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Abstract

Background and 
Aims

Early diagnosis of aortic stenosis (AS) is critical to prevent morbidity and mortality but requires skilled examination with 
Doppler imaging. This study reports the development and validation of a novel deep learning model that relies on two- 
dimensional (2D) parasternal long axis videos from transthoracic echocardiography without Doppler imaging to identify se
vere AS, suitable for point-of-care ultrasonography.

Methods 
and results

In a training set of 5257 studies (17 570 videos) from 2016 to 2020 [Yale-New Haven Hospital (YNHH), Connecticut], an 
ensemble of three-dimensional convolutional neural networks was developed to detect severe AS, leveraging self-super
vised contrastive pretraining for label-efficient model development. This deep learning model was validated in a temporally 
distinct set of 2040 consecutive studies from 2021 from YNHH as well as two geographically distinct cohorts of 4226 and 
3072 studies, from California and other hospitals in New England, respectively. The deep learning model achieved an area 
under the receiver operating characteristic curve (AUROC) of 0.978 (95% CI: 0.966, 0.988) for detecting severe AS in the 
temporally distinct test set, maintaining its diagnostic performance in geographically distinct cohorts [0.952 AUROC (95% 
CI: 0.941, 0.963) in California and 0.942 AUROC (95% CI: 0.909, 0.966) in New England]. The model was interpretable with 
saliency maps identifying the aortic valve, mitral annulus, and left atrium as the predictive regions. Among non-severe AS 
cases, predicted probabilities were associated with worse quantitative metrics of AS suggesting an association with various 
stages of AS severity.

Conclusion This study developed and externally validated an automated approach for severe AS detection using single-view 2D echo
cardiography, with potential utility for point-of-care screening.
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† The first two authors contributed equally to the study.
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Structured Graphical Abstract

Is it feasible to automatically screen for the presence of severe aortic stenosis (AS) using single-view transthoracic echocardiography 
(TTE) videos without Doppler imaging?

Using self-supervised pretraining and ensemble learning, a deep learning model was trained to detect severe AS using single-view 
echocardiography without Doppler imaging. The model maintained high performance in multiple geographically and temporally distinct 
cohorts.

This automated method to detect severe AS using a single TTE view may have relevant implications for point-of-care ultrasound
screening by individuals with minimal training in limited resource settings.
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Introduction
Aortic stenosis (AS) is a chronic, progressive disease, and associated 
with morbidity and mortality.1,2 With advances in both surgical and 
transcatheter aortic valve replacement,3 there has been an increasing 
focus on early detection and management.4–6 The non-invasive diagno
sis of AS can be made with hemodynamic measurements using Doppler 
echocardiography,2,7–10 but that requires dedicated equipment and 
skilled acquisition and interpretation. On the other hand, even though 
two-dimensional (2D) cardiac ultrasonography is increasingly available 
with handheld devices that can visualize the heart,11 it has not been va
lidated for the diagnosis or longitudinal monitoring of AS. With an es
timated prevalence of 5% among individuals aged 65 years or older,8

there is a growing need for user-friendly screening tools which can 
be used in everyday practice by people with minimal training to screen 
for severe AS. This need for timely screening is further supported by 
evidence suggesting improved outcomes with early intervention, even 
in the absence of symptomatic disease.5,12

Machine learning offers opportunities to standardize the acquisition 
and interpretation of medical images.13 Deep learning algorithms have 
successfully been applied in echocardiograms, where they have shown 
promise in detecting left ventricular dysfunction,14 and left ventricular 
hypertrophy.15 With the expanded use of point-of-care ultrasonog
raphy,11 developing user-friendly screening algorithms relying on single 
2D echocardiographic views would provide an opportunity to improve 
AS screening by operators with minimal experience through time- 
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efficient protocols. This is often limited by the lack of carefully curated, 
labeled datasets, as well as efficient ways to utilize the often noisy real- 
world data for model development.16,17

In the present study, we hypothesized that a deep learning model 
trained on 2D echocardiographic views of parasternal long-axis 
(PLAX) videos can reliably predict the presence of severe AS without 
requiring Doppler input. The approach leverages self-supervised learn
ing (SSL) of PLAX videos along with two other neural network initial
ization methods to form a diverse ensemble model capable of 
identifying severe AS from raw 2D echocardiograms. The model is 
trained based on a dataset from different operators and machines, 
with its external performance assessed both in geographically and tem
porally distinct cohorts. Combined with automated view classification, 
our approach serves as an end-to-end automated solution for deep 
learning applications in the field of point-of-care echocardiography.

