
Lawrence Berkeley National Laboratory
Recent Work

Title
EVA REFERENCE MANUAL

Permalink
https://escholarship.org/uc/item/8843j4j9

Author
Belshe, R.A.

Publication Date
1987-06-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8843j4j9
https://escholarship.org
http://www.cdlib.org/

\",?~t
,.~

1 ~ ".

:!:.
;;

PUB-3062

IL~wrr®ll1l~® J®rrlkell®y IL~fo)(Q)rr21t([JJry
UNIVERSITY OF CALIFORNIA

Engineering Division

EVA REFERENCE MANUAL

R.A. Belshe

June 1987

RC.: .. ::C:lVED
tJ~'iJ\JH[~i\~CE

8::~1:{r'~ :" ..), ~.)\·,:;r.Q:'\TnRY

f.UJ G 2 1 '1987

DOCUMEiHS SECTiON

lFor Reference

Not to be taken from this room

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

(". I

1\
• -

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

EV A Reference Manual

Robert A. Belshe

Real Time Systems Department
Lawrence Berkeley Laboratory

University of California
Berkeley, California 94720

June 1987

This work was supported by the U.S. Department of Energy under
Contract Number DE-AC03-76SF00098.

Table of Contents

1. INTRODUCfION .. 1

2. EVA VERSION 6J ... 1

2.1. ON-LINE MONITORING .. 2

2.2. ONE-DIMENSIONAL SPECfRA ... 2

2.3. TWO-DIMENSIONAL SPECTRA .. 2

2.4. VIRTUAL 2-D SPECTRA .. 2

2.5. DECLARATIONS .. 2

2.6. RESERVED NAMES ... 2

2.7. DATA TAPES ... 2

2.8. AUXILIARY REGISTERS .. 2

2.9. SUBSCRIPTS ... 3

3. HOW TO START EVA ... 3

4. CONTROL COMMANDS .. 3

4.1. CLEAR .. 3

4.2. COMPILE,NAME[,LO] .. 3

4.3. DO NAME ... 4

4.4. EXIT .. 4

4.5. HELP ... 4

4.6. LOAD SPEC,FILE ... 4

4.7. READ U,KEY .. 4

4.8. RESTORE .. 4

4.9. REWIND U .. 4

4.10. SAVE .. 4

4.11. SORT U.NF,NB ... 4

4.12. TEST,U ... 5

4.13. TERMINAL,DEV ... 5

4.14. USL,NAME ... 5

4.15. UNLOAD U ... 5

4.16. WRITE U ... 5

5. THE EV AL LANGUAGE ... 6

5.1. COMMENTS .. 6

5.2. DECLARATIONS .. 7

5.3. DATA AND SPECfRUM MANIPULATION ... 8

5.4. BIT MANIPULATION: .. 11

5.5. PROGRAM FLOW CONTROL ... 11

Version 6J . i . PUB·3062

Table of Contents

6. APPENDIX A: PROGRAMMING EXAMPLES .. 14

6.1. SAMPLE PROGRAM .. 14

6.2. 2-DlMENSIONAL GATES .. 16

6.3. VARIABLE LENGTH EVENTS ... 18

7. APPENDIX B: PROGRAM OPTIONS ... 21

.'

Version 6J • ii . PUB·3062

1. INTRODUCTION

EV A is a program used for creating one-dimensional
(1-0) and two-dimensional (2-0) spectra from event
tapes. In order to create these spectra an algorithm is
written in the EV AL language which describes both
the structure of a single event and the analysis to be
done on each event The process of sorting an event
tape is then simply to repeat this algorithm for each of
the millions of events on the tape. The EV A language
has been defined to easily describe such algorithms,
and a compiler has been written to produce optimum
machine code for each individual set of sorting condi­
tions. This allows the user full control over the han­
dling of the events and produces code which runs
much faster than a generalized FORTRAN program.

EV AL (EVent Analysis Language) was developed by
Anders Holm at the Niels Bohr Institute. The original
MOOCOMP implementation of EVA was done at
LBL by Martin Neiman in 1980.

This manual describes the implementation of sorting
programs using the EVA compiler for the Modcomp
CLASSIC computers at LBL. When used with the
program GATES, it allows free-form 2-dimensional
regions to be used as gates.

EV A can be described as a program which transforms
the computer into a programmable calculator with a
large memory. The data tape appears to the calculator
as a stream of data words. The user must write a pro­
gram, in the EV AL language, which specifies how
words of this stream are grouped into events and how
each event is to be treated. The main register of the
calculator is the accumulator, which can contain either
integer or floating point numbers. There are also three
integer registers (X, y, Z) which are dedicated to spe­
cial functions, but can also be used as general purpose
quick access memory. The calcuator can test the value
in the accumulator, do arithmetic with it, and use it as
a channel number of a spectrum in memory to be
incremented. While it can do both integer and floating
point arithmetic, integer arithmetic is much faster.

