
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
PABLO and PYRITE: Helping Novices Debug Python Code Through Data-Driven Fault
Localization and Repair

Permalink
https://escholarship.org/uc/item/8831m6r1

Author
Cosman, Benjamin Leverett

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8831m6r1
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

PABLO and PYRITE: Helping Novices Debug Python Code Through Data-Driven Fault
Localization and Repair

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Benjamin Cosman

Committee in charge:

Professor Ranjit Jhala, Chair
Professor Philip Guo
Professor James Hollan
Professor Sorin Lerner
Professor Joseph Politz

2021

Copyright

Benjamin Cosman, 2021

All rights reserved.

The dissertation of Benjamin Cosman is approved, and it is

acceptable in quality and form for publication on microfilm

and electronically.

University of California San Diego

2021

iii

TABLE OF CONTENTS

Dissertation Approval Page . iii

Table of Contents . iv

List of Figures . vi

List of Tables . vii

Acknowledgements . ix

Vita . x

Abstract of the Dissertation . xi

Chapter 1 Introduction . 1

Chapter 2 Related Work: Feedback for novices . 5
2.1 Feedback requiring expert input 6
2.2 Feedback using many submissions to the same assignment 12
2.3 Other kinds of feedback . 14

Chapter 3 PABLO: Helping Novices Debug Python Code Through Data-Driven Fault
Localization . 19
3.1 Introduction . 19
3.2 Algorithm Overview . 22

3.2.1 Model Feature Intuition and Extraction 22
3.2.2 Model Features . 23
3.2.3 Dynamic Slicing Algorithm 25
3.2.4 Machine Learning Model Generation 27

3.3 Evaluation . 29
3.3.1 Dataset and Program Collection 29
3.3.2 Labeled Training and Ground Truth 30
3.3.3 RQ 1 — Fault Localization Accuracy 31
3.3.4 RQ 2 — Feature Predictive Power 32
3.3.5 RQ 3 — Defect Categories 35
3.3.6 RQ 4 — Diversity of Programs 36
3.3.7 RQ 5 — Multi-Edit Bug Fixes 38
3.3.8 Qualitative Analysis . 40
3.3.9 Threats to validity . 42
3.3.10 Evaluation Summary . 43

3.4 Related Work . 43
3.5 Conclusion . 46

iv

Chapter 4 Pyrite: Analytic Program Repair for Python Novices 48
4.1 Introduction . 48
4.2 Algorithm Overview . 50

4.2.1 Fix Templates . 50
4.2.2 Machine learning . 51
4.2.3 Repair Synthesis . 52

4.3 Evaluation . 55
4.3.1 RQ 1 — Success rate . 55
4.3.2 RQ 2 — Helpfulness . 56
4.3.3 Qualitative Analysis . 58
4.3.4 Threats to validity . 60

4.4 Related Work . 61
4.5 Conclusion . 62

Appendix A Dead ends: Adversarial examples . 64

Appendix B Machine Learning Features . 66
B.1 Global features . 66

B.1.1 Global syntactic features 66
B.1.2 Exception type . 67
B.1.3 Program size . 67

B.2 Local features . 67
B.2.1 Child number . 68
B.2.2 Slice, Crash Location, and Size 68
B.2.3 Dynamic type . 68
B.2.4 Syntactic form . 68

Appendix C Human Study Stimuli . 69
C.1 PABLO User Study . 69
C.2 PYRITE User Study . 86

Bibliography . 122

v

LIST OF FIGURES

Figure 1.1: A simple program with multiple fault localizations. 2

Figure 2.1: Example intermediate state of AutoGrader 7
Figure 2.2: ITAP providing a hint. 9
Figure 2.3: Feedback on a DFA. 17

Figure 3.1: A program being sliced and the resulting slice. 26
Figure 3.2: An example where slicing incorrectly excludes the line with the defect. . . 26
Figure 3.3: An example of slicing with a control dependency. 27
Figure 3.4: Fault localization accuracy: our approach vs the normal Python interpreter.

The strong performance of our algorithm on a large, real-world dataset is the
primary result of this chapter. 32

Figure 3.5: Normalized accuracy when categories of features are removed. 34
Figure 3.6: Accuracy on specific types of error. 36
Figure 3.7: Number of natural program clusters in the NATE dataset and in ours. Our

dataset demonstrates greater diversity. 38
Figure 3.8: An example stimulus from the user study. 39
Figure 3.9: A program with a NoneType bug. 40
Figure 3.10: A program with an off-by-one bug. 41

Figure 4.1: Cumulative number of fixes described by the first n fix template labels. . . 52
Figure 4.2: We successfully synthesize repairs for 76% of input programs, occasionally

producing the exact repair the historical student chose. 56
Figure 4.3: An example stimulus from the user study, with a reasonably good repair

generated by PYRITE. 57
Figure 4.4: An example from the user study where PYRITE performs poorly. 59
Figure 4.5: An example from the user study where PYRITE performs well. 60

Figure A.1: An example adversarial attack from the literature. 65

vi

LIST OF TABLES

Table 3.1: Feature predictive power as measured by Gini Importance. 33
Table 3.2: Feature predictive power as measured by ANOVA. 33

Table 4.1: The most common fix templates observed in the dataset. 53
Table 4.2: The most common variables appearing in historical fixes from the training set. 54
Table 4.3: Answer breakdown for stimulus question 5, representing 328 total responses

for PYRITE stimuli and 287 for historical user fixes. 58

vii

LIST OF ABBREVIATIONS

ANOVA - Analysis of variance

AST - Abstract Syntax Tree

BOAT - Bag of Abstracted Terms [SSC+17]

CFG - Context-Free Grammar

SMT - Satisfiability Modulo Theories [BSST09]

viii

ACKNOWLEDGEMENTS

I would like to thank Ranjit Jhala for being my supportive and patient advisor, Phil Guo

for the use of the PythonTutor dataset, and the rest of my committee Jim Hollan, Sorin Lerner,

and Joe Politz.

I also want to thank my PABLO and PYRITE collaborators Maddy, George, Leon, Yao-

Yuan, Ranjit, Kamalika, and Wes; special shout-out to Maddy for all her work on the human

studies.

Work adapted in this dissertation

Chapter 1 and Chapter 3 are adapted from “PABLO: Helping Novices Debug Python Code

Through Data-Driven Fault Localization” in the proceedings of the 2020 Technical Symposium

on Computer Science Education (SIGCSE), by Benjamin Cosman, Madeline Endres, Georgios

Sakkas, Leon Medvinsky, Yao-Yuan Yang, Ranjit Jhala, Kamalika Chaudhuri, and Westley

Weimer [CES+20], as well as from an earlier version that was submitted for publication to

ESEC/FSE 2019.

Chapter 2 is adapted from the dissertation author’s Research Exam, entitled “Synthesis

Techniques for CS Education” and presented in Spring 2017.

Chapter 4 describes unpublished work done in collaboration with Madeline Endres,

Georgios Sakkas, Westley Weimer, and Ranjit Jhala.

The dissertation author was the primary investigator and author of these works.

ix

VITA

2014 B.S. in Computer Science, California Institute of Technology

2017 M.S. in Computer Science, University of California San Diego

2021 Ph.D. in Computer Science, University of California San Diego

PUBLICATIONS

B. Cosman, M. Endres, G. Sakkas, L. Medvinsky, Y. Yang, R. Jhala, K. Chaudhuri, W. Weimer,
“PABLO: Helping Novices Debug Python Code Through Data-Driven Fault Localization,” Tech-
nical Symposium on Computer Science Education (SIGCSE 2020)

G. Sakkas, M. Endres, B. Cosman, W. Weimer, R. Jhala, “Type Error Feedback via Analytic
Program Repair,” Conference on Programming Design and Implementation (PLDI 2020)

M. Endres, G. Sakkas, B. Cosman, R. Jhala, W. Weimer, “InFix: Automatically Repairing Novice
Program Inputs,” International Conference on Automated Software Engineering (ASE 2019)

B. Cosman and R. Jhala, “Local Refinement Typing,” International Conference on Functional
Programming (ICFP 2017)

P. Vekris, B. Cosman, R. Jhala, “Refinement Types for Typescript,” Conf. on Programming
Languages Design and Implementation (PLDI 2016)

P. Vekris, B. Cosman, R. Jhala, “Trust but Verify: Two Phase Typing for Dynamic Languages,”
European Conf. on Object Oriented Programming (ECOOP 2015)

x

ABSTRACT OF THE DISSERTATION

PABLO and PYRITE: Helping Novices Debug Python Code Through Data-Driven Fault
Localization and Repair

by

Benjamin Cosman

Doctor of Philosophy in Computer Science

University of California San Diego, 2021

Professor Ranjit Jhala, Chair

As dynamically-typed languages grow in popularity, especially among beginning pro-

grammers, novices have an increased need for scalable, helpful feedback for fixing their bugs.

Localization and repair can be ambiguous: not all repairs which prevent the program from

crashing are equally useful for beginners. We propose scalable approaches for fault localization

and repair for dynamic languages that are helpful for debugging and generalize to handle a

wide variety of errors commonly faced by novice programmers. We base our approach on a

combination of static, dynamic, and contextual features, guided by machine learning. We evaluate

on over 980,000 diverse real user interactions across four years from the popular PythonTutor.com

xi

website, which is used both in classes and by non-traditional learners. We find that our approach is

scalable, general, and quite accurate: up to 77% of these historical novice users would have been

helped by our top-three localization responses, compared to 45% for the default interpreter, and

we successfully synthesize repairs to 76% of our historical buggy programs. We also conducted

two human studies. Participants preferred our localization approach to the baseline (p = 0.018),

and found it additionally useful for bugs meriting multiple edits. Participants found our repairs to

contain helpful information beyond the baseline in 45% of programs.

xii

Chapter 1

Introduction

Many programmers of dynamically-typed languages, especially novices unfamiliar with

debugging tools and lacking the expertise to interpret compiler error messages, can have a difficult

time pinpointing (and then fixing) what caused their program to crash [PO11, ZM14, Chr14,

PKW14a, CE14, NT03, SSW04]. Solutions to this problem are needed as class sizes grow and

increasing numbers of non-traditional learners progress with limited access to human instructional

support.

Dynamically-typed languages like Python are increasingly popular for teaching pro-

gramming [Guo13], and many of those learning Python require help debugging their code. For

example, the PythonTutor online debugging and visualization tool alone is visited by more than

sixty thousand users per month, and almost half of the program crashes they face take multiple

attempts to resolve. Localizing errors in Python is especially hard because there is no (static) type

information, and because we seek to handle not just type errors but many other kinds of errors

as well (IndexError, ValueError, etc.) which are manifestations of a wide variety of root failure

causes.

One of the key difficulties in finding and fixing bugs is that there are often multiple

logically-valid fixes — only one of which may be desired by the programmer [SSC+17]. Consider

1

1 year = int(time.strftime("%Y"))
2 age = input("Enter your age")
3 print("You will be twice as old in:")
4 print(year + age)

Figure 1.1: A simple program with multiple fault localizations (lines 1 and 2).

the program in Figure 1.1, adapted from our dataset (Section 3.3.1). The program attempts to

carry out some simple arithmetic based on a given number and the current year. When executed,

however, the program raises an exception on line 4 (when adding an integer to a string). One

possible “fix” would be to remove the int() conversion from line 1, in which case both variables

hold string values at runtime, and the + on line 4 would be interpreted as string concatenation.

However, another reasonable fix (and the one that the programmer actually used in this case) is

to add an int() cast on line 2. While both fixes yield well-typed programs, the second is more

likely to correspond to developer intent, and is thus more likely to be helpful as a localization and

debugging aid.

Thus, a useful debugging aid needs to provide debugging hints that are helpful, implicating

locations that correspond to developer intent or aid novice learning. It should also be general,

applying to a wide variety of the errors that novices frequently encounter, including more complex

bugs involving multiple simultaneous conceptual mistakes spanning multiple lines. Finally, it

should be scalable, working quickly in large classes and non-traditional settings.

There is lots of prior work on giving debugging feedback for programmers. However,

most of it does not meet our criteria in one or more one of these ways:

• It is unable to distinguish between multiple formally-implicated fault localizations or

repairs. We want to choose repairs that are correct, but more importantly we want them to

be helpful to novices.

• It makes extensive use of a static type system. We however are targeting Python which is

dynamically-typed, and novices who may not have learned yet about types at all.

2

• It requires more from the programmer than just some buggy Python code, e.g. a test suite.

We want to help even brand new Python programmers who may not be capable yet of

writing tests.

• It requires a more traditional educational setting - either a large pool of other students

solving the same problem, or the intervention of an instructor who can provide reference

implementations, expert feedback, etc. We want to help even in the case of non-traditional

learners.

In Chapter 2 we look at some of the related work on feedback for novice programmers in

detail; additional related work appears in each chapter.

Our key insight is that, while it is very difficult to resolve the root cause of a crash

by looking at a single program at a time (as the example above shows), we can learn a suite

of heuristics for how to debug and fix programs from a large corpus of real-world examples

of novices fixing their own bugs. Novice-written bugs and fixes contain static, dynamic and

contextual information about where errors appear frequently in practice and about how those

errors can be fixed.

In PABLO: Helping Novices Debug Python Code Through Data-Driven Fault Lo-

calization (Chapter 3), we build on this insight to present a novel approach to localizing defects

in unannotated, beginner-written programs without test suites. We present a set of static, dynamic,

and contextual features of a user’s program which are sufficient for a machine learning model

to pinpoint faulty locations with high accuracy. We present both an automated evaluation on

almost a million real user interactions from the PythonTutor.com website, and also a human study

which confirms that our error localizations are indeed helpful and better than those provided by

the default Python interpreter.

In Pyrite: Analytic Program Repair for Python Novices (Chapter 4), we extend this

work by demonstrating how to repair the faulty terms implicated by PABLO. We train a second

3

machine learning model so that we can predict not only error locations but also fix templates

which describe how those locations could be repaired. We then use enumerative synthesis to turn

these into concrete program repairs. We again provide both an automated evaluation and a user

study to conclude our repairs are helpful.

Finally, Appendix A discusses an attempted but unsuccessful alternate method for gener-

ating repairs using adversarial examples, Appendix B goes into further details on the machine

learning features used by PABLO and PYRITE, and Appendix C contains the stimuli used in our

user studies.

Acknowledgements for Chapter 1

This chapter is adapted from the introduction of “PABLO: Helping Novices Debug

Python Code Through Data-Driven Fault Localization” in the proceedings of the 2020 Technical

Symposium on Computer Science Education (SIGCSE), by Benjamin Cosman, Madeline Endres,

Georgios Sakkas, Leon Medvinsky, Yao-Yuan Yang, Ranjit Jhala, Kamalika Chaudhuri, and

Westley Weimer [CES+20], as well as from an earlier version that was submitted for publication

to ESEC/FSE 2019. The dissertation author was the primary investigator and author of this

material.

4

Chapter 2

Related Work: Feedback for novices

We begin by surveying existing work which like ours provides feedback for novice

programmers. (Other kinds of related work appear near the ends of the following chapters.)

Providing feedback for novices involves a unique set of challenges and opportunities:

Challenges. Novice programmers are especially vulnerable to bad error messages since

they have less experience interpreting them. For classical feedback of a location and an error

message, it becomes especially important to get the location right because novices often ignore

the message entirely in favor of manually inspecting the flagged location [JvdBvDH93]. Novice

programmers may also write buggier code in general than is seen in the wild, so analyses must

be prepared to handle an unusually high density of bugs. This is difficult because it is harder to

handle more than one bug at once - for example if a method of fixing a bug relies on confirming

afterward that the bug is fixed by running the code, then the presence of a second bug will mask

the successful repair of the first bug.

Opportunities. The programs novices are writing are usually shorter than code in the

wild, so computationally expensive techniques that might time out on long programs may become

practical for novice code. Secondly, we can assume the existence of an instructor who can do

things like writing a canonical solution for student submissions to be tested against, grading a

5

few submissions accurately so our tools can learn how to grade the rest, or even guessing what

kind of mistakes the students are likely to make so our tools can watch out for them. Finally,

on a given assignment, we can expect a lot of repetition: a large group of students will find

comparatively few different ways of being right and being wrong; machine learning and clustering

techniques are especially good at taking advantage of such patterns. (PABLO (Chapter 3) and

PYRITE (Chapter 4) choose to forgo some of these opportunities in order to reach non-traditional

learners who may not have instructional support or peers working on the same assignments.)

2.1 Feedback requiring expert input

We are targeting non-traditional learners who may not have institutional support, such as

self-directed visitors to the PythonTutor website [Guo13]. However many related projects seek to

provide feedback to novice programmers in the context of a class where there is an instructor and

the students are all working on the same problem. They can thus get this domain expert to help

by providing a reference implementation or a list of common errors that their students make.

Autograder

AutoGrader [SGSL13a] repairs student code submissions. They first call upon the in-

structor to provide an “error model” - a list of rewrite rules corresponding to mistakes that the

instructor expects many students will make. For example, an instructor expecting that students

might make an off-by-one error could create the rewrite rule v = n→ v = {n+1,n−1}.

AutoGrader then translates the student code into an expanded version where each state-

ment that has a rewrite rule in the error model is expanded into a set of options, chosen by a hole -

for example, using the above rewrite rule, the single line a = 3 would be rewritten to something

like Figure 2.1.

In the next step, the synthesis engine chooses a branch by filling in the ?? holes. The

6

1 choice = ?? # to be filled in later by the synthesizer
2 if choice == OPTION_0:
3 a = 3 # Original student code was correct
4 elif choice == OPTION_1:
5 a = 2 # Off-by-one
6 totalCost++
7 elif choice == OPTION_2:
8 a = 4 # Off-by-one
9 totalCost++

Figure 2.1: Roughly what AutoGrader expands the line a = 3 to, given an error model
suggesting off-by-one bugs.

synthesis algorithm is based on Sketch [SL08], which uses Counterexample Guided Inductive

Synthesis. The synthesizer is run with the hard constraint that the program be correct and then

the additional constraint that totalCost should be minimized. Since totalCost is increased in

every case except the one corresponding to the student’s original code, this constraint means the

synthesized solution will retain as much of the original code as possible.

In evaluation, they determine that AutoGrader can correct 64% of student submissions on

a variety of real-world benchmarks in a reasonable amount of time. Some of these corrections

involve up to 4 simultaneous fixes.

CPSGrader

CPSGrader [JDJS14] is a tool for automatically grading (simulated) Cyber-Physical

Systems like robot controllers. The example setting is a class where students design a controller

for a robot in a simulated environment, which should be graded based on how well it completes

tasks like navigating around obstacles and climbing hills. The instructor is expected to provide

“parameterized tests”, corresponding to properties like the robot successfully progressing at

least x distance up the hill in t seconds. The instructor also needs to write some reference

implementations, both positive and negative. CPSGrader then tries various concrete values of

each test’s parameters to figure out under which values the test successfully classifies the reference

7

implementations.

This strategy would not work for arbitrary tests, since figuring out appropriate parameters

could require an intractable exhaustive search. Instead, they focus on monotonic tests - ones

where there is a single threshold value between passing and failing. For example, if a test checks

that a robot never veers more than θ degrees off course, then any robot that fails for some value of

θ will also fail for all smaller values, and any robot that passes will also pass for all larger values,

so it suffices to find one threshold that separates passing from failing and test all submissions

using only that one value. In the case of multiple parameters, monotonicity guarantees a frontier

of threshold tests rather than a single value, but this is still much better than testing every possible

assignment to the parameters. A parameterized test can be proven to be monotonic by an SMT

solver using prior work [JDDS13]. In their evaluation, they demonstrate that CPSGrader runs in

a reasonable amount of time and can correctly classify the vast majority of student submissions

in their benchmark set.

In followup work, they propose improving CPSGrader using active learning and clustering

techniques [JJDS15]. Instead of having the instructor evaluate a fixed set of implementations on

every test, they group similar student submissions into clusters and then choose representatives

for the instructor to look at. In keeping with their earlier approach of running simulations rather

than analyzing any code directly, similarity between submissions is measured by how similarly

the robots behave in simulation, as computed using the “dynamic time warping” distance measure

which can control for similar behaviors occurring at different times or speeds [Gio09].

ITAP

The Intelligent Teaching Assistant for Programming (ITAP) [RK17] tries to come up with

the smallest possible code change that leads the novice in the right direction (see Figure 2.2).

They have three goals for their hint:

• The hint code should compile even if used unchanged. In their target language of

8

1 # A known solution:
2 ...
3 def isGroundWet():
4 return (isRaining and isOutdoors)

1 # A student submission:
2 ...
3 def isGroundWet():
4 if isRaining:
5 return True
6 else:
7 return False

1 # ITAP's hint:
2 ...
3 def isGroundWet():
4 if isRaining and '[insert code here]':
5 return True
6 else:
7 return False

Figure 2.2: ITAP providing a hint. Note that canonicalization allows it to ignore stylistic
differences between the solution and the submission, like the use of an explicit if statement.