Methods
Study population and data source
New England cohort (Yale-New Haven Health network)
A total of 15 000 studies were queried from all transthoracic echocardiog
raphy (TTE) exams performed between 2016 and 2021 across the Yale 
New Haven Health System (YNHHS, including Connecticut and Rhode 
Island), and were used for model derivation and testing across different hos
pitals and time periods. For model development and evaluation across New 
England sites, 12 500 studies from 2016 to 2020 were randomly queried 
with AS oversampled to mitigate class imbalance during model training. 
Specifically, this query sampled normal studies uniformly (including ‘no 
AS’ and ‘sclerosis without stenosis’), oversampled non-severe AS studies 
by 5-fold (including ‘mild AS’, ‘mild-moderate AS’, and ‘moderate-severe 
AS’), and oversampled severe AS by 50-fold. This strategy was designed 
to ensure that the model encounters sufficient examples of severe AS to 
learn the signatures of the disorder; however, all test cohorts were ensured 
to have severe AS prevalence in the range of 1%–1.5%, mirroring the ex
pected prevalence in a general screening population.18 The 12 500 studies 
were then split at the patient level into a derivation set (consisting of all pa
tients scanned in the Yale-New Haven Hospital (YNHH), Connecticut, 
USA, including satellite locations) and a geographically distinct, external 
testing set from New England (consisting of patients scanned at four other 
hospitals—namely Bridgeport Hospital, Lawrence & Memorial Hospital, 
and Greenwich Hospital, all in Connecticut, USA—as well as the 
Westerly hospital in Rhode Island, USA). The remaining 2500 studies of 
the query were all conducted across the previously mentioned centers a 
year later in 2021, with no oversampling to serve as a challenging temporally 
distinct testing set, where severe AS represents ∼1% of all cases. The study 
population is summarized in Figure 1.

All studies underwent de-identification, view classification, and prepro
cessing to curate a dataset of PLAX videos for deep-learned severe AS pre
diction. The full process describing the extraction of the echocardiographic 
videos, loading of image data, masking of identifying information, conversion 
to Audio Video Interleave format, and downsampling for further processing 
and automated view classification is described in the Supplement. After ex
cluding studies that were not properly extracted or contained no pixel data, 
12 185 studies with 539 188 videos underwent automated view classifica
tion based on a pretrained TTE view classifier.19 We retained videos where 
the automated view classifier most confidently predicted the presence of a 
PLAX view. We then excluded cases of low-flow, low-gradient, and para
doxical AS (determined based on the final clinical report) and excluded se
vere AS cases such that our geographically distinct test cohort reached 1.5% 
prevalence, in accordance with estimated prevalence in individuals aged 55 
years and older.18 After these steps, the final YNHHS dataset consisted of 
37 232 videos in 11 297 TTE studies, with 6185 studies from YNHH and 
satellite centers (with AS oversampled as described above) forming the 

derivation set. Another 3072 studies from 2016 to 2020 at hospital sites 
not found in the derivation set formed a geographically distinct testing 
set, and 2040 studies from 2021 formed a temporally distinct testing set 
(see Study population & data source, Figure 1).

Cedars-Sinai cohort
For further testing in an additional geographically distinct cohort, all trans
thoracic echocardiograms performed at the Cedars-Sinai Medical Center 
(Los Angeles, California, USA) between 1 January 2018 and 31 
December 2019 were retrieved. AS severity was determined from finalized 
TTE reports. After excluding studies with prosthetic aortic valves, 4000 
TTEs were sampled at random and combined with 1572 TTEs from this 
period (not part of the random sample) all with severe AS to create a 
5572 study cohort that was enriched for AS. For consistency with the geo
graphically distinct New England 2016–20 and temporally distinct New 
England 2021 cohort, where the severe AS prevalence of 1%–1.5% mirrors 
that of a general screening population,18 we downsampled the Cedars-Sinai 
cohort to a collection of 4226 studies with 1.5% prevalence by removing 
severe AS studies. To avoid bias, each patient with severe AS contributes 
no more than one study to this downsampled cohort.

Consent
The study was reviewed by the Yale and Cedars-Sinai Institutional Review 
Boards, which approved the study protocol and waived the need for in
formed consent as the study represents secondary analysis of existing 
data (Yale IRB ID #2000029973).

Echocardiogram interpretation
All studies were performed by trained echocardiographers or cardiologists 
and reported by board-certified cardiologists with specific training cardiac 
echocardiography. These reports were a part of routine clinical care, in ac
cordance with the recommendations of the American Society of 
Echocardiography.20,21 The presence of AS severity was adjudicated based 
on the original echocardiographic report. Further details on the measure
ments obtained are presented in the Supplement.

Model training and development
Self-supervised learning
We used our previously described novel approach of self-supervised con
trastive pretraining for echocardiogram videos.22 This approach demon
strated that classification tasks could be performed in a more data-efficient 
manner through ‘in-domain’ pretraining on echocardiograms,22 as opposed 
to other standard approaches such as random initialization of weights and 
transfer learning.14,23,24 Briefly, this SSL was performed on the training set vid
eos with a novel combination of: (i) a multi-instance contrastive learning task 
and (ii) a frame re-ordering pretext task, both explained in detail in the 
Supplementary data online and summarized in Figure 2. For this, we adopted 
‘multi-instance’ contrastive learning, where the model was trained to learn 
similar representations of different videos from the same patient, which al
lowed the model to learn the latent space of PLAX-view echocardiographic 
videos. To additionally encourage the temporal coherence of our model, we 
included a frame re-ordering ‘pretext’ task to our SSL method, where we ran
domly permuted the frames of each input echo, then trained the model to 
predict the original order of frames.25