The major input from the user is the EV AL program
for the calculator. Most of this manual is concerned
with how to write such programs. Following this there
are several examples of complete EV AL programs,
with a discussion of each particular program. In read­
ing the programs the following points should be noted:

Version 6J

o While a name may be any length, only the first
eight characters are significant.

o The delimiters space, comma, and equals are
equivalent and may be used interchangeably to
improve readability.

o A line beginning with a 'C' followed by a blank
is treated as a comment.

o The pound sign '#' indicates that the remainder
of the line is to be treated as a comment.

o Blank lines may be inserted anywhere in the pro­
gram.

o The line numbers are added to aid in the discus­
sion of the program. They are not a part of the
program itself.

o Indentation of statements in the program is
ignored by the compiler. When a listing of the
program is requested, the output will be indented
automatically to show the structure of the pro­
gram.

2. EVA VERSION 6J

Version 6J contains all the features of the previous
versions including the facility to address channels in
any 1-0 spectrum with the load and store commands.
This allows 1-0 spectra to be treated as lookup tables,
which can greatly reduce the number of instructions
required to make some logical decisions. Other
recently added features are:

o NZINC command. This command is exactly like
INC, except channel zero of the selected 1-0
spectrum is never incremented.

o More sorting areas. The number of addressable
sorting areas has been increased to 16. The
number of usable areas depends on the amount
of disk space available.

o Virtual 2-0 spectra may be specified, and viewed
with·the EVA monitor program, CLOOK. From
one to 32 virtual spectra may be displayed on the
screen at one time.

o When a program saves 2-0 spectra on disc, any
1-0 spectra are saved on the large disc also. Pro­
grams which create only 1-0 spectra now use the

PUB·3062

EVA Reference Manual

shared save area EMO.

2.1. ON-LINE MONITORING
While sorting is in progress, 1-0 and virtual 2-D spe~­
tra may be monitored with the program CLOOK. This
program allows the user to select either a ~ingle spec­
trum or a list of spectra and have them dIsplayed on
the Tektronix 4014 terminal.

2.2. ONE-DIMENSIONAL SPECTRA
During sorting, one-dimensional spectra are located in
memory. Up to 800,000 words of memory may be
allocated to 1-0 spectra. When sorting of a tape is
completed, if the program has only 1-0 spectra, they
are saved on the shared save area EMO. If the program
has 2-0 spectra as well, both the 2-0 and 1-0 spectra
are saved in the selected area.

2.3. TWO-DIMENSIONAL SPECTRA
Two-dimensional spectra are created in reserved areas
on the large disc. These spectra may be as l~rge as 16
million channels with the amount of dISC space
currently available. There are 16 user-selected areas
for the storage of 2-0 spectra. Because 2-0 spectra
are not in memory, the time to increment one channel
is much larger. A simple sorting program can incre­
ment over 100,000 1-0 channels per second. but only
about 9000 2-0 channels per second.

The algorithm used to update 2-0 spectra uses a 256
word presort buffer in memory for each disc track. and
a 8192 word presort buffer on disc for each disc track
in the spectra. The presort buffers in memory reduce
the amount of space available for 1-0 spectra.
Because the disc presort buffers are so large. a
significant amount of sorted data may be lost in the
case of a computer malfunction. The data in memory
cannot be recovered after the computer is restarted, but
the large presort buffers which are on the disc can be
recovered when EVA is restarted. if no other sorting
has been done.

2.4. VIRTUAL 2-D SPECTRA
Virtual 2-0 spectra are displayed on the screen of the
Tektronix 4014 in real time. but are not stored in
memory. All data is lost whenever the screen is
erased. Display of virtual spectra is controlled by the
monitor program. CLOOK.

Version 6J ·2·

June 1987

2.5. DECLARATIONS
All formats, data, spectra, and variables must be
declared. Declarations may be in any order but must
all appear before the first executable statement in the
program.

2.6. RESERVED NAMES
There are two reserved variable names, • SYNC' and
'EVSIZE'. SYNC is predefined, and represents the
position of the current event in the tape buffer.
EVSIZE must be declared in each program. either as a
DATA constant or as an integer variable. When the
EV AL program completes its processing of an event.
it must set EVSIZE to the number of 16 bit words in
the event. At the end of the EV AL program, the event
pointer is incremented by EVSIZE. SYNC is incre­
mented by one. and the program is reentered at the top.
When the event pointer passes the end of the tape
buffer. new tape record is read and the variable SYNC
is set to zero.

2.7. DATA TAPES
Data tapes have a fixed record length. so ~ event will
usually be partly in one record and partly m the next.
The input record buffering routine in EV A does a
'look ahead' which allows the EV AL program to
always see complete events. This feature relieves the
user from having to deal with split events. and ensures
that all events on the data tape will be processed.
EVA will process data tapes with record lengths up to
SOOO words. and it expects all records in a file to have
the same length.

2.8. AUXILIARY REGISTERS
Three auxiliary registers. 'X'. 'Y', and 'Z·. are avail­
able to hold integer values. The 'X' and 'yo registers
are used to hold the X and Y channel numbers when
incrementing a two-dimensional spectrum. The 'Z'
register is also used to contain the channel number
when 1-0 spectra are addressed with the load and store
commands. The 'yo register also has a special func­
tion when 2-dimensional gates are used. Otherwise
the 'X'. 'Y·. and 'Z' registers may be used for any
general purpose. These registers may be used as
'rapid-access' temporary locations, which can save

PUB·3062

,

EVA Referenee Manual

significant amounts of sorting time in some programs.