Python this is not very difficult since there isn’t static type checking, so filler strings

like '[insert code here]' can be used in place of any expression.

• The hint should be in the right direction, i.e. it should be the first step in a minimal path

that will eventually lead to correct code.

• The hint should not appear to lead in the wrong direction, e.g. by decreasing the number

of tests the code passes.

The existence of a test suite and at least one correct reference implementation is assumed; the test

suite is the final arbiter of correctness.

To achieve this, they first find the closest known correct solution to the student’s current

state. However, it may be the case that not all edits required to get from one to the other are

actually required for correctness. Thus they enumerate every subset of those edits, and check

correctness of the resulting code for each. (This step is exponential-time, so it only works if there

are a small number of edits; ITAP skips it with 16+.) ITAP is built to learn through use: states

are stored as they are discovered through this process or by students. States are given a score

representing both how good they actually are (in terms of distance from a correct solution and

9

score on the test suite), and also how often students actually reach that state, since it is assumed

that code other students have submitted in the past is more likely to be understandable to students

even if it isn’t correct.

Since the state space is enormous, a key part of the implementation is to reduce the state

space by canonicalizing student code. This process includes choosing canonical variable names as

well as other transformations that don’t change semantics. They also need a reification procedure

so that the hints they come up with for the transformed code can actually be applied to the original

version. The authors’ discuss their process further in [RK12]; similar procedures are present in

several of the other algorithms surveyed here, including HelpMeOut below [HMBK10].

They evaluated ITAP on a collection of student submissions and found that it could

successfully generate a chain of hints for the vast majority of them.

HelpMeOut

HelpMeOut [HMBK10] suggests bug fixes based on other users who had the same

problem. It matches compile errors by canonicalized error text, and runtime errors by length of

common stack trace. Users can vote up/down suggested fixes, and experts can annotate fixes in

the database with explanations.

In a small user study of novice programmers, they found that the average user queried

their tool once every 10 minutes and around half the queries returned a useful suggestion.

LAURA

LAURA [AL80] attempts to match a student submission to a reference implementation.

It normalizes both into a canonical graph representation, then heuristically applies program

transformations to try to make the two graphs equivalent, like constant propagation or reordering

independent instructions. When it is able to match the graphs exactly it returns that the student

10

code is correct (so there are never false positives). Otherwise, it relaxes its criteria for equivalence

to allow similar but non-equivalent nodes to be identified; these differences are reported as

potential bugs. This method is limited since many correct programs may be too different from the

reference implementation for their algorithm to find the correspondence (or a correspondence

might not even exist).

Feedback for Dynamic Programming

Kaleeswaran et al. focus on programming assignments that can be solved by dynamic

programming [KSKG16]. They first cluster student submissions by various domain-specific

static properties, like the number of nested loops used, which loop indicies are updated in which

directions, etc. Then the instructor is asked to designate one submission in each cluster as correct,

or write a correct submission for that cluster if none exists. Each submission is then compared

to the closest correct representative, and checked for equivalence by an SMT solver. Since the

clusters were chosen such that the programs being compared have the same structure, they can

compare statements for equivalence basically line by line. If the programs are equivalent, they

can safely identify the submission as also correct. Otherwise, they can generate as feedback the

differences between the non-equivalent lines.

On their benchmarks which together contained over 2000 submissions, they found that

each cluster, corresponding to one solution strategy, contained an average of 20 submissions.

Most clusters had at least one correct submission (and this submission could usually be identified

automatically using a few tests), so an expert just had to manually verify ~100 submissions

and manually write 7 (for the clusters with no easily-identifiable correct submission) instead

of looking at all 2000. The tool could then verify half of the submissions to be correct, and

automatically generate feedback for 70% of the remainder.

One weakness of this method is how tailored it is to dynamic programming - since

submission strategies are clustered using domain-specific features, it is not clear how this strategy

11

could be generalized to a broader range of programming assignments. Additionally, the line-

by-line equivalence comparison is too stringent: it is possible for a correct submission to differ

enough from the manually-verified representative of its cluster that the tool will still mark it as

incorrect and generate feedback on how to make it more similar to the representative.

2.2 Feedback using many submissions to the same assignment

Work in this section relies on a weaker assumption than in the previous - they still require

all students to be working on the same assignment, but they no longer require an instructor to

create additional resources like reference implementations. This is thus closer to our desired

setting, though it is still not directly applicable since we want our system to work even when we

don’t know what the novice is working on and may not have other examples of novices solving

that specific problem.

Refazer (and related work)

Refazer [RSD+17] takes as input a codebase that has similar edits performed multiple

times, and learns those code transformations so it can apply them elsewhere in the same codebase.

The authors identify two domains where this type of codebase is common:

1. Student assignments: Many students will make similar mistakes and fix them in similar

ways; learning these fixes can help other students who make those mistakes.

2. Repetitive refactorings: In large codebases that are being refactored, developers often need

to make the same change in many places (e.g. changing the name of some field); learning

these changes can help find other locations the same fixes should have been applied.

Refazer works in 3 steps: 1) separate out individual edits - basically connected modified

AST nodes. 2) cluster the edits by edit distance (proxy for similarity). 3) synthesize rules for

12

each cluster, favoring ones that use context (avoid false positives) but not too much context (avoid

overfitting), and retain some of the modified code instead of replacing it with a constant snippet.

For their evaluation, they consider a corpus of student submissions, in which each student

eventually submitted a correct version but also submitted at least one incorrect one. They

determine that Refazer could have fixed some incorrect submission for 87% of the students. One

flaw in this design is that they do not consider students who never successfully solved the problem

at all: these students are probably most in need of help but may have buggier code that Refazer

would do less well with. They also evaluate Refazer on various large open-source codebases; it

does a good job of learning the repetitive edits in question. However, transformations learned

from one programming assignment or one codebase are not found to be useful in a different

assignment or codebase.

MistakeBrowser [HGS+17a] builds upon this work by using Refazer’s clusters as a vehicle

for an expert to provide hints: an instructor is presented with a cluster of student submissions

that Refazer has determined can each be fixed by the same transformation, and the instructor can

provide feedback to all students in that cluster. Other work that attempts to automate repeated edits

in a single codebase includes LASE [MKM13] and those authors’ prior work SYDIT [MKM11]

which attempts to do the same thing based on a single edit (albeit with less success).

Learning program embeddings

Piech et al. use machine learning techniques to categorize programs by their functionality

[PHN+15]. They target programming environments like Karel, a language for education where

programmers instruct a robot to move around a fixed grid and interact with objects [Pat81]. Karel

does not allow the programmer to create their own variables, which means that there is a fixed

natural representation of any program’s memory: all one needs to store is the locations of objects

in the grid without worrying about additional programmer-defined state.

They first gather data to learn from by running each program on various test inputs.

13

They record not only the output of the program as a whole, but also the inputs and outputs to

various components of the program like the body of each while loop. Given a set of student

submissions, their goal is to learn a model which assigns a matrix to each program representing

some linear transformation from input state to output state. Since programs are not necessarily

linear with respect to the original representation, they simultaneously learn a non-linear encoding

and decoding scheme from memory states to vectors such that in the new domain, programs do

perform linear (or almost linear) transformations. In order to distinguish between programs that

are functionally equivalent (or almost so) but are implemented differently, they also learn matrices

for smaller components of each program, e.g. the body of each while loop.

They determine empirically that the models they learn are reasonable. In particular, linear

transformations should compose - given two matrices that accurately represent two programs, the

product of those matrices should represent the programs run one after another, and they discover

that when they multiply matrices like this their predictive power goes down only very slightly.

Overall, they achieve an accuracy around 90% and a recall ranging from 10-50% depending on

the assignment.

Finally they use the embeddings they have learned and 500 annotated programs to learn

a mapping from programs to what feedback they should be given. As usual there is a tradeoff

they are able to make between false positives and false negatives; when they fix precision at

90% they can get “force multiplication factors” of between 12 and 214 (meaning that each

annotated program allows them to automatically grade between a dozen and a few hundred others)

depending on how big their test set is and how complicated the assignment is.

2.3 Other kinds of feedback

We conclude this chapter with a few projects that produce more unusual kinds of feedback

for novices.

14

NanoMaLy

The goal of NanoMaLy [SJW16] is to synthesize a dynamic witness for a static type error

- it allows the user to explore the whole stack trace starting from a concrete input and ending with

a term that can be evaluated no further, like 0 + []. It does this by symbolic execution - the

input is treated as a “hole” of unknown type, which is then refined whenever execution reaches a

primitive operation that requires a particular type. They choose types so as to have the program

crash as late as possible, and prove that the traces they find are “general” in that if this algorithm

finds a way for a function to crash, then there is no type the function could possibly be assigned

such that it wouldn’t crash on some input of that type.

To make the execution trace as useful as possible, NanoMaLy provides ways to interact

with it. The user can zoom in and out on the trace, viewing every small step in the evaluation

or just a few. The user can also pick a specific term anywhere in the computation and view the

evaluation trace for just that term.

They evaluate NanoMaLy by providing students in a final exam setting some buggy code

and then either OCaml’s error message or NanoMaLy’s execution trace. More students were able

to correctly identify and explain the bug when given NanoMaLy’s trace.

DFAs

Finally, we venture beyond conventional programming to consider feedback for the related

problem of constructing automata. Deterministic Finite Automata (DFAs) are essentially simple

programs distilled down to flow charts: the nodes in the chart represent the program counter and a

limited amount of memory, and the arrows between them handle control flow based on the input.

A theory class that includes constructing automata is part of a standard undergraduate Computer

Science curriculum.

In [ADG+13], the authors propose a scheme to classify student errors in DFAs and, in a

15

later work [DKA+15], to provide appropriate feedback. The types of errors they identify are

1. Problem syntactic: the student misunderstood a part of the problem description and built

a DFA to a conceptually similar specification, for example, confusing “at least” (≥) with

“more than” (>).

2. Problem semantic: the student failed to consider or correctly classify certain sets of strings

- for example, they may understand that the problem is about strings of even length but not

realize that the length of the empty string is also even.

3. Solution syntactic: the student probably has the right idea but made some errors in execution,

e.g. by missing a couple transitions or accept states.

Each type of error has a different scheme for identification and elicits different feedback.

Problem syntactic The goal here is to provide a hint to the student by showing them what

specification they actually satisfied so they can see the difference between that and the intended

one. To do this, the authors created a specification language called MOSEL, a logic with the

same expressive power as monadic-second order logic, which in turn is known to have the same

expressive power as regular expressions and DFAs [Bü60]. The advantage of MOSEL is that

it is designed to closely mimic how regular languages tend to be described in natural language.

This facilitates the conversion between MOSEL and English descriptions of languages, and also

means that a small edit distance between MOSEL specifications corresponds to a small distance

between English specifications, and hence two languages which may more easily get confused

with each other.

The challenge in identifying problem syntactic errors is that the direct translation from

DFAs to MOSEL does not produce small or intuitive formulas, so that process is not useful

for comparing the student’s DFA to the correct one. Instead, they use brute force to enumerate

small MOSEL formulas, and then test each for equivalence with the student’s. The formula with

16

(a) A solution with a “problem
semantic” error.

1 Your DFA is incorrect on
2 the following set of strings:
3 {s | s begins with a}

(b) A generalized counterexample

Figure 2.3: Feedback on a DFA which is supposed to accept strings that start and end with
different letters.

the smallest edit distance to a canonical correct specification is returned to the student, after

translation into natural language.

Problem semantic The goal here is to provide as a counterexample a concrete string or

set of strings that the proposed DFA misclassifies. In the ideal case they provide a description

of the entire set of strings that are misclassified (see Figure 2.3). The technique for finding this

description is basically the same as in the problem syntactic case, since given two DFAs it is easy

to construct another that accepts exactly those strings accepted by one but not the other, i.e. the

strings that are misclassified. As above, sometimes no short description exists, in which case

finding a long one could take a long time and might not be very useful anyway, so instead they

come up with a description of a subset. If this too is impractical, they fall back on the well-known

algorithm to find the shortest single string that is misclassified.

Solution syntactic The goal here is to find a small set of edits that can fix the solution,

and then direct the student to which part of the DFA needs to be changed. They enumerate all

small changes to the DFA, checking each for correctness. If they find a correct DFA in this way,

the feedback for the student tells them roughly where to look, e.g. to check the transitions out of

a particular state, or to check which states are accepting.

In a user study, these different kinds of feedback were appreciated and seemed to improve

student performance over the baseline of just marking DFAs right or wrong, but not necessarily

over simply providing short counterexample strings every time.

17

Acknowledgements for Chapter 2

This chapter is adapted from the dissertation author’s Research Exam, entitled “Synthesis

Techniques for CS Education” and presented in Spring 2017. The dissertation author was the sole

author of this material.

18

Chapter 3

PABLO: Helping Novices Debug Python

Code Through Data-Driven Fault

Localization

3.1 Introduction

Localizing the root cause of a failure is a key step in programming. With experience,

developers pick up various tools to help with this process: for example, debuggers can be used to

navigate failure traces, and in statically-typed langauges, type-checking can pinpoint classes of

errors at compile time.

In this chapter, we present a novel approach to localizing defects in unannotated, beginner-

written programs without test suites. We learn from a corpus of novice programs and produce

answers which agree with human actions and judgments. Specifically, our system PABLO

(Program Analytics-Based Localization Oracle):

1. takes as input a set of pairs of programs, each representing a program that crashes and the

fixed version of that program

19

2. computes a bag of abstracted terms (BOAT) [SSC+17] representation for each crashing

program: each AST node is represented by a vector of syntactic, dynamic, and contextual

features

3. trains a classifier on these vectors

Then, given a new crashing program, PABLO will

1. compute BOAT vectors for each AST node of the program

2. classify each vector to obtain the likelihood that each corresponding node is to blame for

the crash

3. return a list of k program locations, ranked by likelihood

Our hypothesis is that the combination of a rich corpus and domain-specific features admits

automatically classifying common classes of defects and causes, thereby helping novices find the

true sources of their bugs.

Our work is inspired by the NATE system [SSC+17] which introduced the notion of

training classifiers over pairs of buggy-and-fixed programs. However, this work was limited to

purely functional Ocaml programs where the static type discipline was crucial in both restricting

the class of errors, and then providing the features that enabled learning. Furthermore, the work

was only evaluated on a small corpus of programs comprising implementations of 20 different

programming problems, leaving open the question of whether learning could accomodate a more

diverse data set, and could ultimately generalize to different kinds of programs.

In this chapter, we show how learning to blame can scale up to Python by making the

following concrete contributions:

1. First, we show how to identify a set of candidate features that allow us to train precise

classifiers for dynamic imperative languages like Python. Specifically, we introduce and

20

evaluate static, dynamic, contextual and slice-based features that enable scalable data-driven

localization for Python. PABLO systematically evaluates our feature set on beginner-written

Python fragments. We find such features are all critical to our model, but that our model is

not sensitive to error type and performs similarly across defect classes.

2. We evaluate PABLO in a user study and find that subjects find it helpful, and also general

enough to provide useful debugging hints when multiple fixes are appropriate, which the

baseline Python interpreter cannot do.

3. We perform a systematic evaluation on over 980,000 programs from four years of inter-

actions with the PythonTutor [Guo13] website, a data set two orders of magnitude larger

and significantly more diverse than that of similar prior work. PABLO is helpful, correctly

identifying the exact expression that humans agree should be changed 59–77% of the

time, compared to the Python interpreter’s baseline of 45%, and general, retaining strong

accuracy in all of the most common classes of bugs that novices encounter.

Note that the term fault localization is used differently in different contexts, from dynamic

approaches like Tarantula [JH05] to static analyses like Mycroft [LCSS16] based on semantic

information. These approaches are also evaluated on a diverse set of criteria, from producing

a minimal correcting set [LCSS16] to agreeing with human intuition [SSC+17]. Our approach,

PABLO, is a dynamic approach intended to agree with human intuition in a general setting where

we do not assume we have type annotations or tests. As discussed further in Section 3.4, PABLO is

thus not directly comparable to spectrum-based methods that require a test suite [JH05, CKF+02,

AZG06, XM14, BLLLGG16, LZ17, SY17], systems that use static type information to make

theoretical optimality guarantees [ZM14, LCSS16], or attempts to retrofit static type systems

into dynamic languages, such as TypeScript [BAT14, VCJ16, FM14] for JavaScript and various

gradual and static type approaches for Python [SPvR+, VKSB14] or Ruby [FAFH09, ACFH11].

21

3.2 Algorithm Overview

We present PABLO, an algorithm for accurately localizing faults [JH05] in dynamically-

typed, beginner-written Python programs that exhibit non-trivial uncaught runtime exceptions. We

do not consider syntax errors or references to undefined variables. Our algorithm uses machine

learning models based on static, dynamic, contextual and slicing features to implicate suspicious

expressions. Unlike short ranked lists [PO11, Sec. 5.6], voluminous fault localization output is

not useful to developers in general [WPO15] and novices in particular [Koh19]. We thus produce

Top-1 and Top-3 rankings; short lists are especially relevant for novices, who frequently make

mistakes spanning multiple program locations.

Our algorithm first extracts static and dynamic features from a Python program (Sec-

tion 3.2.2). Next, using a labeled training corpus, we train a machine learning model over those

features (Section 3.2.4). Once the model has been trained, we localize faults in new Python

programs by extracting their features and applying the model.

Drawing inspiration from localization algorithms such as NATE [SSC+17] and the natural

language processing term frequency vector (or “bag of words”) model [SM86], we represent each

buggy program as a “bag of abstracted terms”. A term is either a statement or expression.

3.2.1 Model Feature Intuition and Extraction

We observe that many errors admit multiple logically-valid resolutions (see Figure 1.1):

we thus cannot effectively localize through type constraints alone. Instead, we use static features

to capture structured program meaning, contextual features to capture the relationship between a

program fragment and its environment, and dynamic features to reason about conditional behavior.

Dynamic features are calculated using a trace of the program [BDB] after applying a

semantics-preserving transformation [FSDF93] that admits expression-level granularity (instead

of Python’s whole lines).

22

3.2.2 Model Features

We provide an overview of our model features below; further details are in Appendix B.

Syntactic Forms (Static)

We hypothesize that certain syntactic categories of terms may be more prone to bugs than

others, especially for beginner programmers. For example, students might have more trouble with

loop conditions than with simple assignments. Thus the first feature we consider is the syntactic

category of a node. This feature is categorical, using syntax tree labels such as Return or Import

for statements and Variable or Application for expressions.

Expression Size (Static)

This numeric feature counts the number of descendents in each subtree. Our intuition is

that larger, complex expressions may be more fault prone.

Type (Dynamic)

We observe that some types may be inherently suspect, especially for beginner-written

code. For example, there are few reasons to have a variable of type NoneType in Python. This

categorical feature includes all basic Python types (int, tuple, etc.) and three special values:

Statement for statements, Unknown for expressions that are never evaluated, and Multiple for

expressions which are evaluated multiple times in a trace and change type.

Slice (Dynamic)

The goal of this feature, roughly equivalent in purpose to the type error slice in

NATE [SSC+17], is to help eliminate terms that cannot be the source of the crash. We compute

a dynamic program slice [KL88]: a set of terms that contributed at runtime to the observed

23

exception. This boolean feature encodes whether the term is a member of the slice. Our slicing

algorithm is discussed further in Section 3.2.3.

Crash Location (Dynamic)

We observe that the precise term raising the exception is frequently useful for understand-

ing and fixing the bug. This boolean feature flags the exception source.

Exception Type (Dynamic)

The type of error thrown is useful for localization. For example, every division term may

be more suspicious if the uncaught exception is DivisionByZero. We encode the exception type

categorically.

Local contextual features

Our BOAT representation, like term frequency vectors in general, does not include

contextual information such as ordering. However, the meaning of an expression may depend on

its context.

As an example, consider the 0 terms in both x = 0 and x / 0. Both instances of 0 have

the same syntactic form, size, type, etc. We may prefer to implicate the 0 in x / 0 as suspicious,

especially for beginner-written programs, but cannot distinguish it without surrounding contextual

information. Structures like abstract syntax trees and control flow graphs capture such contextual

information, but are not immediately applicable to machine learning.

We desire to encode such information while retaining the use of scalable, accurate, off-

the-shelf machine learning algorithms that operate on feature vectors. We thus embed contextual

information in a vector, borrowing insights from standard approaches in machine learning. We

associate with each term additional features that correspond to the static and dynamic features of

its parent and child nodes. For representational regularity, we always model three children; terms

24

without parents or three children are given special values (e.g., zero or NotApplicable) for those

contextual features.