Deep neural network training for severe AS prediction
The 3D-ResNet1826 architecture described above was also leveraged to 
detect severe AS. Three different methods were used to initialize the para
meters of this network: an SSL initialization, a Kinetics-400 initialization, and 
a random initialization (see Figure 2 and Supplementary data online). All fine- 
tuning models were trained on randomly sampled video clips of 16 consecu
tive frames from training set echocardiograms. Models were trained for a 
maximum of 30 epochs with early stopping if the validation area under 
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the receiver operating characteristic curve (AUROC) did not improve for 
five consecutive epochs. Severe AS models were trained on a single 
NVIDIA RTX 3090 GPU with the Adam optimizer, a learning rate of 1 × 
10−4 (except the SSL-pretrained model, which used a learning rate of 
0.1) and a batch size of 88 using a sigmoid cross-entropy loss. We addition
ally used class weights computed with the method provided by scikit-learn27

to accommodate class imbalance in addition to label smoothing28 with 
α = .1. Learning curves depicting loss throughout training can be found in 
Supplementary data online, Figure S1.

Ensemble learning
Since models were trained on 16-frame video clips, we averaged clip-level 
predictions to obtain video-level predictions of severe AS at inference 
time. To form study-level predictions, we averaged predicted severe AS 
probabilities from all videos acquired during the same study. The final en
semble model was then formed by averaging the study-level output prob
abilities from the SSL-pretrained model, the Kinetics-400-pretrained 
model, and the randomly initialized model after fine-tuning each ensemble 
member to detect severe AS. Since no quality control is applied when se
lecting PLAX videos for this work, averaging results over multiple videos 
in the same study has a stabilizing effect that boosts predictive 
performance.29

Assessing diagnostic performance in the testing sets
We evaluate the model’s performance on both AUROC and the area under 
the precision-recall curve, with the latter being specifically informative when 
class imbalance is present.30 We additionally reported metrics that assess 
performance at specific decision thresholds such as F1 score, positive pre
dictive value (PPV), and negative predictive value (NPV). For these metrics, 
we proceed with a fixed decision threshold of 0.607, which was selected to 
maximize F1 score in the validation set of the derivation cohort.

Model explainability
We evaluated the predictive focus of the models using saliency maps. These 
were generated using the Grad-CAM method31 for obtaining visual expla
nations from deep neural networks (see Supplementary data online). This 
method was used to produce a frame-by-frame ‘visual explanation’ of 
where the model was focusing to make its prediction. To generate a single 
2D heatmap for a given echo clip, the pixelwise maximum along the tem
poral axis was taken to capture the most salient regions for severe AS pre
dictions across all time points. These spatial attention maps were visualized 
based on the outputs of each ensemble member (the randomly initialized, 
Kinetics-400-pretrained, and SSL-pretrained AS models) for five true positive 
examples, a true negative (TN), and a false positive (FP). We used the ‘inferno’ 
colormap (https://matplotlib.org/stable/tutorials/colors/colormaps.html) for 

15,000 studies 
queried

Exclude studies that were not 
properly extracted from database 

13,354 studies 

Exclude studies with no PLAX video 
as determined by view classifier

Exclude studies with no pixel data 
and de-identify video frames

11,480 studies 
(37,788 PLAX videos)

12,185 studies 
(539,188 videos)

11,424 studies 
(37,611 PLAX videos)

Exclude studies with low gradient AS, 
paradoxical AS, or missing AS label

12,500 studies from 2016-2020 

2,500 studies from 2021 

9,257 studies (30,702 videos)

Test #2 2,040 studies (6,530 PLAX videos)

Training 5,257 studies (17,570 PLAX videos)

Validation 928 studies (2,972 PLAX videos)

Test #1 3,072 studies (10,160 PLAX videos)

Derivation 6,185 studies (20,542 PLAX videos)

11,297 studies 
(37,232 PLAX videos)

Exclude studies from patients scanned at 
both a derivation and test set hospital 

AND 
Exclude severe AS studies from external 

test set #1 to reach 1.5% prevalence

From External Hospital Sites

Figure 1 Inclusion-exclusion flowchart for the New England study population. Exclusion criteria for transthoracic echocardiography (TTE) studies 
and videos included in this study from the Yale-New Haven Health network. Studies with valid pixel data were de-identified frame by frame, and the 
parasternal long axis (PLAX) view was determined by an automated view classifier. A sample of 12 500 studies from 2016 to 2020 were split into a 
derivation set and external test set, which comprised studies from hospital sites not encountered during model development. An independent random 
sample of 2500 studies from 2021 was used as an additional test set to evaluate robustness to temporal shift
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visualization, where pixels closer to bright yellow are highly salient for the 
model prediction and pixels closer to dark purple or black are negligible.