2.9. SUBSCRIPTS
The value of a subscript is used as an offset from the
named item. As in FORTRAN, a subscript value of
one is the same as having no subscript. Unlike FOR­
TRAN, a subscript in EV AL is used to reference the
items which follow the subscripted item. A subscript
of 2 references the item immediately following the
subscripted item, a subscript of 3 references the 2nd
item after the subscripted item. For example, if the
following three variables are defined in consecutive
statements;

IVAR AA
IVAR BB
IVAR CC

then AA(1) is the same as AA
and AA(2) is the same as BB
and AA(3) is the same as CC

The same rules apply to subscripted SPECTRA, FOR­
MAT, and DATA.

When a spectrum is subscripted, a number of spectra
with different names are created. For example. the
statement:

SPEC GAMMA1(3) 1024,2

creates three consecutive spectra named
GAMMA1(1), GAMMA1(2), and GAMMA1(3).
The user's program will reference these spectra as
GAMMA1(IV AR) where IV AR has a value of 1, 2, or
3.

Note that reference to GAMMA 1 (0) or
GAMMAl(IV AR), when IVAR equals zero, results in
a reference to whatever item was declared just before
GAMMA 1. This is a common error which can be very
difficult to detect. The values of subscripts are not
validated by the program because of the additional
execution time that would be required.

Version 6J

June 1987

3. HOW TO START EVA
To run EVA the user types CTRL-C on the DEC­
writer, then types:

lEV AlEXE"xx

xx is the name of the file where the
loadable image of EVA is stored
(usually IT).

EV A will announce its name, then the user is asked
(on the DECwriter):

EVA»

This is EVA's prompt for a command, which must be
from the following list Only the first three letters of
any command need to be typed.

Until the COMPILE command has been given, only
the HELP, USL, TERMINAL, and EXIT commands
can be executed.

4. CONTROL COMMANDS

4.1. CLEAR
Resets the accumulated spectra to zero. I-D spectra
are always cleared, if any 2-D spectra are present, the
user is asked if they should be cleared.

4.2. COMPILE,NAME[,LO]
This command is used to convert the user's EV AL
program into a executable subroutine. Because it only
takes a few seconds to compile most EV AL programs,
the object module is not saved; EV AL programs are
re-compiled each time they are used. NAME is usu­
ally the name of the program as cataloged on the RSL
partition. Other partitions may also be used (see the
USL command). The option parameter LO is included
if a listing of the EV AL program on the VERSATEC
printer is wanted. At the end of compilation, statistics
are printed which show the amount of memory and
disk space used by the program.

Occasionally, to find an obscure bug, it may be neces­
sary to look at the assembly language code generated
by the compiler. This can be done by setting option
bit 2, and then compiling with the LO parameter.

PUB·3062

EVA Rererence Manual

If the selected EV AL program contains any 2-D spec­
tra, the user will be asked which of the 16 disc sorting
areas will be used, and is asked if a recovery of lost 2-
o data is to be made. If the recovery option is
selected, the program will report the number of counts
recovered. If the previous sort ended nonnally there is
no need to perfonn a recovery, and if done, the
number of counts recovered will be zero.

4.3. DO NAME
When this command is issued, command input is

switched to the file 'NAME' on the users USL file.
When the last command in 'NAME' has been exe­
cuted, command input is switched back to the DEC­
writer.

4.4. EXIT
The EV A task exits, returning all memory to the sys­
tem.

4.5. HELP
Prints a list of the possible commands.

4.6. LOAD SPEC,FILE
This command loads the spectrum 'SPEC' with data
from a previously prepared text file. 'FILE' is the
name of the file on the current USL. This file contains
a list of integers, separated by commas or blanks,
which will be loaded into consecutive channels of the
spectrum. When the character '#' is found in this file,
it and the remainder of the line are treated as a com­
ment When the end of file is reached, a message is
printed on the control console which shows the
number of channels loaded with data. This command
allows the loading of look up tables which can be used
to make the process of making decisions involving
multiple gates much simpler. The program 'IGATE'
can be used to create text files for the LOAD com­
mand.

4.7. READ V,KEY
This command allows the user to reload spectra from
a tape which was created with the WRITE command.
At the time of the WRITE, a 'data set KEY' is printed
on the DECwriter. The READ command finds the
spectra on tape 'U' which correspond to 'KEY' and
loads them into memory. Sorting may then proceed
with the next data tape.

Version 6J

June 1987

4.8. RESTORE
After each sort command, EVA automatically saves all
accumulated spectra on the top disc (partition ROO).
If, for some reason, a sorting session has been inter­
rupted, this command will restore the contents of all
spectra to the values they had after the last completed
SORT command. Sorting may then proceed with the
next data tape.

4.9. REWIND V
Rewinds the tape at any of the possible tape stations.
'V' must be one of the numbers 1, 2, 3, 6, 7, or 9.
These numbers correspond to the logical unit names
MTI, MT2, MT3, etc.

4.10. SAVE
This command may be used to force saving of the
spectra on disc. It is only needed if sorting has been
tenninated by option 7, and the user wants to save the
spectra.