Global contextual features

We hypothesize that advancing novices will both use a wider range of Python syntax and

face different kinds of errors. We thus add boolean features indicating which node types appear

anywhere in the program. These features will be sparsely populated for all nodes in simpler

programs, and densely populated in programs using richer language features.

3.2.3 Dynamic Slicing Algorithm

Slicing information can help our model avoid implicating irrelevant nodes in the fault

localization. Program slicing is a well-studied field with many explored tradeoffs (e.g., see Xu

et al. for a survey [XQZ+05]). We desire a slicing algorithm that can be computed efficiently

(to scale to hundreds of thousands of instances) yet will admit high accuracy: we achieve this

by focusing on features relevant to beginner-written programs. We follow the basic approach

of Korel and Laski [KL88, KL90], building a graph of data and control dependencies. We then

traverse the graph backwards, starting at the execution step where the error occurred, to collect

the set of terms that the excepting line transitively depended on. This excludes lines that could

not have caused the exception, such as lines that never ran, or lines that had no connection to the

step where the exception happened.

Figure 3.1 is an example of the input and output of the slicing algorithm. The slicer takes

as input a python source string and a list of inputs, to be fed into the program whenever input()

is invoked. The slicer outputs the program elements included in the slice.

The slicer proceeds by creating an execution trace of the example program. At each

execution step the trace includes the line number being run and the state of the heap and variables.

In the example in Figure 3.1, lines 1,2,3,4 and 8 are executed. It then iterates forward through

25

1 x = input() # 42
2 if x < 20:
3 y = 5
4 z = 123
5 else:
6 y = 0
7 z = 321
8 assert(y != 0)

(a) Pre-Slicing

1 x = 42
2 if x < 20:
3
4
5 else:
6 y = 0
7
8 assert(y != 0)

(b) Post-Slicing

Figure 3.1: A program being sliced (left) and the resulting slice (right) with respect to the
assertion on line 8.

1 x = input() # The user inputs 0
2 if x != 0:
3 x = 1
4 print("One over your number is: %d" % (1 / x))

Figure 3.2: In this program, the programmer intended the placeholder assignment (x = 1) to
be used in case the user inputs 0. The defect is that the incorrect condition (x != 0 rather than
x == 0) was employed. However, the condition expression will not be included in the slice
(which would include lines 1 and 4), because the presence of the conditional does not affect the
behavior of the program.

the trace, recording which execution steps have a define-use relation, and which execution steps

have a test-control relation. The define-use relation is between a step where the value of a variable

is used, and the step where that variable was last defined. In Figure 3.1, a define-use relationship

exists between lines 1 and 2 and between 3 and 8. A test-control relation is between the execution

of a control flow statement and any statements that were run as a result of it. In Figure 3.1, a

test-control relationship exists between the if statement at line 2 and the assignments on lines 3

and 4. After building up these relations, the slicer starts at the execution step causing an exception

(the execution of line 8), and builds the exception’s set of dependencies by iteratively adding to

the set any step that has a define-use or test-control relationship with a step already in the set.

Finally, the algorithm maps all of the execution steps to their corresponding program element

locations and returns the result.

Dynamic slicing involves an unavoidable tradeoff between unsoundness and over-

26

1 while true:
2 x = input()
3 if x != 0:
4 break
5 print("One over your number is: %d" % (1 / x))

Figure 3.3: In this example, the programmer attempts to handle invalid input by exiting the
loop. Our slicer records that line 5 has a control dependency on the condition on line 3, correctly
placing the buggy condition in the program slice.

approximation. For example, when the condition of an if statement is not met and so the

code it guards is not run, we exclude the entire if block from the slice, choosing unsoundness

(because the bug may indeed be in the if condition) instead of over-approximation (for example,

including every control-flow condition in the slice). Thus if the bug is in the condition, our

dynamic slice will miss it because the very defect we are trying to localize causes the conditional

statement and its body to become irrelevant (see Figure 3.2). We observe that one common case

this strategy fails is the “early break” case (Figure 3.3). We thus check if a break, return, or other

statement for escaping structured control flow is present inside of a conditional statement, and

add dependencies in the dependency graph between the enclosing conditional and the statements

that would have been skipped by the break or return. While this heuristic is effective in practice,

it does not overcome all related problems: we thus treat slice information as one of many features

rather than as a hard constraint.

3.2.4 Machine Learning Model Generation

To apply machine learning, we first formulate the problem as a standard binary classifica-

tion problem. For each term in a buggy program, we extract the features described in Section 3.2.2,

and we assign it a label representing whether it should be blamed (see Section 3.3.2). We represent

all features numerically by performing one-hot encoding on categorical features.

We choose to work with random forest models [Bre01], which train groups of decision

trees, to balance accuracy with scalability to our large dataset. Each decision tree is a binary

27

tree of simple thresholding classifiers. At each node, the training procedure chooses a feature,

and then directs each incoming sample to one of its two children by comparing that feature to

the chosen threshold. The feature and threshold are chosen to minimize the impurity of the two

resulting partitions (e.g., measured by the Gini index [Bre17] or entropy [Qui86]). To mitigate

overfitting, this process stops when the number of samples reaching a node is too small or the tree

has grown too deep. When a test sample reaches a leaf of the tree, the model’s prediction is based

on a majority vote of the labels of the training samples that reached that leaf, with confidence

determined by the proportion of training samples that agree with it. Decision trees scale well to

large datasets and can learn non-linear prediction rules [Qui14, Qui86, Bre17].

Decision trees are prone to overfitting. To mitigate this problem, each tree in a random

forest is trained on a subset of the data and a subset of the features. The prediction and confidence

of the model as a whole is a weighted average of the predictions and confidences of the individual

trees. Random forests thus trade some of the low computational cost of a plain decision tree for

additional accuracy. We use 500 trees, each with a maximum depth of 30. Other parameters use

the default SCIKIT-LEARN [PVG+11] settings.

Training methodology Given feature vectors describing every term of every program in

our dataset, we train a model on a random 80% of the data and report the model’s performance

on the remaining 20%. To avoid inappropriate duplication between testing and training data,

programs by the same user are always assigned together to either training or testing. We report

the average of five such 80–20 splits. Each trained model takes in a feature vector representing

a single term in a buggy program, and returns a confidence score representing how likely it is

that the term was one of the terms changed between the fixed and buggy programs. We treat the

model as providing a ranking over all terms by confidence. For a given k, we score the model

based on Top-k accuracy: the proportion of programs for which a correct answer (i.e., a term that

was actually changed historically) is present in the top k results. This is an imbalanced dataset in

that non-buggy terms are much more common than buggy terms, so during training we re-weight

28

to the reciprocal of the frequency of the corresponding class.

3.3 Evaluation

We conducted both a large-scale empirical evaluation of PABLO and also a human study

to address these research questions:

RQ1 Do our localizations agree with human judgements?

RQ2 Which model features are the most important?

RQ3 How well does our algorithm handle different Python errors?

RQ4 Is our algorithm accurate on diverse programs?

RQ5 Do humans find our algorithm useful when multiple lines need to be edited?

3.3.1 Dataset and Program Collection

Our raw data consist of every Python 3 program that a user executed on PythonTu-

tor.com [Guo13] (not in “live” mode) from late 2015 to end of 2018, other than those with syntax

errors or undefined variables. Each program which crashes (throws an uncaught Python exception)

is paired with the next program by the same user that does not crash, under the assumption that

the latter is the fixed version of the former. We discard pairs where the difference between

crashing and fixed versions is too high (more than a standard deviation above average), since

these are the most likely to be violations of that assumption (e.g. the program that does not crash

is an unrelated submission or a complete refactoring, rather than a bug fix). We also discard

submissions that violate PythonTutor’s policies (e.g., those using forbidden libraries).

To balance ease of prototype implementation against coverage for beginner-written pro-

grams, we also restrict the dataset to programs written in a simpler subset of Python, excluding

29

programs that use the following more complicated features:

• Assignments where the left hand side is not a variable or a simple chain of attribute indexing

or subscripting

• Assignments where attribute indexing or subscripting on the left hand side means something

other than the default, (e.g., if the operations are overridden by a class)

• Lambda, generator and starred expressions

• Set and dictionary comprehensions

• Await, yield, and yield from

• Variable argument ellipsis

• Coroutine definitions and asynchronous loops

• Delete, with and raise statements

Ultimately, the dataset used in this evaluation contains 985,780 usable program pairs,

representing students from dozens of universities (PythonTutor has been used in many introductory

courses [Guo13]) as well as non-traditional novices.

3.3.2 Labeled Training and Ground Truth

Our algorithm is based on supervised machine learning and thus requires labeled training

instances — a ground truth notion of which terms correspond to correct fault localizations.

We use the terms changed in fixes by actual users as that ground truth. Many PythonTutor

interactions are iterative: users start out by writing a program that crashes, and then edit it until

it no longer crashes. Our dataset contains only those crashing programs for which the same

user later submitted a program that did not crash. We compute a tree-diff [LLL09] between

30

the original, buggy submission and the first fixed submission. For example, if the expression

len({3,4}) is changed to len([3,4]), then the node in the tree corresponding to the set {3,4}

as a whole will appear in the diff (since it has been changed to a list), but neither its parent node

(the enclosing len call) nor its children nodes (the integer literals) will appear since they were

not changed.

We define the ground truth correct answer to be the set of terms in the crashing program

that also appear in the diff. We discuss the implications of this choice in Section 3.3.9.

Given that notion of ground truth, a candidate fault localization answer is accurate if it is

contained in the ground truth set. That is, if the human user changed terms X and Y , a technique

(either our algorithm or a baseline) is given credit for returning either X or Y . A ranked response

list is top-k accurate if any one of the top k answers is in the ground truth set.

For the overall accuracy experiments (Section 3.3.3), we employ a random forest as our

machine learning algorithm, finding it to provide the best accuracy on our dataset with a scalable

training and testing time. For the remaining experiments we use decision trees for increased

training speed.

3.3.3 RQ 1 — Fault Localization Accuracy

We train random forests and compute their Top-1, Top-2, and Top-3 accuracy. For a

baseline we compare to the standard Python interpreter, i.e., blaming the expression whose

evaluation raises the uncaught exception. For fairness, we modify the Python interpreter to

report expressions instead of its default of whole lines (see Section 3.2.1). We discuss other fault

localization approaches and why they are not applicable baselines for our setting in Section 3.4.

As shown in Figure 3.4, PABLO produces a correct answer in the Top-1, Top-2, and Top-3

rankings 59%, 70%, and 77% of the time (to two significant figures). The expression blamed by

the Python interpreter is only changed by the user 45% of the time.

Thus, our most directly-comparable model (Top-1), significantly outperforms this baseline.

31

Baseline Top-1 Top-2 Top-3
0

0.2

0.4

0.6

0.8

M
od

el
A

cc
ur

ac
y

Figure 3.4: Fault localization accuracy. Baseline is the normal Python interpreter, and the Top-k
bars represent our approach. The strong performance of our algorithm on a large, real-world
dataset is the primary result of this chapter.

Users who are only willing to look at a single error message would have been better-served by

our Top-1 model on this historical data. In addition, previous studies have shown that developers

are willing to use very short ranked lists [PO11, Sec. 5.6], but not voluminous ones. Our Top-3

accuracy of 77% dramatically improves upon the current state of practice for scalable localization

in Python.

3.3.4 RQ 2 — Feature Predictive Power

Having established the efficacy of our approach, we now investigate which elements

of our algorithmic design (Section 3.2) contributed to that success. Table 3.1 summarizes the

relative importance of the top features in our model. The features are ranked by their Gini

importance (or mean decrease in impurity), a common measure for decision tree and random

forest models [Bre01]. Informally, the Gini importance conveys a weighted count of the number

of times a feature is used to split a node: a feature that is learned to guide more model classification

decisions is more important. Similarly, Table 3.2 gives an alternate view of the relative feature

importances, as measured by a standard analysis of variance (ANOVA). In both cases, we find

32

Table 3.1: Feature predictive power (for a Top-3 Decision Tree learned on the entire dataset).
Parent and Child1–3 refer to the parent and first three children of the node in question.

Name Category Gini Importance
Parent size Contextual (Syntactic) 0.112
Child3 is statement Contextual (Syntactic) 0.061
Parent is list literal Contextual (Syntactic) 0.055
Program crashes here Dynamic (Error location) 0.039
Type is unknown Dynamic (Type) 0.037
Parent type is unknown Contextual (Type) 0.037
Err message is IndexError Dynamic (Error message) 0.033
Size Syntactic 0.028
Parent is dictionary Contextual (Syntactic) 0.027
Child1 size Contextual (Syntactic) 0.024
Is variable Syntactic 0.020
Child1 type is unknown Contextual (Type) 0.020

Table 3.2: Feature predictive power as measured by ANOVA. The F-score is shown in thousands
to two significant figures; all p-values are less than 0.01. Parent and Child1–3 refer to the parent
and first three children of the node in question.

Name Category F-score
Child3 is statement Contextual (Syntactic) 69
Size Syntactic 63
Program crashes here Dynamic (Error location) 50
Parent type is list Contextual (Type) 36
Child1 type is bool Contextual (Type) 30
Parent type is unknown Contextual (Type) 28
Child1 is expression Contextual (Type) 25
Child3 size Contextual (Syntactic) 20
Child1 is binary or unary op Contextual (Syntactic) 20
Child1 size Contextual (Syntactic) 18
Parent type is dictionary Contextual (Type) 17
Type is string Dynamic (Type) 12

33

No TypesNo Context No Syntax
0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

M
od

el
A

cc
ur

ac
y

Figure 3.5: Normalized accuracy when categories of features are removed, based on Top-1
decision trees on a random subset of 20,000 program pairs, as compared to a Top-1 decision
tree trained on all features.

that a mixed combination of static, dynamic, and contextual features are important: no single

category alone suffices.

To support that observation, we also present the results of a leave-one-out analysis in

which entire categories of features are removed and the model is trained and tested only on

those that remain. Figure 3.5 shows that when the model is trained without typing, syntactic, or

contextual features, the model’s accuracy drops by 14%, 15%, and 19% respectively. In addition,

we note that leave-one-out analyses underestimate importance in cases of feature overlap. For

example, if a small program contains a string bug but only a few string variables, both type

information and slice information may implicate similar terms.

We generally conclude that syntactic, dynamic, and contextual features (i.e., the design

decisions of our algorithm) are crucial to our algorithm’s accuracy.

Discussion of top features. Some of the specific features appearing in Table 3.1 and

Table 3.2, such as “program crashes here” and features related to term size, are fairly direct.

Others, such as “Child3 is statement”, a contextual, syntactic feature that was found to be very

important, merit additional explanation. In practice, we found it to encode complex control

34

structures, like large loops, where fixing the crash often involved adding or removing whole

statements from the loop. In contrast, features that determine if the parent node is a list or

dictionary are relevant as strong negative features: we find that fixing bugs in beginner-written

Python rarely requires changing the elements of a list or dictionary literal. Finally, we note the

importance of our Unknown type feature for expressions that are never successfully evaluated

in the given trace. The “Parent type is unknown” feature seems to help in the case where the

bug is in an immediate child of the node that actually crashes. For example, if the programmer

writes x[i] when it should have been x[i-1] and this causes an IndexError (array index out of

bounds), then the bug is in the index i, and its parent’s type is unknown because it is the node

that crashed.

3.3.5 RQ 3 — Defect Categories

We investigate the sensitivity of our algorithm to different categories of Python errors:

does PABLO apply to many kinds of novice defects? We investigate training and testing Top-1

decision trees on only those subsets of the dataset corresponding to each of the five most common

uncaught exceptions: TypeError, IndexError, AttributeError, ValueError, and KeyError.

Together, these five exceptions are the most common faced by our novices, making up 97% of the

errors in our dataset (54%, 23%, 11%, 7%, and 3%, respectively).

As shown in Figure 3.6, these per-defect models have normalized accuracy between

86% and 115% of a comparable model trained on the dataset as a whole. This shows that our

algorithm is robust and able to give high-accuracy fault localizations on a variety of defect types.

Having consistent, rather than defect-type-sensitive, performance is important for debugging-tool

usability [PO11, BBC+10, AP10].

35

Index Value Key Type Attribute
0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

M
od

el
A

cc
ur

ac
y

Figure 3.6: Accuracy when a Top-1 decision tree is trained and tested on only the data exhibiting
the error on the x-axis, as compared to a Top-1 decision tree on all the data.

3.3.6 RQ 4 — Diversity of Programs

To demonstrate that our evaluation dataset is not only larger but also more diverse than

those used in previous work, we compare the diversity of programs used here to those in a relevant

baseline. The NATE algorithm [SSC+17] also provides error localization using a machine-

learning approach, and its evaluation also focused on beginner-written programs. However, NATE

targets strongly statically typed OCaml programs: submissions to just 23 different university

homework problems. Such a dataset is comparatively homogeneous, raising concerns about

whether associated evaluation results would generalize to more diverse settings. In contrast,

in our PythonTutor dataset, users were not constrained to specific university assignments. We

hypothesize that the data are thus more heterogeneous. To assess this quantitatively, we used

agglomerative clustering to discover the number of “natural” program categories present in both

our dataset and the NATE dataset. Datasets with more natural program categories are more

heterogeneous.

36

Distance Metric

Many clustering algorithms depend on distance metrics. To measure the distance between

programs, we flattened their ASTs into strings of tokens, and then computed the Levenshtein

edit distance [Lev66]. We do not compute an AST distance directly since that is less tractable

on our large dataset (i.e., cubic [PA16] instead of Levenshtein’s quadratic [WF74]). Levenshtein

distance is not a good absolute measure of program diversity since similar programs can have

different tree structures, but it does show comparative diversity.

The flattening process, which is based on standard approaches for tree-structured

data [Cau], is defined recursively: the string for an AST begins with a unique token corre-

sponding to the AST node type, which is followed by the concatenation of the transformations

of the tree’s subtrees. The string ends with an “end” token to denote the end of the tree. This

embeds information related to the tree structure of the AST in the flattened string.

Clustering Algorithm

We performed agglomerative clustering on the datasets of flattened programs [Mül11]:

every datapoint starts in its own cluster, and the two closest clusters are merged until there

are no clusters that differ by less than some threshold. We used a single linkage approach in

which the distance between clusters is the minimum distance between their elements. To account

for differences between Python and OCaml, we z-score nodes against not only others at the

same tree depth, but also against others one or two levels below [Zah71]. This makes cluster

counts at each threshold value comparable. Our implementation uses the standard SCIPY library

(scipy.cluster.hierarchy.fcluster with the inconsistent method).

Figure 3.7 compares the NATE dataset to a random sample of equal size from our dataset.

At a high level, the structural similarity in the graphs confirms the comparability of cluster counts

between the two datasets. For all values of the inconsistency threshold, there are at least 48%

more clusters in our sample than in the OCaml dataset. This suggests that our dataset contains a

37

0 0.2 0.4 0.6 0.8 1 1.2

0

1,000

2,000

3,000

4,000

Clustering threshold parameter

#
of

na
tu

ra
lly

oc
cu

rr
in

g
pr

og
ra

m
cl

us
te

rs

Our Python data
NATE OCaml data

Figure 3.7: Number of natural program clusters in the NATE dataset and in a random sample of
our dataset of the same size, as a function of clustering parameter (informally, how “strict” or
“tight” the clustering is). At all points our dataset demonstrates greater diversity.

more diverse set of programs. We are not claiming any advances in clustering accuracy in this

determination (indeed, scalability concerns limited us to coarser approaches); instead, our claim is

that even with simple clustering, it is clear that our dataset contains a greater diversity of programs,

even when controlling for size, than were considered by previously-published evaluations. We

view it as an advantage of our algorithm that it can apply to many different program categories.

3.3.7 RQ 5 — Multi-Edit Bug Fixes

In addition to the automated metrics described above, we also evaluate PABLO in an IRB-

approved human study. We selected 30 programs at random from the PythonTutor dataset, and

presented each with 3 highlighted lines representing the Top-3 output of PABLO (see Figure 3.8).

For this study we worked at the granularity of lines rather than of expressions to simplify the

presentation of three distinct and non-overlapping localizations for comparison. Each participant

was shown a random 10 of these annotated-program stimuli and asked, for each highlighted line,

whether it “either clarifies an error’s root cause or needs to be modified?” Not all participants

38

Fi
gu

re
3.

8:
A

n
ex

am
pl

e
st

im
ul

us
fr

om
th

e
us

er
st

ud
y.

39

1 def devowel(word):
2 w_list = list(word)
3 vowels = ['a', 'e', 'i', 'o', 'u']
4 for letter in w_list:
5 if letter in vowels:

6 w_list = w_list.remove(letter)
7 return ''.join(w_list)
8 print(devowel('foobar'))

Figure 3.9: A program with a bug on line 6: remove edits in place and returns None

answered all questions, but we were able to use data from 42 participants in our analyses.