Statistical analysis
All 95% confidence intervals for model performance metrics were com
puted by bootstrapping. Specifically, 10 000 stratified bootstrap samples 
(samples with replacement having positive- and negative-label sample sizes 
equal to those of the original evaluation set) of the test cohort were drawn, 
metrics were computed on this set of studies, and nonparametric confi
dence intervals were constructed with the percentile method.32

Bootstrapping was performed at the study level since the severe AS labels 
are provided for each echocardiographic study. To assess the calibration of 
the model at a 1% prevalence of severe AS, a logistic regression model was 
fitted in a down-sampled version of the New England training set. 
Calibration was assessed by the Brier score (the average squared distances 
between the actual and predicted probability), as well as the calibration 
slope and intercept. The logistic model was then applied in the remaining 
New England and California testing sets, where the same calibration metrics 
are reported.33 For analysis of the correlation between model outputs and 
quantitative measures of AS, categorical variables were summarized as per
centages, whereas continuous variables are reported as mean values with 
standard deviation and visualized using violin plots. Continuous variables be
tween the two groups were compared using the Student’s t-test. Pearson’s 
r was used to assess the pairwise correlation between continuous variables. 

Spearman’s rank-order correlation test was used to analyze the relationship 
between model outputs and AS severity, which was represented ordinally 
with increasing severity (e.g. 0 = none, 1 = mild-moderate, 2 = severe). The 
independent association of the model output with various echocardio
graphic indices of AS severity and diastolic function was assessed using mul
tivariable linear regression modelling. All statistical tests were two-sided 
with a significance level of 0.05, unless specified otherwise. Analyses were 
performed using Python (version 3.8.5) and R (version 4.2.3). Reporting 
of the study methods and results stands consistent with the 
CONSORT-AI (Consolidated Standards of Reporting Trials–Artificial 
Intelligence)34 and CODE-EHR (electronic health record) guidelines.35

Results
Study population
In the New England cohort, after removing studies with no pixel data, 
de-identifying video frames, and using an automated view classifier to 
determine the PLAX view, our final derivation set consisted of 6185 
studies with 20 542 videos (1 294 197 frames) [mean age 70 ± 16 years, 
n = 2992 (48.4%) women], with mild, moderate, and severe AS in 
12.6% (n = 780), 8.0% (n = 495), and 23.1% (n = 1427) of studies, re
spectively. To evaluate generalization across local hospital sites, we 

Figure 2 Overview of the proposed approach. We first perform self-supervised pretraining on parasternal long axis (PLAX) echocardiogram videos, 
selecting different PLAX videos from the same patient as ‘positive samples’ for contrastive learning. After this representation learning step, we then use 
these learned weights as the initialization for a model that is fine-tuned to predict severe aortic stenosis (AS) in a supervised fashion
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curated a test set of 3072 studies (10 160 videos) from separate New 
England hospitals in the YNHHS network that were not present in the 
derivation set, with a prevalence of mild, moderate, and severe AS in 
196 (6.4%), 130 (4.2%), and 47 (1.5%) of studies, respectively. The tem
porally distinct test set consisted of 2040 randomly selected scans with 
a total of 6530 videos performed between 1 January 2021 and 15 
December 2021 across YNHHS (mean age 66 ± 16 years, n = 997 
(48.9%) women). These were used for time-dependent model valid
ation, with mild, moderate, and severe AS estimated in 4.1% (n = 83), 
2.9% (n = 59), and 1.0% (n = 20) of the studies, respectively. Finally, a 
set of 4226 studies performed at the Cedars-Sinai Medical Center be
tween 2018 and 2019 (65 studies with severe AS out of 4226, 1.5%) 
[mean age 69 ± 17 years, n = 1852 (43.8%) women], was also used 

for further external testing (Figure 1). Further information on patient 
characteristics is presented in the Methods and Table 1.

Performance of a deep learning model for 
severe AS detection based on PLAX videos
The ensemble model was able to reliably detect the presence of severe AS 
using single-view, 2D PLAX videos, demonstrating an AUROC of 0.942 
(95% CI: 0.909, 0.966) on the geographically distinct testing set of New 
England hospitals not included in the derivation set. The model also de
monstrated consistent performance across time in the same hospital sys
tem, maintaining its discriminatory performance with an AUROC of 0.978 
(95% CI: 0.966, 0.988) on the temporally distinct testing set from 2021. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Table 1 Table of baseline demographic and echocardiographic characteristics

New England (Yale-New Haven Health) California

Derivation Geographically distinct 
testing #1

Temporally distinct 
testing

Geographically distinct 
testing #2

Number of patients 5749 3069 2034 3923

Number of echo studies 6185 3072 2040 4226

Number of studies per 
patient, n (%)

1 5367 (93.3) 3066 (99.9) 2028 (99.7) 3677 (93.7)

2 336 (5.8) 3 (0.1) 6 (0.3) 201 (5.1)

3 or more 46 (0.8) 0 (0.0) 0 (0.0) 45 (1.1)

Study location YNHH BH, GH, LMH, WH YNHH, BH,  
GH, LMH, WH

CSMC

Year of study 2016–2020 2016–2020 2021 2018–2019

Age (years), mean (SD) 69.9 (15.7) 66.7 (16.6) 65.7 (16.4) 65.2 (17.3)

Gender, n (%a) Female 2992 (48.4) 1581 (51.5) 997 (48.9) 1852 (43.8)

Male 3194 (51.6) 1491 (48.5) 1043 (51.1) 2374 (56.2)

Race & Ethnicity, n (%a) Asian 67 (1.2) 45 (1.7) 40 (2.2) 329 (7.8)

Black 503 (9.0) 381 (14.3) 200 (11.1) 600 (14.2)

