eff U σµ,eff

0.32

(

0.0021 3.8E − 4

3.8E − 4 2.5E − 4

)

0.14

(

0.0017 1.1E − 4

1.1E − 4 7.1E − 5

)

0.082

(

0.0015 1.6E − 6

1.6E − 6 1.0E − 6

)

0.040

0.731

(

0.0023 2.0E − 4

2.0E − 4 8.5E − 5

)

0.065

(

0.0021 1.1E − 4

1.1E − 4 4.6E − 5

)

0.056

(

0.0018 2.3E − 6

2.3E − 6 9.9E − 7

)

0.043

1.118

(

0.10 0.012

0.012 0.0016

)

0.39

(

0.017 7.0E − 4

7.0E − 4 9.4E − 5

)

0.14

(

0.012 7.5E − 6

7.5E − 6 1.0E − 6

)

0.11

z = {0.325, 0.731, 1.118}, where the effective wavelengths of the gri-bands in
turn match that of the SN-frame U . The SN-frame wavelengths that corre-
spond to each observer band are given in Table 1. The number of data points
for each supernova is 70 days

cadence
(1 + z)Nbands. At z = 0.325 there are a total 92

data points in griz-bands used in the analysis. At z = 0.731 there are 90
points in riz-bands and at z = 1.118 74 points in iz-bands. When the z-band
observes the SN U , there is no second band for a color measurement and the
fit is not constrained.

The partial derivatives of the data model of Equation 4 with respect to its
parameters are shown for the three redshifts in Figures 1, 2, and 3.

We consider surveys designed to provide signal-to-noise of either 25 or 50 for
a single visit at the peak brightness of each band for an average x1 = 0,
c = 0 supernovae at these specific redshifts. Each band is observed with a
four-day observing cadence. To simulate the range of possible spectroscopic or
host-galaxy photometric redshifts, we include redshift priors with precisions of
10−3, 0.01, as well as the case of no prior; we expect that supernova photomet-
ric redshifts will easily exclude the extreme non-Gaussian tails from galactic
photometric redshifts. We use a flat Λ universe with ΩM = 0.3 to get dµγ/dz
(used in Equation 7) of 6.9, 3.1, and 1.9 for the three redshifts. The resulting
µ–z covariance matrices and effective µ uncertainties are given in Table 2 for
S/N = 25 and Table 3 for S/N = 50. Although the results are grouped ac-
cording to the S/N at peak brightness, the surveys that generate these data
are different for each redshift: the survey that corresponds to the high-redshift
supernova is deep and obtains higher S/N for supernovae at lower redshift.
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Fig. 1. ∂f/∂p for the photometric data of a supernova at z = 0.325. The indices of
the photometric data points are ordered by the band and by the epoch of observation
within each band. There are 92 photometric points taken in each band, so the n’th
observation in the α’th band has index 92α + n where α = 0 for the g, α = 1 for
r, α = 2 for i, and α = 3 for the z bands. The units and normalization of f are set
by the SALT2 x0 = 1 template in MKS units via Equations 1 and 4. The location
of each point with respect to the light curve is identifiable through the middle plot
∂f/∂x0.

Table 3
µ–z covariance and effective µ uncertainties: Peak S/N = 50, four-day cadence

σprior(z) = none σprior(z) = 0.01 σprior(z) = 10−3

zSN U σµ,eff U σµ,eff U σµ,eff

0.325

(

0.0011 1.9E − 4

1.9E − 4 1.2E − 4

)

0.097

(

9.3E − 4 8.9E − 5

8.9E − 5 5.4E − 5

)

0.069

(

7.9E − 4 1.6E − 6

1.6E − 6 9.9E − 7

)

0.029

0.731

(

0.0010 7.3E − 5

7.3E − 5 4.4E − 5

)

0.043

(

0.0010 5.0E − 5

5.0E − 5 3.0E − 5

)

0.040

(

9.3E − 4 1.6E − 6

1.6E − 6 9.8E − 7

)

0.031

1.118

(

0.044 0.0048

0.0048 6.4E − 4

)