Overall, participants find the first and second lines from PABLO useful 75% and 28% of the

time; at least one of PABLO’s top three is useful 84% of the time. On the other hand, participants

find the line indicated by Python’s error message helpful only 77.3% of the time. That is, the

output of PABLO outperforms vanilla Python by 6.5% (p = 0.018, two-tailed Mann-Whitney

test).

When considering only the 14 programs with complex bugs where the original novice

programmer made edits to multiple lines, humans find PABLO even more helpful; PABLO’s first

and second lines are helpful 79% and 36% of the time, and at least one of the top three is useful

89% of the time. We observe that multi-edit bugs are quite common, accounting for almost half

the bugs in our data set. For these complex multi-edit bugs, the Python interpreter alone provides

novices limited support while PABLO provides additional useful information more than one-third

of the time.

3.3.8 Qualitative Analysis

We now highlight a few indicative localization examples in detail to demonstrate how

our algorithm accurately localizes faults. These examples are simplified slightly for presentation

and to protect the anonymity of the programmers, but they retain the essential character of the

originals from our dataset.

40

1 areaCodes = [800, 555]

2 for i in range(0, len(areaCodes) + 1):
3 print(areaCodes[i])

Figure 3.10: A program with an off-by-one bug on line 2.

NoneType. The function in Figure 3.9 attempts to remove all vowels from a given word.

However, the assignment on line 6 actually replaces the entire word with None, because the

remove method modifies the list in place and does not have a return value (i.e. returns None).

The user-corrected version forgoes the assignment and just calls w_list.remove(letter).

In the buggy case, Python does not crash until line 7, where its message is the somewhat-

misleading TypeError: can only join an iterable. However, PABLO flags the correct

statement, based on the features that it is an assignment statement whose second child has type

NoneType. This captures the intuition that there is rarely a good reason to assign the value None

to a variable in novice programs.

Note that PABLO uses both the syntactic form of the statement (an assignment) and the

dynamic type of one of its children, so all our feature categories — syntactic, dynamic, and

contextual — were useful here.

Off-by-one bugs. In Figure 3.10, the programmer incorrectly adds one to the high end of

a range, causing an IndexError: list index out of range on line 3 during the final iteration

of the for-loop. The correct expression to blame is the addition len(areaCodes) + 1. Some of

the features PABLO uses to correctly localize this bug include that the error is an index error, the

type of the parent, and the fact that it is an addition expression. This example also highlights the

use of all three categories of features simultaneously to capture a notion of root cause that more

closely aligns with human expectations.

41

3.3.9 Threats to validity

Although our evaluation demonstrates that our algorithm scales to accurately localize

Python errors in large datasets of novice programs, our results may not generalize to all use cases.

Overfitting. Since our algorithm makes use of supervised machine learning, one threat

to validity is overfitting (i.e., learning a model that is too complex with respect to the data and

thus fails to generalize). We mitigate this threat by using random forest models, as discussed in

Section 3.3.2.

Language choice. We have only demonstrated that our technique works for Python 3. We

hypothesize that it should apply to similar dynamically-typed languages, such as Ruby, but such

evaluations remain future work. We mitigate this threat slightly by focusing on a subset of Python

which does not include relatively “exotic” features such as generators, yield, and coroutines that

may not always be present in other languages.

Target population. Unlike many classroom studies of students, we have less information

about the makeup of our subject population. The general popularity of PythonTutor is an

advantage for collecting a large, indicative dataset, but it does mean that we have no specific

information about the programmers or the programs they were trying to write. In general, while

the website is used by many classes, most of the users appear to be non-traditional students; our

results may apply most directly to that population.

Ground truth. The size of our dataset precluded the manual annotation of each buggy

program. Instead, we used historical successful edits from actual users as our ground truth notion

of the desired fault localization. This has the advantage of aligning our algorithm with user

intuitions in cases where there are multiple logically-consistent answers (see Section 3.1), and

thus increasing the utility of our tool. However, this definition of ground truth may be overly

permissive: the next correct program in the historical sequence may not contain a true bug fix

at all (as an extreme example, the user may have just deleted the whole program, which would

count as a fix since the blank program does not crash), or it may contain both a true bug fix and

42

also additional spurious changes beyond those strictly needed to fix the bug. We mitigate this

threat by discarding as outliers program pairs that had very large relative changes.

3.3.10 Evaluation Summary

PABLO is helpful, providing high-accuracy fault localization that implicates the correct terms

59–77% of the time (for Top-1 to Top-3 lists, compared to the baseline Python interpreter’s

45% accuracy) and outperforming the baseline (p = 0.018). PABLO is general, performing

similarly on the top five exceptions that make up 97% of novices crashes, and providing

additional helpful information for multi-line fixes 36% of the time (compared to the baseline

Python interpreter’s 0%).

In addition, we investigated our algorithm’s design decisions, finding that all our categories

(i.e., static, dynamic, and contextual) were critical, and we analyzed the dataset to determine that

it was more heterogeneous than that of related work. Our evaluations involved over 980,000 pairs

of beginner-written Python programs as well as a direct human study of 42 participants.

3.4 Related Work

Broadly, the two most relevant areas of related work are software engineering approaches

to fault localization (typically based on dynamic test information) and programming languages

approaches to fault localization (typically based on static type information). Fault localization

has only increased in relevance with the rise of automated program repair [Mon18, LNFW12,

NQRC13], where many techniques depend critically on accurate fault localization [QMLW13].

A significant body of work in fault localization follows from the Tarantula project [JH05].

Jones et al. proposed that statements executed often in failing test runs but rarely in successful test

runs were likely to be implicated in the defect. Such spectrum-based approaches gather coverage

43

or other dynamic information and rank statements by a mathematically-computed suspiciousness

score. Subsequent algorithms such as Pinpoint [CKF+02] or Ochiai [AZG06] have improved

upon Tarantula in various ways. For example, the Cooperative Bug Isolation approach gathers

richer dynamic information (i.e., invariants) and also combines information from multiple end-

user sources [LNZ+05]. Spectrum-based fault localization has been the subject of significant

empirical evaluation [AZGvG09]. Research on spectrum-based methods continues to this day,

with refinements, and even optimality results, to the associated mathematical formulae [YXK+17].

Projects like Multric [XM14] have used machine learning to combine these spectrum-based

suspiciousness scores based on empirical data, and Savant [BLLLGG16], TraPT [LZ17], and

FLUCCS [SY17] refine this process by also using, respectively, inferred invariants, mutation

testing, and code metrics like age and churn. CrashLocator [WZCK14] computes suspiciousness

scores without needing positive test cases, but it requires a large suite of crashing cases as well as

an oracle that groups crashes by similarity.

PABLO shares the overall goal of spectrum-based fault localization: pinpointing suspicious

statements to reduce debugging effort. However, where spectrum-based approaches traditionally

focus on industrial-scale programs, we target beginner-written software. Spectrum methods

require multiple test cases (ideally very many of them); we use just one program execution and

our work is aimed at novices who may not even be familiar with the notion of test suites. Spectrum

methods focus heavily on dynamic features; we make critical use of syntactic, contextual and

type information as well. Indeed, the machine learning based approaches above use features that

are entirely disjoint from ours and inapplicable in our setting, with the sole exception of the code

complexity metrics of FLUCCS. Unlike spectrum features, many of our features have no obvious

connection to faultiness, so our surprising positive result is that we can still use these features

to localize faults in our domain. In addition, some human studies have focused specifically

on accuracy and expertise for fault localization [FW10, PCR+03, RBR05]; our decision to use

features to support novices is informed by such insights.

44

Zeller’s popular Delta Debugging algorithm [Zel99], interpreted generally, efficiently

finds a minimal “interesting” subset from among a large set of elements. When the set of elements

represents changes made to a source code version control system and interesting is defined

with respect to failing a test suite, it can quickly locate program edits that cause regressions.

Alternatively, when considering correct and failing execution states, such approaches can help

focus on variable values that cause failures [CZ05]. While our dynamic slicing information can

be viewed as a coarse approximation to the precise, fine-grained localization such an approach

can provide, a key difference is our use of machine learning to agree with human judgments in

cases where multiple causes are equally logically valid.

In the programming languages community, a large body of work has focused on localizing

faults and providing better error messages, typically through the use of type information. In

[PKW14b], they localize multiple type errors by using a MaxSMT solver to find a minimal set of

typing constraints that must remain unsatisfied. By adding weights to the constraints, they can

customize what “minimal” means, allowing some constraints to have higher weight or even be

“hard” constraints with infinite weight. For example, constraints corresponding to library function

declarations should be hard because the bug is presumed not to be in the current code rather than

the library definitions. Similarly, Seminal [LGC06] uses enumerative search to find a minimal set

of expressions with incompatible types, and SHErrLoc [ZM14] identifies a set of incompatible

type constraints, then chooses the likely type error using the Bayesian heuristic that the program

is probably mostly correct. In PABLO we rely on the complementary heuristic that faults will

share characteristics with previously recorded faults, and apply this heuristic to features beyond

just type information. Mycroft [LCSS16] modifies existing type inference algorithms to produce

a “correcting set” for a program with a type error. Mycroft assumes that the minimal such set is

the most desirable to the user, and has no way to rank multiple equally small sets. We instead use

machine learning to agree with human judgements.

PABLO is most directly inspired by the NATE [SSC+17] system, which introduced the

45

notion of training classifiers over pairs of buggy-and-fixed programs, and uses machine learning

on static and contextual features to localize type errors in OCaml code. They generate a similar

dataset to ours by instrumenting an IDE to take snapshots of students’ code over time as the

students solve programming assignments. Then whenever the code does not compile due to a

type error, they treat the next version which does compile as the fixed version of that error.

However, this work was limited to purely functional OCaml programs where the static

type discipline was crucial in both restricting the class of errors, and providing the features that

enabled learning. In PABLO we employ a similar approach to localize Python faults, but we use

dynamic features as well as static and contextual ones, we handle a variety of errors beyond type

errors, and we evaluate our approach on a set of programs far more heterogeneous and more than

two orders of magnitude larger.

3.5 Conclusion

We present an approach for accurately localizing novice errors in off-the-shelf, beginner-

written Python programs. Our approach uses a combination of static, dynamic and contextual

features. Static features, such as syntactic forms and expression sizes, are a particularly powerful

heuristic for novice programmer defects. Dynamic features can both implicate relevant terms and

rule out irrelevant program regions. Contextual features allow our approach to gain the benefits of

precise AST- or CFG-style information while retaining scalable performance. We use off-the-shelf

machine learning to accurately combine those disparate features in a way that captures and models

human judgments of ground-truth correct answers — a notion that is especially relevant when

multiple program locations are equally formally implicated but not equally useful to the user.

We desire an approach that is helpful, general and scalable. We evaluate our approach

with respect to historical defects and fixes. All feature categories (static, dynamic, and contextual)

were relevant to success, as measured by multiple analyses (Gini, ANOVA and leave-one-out).

46

Our evaluation demonstrates significant scalability and generality. Our 980,000 instances were

two orders of magnitude more numerous than similar related work and measurably more diverse;

we augmented our dataset with a direct human study of 42 participants. Ultimately, PABLO

was quite accurate, implicating the correct program location 59–77% of the time (compared to

the Python interpreter’s 45% accuracy), outperforming the baseline (p = 0.018) and providing

additional useful information 36% of the time (compared to Python’s 0%).

Acknowledgements for Chapter 3

This chapter, in full, is adapted from “PABLO: Helping Novices Debug Python Code

Through Data-Driven Fault Localization” in the proceedings of the 2020 Technical Symposium

on Computer Science Education (SIGCSE), by Benjamin Cosman, Madeline Endres, Georgios

Sakkas, Leon Medvinsky, Yao-Yuan Yang, Ranjit Jhala, Kamalika Chaudhuri, and Westley

Weimer [CES+20], as well as from an earlier version that was submitted for publication to

ESEC/FSE 2019. The dissertation author was the primary investigator and author of this material.

47

Chapter 4

Pyrite: Analytic Program Repair for

Python Novices

4.1 Introduction

In the previous chapter, we showed how to localize errors in novice Python programs. In

this chapter, we focus on repairing errors in novice Python programs instead of just localizing

those errors, in order to provide richer debugging hints than can be generated from error locations

alone. As in the previous chapter, there are two steps - finding repairs and then choosing how to

turn those repairs into appropriate debugging hints for novices - and we leave the second step for

future work.

We seek to repair novice programs in the setting where we do not have a testing suite or

indeed know at all what program the novice was trying to write. Thus techniques which require a

known program specification - whether to use other students’ bug fixes on that same problem

[HGS+17b], scale expert feedback by providing the same feedback to similar submissions

[HGS+17b], or compare submissions to known-good solutions [SGSL13b, GRZ18, WSS18] -

are not applicable here.

48

Instead, we extend the key insight from the previous chapter by hypothesizing that similar

errors will frequently have similar fixes, even if the errors occur in the context of very different

programs. We thus propose to repair programs by learning repairs from a dataset containing

examples of students fixing their own bugs. Proceeding similarly to the previous chapter and to

prior work [SEC+20], our system PYRITE:

1. takes as input a set of pairs of programs, each representing a program that crashes and the

fixed version of that program

2. computes a bag of abstracted terms (BOAT) [SSC+17] representation for each crashing

program. For each term that differs between the buggy and fixed programs, the label

now represents not only that it needs to be fixed but also the syntactic form of the fix

(Section 4.2.1).

3. trains two classifiers on these vectors - one to predict whether a term is changed, and one to

predict the syntactic form of that change

Then, given a new crashing program, PYRITE will

1. compute BOAT vectors for each AST node of the program

2. classify each vector to obtain the likelihood that each corresponding node is to blame for

the crash, and what syntactic forms are most likely to be correct fixes

3. use these predictions to synthesize potential program repairs, ranked by likelihood

We evaluate PYRITE on the the dataset used by PABLO (with a few changes discussed in

Section 4.3) - more than 980,000 programs from PythonTutor [Guo13]. We find that PYRITE can

generate repairs for 76% of these novice programs. Additionally, we evaluate the helpfulness of

our generated repairs in an IRB-approved user study with 41 participants. We find that in almost

half of the feedback PYRITE provides, users indicate that the feedback contains additional useful

information beyond that given by just the default error message of the Python interpreter.

49

4.2 Algorithm Overview

We present PYRITE, an algorithm for repairing novice Python programs that crash at

runtime. This algorithm extends PABLO by using machine learning models based on static,

dynamic, and contextual features to predict both which program terms need to be changed as

well as what the syntactic form of the changes should be (Section 4.2.1 and Section 4.2.2). We

then use an enumerative synthesis algorithm to create concrete repairs which are presented to the

programmer (Section 4.2.3).

4.2.1 Fix Templates

As in the previous chapter, we compute BOAT vectors for each term in the buggy program,

as well as a label representing whether the term is the error location. However in order to guide

repair synthesis, we now compute an additional label for buggy terms: the fix template. We desire

this label to be specific enough to guide synthesis, yet general enough that we can learn patterns

without overfitting. We expect that syntactic patterns will generalize well, but the exact edits

will not. For example, if a student fixes a program by replacing a misspelled variable with its

correct spelling, that exact text diff may be unique in the dataset, but the pattern of replacing an

(undefined) variable with another variable will likely recur.

Following prior work [SEC+20], we thus use Generalized Abstract Syntax Trees (GASTs)

as our labels. The GAST for a given program term is like the normal AST representing that term,

except that it is generalized in the following ways:

• All concrete variables a,b,c, etc are abstracted to a single generalized variable x̂. Similarly,

each of the following categories is abstracted to a single generalized member: literals, unary

operators, binary operators, field names, module names, and function names.

• For tuples, lists, and all other nodes that admit an arbitrary number of children, we remove

all such children after their first.

50

For example, the expression (a + b) - 1 would be represented by the template (x̂⊕

x̂)⊕ n̂. Additionally, to represent the pattern of reusing the old expression in the fixed one, we

add one more template orig - for example, if the user had changed (a + b) to (a + b) - 1,

then instead of using the template above we would use orig⊕ n̂. If a term is deleted entirely, the

repair template is the empty GAST.

4.2.2 Machine learning

We now train two machine learning models. The first corresponds to the localization

model from PABLO, while the second uses the same features to try to predict a conditional

probability: for a given location, given that it should be changed, what syntactic form (GAST)

will the change take according to our historical dataset? As in Chapter 3, we assume the existence

of a dataset of program pairs, where each pair consists of a buggy program (one that exhibits a

runtime crash) and a fixed version of that same program. (See Section 4.3 for how we construct

such a dataset.)

Features and labels. We compute a BOAT vector of syntactic, dynamic, and contextual

features for every statement and every expression in each buggy program, using the same features

as PABLO (Section 3.2.2), and we compute a tree-diff [LLL09] between the buggy and fixed

programs to label which terms changed between the two versions. However, for PYRITE we

change the labels in two ways.

Firstly, whenever a term and each of its subterms appear in the diff, we only consider

the larger term to have been changed, not the subterms. For PABLO’s error localization, we

considered implicating a changed subterm as still a success. This was because we assumed that

in the domain of localization, pointing to any part of a buggy term is enough to guide the user

towards fixing that term (and overall such design choices were validated by the user study in

Section 3.3 in which users found our localizations helpful). However for PYRITE, we seek to

repair the program. Assuming the historical user’s entire edit was necessary to repair the program,

51

0 10 20 30 40 50

20

40

60

number of labels

%
of

fix
es

Figure 4.1: Cumulative number of fixes described by the first n fix template labels.

then implicating a sub-expression of the changed term is not good enough since no repair to that

sub-term will repair the program as a whole.

Secondly, in addition to the boolean label from Chapter 3 indicating whether the term was

changed or not, we add a new label which has two parts:

1. The syntactic form of the new term, represented by a GAST (Section 4.2.1).

2. A boolean flag indicating whether the repair replaces the given term, or is instead an

insertion next to that term.

Predicting this new label is a multi-class classification problem. To prevent the number of classes

from being too large, we retain only the 49 most common labels observed in our dataset (which

account for 71.4% of the total - see Figure 4.1), and replace all labels rarer than those with a

special 50th label Other.

4.2.3 Repair Synthesis

In the previous sections, we discussed how we trained machine learning models on our

dataset to predict error locations and fix templates. We now describe how we use those models to

52

Table 4.1: The most common fix templates observed in the dataset.

Template Prevalence (%)
replace by variable 20.6

insert variable 8.8
replace by literal 8.6

insert literal 5.2
delete the term 4.4

insert assignment of literal to variable 2.4
insert function call on one variable 1.7

guide repair synthesis for a new buggy program.

Given a new buggy program, we first extract BOAT vectors for every expression and

statement in the program, as in the training phase. However, these vectors do not have labels -

either error locations or fix templates - since we do not have a fixed version of the program to

derive those from. Instead, we run our two machine learning models on the unlabeled vectors to

get, for each vector, a confidence score representing how likely that program location is implicated

in the bug, as well as a list of predicted fix templates representing the most likely ways that

location could be repaired.

Synthesis proceeds as follows. First, we list the 5 outputs of the localization model with

the highest confidence. For each of those potential fix locations, we list the top 6 outputs of the fix

template model. Now for each of these 30 location/template pairs, we enumerate program terms

that match the template. Note that there are frequently impractically many or even infinitely many

possible terms matching a single fix template. In particular, the template representing a single

abstract variable could be instantiated with any concrete identifier (both those defined in the code

and those defined by Python itself), and the template for a single literal could be instantiated with

any concrete literal of the appropriate type. For variables and literals, we thus construct a finite

list of terms to try by gathering options from two sources: we try all variables or literals that were

used in the buggy input program itself, and also the 20 most common variables/literals that appear

in all fixes in our training set. (For the list of variables commonly used in fixes, see Table 4.2.)

53

Table 4.2: The most common variables appearing in historical fixes from the training set.
Frequency is measured relative to the most common (len), so e.g. the variable x appears in
around a quarter as many historical fixes as len does. All of these are Python built-in function
names, except for the common user-defined variable names i and x.

Identifier Relative Frequency
len 1
range .91
str .73
int .73
print .68
append .62
list .34
i .29
x .26
input .26

We filter the potential patches enumerated above to actual repairs by using each one to

patch the program and then checking if the program still crashes when run (with either the old

exception or any new one). Additionally, repairs are rejected if the resulting program does not

call all user-defined functions, under the heuristic that with short, novice-written programs, any

function the user wrote is one they intended to call, and so a repair that does not call them is

likely a false fix (e.g. deletes buggy code or redirects control flow around it, rather than fixing it -

see Section 4.3).