4.11. SORT V,NF,NB
Begin sorting tape 'U' at file 'NF'. If NF is positive
the tape is positioned to the indicated file. If NF is
zero, the tape is not repositioned; sorting will begin
with the next block on the tape.

'NB' is the number of blocks (records) to be SOI1ed. If
NB is positive then NB blocks will be sorted, unless an
end file is reached first. If NB is zero, one complete
file will be sorted. If NB is negative then NB files will
be sorted.

-4-

The heading of the file will then be typed and sorting
is started. Sorting will continue until the requested
number of blocks or files have been processed or until
a double end of file is reached, or until the reflective
marker at the end of the tape is sensed. Sorting may
also be terminated by setting program option 7.

At the end of sorting the number of blocks sorted and
the number of error blocks will be printed. Error
blocks (those containing tape errors) are ignored when
sorting.

If 150 tape errors are detected during a sort pass, sort­
ing is tenninated automatically. The tape is left at the
end of the last record read.

Sorting can be tenninated at any time by setting pro­
gram option bit 7 as described in Appendix B.

PUB·3062

v

..

EVA Reference Manual

If the tape should go off during sorting, the message
'TAPE IS OFF-LINE' will appear. When this happens
you can continue by putting the tape back on-line, or
you can terminate sorting with program option bit 7.

The message 'SAVE COMPLETED' will appear when
the 1-0 spectra have been copied to disc and the
presort buffers, if any, have been emptied into the 2-0
spectra. This step is skipped if the sort was terminated
by option 7, see the 'SAVE' command.

4.12. TEST,U
Prints the run number and run title as read from tape
'U' (at its current position).

4.13. TERMINAL,DEV
Assign the operator terminal to a different device.
When EV A is first activated, the operator terminal is
assigned to the device 'AT1 '.To shift control to the
DECWRITER the command is 'TER,TYO'.

4.14. USL,NAME
Change the name of the file which will be searched to
find the EV AL source program. The default file name
is RSL. To change to the global user file MSL, the
command is 'USL,MSL'. File manager file names
may also be used; in this case the command is
'USL,USL:xxx';where 'xxx' is the user's login name.

4.15. UNLOAD U
Tape 'U' is rewound and unloaded or put off-line.

4.16. WRITE U
The user is first asked if this is a new tape. If the reply
is 'No', the tape will be positioned at the logical end
of tape before writing begins, otherwise the tape is
rewound. The. user is then asked to type a 32 byte title
which will be written into the spectrum header record.
Finally, all the spectra which exist in the current
EV AL program are added to the tape. Spectra are
written on the tape in the same order as they are
declared in the EV AL program.

Version 6J -5-

June 1987

PUB·3062

EVA Reference Manual June 1987

s. THE EVAL LANGUAGE

Each EV AL statement occupies a single line and begins with a mnemonic command. Following the command
are possibly some parameters. The commands are divided into 5 groups.

1. Comments

2. Declarations

3. Data and spectrum manipulation

4. Bit manipulation

5. Program flow control

The entire EV AL program must be contained in a BRA-KET pair, i.e. the first line of the program must be a
BRA and the last line must be a KET. The symbols '[' and ']' may be used in place of the words 'BRA' and
'KET'.

The following notation is used in the description of EVAL commands:

< > Indicates a required parameter. The type is described by the word enclosed in the < >, i.e. <NAME>
means a text name.

[] Indicates an optional parameter.

(*) Indicates an optional subscript. The subscript itself must be of the type INUM, IDAT A, or IV AR.

NAME

NUM

INUM

DATA

IDATA

VAR

IVAR

J

A vertical line is read as 'or' i.e., <DATA I VARIABLE> means either data or a variable is required.

The name to be assigned to a variable, data item, format, or spectrum. Names may be any length but
only the first eight characters are significant

Integer or Real number. A REAL number includes a period, an INTEGER number does not.

Integer number.

Integer or Real data.

Integer data.

Integer or Real vairable.

Integer variable.

Integer variable (optional) used to declare an array of variables or an array of spectra.

5.1. COMMENTS

C A line beginning with a 'C' followed by a blank is treated as a comment.

The '#' symbol and all following characters are treated as a comment.

Version 6J -6- PUB·3062

\J

EVA Reference Manual June 1987

S.2. DECLARATIONS

DATA <NAME> <VALUE>
Assigns 'VALUE' to 'NAME'. 'VALUE' must be either an integer or a real number. The value of 'NAME' can­
not be changed by the program.

SPEC <NAME(J»<NUMCHAN><WORDS/CHANNEL>
Defines a spectrum called 'NAME', containing 'NUMCHAN' channels. All spectra start with channel zero.
'WORDS/CHANNEL' must be either 1 or 2, which will overflow with 65,535 or 2,147,483,647 counts respec­
tively. If the integer subscript 'J' is present, then 'J' identical spectra are created, and designated NAME(1)
through NAME(N). These spectra will usually be incremented using the subscripted form of the INC statement.

DSPEC <NAME(J»<XMAX><YMAX><WORDS/CHANNEL>
Defines a two-dimensional spectrum called 'NAME'. XMAX and YMAX are the number of channels on each
axis. The remaining details are the same as in SPEC, above.