0.25

(

0.013 6.5E − 4

6.5E − 4 8.6E − 5

)

0.12

(

0.0079 7.5E − 6

7.5E − 6 1.0E − 6

)

0.089

There is no guarantee that SNe Ia can be better standardized than currently
done by SALT2. However, the optimist may imagine that with enough data
and refinement, the SALT2 model could eventually perfectly describe super-
novae in at all wavelengths. Table 4 shows the improved results when no model
dispersion (i.e. no contribution from Equation 8) is included in the error bud-
get.
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Fig. 2. The same as in Figure 1 for the 90 data points of a supernova at z = 0.731.
The data correspond, from left to right, to observations in riz-bands.

Table 4
µ–z covariance and effective µ uncertainties: Peak S/N = 25, four-day cadence, no
model residuals

σprior(z) = none σprior(z) = 0.01 σprior(z) = 10−3

zSN U σµ,eff U σµ,eff U σµ,eff

0.325

(

6.7E − 4 1.4E − 4

1.4E − 4 1.4E − 4

)

0.097

(

5.9E − 4 5.9E − 5

5.9E − 5 5.9E − 5

)

0.065

(

5.3E − 4 9.9E − 7

9.9E − 7 9.9E − 7

)

0.024

0.731

(

0.0016 1.6E − 4

1.6E − 4 5.1E − 5

)

0.055

(

0.0014 1.1E − 4

1.1E − 4 3.4E − 5

)

0.049

(

0.0011 3.1E − 6

3.1E − 6 9.8E − 7

)

0.033

1.11

(

0.068 0.0085

0.0085 0.0011

)

0.32

(

0.0100 6.9E − 4

6.9E − 4 9.2E − 5

)

0.11

(

0.0049 7.5E − 6

7.5E − 6 1.0E − 6

)

0.070

All results presented in this paper are calculated for the case where observa-
tions are phased to begin on the date of explosion. In the case of S/N = 25
and no redshift priors, results vary by < 1% depending on the phase of obser-
vations with respect to the underlying light curve.

4 Discussion

There are several interesting features of our results that we discuss here in
further detail.
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Fig. 3. The same as in Figure 1 for the 74 data points of a supernova at z = 1.118.
The data correspond, from left to right, to observations in iz-bands.

Distance modulus and redshift measurements have significant positive cor-
relation when there are no or weak redshift priors. The correlation is dom-
inated by the contribution of α × (F−1)x1z. The positive (F−1)x1z is due to
the supernova-frame U -band, where a strongly negative ∂f/∂z arises from the
band coverage over the transition between the UV-flux dropout to the bright
B emission ubiquitous to SNe Ia. On the other hand, SALT2 predicts brighter
UV flux for larger x1. The coverage over Ca H&K wavelengths is therefore
important for distinguishing supernova redshift and light-curve shape.

The effective distance modulus uncertainty is more sensitive to redshift uncer-
tainties at low redshift. For example, in the case of no redshift prior, z = 0.325
and S/N = 25, the large value of (dµγ/dz)2 makes it such that σµ,eff comes

almost entirely from the
(

dµγ

dz

)2
Uzz term. The approximation derived in §A to

get Equation 7 breaks down as σzdµγ/dz gets close to or larger than σµ, which
is certainly the case at low redshifts. By z = 0.731 the effective distance un-
certainty is dominated by the Uµµ contribution and our approximation holds.
The dµγ/dz term does give the effective distance modulus uncertainty a de-
pendence on the cosmological parameters. A fit could proceed using the full
µ–z covariance matrix, or iteratively with the values of the cosmological pa-
rameters updated using the fit from the preceding iteration.
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Without redshift priors, the redshift uncertainties derived from supernova light
curves range from 0.011–0.025 for the case of S/N = 25. Significant improve-
ment in the cosmological utility of each supernova is possible with a compa-
rable or better redshift prior. This is illustrated by the case of z = 1.118 in
Table 2. Without priors, the uncertainty in redshift is 0.025. When the redshift
is constrained by a prior with 0.01 uncertainty, the resulting uncertainty in
µ drops precipitously from 0.21 to 0.11 mag 2 . Concern about redshift uncer-
tainties are superfluous when spectrograph-quality redshifts σprior(z) = 10−3

are available. This shows why the propagation of redshift uncertainties is of
little concern for experiments with spectroscopic redshifts.