All remaining repairs do cause the program to run without crashing, but some may better

match programmer intent than others, and thus may be more useful as debugging hints. To select

the repairs most likely to align with human judgement, we thus sort the set by the size of the

tree-diff [LLL09] between the buggy version and our patched version, returning the smallest edits

first. This corresponds to the heuristic that the user’s existing code is mostly correct and matches

their intent.

54

4.3 Evaluation

We conducted both a large-scale empirical evaluation of PYRITE and also a human study

to address these research questions:

RQ1 Do we successfully synthesize repairs for bugs in novice Python programs?

RQ2 Do humans find our algorithm useful?

To answer the first question, we conducted a large-scale empirical evaluation of our tool

on the PythonTutor dataset, and to answer the second question, we conducted an IRB-approved

user study using sample of 30 programs from that dataset. Our raw data consist of the same

programs from Section 3.3, with two changes:

• We no longer exclude programs with undefined variables (Python’s NameError or Un-

boundLocalError). Excluding those errors turned out to be an unnecessary design decision

in PABLO.

• We now exclude program pairs where the fixed version does not call all user-defined

functions at runtime. We do this because empirically, such pairs very frequently correspond

to a “fix” that clearly does not match the programmer’s intent. For example, the original

code may at the top level just call a buggy function in a loop; changing the loop condition

such that the loop no longer runs even once and the function is never called will prevent the

program from crashing, but it does not truly repair the program.

4.3.1 RQ 1 — Success rate

We ran PYRITE on buggy programs from the testing data. As shown in Figure 4.2, overall

we were able to synthesize repairs for 76.1% of these programs; for the rest, the synthesizer either

terminated with no output or timed out (timeout set to 1 minute). In 9.4% of the programs where

55

Exact Match
7.2%

Other fix

68.9%

No fix

23.9%

Figure 4.2: We successfully synthesize repairs for 76% of input programs, occasionally produc-
ing the exact repair the historical student chose.

we were able to synthesize a repair, our repair was exactly the same as the one from the historical

dataset. We thus establish that in the vast majority of cases, we can successfully synthesize repairs

for novice Python programs.

4.3.2 RQ 2 — Helpfulness

Having established that we can usually find some repair, the next question is whether

those repairs are actually helpful to novices. To evaluate how helpful our synthesized debugging

hints are, we conducted an IRB-approved user study. We collected usable data from 41 partici-

pants, mostly evenly divided between computer science undergraduates, graduate students, and

professionals.1 All had at least 2 years of general programming experience, with a median of 6

years, and all but one had at least one semester of Python experience.

Each participant was shown a sequence of stimuli like the one in Figure 4.3. On the left

is the buggy program from our dataset, along with the input it was run on (if any). On the right

is the error message that the vanilla Python interpreter produces, along with a “debugging hint”

1The exact breakdown: 12 CS undergraduates, 2 other undergraduates, 13 CS graduate students, 12 professional
software developers, and 2 professional CS researchers or teachers.

56

Fi
gu

re
4.

3:
A

n
ex

am
pl

e
st

im
ul

us
fr

om
th

e
us

er
st

ud
y.

T
hi

s
ex

am
pl

e
sh

ow
s

a
re

as
on

ab
ly

go
od

re
pa

ir
ge

ne
ra

te
d

by
PY

R
IT

E
;o

th
er

pa
rti

ci
pa

nt
s

w
er

e
sh

ow
n

th
e

hi
st

or
ic

al
no

vi
ce

’s
re

pa
ir

in
st

ea
d,

w
hi

ch
w

as
th

e
sa

m
e

ex
ce

pt
it

us
ed

’_
’i

ns
te

ad
of

’a
’.

57

Table 4.3: Answer breakdown for stimulus question 5, representing 328 total responses for
PYRITE stimuli and 287 for historical user fixes.

Answer choice PYRITE (%) Historical fix (%)
location 8 3
content 20 43

both 17 42
neither 55 13

that is either a) the historical student’s fixed version of that program from our dataset, or b) the

output of PYRITE. For each stimulus, the user was asked about the helpfulness of the Python

error message and the debugging hint.

Participants’ answers to stimulus question 5 are summarized in Table 4.3. For comparison,

we show the answers for both PYRITE stimuli and for the actual historical fixes, but we note that

in a real deployment of a debugging assistance tool like PYRITE those historical fixes would not

be available, so those numbers represent a high bar rather than an obtainable baseline. Overall,

users found that PYRITE’s debugging hints provided additional useful information beyond that

contained in the vanilla Python interpreter’s error message 45% of the time (that is, any “yes”

answer to Q5). Additionally, in the vast majority of these cases (37% of the total), the hint

was helpful beyond merely providing a useful location, thus validating our decision to focus on

providing repairs instead of just PABLO’s error localization.

4.3.3 Qualitative Analysis

We conclude the evaluation by looking at two example stimuli from the human study.

Of the 30 programs examined in the study, Figure 4.4 shows the case where PYRITE

did the worst, completely failing to produce a useful hint. The historical student’s fix correctly

resolves the bug by removing the incorrect uses of “self.”. PYRITE, however, resolves the bug

by inserting a new line that sets counter to the empty string, thus preventing the buggy loop from

running at all. Thus while study participants rated the human repair to be quite helpful, 100%

58

1 counter = ['this', 'is', 'spot', 'see', 'spot', 'run']
2 count = {}
3 for item in counter:

4 self. count[item] = self. count.get(item, 0) + 1

(a) Original (buggy) program

1 counter = ['this', 'is', 'spot', 'see', 'spot', 'run']
2 count = {}
3 counter = ''
4 for item in counter:
5 self.count[item] = self.count.get(item, 0) + 1

(b) PYRITE suggested fix

1 counter = ['this', 'is', 'spot', 'see', 'spot', 'run']
2 count = {}
3 for item in counter:

4 count[item] = count.get(item, 0) + 1

(c) Historical student fix

Figure 4.4: An example from the user study where PYRITE performs poorly.

of study participants agreed that PYRITE’s repair was completely unhelpful (score 1 out of 5 on

questions 3 and 4).

Figure 4.5 shows a case where PYRITE does well. The buggy program on the left crashes

on line 2 because c is not defined in the math library. As c is defined by the programmer anyway

on line 9, PYRITE correctly resolves this bug by deleting the faulty import statement. Interestingly,

the historical student’s fix is less good: importing pi instead of c makes the program run, but since

pi is never used, it is better style to instead import nothing at all. Overall, user study participants

rated PYRITE’s fix here as better than the student’s one (an average answer on question 3 of

4.3 vs 2.4), though this difference was not statistically significant when controlling for multiple

comparisons.

59

1 from operator import (add, mul)

2 from math import c
3 a = add
4 b = mul
5 print(mul(2, 3))
6 mul = add
7 add = mul
8 print(mul(2, 3))
9 c = 52

(a) Original (buggy) program

1 from operator import (add, mul)
2 a = add
3 ...

(b) PYRITE suggested fix

1 from operator import (add, mul)

2 from math import pi
3 a = add
4 ...

(c) Historical student fix

Figure 4.5: An example from the user study where PYRITE performs well.

4.3.4 Threats to validity

As in Chapter 3, the size of our dataset precludes manually annotating the historical

programs or our generated repairs. Additionally, we do not have any specifications or test suites

with which to test our repaired programs, and we want to count as valid repairs more than just

the exact historical repair since guessing that exact repair is frequently both impossible and

unnecessary. For example, if a user resolved a type error by replacing a string literal with an

integer literal, it would be too high a bar to require PYRITE to guess the exact literal the historical

user chose, nor would doing so necessarily provide a better debugging hint than any other literal.

We thus consider as our ground truth that a program is repaired if it calls all user-defined functions

and does not crash. However this definition of ground truth will in some cases be too permissive,

as it can allow for repairs that, for example, prevent a program from crashing by changing a loop

condition so the buggy code block within the loop is never executed. We mitigate this threat

by also performing an IRB-approved human study where users confirmed that our repairs are

frequently helpful as well as merely preventing the program from crashing.

For other threats to validity, see Section 3.3.9.

60

4.4 Related Work

There is a large corpus of related work on program repair.

CLARA [GRZ18] and SARFGEN [WSS18] fix a buggy program by finding previous correct

implementations of that same program (for example, correct solutions to the same assignment

submitted by other students), and then using those to suggest repairs. Like PYRITE they thus

produce repairs which are likely to align with human judgement, but critically PYRITE can use

repairs learned from anywhere in the dataset, enabling it to repair a new buggy program even

if no correct version of that same program exists in the dataset. PYRITE is thus well suited for

environments outside the traditional classroom, where there are no other students’ submissions to

compare to.

TRACER [AKK+18] and RITE [SEC+20] are two of the most similar projects to ours.

TRACER uses recurrent neural networks to repair compile-time errors in C programs, and RITE

uses deep neural networks to repair (static) type errors in OCaml programs. However, PYRITE

is broader and somewhat complementary in scope: it handles a wide variety of runtime errors

rather than compile-time errors, it is thus able to obtain and use dynamic features as well as just

static ones, and we train and evaluate it on a large and extremely heterogeneous dataset (see

Section 3.3.6) instead of on homework assignments to a single class.

HOPPITY [DDL+19] represents Javascript programs as graphs and uses a graph neural

network predict a sequence of graph-transformation edits which can repair the program. However,

it cannot guarantee that the patched programs it produces do not crash. By using our machine

learning models to rank multiple potential fix locations and to produce fix templates instead of

concrete fixes, our synthesis step can then continue producing and testing candidate fixes, thus

guaranteeing that if it produces a patched program, that program runs without crashing.

GETAFIX [BSPC19] and REVISAR [RSGD18] use a method called anti-unification

[KLV14] to find common bug fix templates in a corpus of Java programs. Both these projects

61

are targeted towards the most common categories of Java bugs such as null pointer dereferences

and comparing objects by reference instead of value; the fix templates they learn are thus more

concrete and apply well to those bug categories but do not handle other kinds of bugs. In contrast,

we learn very general syntactic templates and then apply them to generate potential fixes for any

kind of runtime error.

PROPHET [LR16] uses a dataset of bug fixes in C programs to learn a probabilistic model

which allows it to predict what sequence of pre-determined program transformations will repair

a given bug. However, even on programs where PROPHET produces a correct patch at all, it

takes on average over two hours to do so. In contrast, we produce our results in under a minute,

allowing PYRITE to be used as a component in a realtime debugging workflow.

There is also much related work on producing other kinds of debugging feedback, such

as counterexamples - specific inputs which cause the program to exhibit an error. For example,

TESTML [SLO19] takes in a reference correct program and a second, incorrect implementation,

and uses a combination of enumerative search and symbolic execution to produce as output a

concrete example on which the two programs differ. NANOMALY [SJW16] goes further for

static type errors, providing as feedback both an example input as well as an interactive execution

trace which shows how starting from that input would lead the program to execute an ill-typed

expression. While PYRITE shares their overall goal of providing useful debugging feedback to

novices, we do so by providing program repairs instead.

4.5 Conclusion

We extend the error localization of PABLO from Chapter 3 into the full-fledged program

repair of PYRITE. We use the same set of features but then extend the vectors of buggy program

terms with a fix template representing how that term should be repaired. We train a second

machine learning model to predict fix templates that will match human judgements for a new

62

buggy program, and then an enumerative synthesis procedure to realize those templates into

concrete fixes.

We evaluate our approach on historical bugs from PythonTutor. PYRITE is able to synthe-

size a repair for 76% of the buggy programs in our dataset. Finally, a user study demonstrates

that our approach frequently provides useful debugging information beyond what can be gleaned

from the Python interpreter alone.

Acknowledgements for Chapter 4

This chapter describes unpublished work done in collaboration with Madeline Endres,

Georgios Sakkas, Westley Weimer, and Ranjit Jhala. The dissertation author was the primary

investigator and author of this material.

63

Appendix A

Dead ends: Adversarial examples

As an alternative to the approach described in Chapter 4, we also attempted to produce

repairs by using adversarial examples. Adversarial examples are an idea from machine learning

where given a trained classifier and an input point, one finds a new point that is as similar to the

input as possible while getting classified differently. For example, in Figure A.1 (taken from

[BMR+18]), a small part of a scene is changed to trick a classifier into classifying a banana as a

toaster.

Given an ‘ideal’ classifier, the easiest way to make it classify the image as a toaster is to

modify the image until it in fact depicts some kind of toaster. Similarly, we had hypothesized

that if we gave existing adversarial-examples tools our PABLO classifier and a vector that PABLO

classifies as buggy, the closest vector that the classifier would classify as not buggy might be one

that we could turn into a new program term that could actually repair the program.

However in practice, the vectors produced were primarily either nonsense or included

non-actionable changes. An example of nonsense would be a vector which breaks an implicit

constraint - for example, the type of a program term is represented in our one-hot representation

as a sequence of bits - Is-String, Is-Int, etc - and when we produce such a vector, only one

of those bits is a 1. However, the adversarial example generator could make more than one (or

64

Figure A.1: [Figure taken from [BMR+18]] An example adversarial attack: modifying a small
portion of the scene can convince a classifier that this banana is a toaster.

none of them) a 1. Non-actionable changes include global properties encoded in the vector such

as the error message. For example, two vectors which differ only in the bits representing the

error message ultimately represent the same program term, so it is not useful for the adversarial

example generator to tell us to switch from one to the other.

In conclusion this method appeared to be a dead end.

65

Appendix B

Machine Learning Features

In this appendix we go into further detail about the features used by our machine learning

models. See Section 3.2.2 for an overview.

B.1 Global features

Features in this section are computed from the program as a whole, and then that value is

used for each vector derived from that program.

B.1.1 Global syntactic features

These 39 boolean features are each set to true if the corresponding syntactic form

occurs anywhere in the program. The 39 forms are: Assert, Assign, AugmentedAssign,

BinaryOp, Bool, Break, ByteStrings, Call, Class, CondExpr, Conditional, Continue,

Dictionary, Dot, Ellipsis, Float, For, FromImport, Fun, Global, Imaginary, Import, Int,

List, ListComp, NonLocal, None, Paren, Pass, Return, Set, SlicedExpr, StmtExpr, Strings,

Subscript, Tuple, UnaryOp, Var, and While.

66

B.1.2 Exception type

This categorical feature encodes the type of exception that was thrown at runtime. For most

exceptions, we just used the name of the Python exception; the 21 exceptions that appeared in

the dataset were AssertionError, AttributeError, error, ImportError, IndexError,

JSONDecodeError, KeyError, LookupError, MemoryError, ModuleNotFoundError,

NameError, OSError, OverflowError, RecursionError, RuntimeError, TypeError,

UnboundLocalError, UnicodeDecodeError, UnicodeEncodeError, ValueError, and

ZeroDivisionError.

For particularly common exceptions which have several different meanings, like

TypeError, we split the exception into multiple categories based on a regular expression match on

the rest of the error message. The categories split in this way were ValueError, AttributeError,

IndexError (2 categories each), and TypeError (13 categories).

B.1.3 Program size

This numeric feature encodes the total number of vectors we generated for the program,

i.e. the number of program terms.

B.2 Local features

These features are computed separately for each program term. Each of these features

(other than the child number) also have local-contextual versions representing the node’s parent

and its first three children.

67

B.2.1 Child number

This numeric feature encodes the node’s position among its siblings, e.g. the y in x+y

would have value 2 because it is the second child of the addition node.

B.2.2 Slice, Crash Location, and Size

See Section 3.2.2.

B.2.3 Dynamic type

This categorical feature represents the dynamic type of the term at runtime; the types

used were int, str, float, bool, NoneType, list, set, tuple, dict, function, class, and

instance, as well as the three special values mentioned in Section 3.2.2.

B.2.4 Syntactic form

This categorical feature represents the syntactic form of the term. We used as categories

all AST node names from the language-python Haskell package [Pop], except that for unary

and binary operators we instead used the name of the specific operator. The categories ap-

pearing in the dataset were: Break, Var, Continue, Multiply, Call, Int, Minus, StmtExpr,

SlicedExpr, Divide, Plus, Assign, Global, Assert, NotEquals, ListComp, Fun, Exponent,

ByteStrings, Set, Dot, AugmentedAssign, None, NonLocal, While, In, IsNot, Equality,

LessThan, Import, NotIn, Pass, Xor, Return, Class, Invert, Float, Tuple, GreaterThan,

Modulo, And, Strings, For, GreaterThanEquals, Paren, Dictionary, Not, LessThanEquals,

BinaryAnd, CondExpr, ShiftLeft, BinaryOr, FromImport, Is, MatrixMult, FloorDivide,

Conditional, Subscript, Bool, ShiftRight, Imaginary, Ellipsis, Or, and List.

68

Appendix C

Human Study Stimuli

C.1 PABLO User Study

Below are the source material for the stimuli used in the PABLO user study. For each

stimulus, we have the buggy program itself, the top three lines implicated by PABLO, and the line

where the program crashes.

PABLO’s top three lines: 6, 4, 5. The line where the program crashes: 6.

1 def findLargestOverlap(target, candidate):

2 start = candidate[0]

3 count = 0

4 for i in range(len(target)):

5 for i in range(len(candidate)):

6 while candidate[0 + i] == target[len(target) - i]:

7 count += 1

8 return count

9

10

11

69

12 findLargestOverlap('aaaaaaaa', 'aaaaaaaa') #8

13 findLargestOverlap('abcdefg', 'defgabc') #4

14 findLargestOverlap('', '') #-1

15 findLargestOverlap('aaa', '') #-1

16 findLargestOverlap('abcd','cdef') #-> 2

17 findLargestOverlap('TAGGAG', 'GGTAGA') #-> 1

18 findLargestOverlap('aaaa', 'bbbb') #-> 0

19 findLargestOverlap('', 'hijk') #-> -1

20 findLargestOverlap('abc', 'abcd') #-> -1

PABLO’s top three lines: 14, 13, 12. The line where the program crashes: 14.

1 def isIn(char, aStr):

2 '''

3 char: a single character

4 aStr: an alphabetized string

5

6 returns: True if char is in aStr; False otherwise

7

8 Base cases:

9

10 Recursive case:

11 '''

12 half = int(len(aStr)/2)

13 while half != 1 or half != 0:

14 if char == aStr[half]:

15 return True

16 else:

17 if char > aStr[half]:

18 aStr = aStr[half: :]

19 return isIn(char,aStr)

70

20 else:

21 aStr = aStr[:half:]

22 return isIn(char,aStr)

23 return False

24 x = 'a'

25 y = ''

26 print(isIn(x,y))

PABLO’s top three lines: 14, 9, 8. The line where the program crashes: 14.

1 alphabet='abcdefghijklmnopqrstuvwxyz'

2 s='cabcdek'

3 count=0

4 k=1

5 file_1=[]

6 file_2=[]

7 for i in range(len(s)):

8 for n in range(len(alphabet)):

9 if s[i]==alphabet[n]:

10 saved=n

11 print('saved:',saved)

12 print('i:',i)

13 break

14 if s[i]<s[i+1] and s[i+1]<alphabet[saved+2]:

15 print(s[i])

16 else:

17 print("a")

PABLO’s top three lines: 9, 11, 7. The line where the program crashes: 9.

1 a=int(input())

71

2 b=int(input())

3 c=int(input())

4 d=int(input())

5 for i in range(c,d+1):

6 print('\t',i,end='')

7 for f in range(a,b+1):

8 print('\n',f)

9 for g in range(a,b+1)*(c,d+1):

10 print('\t',g,end='')

11 print()

PABLO’s top three lines: 5, 3, 7. The line where the program crashes: 5.

1 def print_reverse(values):

2 if len(values) == 1:

3 return values

4 else:

5 return values[-1] + print_reverse(values[-1:])

6

7 print_reverse([1,2,3,4,5])

PABLO’s top three lines: 7, 2, 6. The line where the program crashes: 7.

1 n, k=13,[0,1]

2 for i in range(2,n+1):

3 k.append(k[i-2]+k[i-1])

4 if k[i]>n:

5 break

6 n, k=13,[0,1]

7 [k.append([i-2]+k[i-1]) for i in range(2,n)]

72

PABLO’s top three lines: 5, 6, 7. The line where the program crashes: 5.

1 line = input("Enter some text: ")

2 char = len(line)

3 amount = line.split()

4 whitespace = amount

5 letters = char - whitespace

6 print ("This line has this many words:",len(amount))

7 print ("These words have this many characters:", letters)

PABLO’s top three lines: 16, 22, 19. The line where the program crashes: 16.

1 def isISBN(code):

2

3 """

4 Geeft True terug als het argument een string is die een geldige ISBN

↪→ -10 code

5 bevat. Anders wordt False teruggegeven.