LSPEC <NAME(J»<XMAX><YMAX><WORDS/CHANNEL>
Defines a virtual two-dimensional spectrum called 'NAME'. XMAX and YMAX are the number of channels on

each axis. The number of words per channel must be present, even though it is not used.

FORMAT <NAME><WORD><FIRST BIT><LAST BIT>
Defines a format called 'NAME' which can be used to unpack a parameter from the event buffer. It describes the

inclusive interval from 'FIRST BIT' to 'LAST BIT' of word number 'WORD' in the event. The bits are num­
bered from ° to 15 with ° being the most significant. The first word of the event is word 1, not word_O.

GA TE <NAME>CHANNEL><HIGH CHANNEL>
Defines a gate called 'NAME' which extends from 'LOW CHANNEL' to

G2D <NAME>
Defines a 2-dimensional gate called 'NAME'. The values for this gate will be read from disk partition 'RRl'

where they have been placed by the program 'OATES'. The gates on disk are associated with NAMES in order,
i.e. the first gate on disk is associated with the first 02D statement in the EV AL program. Each 2-dimensional
gate requires 256 words of memory.

HEX <NAME> <VALUE>
Assigns 'VALUE' to 'NAME'. Value must be a hexadecimal number of not more than 4 digits. The value of
'NAME' cannot be changed by the program.

IVAR <NAME(J»
Creates an integer variable called 'NAME'. If the integer subscript 'J' is present, then an array of length 'J' is
allocated. The elements of this array are accessable by using the subscripted form of the variable.

RV AR <NAME(J»
Creates a real (floating-point) variable called 'NAME', with optional subscript as in IVAR, above.

Version 6J PUB·3062

EVA Rt!ferenc:e Manual June 1987

5.3. DATA AND SPECTRUM MANIPULATION

ADD <NUM I DA TA(·) I V AR(·) I FORMAT(·»
Adds 'NUM', 'DATA', 'VAR', or 'FORMAT' to (from) the accumulator. If either the accumulator or the

operand is a real number the result will be a real number, otherwise it will be a 16 bit integer. (A 16 bit integer
can assume all values from -32768 to +32767.

CALL <FUNCTION> <NUM I DATA(·) I V AR(·»
The CALL statement operates on the value currently in the accumulator, and leaves the result in the accumulator.

The mathemetical routines used are the from the standard FORTRAN library. Of the ten functions are available.
only the PWR function requires a parameter.

SIN
COS
TAN
ASIN
ACOS
ATAN
EXP
ALOG
SQRT
PWR

CHS

Compute sine of angle (radians) in accumulator.
Compute cosine of angle (radians) in accumulator.
Compute tangent of angle (radians) in accumulator.
Compute arc sine of accumulator.
Compute arc cosine of accumulator.
Compute arc tangent of accumulator.
Compute e**x, where x is value in accumulator.
Compute the natural log of the accumulator.

. Compute the square root of the accumulator.
Compute A **X, where A is the value in the accumulator, and
X is the parameter following the function name.

Changes the sign of the accumulator.

COUNT
Add one to the event counter. This command is used in the online version of EVA (CSORT). It is ignored by

EVA.

DIV <NUM I DA TA(*) I V AR(·) I FORMAT(·»
Divides the accumulator by 'NUM', 'DATA', 'VAR', or 'FORMAT'. If either the accumulator or the operand is
a real number the result will be a real number, otherwise it will be a 16 bit integer.

FETCH [IVAR(·)]<FORMAT(·»
The ADC systems at LBL produce numbers between 4030 and 4095 when the input pulse falls below the lower
threshold. These values should usually be treated as zero. This can be done by defining a spectrum to be 4029
channels, or merely by ignoring the last 66 channels. In some applications (for example when testing for zero, or
doing arithmetic) it is desirable to have a binary zero. FETCH is similar to GET, but will assume that the data
was produced by such an ADC and will set all values greater than 4029 to zero. FETCH takes about 50% longer
than GET to execute. .

ABS
Converts the accumulator to its absolute value (fixed or floating).

Version 6J PUB·3062

-../

•

EVA Reference Manual June 1987

FIX
Convens the contents of the accumulator (by truncation) from a real number to a 16 bit integer. FIX will be

ignored if the accumulator already contains an integer.

FLOAT
Convens the contents of the accumulator from an integer to a real number. FLOAT will be ignored if the accu­

mulator already contains a floating point number.

FRAC
Set the integer part of the accumulator to zero. For example, 11.345 becomes 0.345 .

GET [IV AR(*)]<FORMAT(*»
Unpacks a parameter described by 'FORMAT' into the accumulator. If the optional parameter 'IVAR' is
present, the parameter will also be stored in the variable 'IV AR'.

GETX [IV AR(*)]<FORMA T(*»
GETY [IV AR(*)]<FORMA T(*»
GETZ [IV AR(*)]<FORMA T(*»
Unpacks a parameter described by 'FORMAT' into the 'X', 'Y', or 'Z' register. The value will remain in the
register until changed.