It may seem odd that the covariance matrix U gives smaller redshift uncer-
tainties for the z = 0.731 survey than for the z = 0.325 survey, particularly
since the latter has observations in four bands rather than three. By construc-
tion, the two surveys give the same S/N for their respective target redshift and
both use comparable numbers of data points due to the extra time dilation
experienced by the more distant object. Qualitative comparison of Figures 1
and 2 shows that ∂f/∂z distinguishes z = 0.325 from 0.731 supernovae. At
the lower redshift, ∂f/∂z and ∂f/∂c have almost identical shapes whereas
at z = 0.731 they are visibly different in the third band, allowing for tighter
constraints in z and c. The Fisher matrix calculation gives for z = 0.325:
σz = 0.016, σc = 0.028 and ρzc = −0.72 and for z = 0.731: σz = 0.0092,
σc = 0.021 and ρzc = −0.41.

Differences in ∂f/∂z between the two redshifts are due to differing contribu-
tions from

−
1

(1 + z)2

∫

TX(λ)λ
∂Nln λ

∂λ′
(p, λ′) d lnλ (9)

where λ′ = λ/(1 + z). This term reflects changes in the predicted observed
light curves with redshifting of the supernova SED at fixed phase. (The phase
dependent contribution to ∂f/∂z strongly resembles ∂f/∂t0.) The different
shapes and uneven ln λ-spacing of the griz-bands give redshift-dependent ob-
served supernova-frame wavelengths. Equation 9 is close to zero when the
band covers the wavelength region with peak emission; at shorter wavelengths

2 To give the reader the ability to explore other redshift priors, we provide the
Fisher matrix for the supernova at z = 1.118:

F =























41.979296 135.174711 26.890238 −9.767684 −11.22469

135.174711 9417.796467 −2617.136017 −204.29132 2893.102837

26.890238 −2617.136017 4501.498662 262.329719 −1834.985182

−9.767684 −204.29132 262.329719 39.340308 −110.596575

−11.22469 2893.102837 −1834.985182 −110.596575 1244.587705























.
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Fig. 4. Calculated σµ,eff for a series of redshifts from z = 0.05 – 1.1 in steps of
0.05, with S/N = 25 and 50 photometry and no redshift prior. The low-frequency

shape of the curve is due to the evolution of
dµγ

dz at low redshifts, and the decreasing
amount of data and band coverage at high redshift. The high-frequency oscillatory
behavior is due to differing coverage of the supernova SED by the observer bands
and the resulting change in sensitivity to the light-curve parameters.

it is negative and at longer wavelengths it is positive. The pronounced peaks
in the i-band ∂f/∂z at z = 0.325 and z = 0.731 are attributable to their
SN-frame wavelengths and the phase-dependent ∂Nln λ

∂λ′
(p, λ′).

We calculate σµ,eff for a series of redshifts from z = 0.05 – 1.1 in steps of 0.05
for the cases of S/N = 25 and 50 and no redshift prior, and show the results
in Figure 4. Looking at the low-frequency behavior, at low redshift there is a
dramatic decrease in σµ,eff with increasing redshift as dµγ

dz
falls. At redshifts

greater than z = 0.75, σµ,eff degrades as the number of usable data points
and band coverage decreases. The high-frequency oscillatory behavior is due
to differing coverage of the supernova SED by the observer bands and the
resulting change in sensitivity to the light-curve parameters.

Comparison of Tables 2 and 4 indicates that photometry uncertainty in the
S/N = 25 scenario dominates over the uncertainty from the SALT2 light-curve
templates. The covariance matrices for the case of no redshift prior differ by
a factor of two between S/N = 25 and S/N = 50, rather than the factor of
four expected if there were no SALT2 uncertainties.
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Selecting cadences of two, four, and eight days while keeping the peak signal-
to-noise proportional to the square root of the cadence gives the same results
within the second significant digit. Degradation is expected at higher cadences
as supernova phases with leverage (large ∂f/∂p) can be missed.