6

7 >>> isISBN('9971502100')

8 True

9 >>> isISBN('9971502108')

10 False

11 >>> isISBN('53WKEFF2C')

12 False

13 >>> isISBN(4378580136)

14 False

15 """

16 if code[:8].isalpha:

17 return False

18

19 controle = int(code[0])

73

20 for i in range(2,10):

21 controle += i * int(code[i-1])

22 controle %= 11

23

24 return code[9] == controle or (code[9] == 'X' and controle == 10)

25 isISBN(9971502100)

PABLO’s top three lines: 18, 19, 21. The line where the program crashes: 18.

1 def count_values_that_are_keys(d):

2 '''(dict) -> int

3

4 Return the number of values in d that are also keys in d.

5

6 >>> count_values_that_are_keys({1: 2, 2: 3, 3: 3})

7 3

8 >>> count_values_that_are_keys({1: 1})

9 1

10 >>> count_values_that_are_keys({1: 2, 2: 3, 3: 0})

11 2

12 >>> count_values_that_are_keys({1: 2})

13 0

14 '''

15

16 result = 0

17 for k in d:

18 if k == d[:k]:

19 result = result + 1

20

21 return result

22 print(count_values_that_are_keys({1: 2, 2: 3, 3: 0}))

74

PABLO’s top three lines: 9, 11, 8. The line where the program crashes: 9.

1 def dict_invert(d):

2 '''

3 d: dict

4 Returns an inverted dictionary according to the instructions above

5 '''

6 #YOUR CODE HERE

7 d2 = {}

8 for k in d:

9 d2[d[k]] = list(k)

10

11 return d2

12

13

14

15 d = {1:10, 2:20, 3:30}

16 dict_invert(d)

PABLO’s top three lines: 10, 8, 7. The line where the program crashes: 10.

1 a = [int(i) for i in input().split()]

2

3 res = []

4 if len(a) == 1:

5 print(a)

6 else:

7 for i in range(len(a)):

8 if i == len(a):

9 res.append(a[i-1] + a[0])

10 res.append(a[i-1] + a[i+1])

75

11

12 print(res)

PABLO’s top three lines: 4, 2, 3. The line where the program crashes: 4.

1 f = max

2 max = 3

3 result = f(2, 3, 4)

4 max(1, 2) # Causes an error

PABLO’s top three lines: 10, 11, 12. The line where the program crashes: 10.

1 import random

2

3 reply = input("Enter three integers: ")

4 s, n, d = reply.split()

5 s= int(s)

6 n = int(n)

7 d = int(d)

8

9 octal = random.seed(s)

10 for s in octal:

11 octal = random.seed(s)

12 print(s)

PABLO’s top three lines: 32, 33, 30. The line where the program crashes: 32.

1 def add_hero():

2 Heros_liste = {}

3 print("Comment s'appelle votre super-heros ?")

4 str(input())

76

5 a = {1 : '', 2 : '', 3 : '', 4 : '', 5 : ''}

6 a[1] = input

7

8 print("Dans quelle ville habite-t-il ?")

9 b = str(input())

10 a[2] = b

11 print("Quel est son numero de telephone ?")

12 c = int(input())

13 a[3] = c

14 print("Quels sont ses super-pouvoirs ? (Entrez 0 pour arreter l'

↪→ enregistrement)")

15 d = []

16 while "0" not in d :

17 d.append(input())

18 d.remove("0")

19 a[4] = d

20 print("Quelle est sa puissance ?")

21 e = int(input())

22 if 0 < e < 100 :

23 print("Votre super-heros a ete ajoute a l'annuaire !")

24 a[5] = e

25 else :

26 while not 0 < e < 100 :

27 print("Vous devez rentrer un nombre entier entre 0 et 100 !")

28 print("Quelle est sa puissance ?")

29 e = int(input())

30 print("Votre super-heros a ete ajoute a l'annuaire !")

31 a[5] = e

32 Heros_liste[:] = a

33 add_hero()

77

PABLO’s top three lines: 6, 4, 8. The line where the program crashes: 6.

1

2 def f(x):

3 if len(x) == 1:

4 return str(x)

5 else:

6 [str(f(x[0]) + f(x[1:len(x)]))]

7

8 print(f("emre"))

PABLO’s top three lines: 45, 37, 38. The line where the program crashes: 45.

1 listaprova = list(["a","b","c","cacca","sartini","pupu","boccino","

↪→ pasqual"])

2 def enumerate(input_list):

3

4 enumerated_list = list()

5

6 a = 0

7

8 for item in input_list:

9

10 if a <= len(input_list):

11

12 f = (a, item)

13 a = a+1

14

15 enumerated_list.append(f)

16 else:

17 break

18

78

19

20

21 return enumerated_list

22

23 def partition (input_list, start, end, pivot_position):

24

25 y = input_list[pivot_position]

26 temporary_list = list()

27 temporary_list2 = list()

28 temporary_list3 = list()

29 if end < len(input_list):

30 for item in input_list[end +1:len(input_list)+ 1]:

31 temporary_list.append(item)

32 input_list.remove(item)

33 for item2 in input_list[start:end+1]:

34 if item2 > y:

35 temporary_list2.append(item2)

36 input_list.remove(item2)

37 temporary_list3.append(y)

38 input_list.remove(y)

39 input_list.extend(temporary_list3)

40 input_list.extend(temporary_list2)

41 input_list.extend(temporary_list)

42 for position, item3 in enumerate(input_list):

43 if item3 == y:

44 return position

45 partition(listaprova)

PABLO’s top three lines: 3, 2, 1. The line where the program crashes: 3.

1 i=2

79

2 for i in "1234":

3 print (i*i, end = ' ')

PABLO’s top three lines: 9, 8, 2. The line where the program crashes: 9.

1 dna = "AGGCtGCctcTgggCGCATtgaTggTtTATTAACGACTAAAcacacac"

2 dna=dna.upper()

3 def firstSSR(dna,seq):

4 if seq not in dna:

5 return 0

6 else:

7 n=1

8 while seq*n in dna:

9 return len(seq*n/2)

10 firstSSR(dna,'AC')

PABLO’s top three lines: 9, 7, 5. The line where the program crashes: 9.

1 def gcd():

2 if a == b:

3 return b

4 elif a < b:

5 gcd(b, a)

6 else:

7 return gcd(a - b, a)

8

9 gcd(34, 19)

PABLO’s top three lines: 12, 11, 9. The line where the program crashes: 12.

1 i=[]

80

2 x=int(input())

3 r=x%2

4 if (r==0):

5 x=x+1

6 i.append(x)

7 for e in range(5):

8 x=x+2

9 i.append(x)

10

11 for e in range(6):

12 print(x[e])

PABLO’s top three lines: 8, 7, 6. The line where the program crashes: 6.

1 from math import pow

2 n=int(input('Ingresa el valor de n:'))

3 suma=0

4 k=0

5 for k in range (0,n+1):

6 suma+=(2*(pow(-1,k))*(pow(3,((1/2)-k)))/(2*k)+1)

7 print(suma)

8 k+=1

PABLO’s top three lines: 9, 20, 19. The line where the program crashes: 9.

1 class Point:

2 def setx(self, x):

3 self.x=x

4

5 def sety(self,y):

6 self.x=y

81

7

8 def get(self):

9 return self.x, self.y

10

11 def move(self, dx,dy):

12 self.x=self.x+dx

13 self.y=self.y+dy

14

15

16 p=Point()

17 p.setx(3)

18 p.sety(4)

19 print(p.get())

20 p.move(1,3)

PABLO’s top three lines: 8, 15, 12. The line where the program crashes: 8.

1 total = 0

2 items = ""

3

4 def adding_report(report = "T"):

5 while True:

6 tally = input("Input an integer to add to the total or \"Q\" to

↪→ quit.")

7 if tally.isdigit():

8 tally + total

9 items = print(tally)

10 input("Enter an integer or \"Q\":")

11 elif tally.lower() == "quit":

12 print("This is your total: " + total)

13 break

82

14 else:

15 print()

16 break

17

18 adding_report()

PABLO’s top three lines: 4, 2, 5. The line where the program crashes: 4.

1 import math

2 m = input("Please give me give a mass (in kilograms): ")

3 e = 0

4 e = (m * 299792458 ** 2)

5 print("The equivalent energy is", e, "Joules")

PABLO’s top three lines: 5, 1, 4. The line where the program crashes: 5.

1 name = "pedro eaeae"

2

3 print(name.upper())

4 print(name.lower())

5 print(name.rstring())

PABLO’s top three lines: 6, 7, 9. The line where the program crashes: 6.

1 x = "carlos90"

2 r=list(x)

3 print(r)

4 d=list()

5 for i in x:

6 s=int(i)

7 d.append(s)

83

8

9 print(d)

PABLO’s top three lines: 15, 8, 14. The line where the program crashes: 15.

1 class Domino():

2

3 def __init__(self, a=0,b=0):

4 self.A=a

5 self.B=b

6 def affiche_points(self):

7 print("face A: "+str(self.A)+" "+"face B: "+str(self.B))

8 def valeur(self):

9 d=self.A+self.B

10

11 d1 = Domino(2,6)

12 d2 = Domino(4,3)

13 d1.affiche_points()

14 d2.affiche_points()

15 print("total des points :", d1.valeur() + d2.valeur())

PABLO’s top three lines: 3, 8, 4. The line where the program crashes: 3.

1 a = [int(i) for i in input().split()]

2 m = 0

3 for i in range(a):

4 if a[m]%2 == 0:

5 a[m] //= 2

6 m -= 1

7 else:

8 del a[m]

84

9

10 print(a)

PABLO’s top three lines: 8, 5, 10. The line where the program crashes: 8.

1 def threshold_prices(prices):

2

3 threshold_val = 40

4

5 for x in prices:

6

7 if x > threshold_val:

8 return 'There is at least one price over' + threshold_val

9

10 return 'There is no prices over'+ threshold_val

11

12 print(threshold_prices([20, 40, 50]))

PABLO’s top three lines: 9, 2, 1. The line where the program crashes: 9.

1 firstNumber=float(input("enter first number"))

2 secondNumber=float(input("enter second number"))

3 print("sum:" , firstNumber+secondNumber)

4 print("difference:" , firstNumber-secondNumber)

5 print("product:" , firstNumber*secondNumber)

6 print("average:" , firstNumber+secondNumber/2)

7 print("maximum:" , max(firstNumber,secondNumber))

8 print("minimum:" , min(firstNumber,secondNumber))

9 print("distance" , abs(firstNumber,secondNumber))

PABLO’s top three lines: 13, 6, 3. The line where the program crashes: 13.

85

1

2 #Get a character to represent the first allele

3 D_allele = input("Enter a character for the first allele: ")

4

5 #get the p frequency

6 p_freq = input("Enter the frequency of " + D_allele + " (between 0 - 1):

↪→ ")

7

8 #Get the second allele character (q)

9 r_allele = input("Enter a different character for the second allele: ")

10 print()

11

12 #Calculate the q frequency, round the result to 2 decimal places

13 q_freq = round(1 - p_freq,2)

14

15 #Print out the frequencies of the alleles

16 print("If the frequency of ", D_allele," in the population is: ", p_freq)

17 print("Then, the frequency of ", r_allele," in the population is: ",

↪→ q_freq)

18 print()

C.2 PYRITE User Study

Below are the source material for the stimuli used in the PYRITE user study. For each

stimulus, we have the buggy program itself, any input provided to the program (one line per call

to input()), the novice’s historical fix, and PYRITE’s suggested repair.

86

Buggy Python Program #1
speed = input(“what was your average speed (in mph)?: ”)
time = input(“what was the time you took (in min)?: ”)
print(“the distance you travelled is (in miles): ”)
print(speed * time)

Program Input

10
10

Python Error Message

Traceback (most recent call last):
File “File_Path/buggy_code.py”, line 4, in <module>

print(speed * time)
TypeError: can’t multiply sequence by non-int of type ’str’

Pyrite Fix

speed = input(“what was your average speed (in mph)?: ”)
time = input(“what was the time you took (in min)?: ”)
print(“the distance you travelled is (in miles): ”)
print(speed)

Historical Fix

speed = int(input(“what was your average speed (in mph)?: ”))
time = int(input(“what was the time you took (in min)?: ”))
print(“the distance you travelled is (in miles): ”)
print(speed * time)

Buggy Python Program #2
x = int(input(“Digite um numero: ”))
i = 1
k = 1

87

b = 4
while k <= x:

a = 2
while a < b:

if b % a == 0:
b += 1
z = 0
break

else:
a += 1
z = 1

if z == 1:
print(b)
soma = soma + b
k += 1

print(“a soma dos %d primeiros numeros = %d”, x, soma)

Program Input

5

Python Error Message

Traceback (most recent call last):
File “File_Path/buggy_code.py”, line 17, in <module>

soma = soma + b
NameError: name ’soma’ is not defined

Pyrite Fix

x = int(input(“Digite um numero: ”))
i = 1
k = 1
b = 4
soma = 1
while k <= x:

a = 2
while a < b:

if b % a == 0:
b += 1
z = 0
break

88

else:
a += 1
z = 1

if z == 1:
print(b)
soma = soma + b
k += 1

print(“a soma dos %d primeiros numeros = %d”, x, soma)

Historical Fix

x = int(input(“Digite um numero: ”))
i = 1
k = 1
b = 4
soma = 0
while k <= x:

a = 2
while a < b:

if b % a == 0:
b += 1
z = 0
break

else:
a += 1
z = 1

if z == 1:
print(b)
soma = soma + b
k += 1

print(“a soma dos %d primeiros numeros = %d”, x, soma)

Buggy Python Program #3
a = [1, 1]
b = [1, 1]
c = a + [b]
c = c[1:2]
while a:

89

b.extend([[a.pop()]])
d, b = b, d

a = b
b[2][0], d = c, b[2]

(No program input provided)

Python Error Message

Traceback (most recent call last):
File “File_Path/buggy_code.py”, line 7, in <module>

d, b = b, d
NameError: name ’d’ is not defined

Pyrite Fix

a = [1, 1]
b = [1, 1]
c = a + [b]
c = c[1:2]
while a:

b.extend([[a.pop()]])
d, b = b, b

a = b
b[2][0], d = c, b[2]

Historical Fix

a = [1, 1]
b = [1, 1]
c = a + [b]
d = c[1:2]
while a:

b.extend([[a.pop()]])
d, b = b, d

a = b
b[2][0], d = c, b[2]

90

Buggy Python Program #4
def is_anagram(test, original):

test = test.lower()
SortedTest = ’’.join(sorted(test))
print(SortedTest)
original = original.lower()
SortedOriginal = ’’.join(sorted(original))
print(SortedOriginal)
if SortedTest == SortedOriginal:

Print(’True’)
is_anagram(“Twoo”, “WooT”)

(No program input provided)

Python Error Message

Traceback (most recent call last):
File “File_Path/buggy_code.py”, line 10, in <module>

is_anagram(“Twoo”, “WooT”)
File “File_Path/buggy_code.py”, line 9, in is_anagram

Print(’True’)
NameError: name ’Print’ is not defined

Pyrite Fix and Historical Fix

def is_anagram(test, original):
test = test.lower()
SortedTest = ’’.join(sorted(test))
print(SortedTest)
original = original.lower()
SortedOriginal = ’’.join(sorted(original))
print(SortedOriginal)
if SortedTest == SortedOriginal:

print(’True’)
is_anagram(“Twoo”, “WooT”)

91

Buggy Python Program #5
encrypt = ’E’
if encrypt == ’E’:

supp_id = input(“Enter the supplier id:”)
supp_id_str = str(supp_id)
length = len(supp_id_str)
supp = [“”]
list1 = [length, “-”, supp_id]
supp_id_str = supp_id_str + (str(length))
supp_id_rev = supp_id_str.reverse()
x = 0
a = len(list1)
for x in range(a):

for i in list1:
if not supp:

supp = i
else:

supp.append([i])
print(i)

Program Input

13

Python Error Message

Traceback (most recent call last):
File “File_Path/buggy_code.py”, line 9, in <module>

supp_id_rev = supp_id_str.reverse()
AttributeError: ’str’ object has no attribute ’reverse’

Pyrite Fix

encrypt = ’E’
if encrypt == ’E’:

supp_id = input(“Enter the supplier id:”)
supp_id_str = str(supp_id)
length = len(supp_id_str)
supp = [“”]
list1 = [length, “-”, supp_id]
supp_id_str = supp_id_str + (str(length))

92

supp_id_rev = supp_id_str
x = 0
a = len(list1)
for x in range(a):

for i in list1:
if not supp:

supp = i
else:

supp.append([i])
print(i)

Historical Fix

encrypt = ’E’
if encrypt == ’E’:

supp_id = input(“Enter the supplier id:”)
supp_id_str = str(supp_id)
length = len(supp_id_str)
supp = [“”]
list1 = [length, “-”, supp_id]
supp_id_str = supp_id_str + (str(length))
supp_id_rev = supp_id_str[::- 1]
x = 0
a = len(list1)
for x in range(a):

for i in list1:
if not supp:

supp = i
else:

supp.append([i])
print(i)

Buggy Python Program #6
text = str(“32 apples”)
for i in range(len(s)):

char = s[i][0]
if char.isdigit():

print(i)

93

(No program input provided)

Python Error Message

Traceback (most recent call last):
File “File_Path/buggy_code.py”, line 2, in <module>

for i in range(len(s)):
NameError: name ’s’ is not defined

Pyrite Fix

text = str(“32 apples”)
for i in range(len(’’)):

char = s[i][0]
if char.isdigit():

print(i)

Historical Fix

text = str(“32 apples”)
for i in range(len(text)):

char = text[i][0]
if char.isdigit():

print(i)

Buggy Python Program #7
text = ’ahoj’
for i in range(4):

if i > len(text):
print(’*’)

medzery = 3
for j in range(i, i + 13, 4):

if j > len(text):
print(’*’ * medzery)

else:
print(’’.format(text[j]), end=“”)
medzery -= 1

94

(No program input provided)

Python Error Message

Traceback (most recent call last):
File “File_Path/buggy_code.py”, line 10, in <module>

print(’’.format(text[j]), end=“”)
IndexError: string index out of range

Pyrite Fix

text = ’ahoj’
for i in range(4):

if i > len(text):
print(’*’)

medzery = 3
for j in range(i, i + 1, 4):

if j > len(text):
print(’*’ * medzery)

else:
print(’’.format(text[j]), end=“”)
medzery -= 1

Historical Fix

text = ’ahoj’
for i in range(4):

if i > len(text):
print(’*’)

medzery = 3
for j in range(i, i + 13, 4):

if j >= len(text):
print(’*’ * medzery)

if j < len(text):
print(’’.format(text[j]), end=“”)
medzery -= 1

95

Buggy Python Program #8
def has_sum(total, n1, n2):

if total - n1 < 0 or total - n2 < 0:
return false

if total - n1 == 0:
return true

elif total - n2 == 0:
return true

else:
has_sum(total - n1, n1, n2) or has_sum(total - n2, n1, n2)
return false

has_sum(1, 3, 5)

(No program input provided)

Python Error Message

Traceback (most recent call last):
File “File_Path/buggy_code.py”, line 11, in <module>

has_sum(1, 3, 5)
File “File_Path/buggy_code.py”, line 3, in has_sum

return false
NameError: name ’false’ is not defined

Pyrite Fix

def has_sum(total, n1, n2):
if total - n1 < 0 or total - n2 < 0:

return 0
if total - n1 == 0:

return true
elif total - n2 == 0:

return true
else:

has_sum(total - n1, n1, n2) or has_sum(total - n2, n1, n2)
return false

has_sum(1, 3, 5)

96

Historical Fix

def has_sum(total, n1, n2):
if total - n1 < 0 or total - n2 < 0:

return False
if total - n1 == 0:

return True
elif total - n2 == 0:

return True
else:

has_sum(total - n1, n1, n2) or has_sum(total - n2, n1, n2)
return False

has_sum(1, 3, 5)

Buggy Python Program #9
sub(5, 2)

(No program input provided)

Python Error Message

Traceback (most recent call last):
File “File_Path/buggy_code.py”, line 1, in <module>

sub(5, 2)
NameError: name ’sub’ is not defined

Pyrite Fix

range(5, 2)

Historical Fix

from operator import *
sub(5, 2)

97

Buggy Python Program #10
cats = [1, 2]
dogs = [cats, cats.append(23), list(cast)]

(No program input provided)

Python Error Message

Traceback (most recent call last):
File “File_Path/buggy_code.py”, line 2, in <module>

dogs = [cats, cats.append(23), list(cast)]
NameError: name ’cast’ is not defined

Pyrite Fix and Historical Fix

cats = [1, 2]
dogs = [cats, cats.append(23), list(cats)]

Buggy Python Program #11
def specialSum(n):

theSum = 0
for i in range(1, n):

if i % 2 == 0 or i % 3 == 0:
if i % 5 == 1:

theSum += l
return theSum

specialSum(10)

(No program input provided)