INC [VAR(*) I FORMA T(*)]<SPEq*»
The one-dimensional spectrum 'SPEC' is incremented by one in the channel number contained in the accumula­
tor. If one of the optional parameters 'VAR' or 'FORMAT' is present. the accumulator is first loaded with the
parameter. If the number is outside the limits of the spectrum, the spectrum is not incremented.

INC <DSPEC(*»
INC <VSPEC(*»
The two-dimensional spectrum 'OSPEC' or 'VSPEC' is incremented by one in the channel described by the
present contents of the 'X' and 'Y' registers. These registers are loaded via the LOX, LOY, GETX, GETY, or
COPY commands.

LDA <NUM I DA TA(*) I V AR(*) I SPEC(*»
Loads the accumulator with the 'NUM', 'DATA', or 'V AR' indicated. If 'SPEC(*), is specified, the accumula­
tor is loaded with the value of channel 'n', where 'n' is the current contents of the 'Z' register.

LDX <INUM I IDA T A(*) I IV AR(*) I SPEC(*»
LDY <INUM I IDA TA(*) I IV AR(*) I SPEq*»
LDZ <lNUM I IDA TA(*) I IV AR(*) I SPEq*»
Loads the 'X', 'Y', or 'Z' register with the 'INUM', 'IOATA', or 'IVAR' indicated. If 'SPEC(*), is specified,
the register is loaded from channel 'n' of SPEC(*), where 'n' is the current contents of the 'Z' register. The
value will remain in the register until changed .

MUL <NUM I DA TA(*) I V AR(*) I FORMA T(*»
Multiplies the accumulator by 'NUM', 'DATA', 'V AR', or 'FORMAT'. If either the accumulator or the operand

is a real number the result will be a real number, otherwise it will be a 16 bit integer.

Version 6J -9- PUB·3062

EVA Reference Manual June 1987

NZINC [V AR(*) I FORMAT(*)]<SPEq*»
This command is identical to INC except that channel zero of the selected spectrum is never incremented.

RAN <RVAR> <RVAR I DATA>
This command is used to increment a pseudo-random value and then add the value to the accumulator. The first
parameter is the pseudo-random variable and the second parameter is a fraction which is to be added to the ran­
dom variable. Whenever the random value becomes greater than 1.0, the random value is decremented by 1.0.

The purpose of this command is to allow a random distribution of counts when a parameter is multiplied by a
gain correction constant. The random variable is always a fraction from 0.0 to 0.99999 which is added to the
value of the parameter, for example:

In EV AL code this becomes:
LDA RAW_PARAMETER
RAN RANDOM_ V ALUE,RANDOM_FRAC
MUL GAIN_CONSTANT
ST A SCALED_PARAMETER

SET <IV AR(*»<INUM I IDA T A(*) I IV AR(*»
Set the first parameter equal to the second parameter. This operation does not change the value of the accumula­

tor.

ST A <VAR(*) I SPEC(*»
Stores the contents of the accumulator in 'V AR' or 'SPEC(*)'. If 'SPEC(*), is specified, the accumulator is

stored into channel 'n', where 'n' is the current contents of the 'z' register.

STX <V AR(*) I SPEq*»
STY <V AR(*) I SPEq*»
STZ <V AR(*) I SPEC(*»
Stores the contents of the 'X', 'Y', or 'z' register in 'V AR' or 'SPEC(*),. If 'SPEC(*), is specified, the register
is stored into channel 'n', where 'n' is the current contents of the 'Z' register.

STEP <IV AR(*»<lNUM I IDA TA(*) I IV AR(*»
Set the value of the first parameter to the sum of itself and the second parameter. This operation does not change

the value of the accumulator.

SUB <NUM I DA TA(*) I V AR(*) I FORMA T(*»
Subtracts 'NUM', 'DATA', 'VAR', or 'FORMAT' to (from) the accumulator. If either the accumulator or the

operand is a real number the result will be a real number, otherwise it will be a 16 bit integer. (A 16 bit integer
can assume all values from -32768 to +32767.

Version 6J PUB·3062

..

\,.

EVA Reference Manual June 1987

COPY COMMANDS
The following instructions copy the integer in one register into another register. !fthe source register is the accu­
mulator, it must contain an integer. Copy commands execute in 0.2 microseconds, interchange commands exe­
cute in 0.6 microseconds.

CAY
CAX
CAZ
CXA
CYA
CZA
CXY
CXZ
CYX
CYZ
CZX
CZY
IXY
IXZ
IYZ

Copy the accumulator to the 'Y' register.
Copy the accumulator to the 'X' register.
Copy the accumulator to the 'Z' register.
Copy the 'X' register to the accumulator.
Copy the 'Y' register to the accumulator.
Copy the 'Z' register to the accumulator.
Copy the 'X' register to the 'Y' register.
Copy the 'X' register to the 'Z' register.
Copy the 'Y' register to the 'X' register.
Copy the 'Y' register to the 'Z' register.
Copy the 'Z' register to the 'X' register.
Copy the 'Z' register to the 'Y' register.
Interchange the 'X' and 'Y' registers.
Interchange the 'X' and 'Z' registers.
Interchange the 'Y' and 'Z' registers.