Extending the observer bands to include the Y -band can help significantly for
objects at high redshift. For a z = 1.118 supernova with S/N = 25 at peak,
σµ,eff improves from 0.39 to 0.11 mag.

For the cases in this paper where σz > 0.01, we expect that a full Monte-Carlo-
based fit would deviate from the Fisher estimate by something in the order
of 10-20%; the broad wiggles in the supernova spectrum produce non-linear
effects over this large redshift range.

5 Conclusions

In assessing whether a photometric survey produces adequate µ–z uncertainty,
we set as a target achieving a σµ,eff comparable to the intrinsic SN Ia magni-
tude dispersion, ∼ 0.15 mag. At this point, it is more advantageous to spend
time observing more supernovae rather than improving the statistical precision
of each individual object.

If relying on photometric information only, the observer can tune the depth
of the survey to obtain the desired distance uncertainties. Measurements that
give better than S/N = 50 at peak brightness for an average x1 = 0, c = 0
supernova in each band with a four-day observing cadence would be neces-
sary to meet the target σµ,eff out to z = 1.0. Survey changes that hold fixed
(S/N)/cadence2 have almost no effect on µ–z uncertainty for the finely sam-
pled light curves considered in this paper.

Improvements in photometric quality give declining yields when photometric
uncertainties are smaller than those of the SN model. For our simulated data,
SN model uncertainties begin to dominate between data qualities correspond-
ing to our S/N = 25 and S/N = 50 surveys. Work on supernova modeling is
ongoing and improvements are expected as data with better wavelength and
temporal coverage are included in template building.

A judicious selection of observer bands and/or targeting of “magic” redshifts
can give data with stronger leverage in minimizing the µ–z covariance matrix,
as seen in Figure 4. These occur when there are strong distinctive light-curve
gradients with respect to the redshift of the spectra, allowing the breaking of
the degeneracy between redshift and other parameters.
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Shallower surveys can use the subset of supernovae with redshift prior uncer-
tainties of 0.01 or better. We expect that the patient or well-equipped observer
can obtain spectroscopic redshifts of supernovae discovered out to z = 0.325.
Complete spectra for an unbiased sample of supernova hosts at higher red-
shifts will be more of a challenge; for these, photometric redshifts can be used.
Photometric redshift uncertainties of σ∆z/(1+z) = 0.029 for a galaxy subsample
have been obtained with the CFHT filter set [15] and better performance can
be obtained with the addition of a redder filter. A broader and non-Gaussian
dispersion is expected, however, for the diverse population of supernova host
galaxies.

In this paper, we do not consider biases in the SALT2 model. Biases in the
distance and redshift determination leave irreducible uncertainties that impact
cosmological parameter measurements. The size of the training set necessary
for the SALT2 model construction and in testing its performance is subject
for further study.

As supernova cosmologists concentrate on reducing the systematic uncertain-
ties in using SNe Ia as distance indicators, focus is being placed on using light
curves to distinguish variation in observed colors that are intrinsic to super-
novae against those due to dust, and to determine the extinction properties
of the host-galaxy dust itself. In addition, we have not considered the impact
of assigning the light-curve fitter the additional responsibility of determining
supernova type. Constructing a model for such a generalized fitter is difficult
given the heterogeneity of core-collapse supernovae and the dearth of Ibc light
curves, although Bayesian methods have been applied towards this problem
[5,7].

The formalism presented in this paper can be applied to future sophisticated
light-curve models with an expanded parameter set. With photometric infor-
mation diverted towards the measurement of additional supernova features,
the uncertainties in µ and z can only degrade compared to the 3-parameter
SALT2 model.

Acknowledgements

We acknowledge helpful discussions with Julien Guy, Eric Linder, Lifan Wang,
and Yun Wang. Thanks also to the Aspen Center for Physics where the idea
for this paper and much of the work took place. We thank the referee for
constructive comments. This work has been supported in part by the Director,
Office of Science, Department of Energy under grant DE-AC02-05CH11231.