Hispanic 364 (6.5) 347 (13.0) 158 (8.8) 479 (11.3)

Other 249 (4.4) 317 (11.9) 133 (7.4) 308 (7.3)

Unknown 221 (3.9) 23 (0.9) 63 (3.5) 111 (2.6)

White 4575 (81.5) 1904 (71.3) 1359 (75.7) 2399 (56.8)

LVIDd Index (cm/m2), mean (SD) 2.4 (0.4) 2.4 (0.4) 2.4 (0.4) 2.4 (0.6)

RVSP (mmHg), mean (SD) 32.5 (13.3) 32.2 (14.4) 29.8 (12.0) 31.6 (14.2)

EF (%), mean (SD) 59.5 (10.8) 59.3 (11.4) 59.1 (10.2) 57.5 (14.9)

AVA by VTI (cm2), mean (SD) 1.3 (0.8) 2.0 (0.9) 2.1 (0.9) 1.9 (1.4)

AV mean gradient (mmHg), 
mean (SD)

23.2 (18.2) 8.7 (9.3) 9.0 (9.4) 10.9 (11.4)

AV peak velocity (m/s), mean (SD) 2.4 (1.3) 1.6 (0.7) 1.6 (0.6) 1.6 (0.9)

Patients with severe AS, n (%) 1213 (21.1) 47 (1.5) 20 (1.0) 65 (1.5)

Studies with severe AS, n (%) 1427 (23.1) 47 (1.5) 20 (1.0) 65 (1.5)

Since splits were made at the study level, distinct studies from n = 9 patients contributed to both the ‘Geographically distinct testing #1’ and ‘Temporally distinct testing set’ cohorts. 
Similarly, distinct studies from n = 53 patients were including in both the derivation set and the ‘Temporally distinct testing set.’ 
AV, aortic valve; BH, Bridgeport Hospital; CSMC, Cedars-Sinai Medical Center; EF, ejection fraction; GH, Greenwich Hospital; LAD, left atrium; LMH, Lawrence & Memorial Hospital; 
LVIDd, left ventricular internal diastolic diameter; RVSP, right ventricular systolic pressure; SD, standard deviation; VTI, velocity time integral; WH, Westerly Hospital; YNHH, Yale-New 
Haven Hospital. 
aPercentages represent valid percentages after excluding cases with missing information.
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Finally, in further geographically distinct testing using scans performed at 
Cedars-Sinai, the model generalized well across institutions, reaching 
an AUROC of 0.952 (95% CI: 0.941, 0.963). Receiver operating 
characteristic (ROC) curves and the distribution of model 
probabilities across disease groups (no AS, mild-moderate AS, severe 
AS), showing a graded relationship across severity groups, are shown 
in Figure 3; see Supplementary data online, Table S1 for full detailed re
sults. Furthermore, in sensitivity analyses without averaging predictions 
from multiple videos in the same study we observed overall consistent 
results, as summarized in Supplementary data online, Tables S2 and S3. 
Additional analysis demonstrated that our model continued to exhibit 
high performance in identifying cases where one or more quantitative 
measures indicated severe AS, regardless of the reading cardiologist’s 
interpretation (see Supplementary data online, Table S4).

Due to the extremely low prevalence of severe AS in the external 
test cohorts, our model’s PPV remained consistent at 0.159 [95% CI: 
(0.133, 0.188)] in the geographically distinct New England cohort 
(1.5% prevalence) and 0.159 [95% CI: (0.130, 0.192)] in the temporally 
distinct New England cohort (<1% prevalence). In auxiliary experi
ments downsampling the Cedars-Sinai cohort to various levels of se
vere AS prevalence, PPV varied from 0.155 [95% CI: (0.137, 0.173)] 
at 1.5% prevalence to 0.556 [95% CI: (0.530, 0.582)] at 10% prevalence, 
and up to 0.796 [95% CI: (0.780, 0.812)] at the full 25.3% prevalence 
before downsampling (see Supplementary data online, Table S5).

When fitted in the training set downsampled to a severe AS preva
lence of 1.5% (n = 61 cases), the model demonstrated good calibration 
performance across all levels of risk in both the training (Brier score of 
0.012) as well as the three distinct testing sets (Brier scores ranging be
tween 0.008 and 0.013) (see Supplementary data online, Figure S2).

Explainable predictions through saliency 
maps
We used Gradient-weighted Class Activation Mapping (Grad-CAM) to 
identify the regions in each video frame that contributed the most to 
the predicted label. In the examples shown in Figure 4, the first five col
umns represent the five most confident severe AS predictions, the sixth 
column represents the most confident ‘normal’ (no severe AS) predic
tion and the seventh column represents the most confident incorrect 
severe AS prediction. The saliency maps from our SSL approach de
monstrated consistent and specific localization of the activation signal 
in the pixels corresponding to the aortic valve and annulus (bottom 
row). For frame-by-frame saliency visualizations for each ensemble 
member, see Supplementary data online, Videos S1–S5 for each true 
positive, Supplementary data online, Video S6 for the true negative, 
and Supplementary data online, Video S7 for the false positive (left =  
randomly initialized model, middle = Kinetics-400-initialized model, 
right = SSL-initialized model).