5.4. BIT MANIPULATION:

ASH <lNUM I IDA TA>
Performs an arithmetic shift of the accumulator. In a left shift (value from 1 and 15) zeroes are shifted in, while
in a right shift (value from -1 to -15) the sign bit is propaged into the number. This operation is not allowed if
the accumulator contains a real number.

LSH <lNUM I IDA TA>
Performs a logicallcft or right shift of the accumulator. Zeroes will be shifted in and the bits shifted out will be

lost. A value from 1 and 15 means a shift to the left, a value from -1 to -15 means a shift to the right. This
operation is not allowed if the accumulator contains a real number.

AND <lNUM I IDA T AC*) I IV ARC*) I FORMA TC*»
OR <lNUM I IDA TAC*) I IV ARC*) I FORMA TC*»
XOR <INUM I IDA TA(*) I IV ARC*) I FORMA TC*»
Performs a logical AND, OR, or XOR (exclusive OR) between the accumulator and 'INUM', 'IDATA', 'IVAR',

or 'FORMAT'. The result is stored in the accumulator. These operations are allowed only between integers.

5.5. PROGRAM FLOW CONTROL

BRA, KET, [,]
Used in conjunction with IF and ELSE to define program flow. The left and right bracket symbols '[' and ')'

may be used interchangably with 'BRA' and 'KET'. The entire EVAL program must be contained in a BRA­
KET pair, i.e. the first non-comment line of the program must be a BRA and the last line must be a KET.

Version 6J PUB·3062

EVA Reference Manual

IF [V AR(*) I FORMA T(*)] <LOGOP> <NUMBER I DA TA(*) I V AR(*) I FORMAT(*»
.IF [VAR(*) I FORMAT(*)] [NOT] <GATE(*) I G2D(*»

June 1987

If the optional parameter 'V AR' is present, the variable 'V AR' is fetched into the accumulator before any test is
performed. If the optional parameter 'FORMAT' is present, a word from the tape buffer will be unpacked into
the accumulator. Otherwise. the current contents of the accumulator is tested.

When the second form of the IF command is used, the accumulator is compared to the lower and upper limits of
a GATE constant. If the GATE constant is a two-dimensional gate (G20), the accumulator is compared to the
yth element of the named 20 gate array, where Y is the current value of the Y register. ..."

The possible LOGOPs are:

EQ: equal
NE: not equal
L T: less than
GT: greater than
LE: less than or equal to
GE: greater than or equal to

If the logical test is true, or the value is within the specified gate, program continues with the next statement. If it
is false, the program jumps to the next visible ELSE (Le. one not enclosed in a BRA-KET pair beginning below
the IF), or if none is found, to the next visible KET below the IF statement. Execution continues with the state­
ment immediately following the ELSE or KET.

The six LOGOPs above are reserved names, and may not be used to name FORMATS, SPECfRA, OAT A, or
VARIABLES.

ELSE
Used in conjunction with IF statements to indicate an alternative program path. When an ELSE statement is

reached by any path other than a failed IF test, the program jumps to the next visible KET.

FOR <IV AR> <FIRST> <LAST> [<STEP>]
This statement initializes a FOR-NEXT loop. The variable IVAR is set to the value specified by FIRST. The
values LAST and STEP are saved for use by the associated NEXT statement. FIRST, LAST, and STEP must be
positive integer numbers, integer data, or integer variables. If STEP is missing, a value of one is used. This state­
ment does not change the value of the accumulator.

NEXT <lVAR>
This statement adds STEP to IV AR, then compares the value of IV AR with the value of LAST specified in the
associated FOR statement. If IV AR is less than or equal to LAST, the program jumps back to the statement fol­
lowing the FOR statement. If IV AR is greater than LAST, the program continues with the statement following
the NEXT. This statement does not change the value of the accumulator.

GOTO<NAME>
This statement causes the program to jump to the label statement containing NAME. NAME is a string of up to
8 characters which has not been used to declare a format, spectrum, data or variable.

Version 6J -12 - PUB·3062

..

. .;

EVA Reference Manual June 1987

:LABEL
A label statement is a line containing a colon in column one, followed by a NAME of up to 8 characters. Charac­

ters following NAME on a label statement, if any, are ignored.

EXAMPLE OF A LOOP USING GOTO STATEMENT

REPEAT

BRA
SETN=1

:LOOP
(statements)
STEPN,l
IFNLTNMAX

GOTOLOOP
KET

This statement causes a jump to the BRA statement which is at the beginning of the BRA-KET pair in which the
REPEAT is enclosed.

EXAMPLE OF A LOOP USING REPEAT STATEMENT

Version 6J

SETN=l
BRA

(statements)
STEPN,l
IFNLTNMAX

REPEAT
KET

·13· PUB·3062

EVA Rererenc:e Manual June 1987

6. APPENDIX A: PROGRAMMING EXAMPLES

6.1. SAMPLE PROGRAM

In the following example, a three parameter event is sorted. The coincidences of two GEL! detectors are exam­
inded and six spectra are produced. There are two GEL! singles spectra, two concidence spectra of GEL!2 with
gates on GELIl for both TRUE and RANDOM gates on the TAC. Each event consists off our words as follows:

word 1: GEL! # 1
word 2: GEL! # 2
word 3: TAC
word 4: end of event flag (hexadecimal FOOO)

The outennost BRA-KET pair, lines 3 and 73 are required because the closing KET marks the end of the pro­
gram.