Python Error Message

Traceback (most recent call last):
File “File_Path/buggy_code.py”, line 8, in <module>

specialSum(10)
File “File_Path/buggy_code.py”, line 6, in specialSum

98

theSum += l
NameError: name ’l’ is not defined

Pyrite Fix

def specialSum(n):
theSum = 0
for i in range(1, n):

if i % 2 == 0 or i % 3 == 0:
if i % 5 == 1:

theSum += 0
return theSum

specialSum(10)

Historical Fix

def specialSum(n):
theSum = 0
for i in range(1, n):

if i % 2 == 0 or i % 3 == 0:
if i % 5 == 1:

theSum += i
return theSum

specialSum(10)

Buggy Python Program #12
a = ’AUG’
b = ’AUG’: ’Met’, ’GAG’: ’Glu’
print(dict.get(a))

(No program input provided)

Python Error Message

Traceback (most recent call last):
File “File_Path/buggy_code.py”, line 3, in <module>

print(dict.get(a))
TypeError: descriptor ’get’ requires a ’dict’ object but received a ’str’

99

Pyrite Fix and Historical Fix

a = ’AUG’
b = ’AUG’: ’Met’, ’GAG’: ’Glu’
print(b.get(a))

Buggy Python Program #13
def mergeSort(nums):

n = len(nums)
if n > 1:

m = n // 2
nums1, nums2 = nums[:m], nums[m:]
mergeSort(nums1)
mergeSort(nums2)
merge(nums1, nums2, nums)

def merge(lst1, lst2, lst3):
i1 = i2 = i3 = 0
n1, n2 = len(lst1), len(lst2)
while i1 < n1 and i2 < n2:

if lst1[i1] < lst2[i2]:
lst3[i3] = lst1[i1]
i1 = i1 + 1

else:
lst3[i3] = lst2[i2]
i2 = i2 + 1
i3 = i3 + 1

while i1 < len(lst1):
lst3[i3] = lst1[i1]
i1 = i1 + 1
i3 = i3 + 1

while i2 < len(lst2):
lst3[i3] = lst2[i2]
i2 = i2 + 1
i3 = i3 + 1

MergeSort([1, 5, 2, 5, 6, 11])

100

(No program input provided)

Python Error Message

Traceback (most recent call last):
File “File_Path/buggy_code.py”, line 28, in <module>

MergeSort([1, 5, 2, 5, 6, 11])
NameError: name ’MergeSort’ is not defined

Pyrite Fix and Historical Fix

def mergeSort(nums):
n = len(nums)
if n > 1:

m = n // 2
nums1, nums2 = nums[:m], nums[m:]
mergeSort(nums1)
mergeSort(nums2)
merge(nums1, nums2, nums)

def merge(lst1, lst2, lst3):
i1 = i2 = i3 = 0
n1, n2 = len(lst1), len(lst2)
while i1 < n1 and i2 < n2:

if lst1[i1] < lst2[i2]:
lst3[i3] = lst1[i1]
i1 = i1 + 1

else:
lst3[i3] = lst2[i2]
i2 = i2 + 1
i3 = i3 + 1

while i1 < len(lst1):
lst3[i3] = lst1[i1]
i1 = i1 + 1
i3 = i3 + 1

while i2 < len(lst2):
lst3[i3] = lst2[i2]
i2 = i2 + 1
i3 = i3 + 1

mergeSort([1, 5, 2, 5, 6, 11])

101

Buggy Python Program #14
x = [’-1’, ’-2’, ’-3’, ’-4’][3]
numbers = []
while x < - 1:

z = - x
numbers.append(z)
x = x + 1

print(numbers)

(No program input provided)

Python Error Message

Traceback (most recent call last):
File “File_Path/buggy_code.py”, line 3, in <module>

while x < - 1:
TypeError: ’<’ not supported between instances of ’str’ and ’int’

Pyrite Fix

x = [’-1’, ’-2’, ’-3’, ’-4’][3]
numbers = []
while len(x) < - 1:

z = - x
numbers.append(z)
x = x + 1

print(numbers)

Historical Fix

x = [’-1’, ’-2’, ’-3’, - 4][3]
numbers = []
while x < - 1:

z = - x
numbers.append(z)
x = x + 1

print(numbers)

102

Buggy Python Program #15
mystr = ’dog’
print(mystr.startswith(0, 3))

(No program input provided)

Python Error Message

Traceback (most recent call last):
File “File_Path/buggy_code.py”, line 2, in <module>

print(mystr.startswith(0, 3))
TypeError: startswith first arg must be str or a tuple of str, not int

Pyrite Fix

mystr = ’dog’
print(mystr.startswith(’dog’, 3))

Historical Fix

mystr = ’dog’
print(mystr.startswith(’d’))

Buggy Python Program #16
a = [1, 2, 3]
b = list(b)

(No program input provided)

Python Error Message

Traceback (most recent call last):
File “File_Path/buggy_code.py”, line 2, in <module>

b = list(b)
NameError: name ’b’ is not defined

103

Pyrite Fix and Historical Fix

a = [1, 2, 3]
b = list(a)

Buggy Python Program #17
S = str(input())
lst = S.split(_)
print(lst)

Program Input

my_first_class

Python Error Message

Traceback (most recent call last):
File “File_Path/buggy_code.py”, line 2, in <module>

lst = S.split(_)
NameError: name ’_’ is not defined

Pyrite Fix

S = str(input())
lst = S.split(’a’)
print(lst)

Historical Fix

S = str(input())
lst = S.split(“_“)
print(lst)

104

Buggy Python Program #18
from operator import (add, mul)
from math import c
a = add
b = mul
print(mul(2, 3))
mul = add
add = mul
print(mul(2, 3))
c = 52

(No program input provided)

Python Error Message

Traceback (most recent call last):
File “File_Path/buggy_code.py”, line 2, in <module>

from math import c
ImportError: cannot import name ’c’ from ’math’

Pyrite Fix

from operator import (add, mul)
a = add
b = mul
print(mul(2, 3))
mul = add
add = mul
print(mul(2, 3))
c = 52

Historical Fix

from operator import (add, mul)
from math import pi
a = add
b = mul
print(mul(2, 3))
mul = add
add = mul

105

print(mul(2, 3))
c = 52

Buggy Python Program #19
def greedySum(L, s):

“”“ input: s, positive integer, what the sum should add up to
L, list of unique positive integers sorted in descending order

Use the greedy approach where you find the largest multiplier for
the largest value in L then for the second largest, and so on to
solve the equation s = L[0]*m_0 + L[1]*m_1 + ... + L[n-1]*m_(n-1)
return: the sum of the multipliers or “no solution” if greedy approach
does not yield a set of multipliers such that the equation sums to ’s’
“”“
outputList = []
sumOf = []
tempS = s
for n in L:

print(’n in L’, n, ’s’, tempS, ’s//n’, tempS // n)
if tempS / n >= 1:

check = tempS // n
outputList.append(check)
sumOf.append(n * check)
tempS -= n

print(outputList, sumOf, sum(sumOf))
print(sum(sumOf), s)
if sum(sumOf) == s:

return sum(multiList)
else:

return ’no solution’
L = [10, 5, 1]
s = 11
print(greedySum(L, s))

106

(No program input provided)

Python Error Message

Traceback (most recent call last):
File “File_Path/buggy_code.py”, line 28, in <module>

print(greedySum(L, s))
File “File_Path/buggy_code.py”, line 23, in greedySum

return sum(multiList)
NameError: name ’multiList’ is not defined

Pyrite Fix

def greedySum(L, s):
“”“ input: s, positive integer, what the sum should add up to
L, list of unique positive integers sorted in descending order
Use the greedy approach where you find the largest multiplier for
the largest value in L then for the second largest, and so on to
solve the equation s = L[0]*m_0 + L[1]*m_1 + ... + L[n-1]*m_(n-1)
return: the sum of the multipliers or “no solution” if greedy approach
does not yield a set of multipliers such that the equation sums to ’s’
“”“
outputList = []
sumOf = []
tempS = s
for n in L:

print(’n in L’, n, ’s’, tempS, ’s//n’, tempS // n)
if tempS / n >= 1:

check = tempS // n
outputList.append(check)
sumOf.append(n * check)
tempS -= n

print(outputList, sumOf, sum(sumOf))
print(sum(sumOf), s)
if sum(sumOf) == s:

return sum(L)
else:

return ’no solution’
L = [10, 5, 1]
s = 11
print(greedySum(L, s))

107

Historical Fix

def greedySum(L, s):
“”“ input: s, positive integer, what the sum should add up to
L, list of unique positive integers sorted in descending order
Use the greedy approach where you find the largest multiplier for
the largest value in L then for the second largest, and so on to
solve the equation s = L[0]*m_0 + L[1]*m_1 + ... + L[n-1]*m_(n-1)
return: the sum of the multipliers or “no solution” if greedy approach
does not yield a set of multipliers such that the equation sums to ’s’
“”“
outputList = []
sumOf = []
tempS = s
for n in L:

print(’n in L’, n, ’s’, tempS, ’s//n’, tempS // n)
if tempS / n >= 1:

check = tempS // n
outputList.append(check)
sumOf.append(n * check)
tempS -= n

print(outputList, sumOf, sum(sumOf))
print(sum(sumOf), s)
if sum(sumOf) == s:

return sum(outputList)
else:

return ’no solution’
L = [10, 5, 1]
s = 11
print(greedySum(L, s))

Buggy Python Program #20
counter = [’this’, ’is’, ’spot’, ’see’, ’spot’, ’run’]
count =
for item in counter:

self.count[item] = self.count.get(item, 0) + 1

108

(No program input provided)

Python Error Message

Traceback (most recent call last):
File “File_Path/buggy_code.py”, line 4, in <module>

self.count[item] = self.count.get(item, 0) + 1
NameError: name ’self’ is not defined

Pyrite Fix

counter = [’this’, ’is’, ’spot’, ’see’, ’spot’, ’run’]
count =
counter = ’’
for item in counter:

self.count[item] = self.count.get(item, 0) + 1

Historical Fix

counter = [’this’, ’is’, ’spot’, ’see’, ’spot’, ’run’]
count =
for item in counter:

count[item] = count.get(item, 0) + 1

Buggy Python Program #21
def interval(a, b):

“”“Construct an interval from a to b.”“”
return [a, b]

def str_interval(x):
“”“Return a string representation of interval x.”“”
return ’0 to 1’.format(lower_bound(x), upper_bound(x))

str_interval(interval(- 1, 2))

109

(No program input provided)

Python Error Message

Traceback (most recent call last):
File “File_Path/buggy_code.py”, line 7, in <module>

str_interval(interval(- 1, 2))
File “File_Path/buggy_code.py”, line 6, in str_interval

return ’0 to 1’.format(lower_bound(x), upper_bound(x))
NameError: name ’lower_bound’ is not defined

Pyrite Fix

def interval(a, b):
“”“Construct an interval from a to b.”“”
return [a, b]

def str_interval(x):
“”“Return a string representation of interval x.”“”
return ’0 to 1’.format(input(x), upper_bound(x))

str_interval(interval(- 1, 2))

Historical Fix

def lower_bound(x):
“”“Return the lower bound of interval x.”“”
“*** YOUR CODE HERE ***”
return min(x)

def upper_bound(x):
“”“Return the upper bound of interval x.”“”
“*** YOUR CODE HERE ***”

def interval(a, b):
“”“Construct an interval from a to b.”“”
return [a, b]

def str_interval(x):
“”“Return a string representation of interval x.”“”
return ’0 to 1’.format(lower_bound(x), upper_bound(x))

str_interval(interval(- 1, 2))

110

Buggy Python Program #22
def inc(binary):

reverse_bin = binary[::- 1]
final_bin = “”
for bit in reverse_bin:

if bit == “1”:
final_bin += “0”

else:
final_bin += “1”
final_bin += reverse_bin[reverse.find(bit) + 1:]
return final_bin[::- 1]

return (“1” + final_bin)
inc(“1110011”)

(No program input provided)

Python Error Message

Traceback (most recent call last):
File “File_Path/buggy_code.py”, line 12, in <module>

inc(“1110011”)
File “File_Path/buggy_code.py”, line 9, in inc

final_bin += reverse_bin[reverse.find(bit) + 1:]
NameError: name ’reverse’ is not defined

Pyrite Fix

def inc(binary):
reverse_bin = binary[::- 1]
final_bin = “”
for bit in reverse_bin:

if bit == “1”:
final_bin += “0”

else:
final_bin += “1”
final_bin += reverse_bin[binary.find(bit) + 1:]
return final_bin[::- 1]

return (“1” + final_bin)
inc(“1110011”)

111

Historical Fix

def inc(binary):
reverse_bin = binary[::- 1]
final_bin = “”
for bit in reverse_bin:

if bit == “1”:
final_bin += “0”

else:
final_bin += “1”
final_bin += reverse_bin[reverse_bin.find(bit) + 1:]
return final_bin[::- 1]

return (“1” + final_bin)
inc(“1110011”)

Buggy Python Program #23
def pingpong(n):

def helper_function(counter, flag):
if counter % 7 == 0 or has_seven(counter):

flag = not flag
return flag

if n == 1:
return n

if helper_function(n - 1, True):
return pingpong(n - 1) + 1

else:
return pingpong(n - 1) - 1

pingpong(9)

(No program input provided)

Python Error Message

Traceback (most recent call last):
File “File_Path/buggy_code.py”, line 12, in <module>

pingpong(9)
File “File_Path/buggy_code.py”, line 8, in pingpong

if helper_function(n - 1, True):

112

File “File_Path/buggy_code.py”, line 3, in helper_function
if counter % 7 == 0 or has_seven(counter):

NameError: name ’has_seven’ is not defined

Pyrite Fix

def pingpong(n):
def helper_function(counter, flag):

if counter % 7 == 0 or range(counter):
flag = not flag

return flag
if n == 1:

return n
if helper_function(n - 1, True):

return pingpong(n - 1) + 1
else:

return pingpong(n - 1) - 1
pingpong(9)

Historical Fix

def has_seven(k):
if k % 10 == 7:

return True
elif k < 10:

return False
else:

return has_seven(k // 10)
def pingpong(n):

def helper_function(counter, flag):
if counter % 7 == 0 or has_seven(counter):

flag = not flag
return flag

if n == 1:
return n

if helper_function(n - 1, True):
return pingpong(n - 1) + 1

else:
return pingpong(n - 1) - 1

pingpong(9)

113

Buggy Python Program #24
print(accumulate([1, 2, 3, 4, 5]))

(No program input provided)

Python Error Message

Traceback (most recent call last):
File “File_Path/buggy_code.py”, line 1, in <module>

print(accumulate([1, 2, 3, 4, 5]))
NameError: name ’accumulate’ is not defined

Pyrite Fix

print(print([1, 2, 3, 4, 5]))

Historical Fix

from itertools import accumulate
print(accumulate([1, 2, 3, 4, 5]))

Buggy Python Program #25
n = [3, 2, 4]
target = 6
for n in nums:

for m in nums:
if n + m == target:

print(“[,]”.format(nums.index(n), nums.index(m)))

(No program input provided)

Python Error Message

Traceback (most recent call last):
File “File_Path/buggy_code.py”, line 3, in <module>

for n in nums:
NameError: name ’nums’ is not defined

114

Pyrite Fix

n = [3, 2, 4]
target = 6
for n in ’’:

for m in nums:
if n + m == target:

print(“[,]”.format(nums.index(n), nums.index(m)))

Historical Fix

nums = [3, 2, 4]
target = 6
for n in nums:

for m in nums:
if n + m == target:

print(“[,]”.format(nums.index(n), nums.index(m)))

Buggy Python Program #26
s = ’abcde’
char = s(0)
print(char)

(No program input provided)

Python Error Message

Traceback (most recent call last):
File “File_Path/buggy_code.py”, line 2, in <module>

char = s(0)
TypeError: ’str’ object is not callable

Pyrite Fix

s = ’abcde’
char = s[0]
print(char)

115

Historical Fix

s = ’abcde’
char = s[0]

Buggy Python Program #27
def shell_sort(Array):

N = len(Array)
h = 1
while h <= N // 3:

h = 3 * h + 1
while h >= 1:

for i in range(h, N):
j = i
while j >= h and Array[j] < Array[j - h]:

print(Array[j])
Array[j], Array[j - h] = Array[j - h], Array[j]
j -= h

h = h / 3
return Array

def main():
x = [3, 2, 1, 4, 5, 4, 1, 4, 5, 6, 89, 9, 22]
print(shell_sort(x))

main()

(No program input provided)

Python Error Message

Traceback (most recent call last):
File “File_Path/buggy_code.py”, line 18, in <module>

main()
File “File_Path/buggy_code.py”, line 17, in main

print(shell_sort(x))
File “File_Path/buggy_code.py”, line 7, in shell_sort

for i in range(h, N):
TypeError: ’float’ object cannot be interpreted as an integer

116

Pyrite Fix

def shell_sort(Array):
N = len(Array)
h = 1
while h <= h // 3:

h = 3 * h + 1
while h >= 1:

for i in range(h, N):
j = i
while j >= h and Array[j] < Array[j - h]:

print(Array[j])
Array[j], Array[j - h] = Array[j - h], Array[j]
j -= h

h = h / 3
return Array

def main():
x = [3, 2, 1, 4, 5, 4, 1, 4, 5, 6, 89, 9, 22]
print(shell_sort(x))

main()

Historical Fix

def shell_sort(Array):
N = len(Array)
h = 1
while h <= N // 3:

h = 3 * h + 1
while h >= 1:

for i in range(h, N):
j = i
while j >= h and Array[j] < Array[j - h]:

print(Array[j])
Array[j], Array[j - h] = Array[j - h], Array[j]
j -= h

h = h // 3
return Array

def main():
x = [3, 2, 1, 4, 5, 4, 1, 4, 5, 6, 89, 9, 22]
print(shell_sort(x))

main()

117

Buggy Python Program #28
def f(y):

print(x)
def g():

global x
print(x)
x = ’g’

x = ’global_string’
f()
g()
f(5)

(No program input provided)

Python Error Message

Traceback (most recent call last):
File “File_Path/buggy_code.py”, line 8, in <module>

f()
TypeError: f() missing 1 required positional argument: ’y’

Pyrite Fix

def f(y):
print(x)

def g():
global x
print(x)
x = ’g’

x = ’global_string’
g()
g()
f(5)

Historical Fix

def f():
print(x)

def g():
global x
print(x)

118

x = ’g’
x = ’global_string’
f()
g()
f()

Buggy Python Program #29
message = ’It was a bright cold day in April.’
count =
for character in message:

count.setdefault(character)
count[character] = count[character] + 1

print(count)

(No program input provided)

Python Error Message

Traceback (most recent call last):
File “File_Path/buggy_code.py”, line 5, in <module>

count[character] = count[character] + 1
TypeError: unsupported operand type(s) for +: ’NoneType’ and ’int’

Pyrite Fix

message = ’’
count =
for character in message:

count.setdefault(character)
count[character] = count[character] + 1

print(count)

Historical Fix

message = ’It was a bright cold day in April.’
count =
for character in message:

119

count.setdefault(character, 0)
count[character] = count[character] + 1

print(count)

Buggy Python Program #30
def float_range(start, stop, skip):

yo = [start]
i = start
while i < stop:

i += skip
if i == stop:

yo.remove(i)
else:

yo.append(i)
return yo

float_range(0, 8, 1)

(No program input provided)

Python Error Message

Traceback (most recent call last):
File “File_Path/buggy_code.py”, line 11, in <module>

float_range(0, 8, 1)
File “File_Path/buggy_code.py”, line 7, in float_range

yo.remove(i)
ValueError: list.remove(x): x not in list

Pyrite Fix

def float_range(start, stop, skip):
yo = [start]
i = start
while i < stop:

i += skip
if i == stop:

yo.remove(i)
else:

120

yo.append(8)
return yo

float_range(0, 8, 1)

Historical Fix

def float_range(start, stop, skip):
yo = [start]
i = start
while i < stop:

i += skip
if i == stop:

yo.pop()
else:

yo.append(i)
return yo

float_range(0, 8, 1)

121

Bibliography

[ACFH11] Jong-hoon (David) An, Avik Chaudhuri, Jeffrey S. Foster, and Michael Hicks.
Dynamic inference of static types for ruby. In POPL, 2011.

[ADG+13] Rajeev Alur, Loris D’Antoni, Sumit Gulwani, Dileep Kini, and Mahesh
Viswanathan. Automated grading of dfa constructions. In Proceedings of the
Twenty-Third International Joint Conference on Artificial Intelligence, IJCAI ’13,
pages 1976–1982. AAAI Press, 2013.