None Non-Severe Severe
Aortic Stenosis Severity

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
o
d
e
l P

re
d
ic

ti
o
n

N=3663 N=498 N=65

P<0.001

0.0 0.2 0.4 0.6 0.8 1.0

1 - Specificity

0.0

0.2

0.4

0.6

0.8

1.0

S
e
n
si

ti
vi

ty

AUC: 0.952 (0.941, 0.963)

0.0 0.2 0.4 0.6 0.8 1.0

1 - Specificity

0.0

0.2

0.4

0.6

0.8

1.0

S
e
n
si

ti
vi

ty

AUC: 0.942 (0.909, 0.966)

None Non-Severe Severe
Aortic Stenosis Severity

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
o
d
e
l P

re
d
ic

ti
o
n

N=2406 N=172 N=47

P<0.001

None Non-Severe Severe
Aortic Stenosis Severity

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
o
d
e
l P

re
d
ic

ti
o
n

N=1878 N=142 N=20

P<0.001

0.0 0.2 0.4 0.6 0.8 1.0

1 - Specificity

0.0

0.2

0.4

0.6

0.8

1.0

S
e
n
si

ti
vi

ty

AUC: 0.978 (0.966, 0.988)

C

D

A

B

New England Cohort 
(N=2,040) [2021]

New England Cohort 
(N=3,072) [2016-2020]

Cedars-Sinai Cohort 
(N=4,226)

E

F

Figure 3 Model performance in the external validation sets. Receiver operating characteristic curves (first row) and violin plots showing relationship 
of model output with aortic stenosis severity (second row) for the external New England cohort (first column), temporally distinct New England cohort 
(second column), and external Cedars-Sinai cohort (third column)
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Model identification of features of AS 
severity
In the temporally distinct testing set from 2021 (reflecting the normal 
prevalence of severe AS in an echocardiographic cohort), we observed 
that the predictions of the ensemble model correlated with continuous 
metrics of AS severity, including the peak aortic valve velocity (r = 0.59, 
P < .001), trans-valvular mean gradient (r = 0.66, P < .001) and the 
mean aortic valve area (r = −0.53, P < .001). On the other hand, the 
model predictions were independent of the left ventricular ejection 
fraction (LVEF) (r = −0.02, P = .37), a negative control. Of note, a high
er model-derived probability of severe AS was associated with higher 
average E/e’ values [ratio of early diastolic mitral inflow velocity to early 
diastolic mitral annulus velocity; coef. 0.60 (95%CI: 0.37–0.83), P <  
0.001], greater indexed left atrial volumes [mL/m2; coef. 0.09 (0.02– 
0.17), P = 0.016], and higher maximal tricuspid regurgitation velocities 
[TRVmax, m/sec; coef. 0.15 (0.05–0.25), P = .003], independent of the 
peak aortic valve velocity measured in each study (see Supplementary 
data online, Table S6).

In further sensitivity analysis, we stratified cases without AS or mild/ 
moderate AS based on the predictions of our model as TNs or FPs. 
Compared to TNs, FP cases had significantly higher peak aortic veloci
ties [FP: 3.4 (25th–75th percentile: 2.9–3.7) m/sec; TN: 1.6 (1.3–2.3) m/ 
sec, P < .001], trans-valvular mean gradients [FP: 26.0 (25th–75th per
centile: 20.5–31.8) mmHg; TN: 5.0 (3.8–9.0) m/sec, P < .001], and mean 
aortic valve area [FP: 1.04 (25th–75th percentile: 0.86–1.28) cm2; TN: 
1.99 (1.49–2.67) cm2, P < .001], but no significant difference in the LVEF 
[FP: 65.4% (55.0%–67.8%); TN: 60.0% (55.0%–65.0%), P = .19] 
(Figure 5).

Further, we observed that predicted model probabilities significantly 
correlated with fine-grained cardiologist-determined AS severity 
(P < .001 for the New England 2016–20, New England 2021, and 

Cedars-Sinai cohorts independently). Though the model was only 
trained to discriminate severe AS from all other designations, its pre
dicted probabilities identify a gradient of AS severity in aggregate. For 
example, in the Cedars-Sinai test cohort, our model predicted a mean  
± standard deviation severe AS probability of 0.171 ± 0.143 for normal 
studies (N = 3663), 0.436 ± 0.180 for mild AS (N = 88), 0.531 ± 0.168 
for mild-moderate AS (N = 26), 0.560 ± 0.173 for moderate AS 
(N = 89), 0.638 ± 0.163 for moderate-severe AS (N = 295), and 
0.708 ± 0.145 (N = 65) for severe AS (Figure 6).

Model generalization to paradoxical 
low-flow, low-gradient AS
Though paradoxical low-flow, low-gradient AS cases were removed 
from our cohorts for training and evaluation purposes, a post-hoc ana
lysis revealed that our model was able to discriminate low-flow, low- 
gradient AS from normal cases. On the N = 44 low-flow, low-gradient 
studies originally excluded from the New England cohorts (2016–21 
pooled together), our model produced a mean ± standard deviation 
predicted severe AS probability of 0.697 ± 0.135, compared with 
0.157 ± 0.153 for normal studies (see Supplementary data online, 
Figure S3). In fact, if interpreting low-flow, low-gradient cases as severe 
AS, our model achieves a PPV of 1.000, sensitivity of 0.727, and an F1 
score of 0.842.