13



A Joint Probability Density Function for Distance Modulus and

Redshift

When attempting to determine the cosmological parameters using the infor-
mation contained in the distance modulii and redshifts of a set of SNe Ia,
the joint probability density function (pdf) p(µo, zo|~θ) for the distance mod-
ulus (µ) and redshift (z) of each supernova is needed. Here, the superindex
o denotes observed quantities, while ~θ stands for the cosmological, and possi-
bly nuisance, parameters. The pdf is the probability density for observing a
(µo, zo) pair given ~θ. It can be computed as

p(µo, zo|~θ) =
∫

dµt
∫

dzt p(µo, zo|µt, zt) p(µt, zt|~θ) , (A.1)

where we integrate over all possible true values for µ and z. The first pdf in the
right-hand side of (A.1) is just a two-dimensional resolution Gaussian relating
the observed and the true values of µ and z. The second pdf can be written
as

p(µt, zt|~θ) = p(µt|zt, ~θ) p(zt|~θ)

= δ(µt − µ(zt, ~θ)) p(zt)

∝ δ(µt − µ(zt, ~θ)) , (A.2)

where µ(zt, ~θ) is the distance modulus that results from applying the Hubble

relationship to the true redshift, considering the values of the parameters ~θ. In
writing the last proportionality relationship we have taken into account that
p(zt|~θ) does not depend on ~θ and, therefore, can be safely neglected in the
following. Therefore, we have

p(µo, zo|~θ)∝
∫ +∞

−∞

dµ
∫ +∞

−∞

dz exp
[

−
1

2
(µo − µ, zo − z)T

U−1 (µo − µ, zo − z)
]

δ(µ − µ(z, ~θ))

=
∫ +∞

−∞

dz exp
[

−
1

2

(

µo − µ(z, ~θ), zo − z
)T

U−1
(

µo − µ(z, ~θ), zo − z
)

]

. (A.3)

In the last equation we have dropped the t superindices for simplicity, and we
have used the delta function to perform the integral over µ. U is the 2 × 2
covariance matrix for the observation of µo and zo. In order to simplify the
calculations that follow, we will assume for the moment that U is a diagonal
matrix with elements σ2

µ, σ2
z . In this case, Equation (A.3) simplifies to:

p(µo, zo|~θ) ∝
∫ +∞

−∞

dz exp





−
1

2





µo − µ(z, ~θ)

σµ





2




 exp

[

−
1

2

(

zo − z

σz

)2
]

.

(A.4)
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Although the integral extends to all possible values of z, it is clear from the
second exponential that only values of z sufficiently close to zo will actually
contribute. Let us, then, expand µ(z, ~θ) about zo as

µ(z, ~θ) ≃ µ(zo, ~θ) +
dµ

dz

∣

∣

∣

∣

∣

zo

(z − zo) . (A.5)

Introducing Equation (A.5) into Equation (A.4) leads to

p(µo, zo|~θ) ∼
∫ +∞

−∞

dz exp



−
1

2σ2
µ

(

µo − µ(zo, ~θ) −
dµ

dz

∣

∣

∣

∣

∣

zo

(z − zo)

)2


 exp

[

−
1

2

(

zo − z

σz

)2
]

,

(A.6)
which is just a Gaussian integral in z. It can be easily computed to give:

p(µo, zo|~θ) ∼ exp





−
1

2





µo − µ(zo, ~θ)

σ





2




 . (A.7)

So finally the desired pdf is a Gaussian distribution centered at the expected
distance modulus for the measured redshift and with variance σ2 = σ2

µ +
(

dµ
dz

σz

)2
, where the derivative is to be taken at z = zo. If the covariance matrix

U between µo and zo is non-diagonal, the resulting pdf is still a Gaussian with

the same mean but with variance σ2 = σ2
µ +

(

dµ
dz

σz

)2
+ 2ρdµ

dz
σµσz, where ρ is

the correlation coefficient between µo and zo.
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