[AKK+18] Umair Z. Ahmed, Pawan Kumar, Amey Karkare, Purushottam Kar, and Sumit
Gulwani. Compilation error repair: For the student programs, from the student
programs. In Proceedings of the 40th International Conference on Software
Engineering: Software Engineering Education and Training, ICSE-SEET ’18,
page 78–87, New York, NY, USA, 2018. Association for Computing Machinery.

[AL80] Anne Adam and Jean-Pierre Laurent. Laura, a system to debug student programs.
Artificial Intelligence, 15(1):75 – 122, 1980.

[AP10] Nathaniel Ayewah and William Pugh. The Google Findbugs fixit. In Proceedings
of the 19th International Symposium on Software Testing and Analysis, ISSTA
’10, pages 241–252, 2010.

[AZG06] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. An evaluation of
similarity coefficients for software fault localization. In Proceedings of the 12th
Pacific Rim International Symposium on Dependable Computing, PRDC ’06,
pages 39–46, Washington, DC, USA, 2006. IEEE Computer Society.

[AZGvG09] Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan J. C. van Gemund. A prac-
tical evaluation of spectrum-based fault localization. J. Syst. Softw., 82(11):1780–
1792, November 2009.

[BAT14] Gavin Bierman, Martín Abadi, and Mads Torgersen. Understanding typescript.
In Richard Jones, editor, ECOOP 2014 – Object-Oriented Programming, pages
257–281, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

122

[BBC+10] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem,
Charles Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. A few
billion lines of code later: Using static analysis to find bugs in the real world.
Commun. ACM, 53(2):66–75, February 2010.

[BDB] bdb Debugger Framework. https://docs.python.org/2/library/bdb.
html.

[BLLLGG16] Tien-Duy B Le, David Lo, Claire Le Goues, and Lars Grunske. A learning-to-rank
based fault localization approach using likely invariants. In Proceedings of the
25th International Symposium on Software Testing and Analysis, pages 177–188.
ACM, 2016.

[BMR+18] Tom B. Brown, Dandelion Mané, Aurko Roy, Martín Abadi, and Justin Gilmer.
Adversarial patch, 2018.

[Bre01] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[Bre17] Leo Breiman. Classification and regression trees. Routledge, 2017.

[BSPC19] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra. Getafix:
Learning to fix bugs automatically. Proc. ACM Program. Lang., 3(OOPSLA),
October 2019.

[BSST09] Clark Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Satisfi-
ability modulo theories, volume 185 of Frontiers in Artificial Intelligence and
Applications, pages 825–885. 1 edition, 2009.

[Bü60] J. Richard Büchi. Weak second-order arithmetic and finite automata. Mathemati-
cal Logic Quarterly, 6(1-6):66–92, 1960.

[Cau] Dino Causevic. Structured tree comparison with tree kernels. https://www.
toptal.com/machine-learning/structured-data-tree-kernels. Ac-
cessed: 2018-08-21.

[CE14] Sheng Chen and Martin Erwig. Counter-factual typing for debugging type errors.
In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’14, pages 583–594, New York, NY, USA, 2014.
ACM.

[CES+20] Benjamin Cosman, Madeline Endres, Georgios Sakkas, Leon Medvinsky, Yao-
Yuan Yang, Ranjit Jhala, Kamalika Chaudhuri, and Westley Weimer. Pablo:
Helping novices debug python code through data-driven fault localization. In
Proceedings of the 51st ACM Technical Symposium on Computer Science Educa-
tion, SIGCSE ’20, page 1047–1053, New York, NY, USA, 2020. Association for
Computing Machinery.

123

[Chr14] David Raymond Christiansen. Reflect on your mistakes! lightweight domain-
specific error messages. In Preproceedings of the 15th Symposium on Trends in
Functional Programming, 2014.

[CKF+02] Mike Y. Chen, Emre Kiciman, Eugene Fratkin, Armando Fox, and Eric Brewer.
Pinpoint: Problem determination in large, dynamic internet services. In Proceed-
ings of the 2002 International Conference on Dependable Systems and Networks,
DSN ’02, pages 595–604, Washington, DC, USA, 2002. IEEE Computer Society.

[CZ05] Holger Cleve and Andreas Zeller. Locating causes of program failures. In ICSE,
pages 342–351, 2005.

[DDL+19] Elizabeth Dinella, Hanjun Dai, Ziyang Li, Mayur Naik, Le Song, and Ke Wang.
Hoppity: Learning graph transformations to detect and fix bugs in programs. In
International Conference on Learning Representations, 2019.

[DKA+15] Loris D’antoni, Dileep Kini, Rajeev Alur, Sumit Gulwani, Mahesh Viswanathan,
and Björn Hartmann. How can automatic feedback help students construct
automata? ACM Trans. Comput.-Hum. Interact., 22(2):9:1–9:24, March 2015.

[FAFH09] Michael Furr, Jong-hoon (David) An, Jeffrey S. Foster, and Michael Hicks. Static
type inference for ruby. In Proceedings of the 2009 ACM Symposium on Applied
Computing, pages 1859–1866, New York, NY, USA, 2009. ACM.

[FM14] Asger Feldthaus and Anders Møller. Checking correctness of typescript interfaces
for javascript libraries. In Proceedings of the 2014 ACM International Conference
on Object Oriented Programming Systems Languages & Applications, OOPSLA
2014, part of SPLASH 2014, Portland, OR, USA, October 20-24, 2014, pages
1–16, 2014.

[FSDF93] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence
of compiling with continuations. In Proceedings of the ACM SIGPLAN 1993
Conference on Programming Language Design and Implementation, PLDI ’93,
pages 237–247, New York, NY, USA, 1993. ACM.

[FW10] Zachary P. Fry and Westley Weimer. A human study of fault localization accuracy.
In 26th IEEE International Conference on Software Maintenance, pages 1–10,
2010.

[Gio09] Toni Giorgino. Computing and visualizing dynamic time warping alignments in r:
The dtw package. Journal of Statistical Software, Articles, 31(7):1–24, 2009.

[GRZ18] Sumit Gulwani, Ivan Radiček, and Florian Zuleger. Automated clustering and
program repair for introductory programming assignments. In Proceedings of the
39th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI 2018, page 465–480, New York, NY, USA, 2018. Association
for Computing Machinery.

124

[Guo13] Philip J Guo. Online Python tutor: Embeddable web-based program visualization
for CS education. In Proceeding of the 44th ACM Technical Symposium on
Computer Science Education, SIGCSE ’13, pages 579–584, New York, NY, USA,
2013. ACM.

[HGS+17a] Andrew Head, Elena Glassman, Gustavo Soares, Ryo Suzuki, Lucas Figueredo,
Loris D’Antoni, and Björn Hartmann. Writing reusable code feedback at scale
with mixed-initiative program synthesis. In Proceedings of the Fourth (2017)
ACM Conference on Learning @ Scale, L@S ’17, pages 89–98, New York, NY,
USA, 2017. ACM.

[HGS+17b] Andrew Head, Elena Glassman, Gustavo Soares, Ryo Suzuki, Lucas Figueredo,
Loris D’Antoni, and Björn Hartmann. Writing reusable code feedback at scale
with mixed-initiative program synthesis. In Proceedings of the Fourth (2017)
ACM Conference on Learning @ Scale, L@S ’17, page 89–98, New York, NY,
USA, 2017. Association for Computing Machinery.

[HMBK10] Björn Hartmann, Daniel MacDougall, Joel Brandt, and Scott R. Klemmer. What
would other programmers do: Suggesting solutions to error messages. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’10, pages 1019–1028, New York, NY, USA, 2010. ACM.

[JDDS13] Xiaoqing Jin, Alexandre Donzé, Jyotirmoy V. Deshmukh, and Sanjit A. Seshia.
Mining requirements from closed-loop control models. In Proceedings of the 16th
International Conference on Hybrid Systems: Computation and Control, HSCC
’13, pages 43–52, New York, NY, USA, 2013. ACM.

[JDJS14] Garvit Juniwal, Alexandre Donzé, Jeff C. Jensen, and Sanjit A. Seshia. Cpsgrader:
Synthesizing temporal logic testers for auto-grading an embedded systems labora-
tory. In Proceedings of the 14th International Conference on Embedded Software,
EMSOFT ’14, pages 24:1–24:10, New York, NY, USA, 2014. ACM.

[JH05] James A. Jones and Mary Jean Harrold. Empirical evaluation of the Tarantula
automatic fault-localization technique. In Automated Software Engineering, pages
273–282, 2005.

[JJDS15] Garvit Juniwal, Sakshi Jain, Alexandre Donzé, and Sanjit A. Seshia. Clustering-
based active learning for cpsgrader. In Proceedings of the Second (2015) ACM
Conference on Learning@ Scale, pages 399–403, New York, NY, USA, 2015.
ACM.

[JvdBvDH93] Stef Joosten, Klaas van den Berg, and Gerrit van Der Hoeven. Teaching functional
programming to first-year students. J. Funct. Program., 3:49–65, 1993.

[KL88] Bogdan Korel and Janusz Laski. Dynamic program slicing. Information Process-
ing Letters, 29(3):155 – 163, 1988.

125

[KL90] Bogdan Korel and Janusz Laski. Dynamic slicing of computer programs. Journal
of Systems and Software, 13(3):187 – 195, 1990.

[KLV14] Temur Kutsia, Jordi Levy, and Mateu Villaret. Anti-unification for unranked terms
and hedges. Journal of Automated Reasoning, 52(2):155–190, 2014.

[Koh19] Tobias Kohn. The error behind the message: Finding the cause of error messages
in python. In Proceedings of the 50th ACM Technical Symposium on Computer
Science Education, SIGCSE ’19, pages 524–530, New York, NY, USA, 2019.
ACM.

[KSKG16] Shalini Kaleeswaran, Anirudh Santhiar, Aditya Kanade, and Sumit Gulwani.
Semi-supervised verified feedback generation. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
FSE 2016, pages 739–750, New York, NY, USA, 2016. ACM.

[LCSS16] Calvin Loncaric, Satish Chandra, Cole Schlesinger, and Manu Sridharan. A
practical framework for type inference error explanation. In Proceedings of the
2016 ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2016, pages 781–799, New
York, NY, USA, 2016. ACM.

[Lev66] V. I. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and
Reversals. Soviet Physics Doklady, 10:707, February 1966.

[LGC06] Benjamin Lerner, Dan Grossman, and Craig Chambers. Seminal: Searching for
ml type-error messages. In Proceedings of the 2006 Workshop on ML, ML ’06,
pages 63–73, New York, NY, USA, 2006. ACM.

[LLL09] Eelco Lempsink, Sean Leather, and Andres Löh. Type-safe diff for families of
datatypes. In Proceedings of the 2009 ACM SIGPLAN workshop on Generic
programming, pages 61–72. ACM, 2009.

[LNFW12] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer.
GenProg: A generic method for automated software repair. Transactions on
Software Engineering, 38(1):54–72, 2012.

[LNZ+05] Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken, and Michael I. Jordan.
Scalable statistical bug isolation. In Programming Language Design and Imple-
mentation, pages 15–26, 2005.

[LR16] Fan Long and Martin Rinard. Automatic patch generation by learning correct
code. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’16, page 298–312, New York, NY,
USA, 2016. Association for Computing Machinery.

126

[LZ17] Xia Li and Lingming Zhang. Transforming programs and tests in tandem for
fault localization. Proc. ACM Program. Lang., 1(OOPSLA):92:1–92:30, October
2017.

[MKM11] Na Meng, Miryung Kim, and Kathryn S. McKinley. Systematic editing: Generat-
ing program transformations from an example. SIGPLAN Not., 46(6):329–342,
June 2011.

[MKM13] Na Meng, Miryung Kim, and Kathryn S. McKinley. Lase: Locating and ap-
plying systematic edits by learning from examples. In Proceedings of the 2013
International Conference on Software Engineering, ICSE ’13, pages 502–511,
Piscataway, NJ, USA, 2013. IEEE Press.

[Mon18] Martin Monperrus. Automatic software repair: A bibliography. ACM Comput.
Surv., 51(1):17:1–17:24, 2018.

[Mül11] D. Müllner. Modern hierarchical, agglomerative clustering algorithms. ArXiv
e-prints, September 2011.

[NQRC13] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-
dra. SemFix: Program repair via semantic analysis. In International Conference
on Sofware Engineering, pages 772–781, 2013.

[NT03] Matthias Neubauer and Peter Thiemann. Discriminative sum types locate the
source of type errors. In Proceedings of the Eighth ACM SIGPLAN International
Conference on Functional Programming, ICFP ’03, pages 15–26, New York, NY,
USA, 2003. ACM.

[PA16] Mateusz Pawlik and Nikolaus Augsten. Tree edit distance: Robust and memory-
efficient. Information Systems, 56:157 – 173, 2016.

[Pat81] Richard E. Pattis. Karel the Robot: A Gentle Introduction to the Art of Program-
ming. John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1981.

[PCR+03] S. Prabhakararao, C. Cook, J. Ruthruff, E. Creswick, M. Main, M. Durham, and
M. Burnett. Strategies and behaviors of end-user programmers with interactive
fault localization. In Human Centric Computing Languages and Environments,
pages 15–22, 2003.

[PHN+15] Chris Piech, Jonathan Huang, Andy Nguyen, Mike Phulsuksombati, Mehran
Sahami, and Leonidas Guibas. Learning program embeddings to propagate
feedback on student code. arXiv preprint arXiv:1505.05969, 2015.

[PKW14a] Zvonimir Pavlinovic, Tim King, and Thomas Wies. Finding minimum type error
sources. In Proceedings of the 2014 ACM International Conference on Object
Oriented Programming Systems Languages & Applications, OOPSLA ’14, pages
525–542, New York, NY, USA, 2014. ACM.

127

[PKW14b] Zvonimir Pavlinovic, Tim King, and Thomas Wies. Finding minimum type error
sources. In Proceedings of the 2014 ACM International Conference on Object
Oriented Programming Systems Languages & Applications, OOPSLA ’14, pages
525–542, New York, NY, USA, 2014. ACM.

[PO11] Chris Parnin and Alessandro Orso. Are automated debugging techniques actually
helping programmers? In International Symposium on Software Testing and
Analysis, pages 199–209, 2011.

[Pop] Bernard James Pope. language-python package for haskell. https://github.
com/bjpop/language-python/tree/v0.5.8.

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[QMLW13] Yuhua Qi, Xiaoguang Mao, Yan Lei, and Chengsong Wang. Using automated
program repair for evaluating the effectiveness of fault localization techniques. In
International Symposium on Software Testing and Analysis, 2013.

[Qui86] J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106,
1986.

[Qui14] J Ross Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.

[RBR05] Joseph R. Ruthruff, Margaret Burnett, and Gregg Rothermel. An empirical study
of fault localization for end-user programmers. In International Conference on
Software Engineering, pages 352–361, 2005.

[RK12] Kelly Rivers and Kenneth R Koedinger. A canonicalizing model for building
programming tutors. In International Conference on Intelligent Tutoring Systems,
pages 591–593. Springer, 2012.

[RK17] Kelly Rivers and Kenneth R. Koedinger. Data-driven hint generation in vast solu-
tion spaces: a self-improving python programming tutor. International Journal of
Artificial Intelligence in Education, 27(1):37–64, 2017.

[RSD+17] Reudismam Rolim, Gustavo Soares, Loris D’Antoni, Oleksandr Polozov, Sumit
Gulwani, Rohit Gheyi, Ryo Suzuki, and Björn Hartmann. Learning syntactic
program transformations from examples. In Proceedings of the 39th International
Conference on Software Engineering, ICSE ’17, pages 404–415, Piscataway, NJ,
USA, 2017. IEEE Press.

[RSGD18] Reudismam Rolim, Gustavo Soares, Rohit Gheyi, and Loris D’Antoni. Learning
quick fixes from code repositories. CoRR, abs/1803.03806, 2018.

128

[SEC+20] Georgios Sakkas, Madeline Endres, Benjamin Cosman, Westley Weimer, and
Ranjit Jhala. Type error feedback via analytic program repair. In Proceedings
of the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2020, page 16–30, New York, NY, USA, 2020. Association
for Computing Machinery.

[SGSL13a] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. Automated feed-
back generation for introductory programming assignments. In Proceedings of
the 34th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’13, pages 15–26, New York, NY, USA, 2013. ACM.

[SGSL13b] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. Automated feed-
back generation for introductory programming assignments. In Proceedings of
the 34th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’13, page 15–26, New York, NY, USA, 2013. Association
for Computing Machinery.

[SJW16] Eric L. Seidel, Ranjit Jhala, and Westley Weimer. Dynamic witnesses for static
type errors (or, ill-typed programs usually go wrong). In Proceedings of the 21st
ACM SIGPLAN International Conference on Functional Programming, ICFP
2016, pages 228–242, New York, NY, USA, 2016. ACM.

[SL08] Armando Solar Lezama. Program Synthesis By Sketching. PhD thesis, EECS
Department, University of California, Berkeley, Dec 2008.

[SLO19] Dowon Song, Myungho Lee, and Hakjoo Oh. Automatic and scalable detection
of logical errors in functional programming assignments. Proc. ACM Program.
Lang., 3(OOPSLA), October 2019.

[SM86] Gerard Salton and Michael J. McGill. Introduction to Modern Information
Retrieval. McGraw-Hill, Inc., New York, NY, USA, 1986.

[SPvR+] Gigi Sayfan, Greg Price, Guido van Rossum, Howard Lee, and Jukka Lehtosalo.
Mypy: Optional static typing for python. http://mypy-lang.org.

[SSC+17] Eric L. Seidel, Huma Sibghat, Kamalika Chaudhuri, Westley Weimer, and Ranjit
Jhala. Learning to blame: Localizing novice type errors with data-driven diagnosis.
Proc. ACM Program. Lang., 1(OOPSLA):60:1–60:27, October 2017.

[SSW04] Peter J Stuckey, Martin Sulzmann, and Jeremy Wazny. Improving type error
diagnosis. In Proceedings of the 2004 ACM SIGPLAN workshop on Haskell,
Haskell ’04, pages 80–91, New York, NY, USA, 22 September 2004. ACM.

[SY17] Jeongju Sohn and Shin Yoo. Fluccs: Using code and change metrics to improve
fault localization. In Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2017, pages 273–283, New
York, NY, USA, 2017. ACM.

129

[VCJ16] Panagiotis Vekris, Benjamin Cosman, and Ranjit Jhala. Refinement types for
typescript. In PLDI, 2016.

[VKSB14] Michael M. Vitousek, Andrew M. Kent, Jeremy G. Siek, and Jim Baker. Design
and evaluation of gradual typing for python. In Proceedings of the 10th ACM
Symposium on Dynamic Languages, pages 45–56, New York, NY, USA, 2014.
ACM.

[WF74] Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem.
J. ACM, 21(1):168–173, January 1974.

[WPO15] Qianqian Wang, Chris Parnin, and Alessandro Orso. Evaluating the usefulness of
IR-based fault localization techniques. In International Symposium on Software
Testing and Analysis, pages 1–11, 2015.

[WSS18] Ke Wang, Rishabh Singh, and Zhendong Su. Search, align, and repair: Data-driven
feedback generation for introductory programming exercises. In Proceedings of
the 39th ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, PLDI 2018, page 481–495, New York, NY, USA, 2018. Association
for Computing Machinery.

[WZCK14] Rongxin Wu, Hongyu Zhang, Shing-Chi Cheung, and Sunghun Kim. Crashloca-
tor: locating crashing faults based on crash stacks. In Proceedings of the 2014
International Symposium on Software Testing and Analysis, pages 204–214. ACM,
2014.

[XM14] Jifeng Xuan and Martin Monperrus. Learning to combine multiple ranking metrics
for fault localization. In Software Maintenance and Evolution (ICSME), 2014
IEEE International Conference on, pages 191–200. IEEE, 2014.

[XQZ+05] Baowen Xu, Ju Qian, Xiaofang Zhang, Zhongqiang Wu, and Lin Chen. A brief
survey of program slicing. SIGSOFT Softw. Eng. Notes, 30(2):1–36, March 2005.

[YXK+17] Shin Yoo, Xiaoyuan Xie, Fei-Ching Kuo, Tsong Yueh Chen, and Mark Harman.
Human competitiveness of genetic programming in spectrum-based fault locali-
sation: Theoretical and empirical analysis. ACM Trans. Softw. Eng. Methodol.,
26(1):4:1–4:30, 2017.

[Zah71] C. T. Zahn. Graph-theoretical methods for detecting and describing gestalt clusters.
IEEE Trans. Comput., 20(1):68–86, January 1971.

[Zel99] Andreas Zeller. Yesterday, my program worked. today, it does not. why? In ESEC
/ SIGSOFT FSE, pages 253–267, 1999.

[ZM14] Danfeng Zhang and Andrew C Myers. Toward general diagnosis of static errors.
In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of

130

Programming Languages, POPL ’14, pages 569–581, New York, NY, USA, 2014.
ACM.

131