Discussion
We have developed and validated an automated algorithm that can ef
ficiently screen for and detect the presence of severe AS based on a 
single-view 2D TTE video. The algorithm demonstrates excellent per
formance (AUROCs ranging from 0.92 to 0.98), with high sensitivity 
(85%) at high specificity (96%), maintaining its robustness and 

Figure 4 Saliency map visualization. Spatial attention maps for the self-supervised learning (SSL)-pretrained model (top row), Kinetics-pretrained 
model (middle row), and randomly initialized model (bottom row) for five true positives (first five columns), a true negative (sixth column), and a false 
positive (last column). As determined by the Kinetics-pretrained model, the first five columns represent the five most confident severe AS predictions, 
the sixth column represents the most confident ‘normal’ (no severe AS) prediction, and the seventh column represents the most confident incorrect 
severe AS prediction. Saliency maps were computed with the GradCAM method and reduced to a single 2D heatmap by maximum intensity projection 
along the temporal axis
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Figure 5 Comparison between model predictions and echocardiographic left ventricular and aortic valve assessment among patients without severe 
aortic stenosis. Violin plots demonstrating the distribution of LVEF (left ventricular ejection fraction, (A) peak aortic valve velocity (B), mean aortic valve 
gradient (C ) and mean aortic valve area (D) for patients without severe AS, stratified based on the predicted class based on the final ensemble model. 
These results are based on the temporally distinct cohort of patients scanned in 2021, without oversampling for severe aortic stenosis cases
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discriminatory performance across several geographically and tempor
ally distinct cohorts with varying prevalence of severe AS (Structured 
Graphical Abstract). We also leverage a novel self-supervised step le
veraging multi-instance contrastive learning, which allowed our algo
rithm to learn key representations that define each patient’s unique 
phenotype through contrastive pre-training, independent of the ex
pected technical variation in image acquisition, including differences in 
probe orientation, beam angulation and depth. Visualization of saliency 
maps introduces explainability to our algorithms and confirms the key 
areas of the PLAX view, including the aortic valve, mitral annulus, and 
left atrium, that contributed the most to our predictions. 
Furthermore, features learned by the model generalize to lower sever
ity cases as well as cases of low-flow, low-gradient AS, highlighting the 
potential value of our model in the longitudinal monitoring of AS, a dis
ease with a well-defined, progressive course.30 Our approach has the 
potential to expand the use of echocardiographic screening for sus
pected AS, shifting the burden away from dedicated echocardiographic 
laboratories to point-of-care screening in primary care offices or low- 
resource settings. It may also enable operators with minimal echocar
diographic experience to screen for the condition by obtaining simple 
two-dimension PLAX views without the need for comprehensive 
Doppler assessment, which can then be reserved for confirmatory as
sessment. Given the low prevalence of severe AS in a general screening 
population, however, our model would likely be best suited for ruling 
out severe AS, given its >99% NPV.

In recent years, several artificial intelligence applications have been 
described in the field of echocardiography,36 ranging from automated 
classification of echocardiographic views,37 video-based beat-to-beat 
assessment of left ventricular systolic dysfunction,14 detection of left 
ventricular hypertrophy and its various subtypes,15 diastolic dysfunc
tion,38 to expert-level prenatal detection of complex congenital heart 
disease.39 Of note, machine learning methods further enable individuals 
without prior ultrasonography experience to obtain diagnostic TTE 
studies for limited diagnostic use.40 Despite this and even though the 
diagnosis and grading of AS remains dependent on echocardiog
raphy,2,20 most artificial intelligence solutions for timely AS screening 
have focused on alternative data types, such as audio files of cardiac aus
cultation,41 12-lead electrocardiograms,42–44 cardio-mechanical signals 
using non-invasive wearable inertial sensors,45 as well as chest radio
graphs.46 For 12-lead electrocardiograms, AUROCs were consistently 
<0.90,42–44 whereas for alternative data types, analyses were limited to 
small datasets without external validation.41,45 Other studies have ex
plored the value of structured data derived from comprehensive TTE 
studies in defining phenotypes with varying disease trajectories.47

More recently, the focus has shifted to AI-assisted AS detection 
through automated TTE interpretation. In a recent study, investigators 
employed a form of SSL to automate the detection of AS, with their 
method, however, discarding temporal information by only including 
the first frame of each video loop while also relying on the acquisition 
of images from several different views.48 The approach that relies on 
ultrasonography is also safer than the alternative screening strategies, 
such as those using chest computed tomography and aortic valve cal
cium scoring,47,49 which expose patients to radiation.

In this context, our work represents an advance both in the clinical 
and methodological space. First, we describe a method that can effi
ciently screen for a condition associated with significant morbidity 
and mortality,44 with increasing prevalence in the setting of an aging 
population.50 Our method can potentially shift the initial burden 
away from trained echocardiographers and specialized core laborator
ies as part of a more cost-effective screening and diagnostic cascade 

that can detect the condition at its earliest stages, particularly by ruling 
out the presence of severe AS thanks to its high NPV.11,40 Furthermore, 
it provides an additional layer of information in any setting where 
point-of-care ultrasound is used, where more detailed echocardio
graphic assessment may fall outside the scope of the original study in
dication or may be limited by the available equipment, time, or skills 
of the provider. In this regard, major strengths of our model include 
its reliance on a single echocardiographic view that can be obtained 
by individuals with limited experience and focused training,40 and its 
ability to process temporal information through analysis of videos ra
ther than isolated frames. By adjusting the optimal threshold for a posi
tive screen depending on the specific patient population and clinical 
setting, potential applications of the method range from the screening 
of asymptomatic individuals in the community, to the rapid assessment 
of patients in emergency settings, as well as the screening of lower se
verity or low-flow low-gradient cases where Doppler-based measure
ments may result in misclassification of disease severity. The 
importance of this is further supported by expanding evidence regard
ing the possible benefits of timely intervention in AS across asymptom
atic,5 low-risk severe,51 or even moderate severity cases.52 The 
overarching goal is to develop screening tools that can be deployed 
cost-effectively, gatekeeping access to comprehensive TTE assessment, 
which can be used as a confirmatory test to establish the suspected 
diagnosis. The current model further offers the ability to retrospective
ly interrogate databases for potentially missed disease and/or prospect
ively guide the need for aortic valve interrogation with Doppler in 
limited studies obtained for alternative indications.

Second, our work describes an end-to-end framework to boost arti
ficial intelligence applications in echocardiography. We present an algo
rithm that automatically detects echocardiographic views, then 
performs self-supervised representation learning of PLAX videos 
with a multi-instance, contrastive learning approach. This novel ap
proach further enables our algorithm to learn key representations of 
a patient’s cardiac phenotype that generalize and remain consistent 
across different clips and variations of the same echocardiographic 
views. By optimizing the detection of an echocardiographic fingerprint 
for each patient, this important pretraining step has the potential to 
boost AI-based echocardiographic assessment across a range of condi
tions. Furthermore, unlike previous approaches,48 our method benefits 
from multi-instance contrastive learning, which learns key representa
tions using different videos from the same patient, a method that has 
been shown to improve predictive performance in the classification 
of dermatology images.53

Further to detecting severe AS, our algorithm learns features of aortic 
valvular pathology that generalize across different stages of the condition, 
including various severity stages as well as the diagnostically challenging 
low-flow, low-gradient AS phenotype.54 When restricting our analysis 
to patients without severe AS, the model’s predictions strongly corre
lated with Doppler-derived, quantitative features of stenosis severity. 
This is in accordance with the known natural history of AS, a progressive, 
degenerative condition, the hallmarks of which are aortic valve calcifica
tion, restricted mobility, functional stenosis and eventual ventricular de
compensation.18 As such, our algorithm’s predictions also carry 
significant value as quantitative predictors of the stage of AV severity 
and could theoretically be used to monitor the rate of AS progression.

On this note, saliency maps demonstrate that the model focuses on 
the aortic valve, possibly learning features such as aortic valve calcifica
tion and restricted leaflet mobility,20 as well as the mitral annulus and 
left atrium. These findings are further supported by a cross-sectional 
correlation of the model output with echocardiographic markers of 
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elevated filling pressures, left atrial dilation, and elevated pulmonary 
pressures.55 These observations align with the known hemodynamic ef
fects of worsening AS, characterized by worsening diastolic dysfunc
tion, often defined based on changes in mitral annular tissue 
velocities and left atrial structure.56,57 Notably, prior studies suggest 
that among patients with AS and normal LVEF, annular tissue 
Doppler and echocardiographic markers of left atrial mechanics may 
better reflect the hemodynamic consequences of an increasing after
load burden on the left ventricle than traditional echocardiographic 
markers of AS severity.58,59

Limitations of our study include the lack of prospective validation of 
our findings. To this end, we are working on deploying this method in 
prospective cohorts of patients referred for routine TTE assessment to 
understand its real-world implications as a screening tool. Second, our 
model is limited to using PLAX views, which often represent the first 
step of TTE or point-of-care ultrasound protocols in cardiovascular as
sessment. Though there is no technical restriction to expanding these 
methods to alternative views, increasing the complexity of the screen
ing protocol is likely to negatively impact its adoption in busy clinical set
tings. Future work will incorporate multiple TTE views into the 
proposed AS detection framework. Finally, this study used data from 
formal TTEs, which generally produce higher-quality images than ma
chines in point-of-care ultrasound settings. Though videos were down
sampled for model development, further validation is needed to ensure 
robustness across acquisition technologies.

Conclusion
In summary, we propose an efficient method to screen for severe AS 
using single-view (PLAX) TTE videos without the need for Doppler sig
nals. More importantly, we describe an end-to-end approach for de
ploying artificial intelligence solutions in echocardiography, starting 
from automated view classification to self-supervised representation 
learning to accurate and explainable detection of severe AS. Our find
ings have significant implications for point-of-care ultrasound screening 
of AS as part of routine clinic visits and in limited resource settings and 
for individuals with minimal training.

Supplementary data
Supplementary data are available at European Heart Journal online.
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