In lines 7-9 the three parameters are given names and declared to be in words 1, 2, and 3 of the event. The
ADC's used in this experiment produce 12 bits (4096) channels) which are placed in bits 4 to 15 of each word.
Lines 7 and 8 include all 4096 channels while line 9 drops the 2 least significant bits resulting in a 1024 channel
parameter. Line 10 declares the end of event flag to be all bits of word 4.

In lines 14-19 the six spectra to be soned are declared. Spectra S 1 and S2 will be used for singles, so they are
declared to have 2 words per channel. The others are coincidence spectra and are not expected to accumulate
more than 65,535 counts in anyone channel, so they are declared as single word spectra. This saves both memory
and soning time. .

In lines 23-26 the gates are defined.

In line 30 the variable EVSIZE is declared. The value of EVSIZE will be set by the program on line 39 or line
72.

In lines 31 and 32 the variables X and Y are declared. These variables are used to avoid the overhead of unpack­
ing the raw data from the event each time the GEL! values are needed. Line 33 defines a constant EFLAG, and
sets its value to hexadecimal FOOO.

Lines 37-73 contain the executable pan of the program. Line 37 compares the value of END to EFLAG. This is
to ensure that we are properly synchronized with the event and to handle any incomplete events which may
appear in the data. If the end flag does not match, the program jumps to line 72 where EVSIZE is set to one. This
sequence causes the program to search ahead one word at a time until it is properly aligned with the event boun­
dary.

When END does match the end flag. we proceed to line 39, where EVSIZE is set to four.

In line 42 the parameter described by the fonnat GEl is both loaded into the accumulator and stored in the vari­
able X. In line 43 the spectrum S 1 is incremented in the channel contained in the accumulator, thus creating a
singles spectrum. Lines 44 and 45 do the same thing for GE2.

In line 46 the T AC is loaded into the accumulator. Line 47 tests the accumulator against the gate TRUE. If the
accumulator contains a number from 300 to 380 (see line 25) the IF statement is satisfied and the program

Version 6J .14· PUB·3062

...

'-:

EVA Reference Manual June 1987

proceeds to the next line. If not, the program jumps to the next visible ELSE or KET, in this case to the ELSE on
line 58.

Lines 50-56 are a group of statements which will be executed only when the IF statement of line 47 is satisfied.
The BRA-KET pair is necessary because there is an ELSE statement in this group which we do not want to be
visible to the IF on line 47. On line 51 the variable X is brought into the accumulator and tested against gate G1.
If X is within the gate, line 52 is executed which fetches Y into the accumulator and then increments spectrum
ST1. The program would then jump to the end of the BRA-KET (line 56). When the IF in line 51 is not satisfied
the program jumps to the ELSE on line 53 and then proceeds to line 54 where the accumulator is compared to
gate G2. If it is within the gate, line 55 is executed which will bring Y into the accumulator and increment spec­
trum STI, otherwise the program will jump to the end of the BRA-KET (line 56) and the treatement of the event
will be terminated.

The ELSE statement on line 58 is reached only in the case where the IF statement on line 47 is not satisfied. The
program proceeds to line 59 where the accumulator (which contains the TAC value loaded by line 46) is tested
against the gate RANDOM. Lines 62-68 contain a BRA-KET similar in structure to the BRA-KET in lines
50-56.

Line 72 is executed only when the IF test on line 37 fails and jumps to the ELSE on line 71. The BRA-KET on
lines 38 and 69 are necessary to make the ELSE statement on line 58 invisible to the IF on line 37. <1

1 # SAMPLE 1 # A SORTING PROGRAM
2
3 BRA
4
5 # DEFINE THE WORDS IN AN EVENT
6
7 FORMAT GEl 1 4 15 # GELI IS 4096 CHANNELS
8 FORMAT GE2 2 4 15
9 FORMAT TAC 3 4 13 # TAC IS 1024 CHANNELS

10 FORMAT END 4 0 3 # END OF EVENT FLAG
11
12 # DEFINE THE SPECTRA
13
14 SPEC Sl 4029 2
15 SPEC S2 4029 2
16 SPEC ST1 4000 1
17 SPEC ST2 4000 1
18 SPEC SRI 4000 1
19 SPEC SR2 4000 1
20
21 # DEFINE THE GATES
22
23 GATE G1 1238 1242
24 GATE G2 2318 2336
25 GATE TRUE 300 380
26 GATE RANDOM 400 480
27
28 # DECLARE VARIABLES AND CONSTANTS
29

Version 6J PUB·3062

EVA Reference Manual

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

IVAR EVSIZE
IVAR X
IVAR Y

* EVENT SIZE

HEX EFLAG,FOOO * END OF EVENT FLAG

* EVENT ANALYSIS BEGINS HERE

IF END EQ EFLAG
BRA

SET EVSIZE=4

* TEST FOR COMPLETE EVENT

* GET GELI VALUES AND INCREMENT SINGLES
GET X=GE1
INC Sl
GET Y=GE2
INC S2
GET TAC

47 IF TRUE
48
49 * HERE IF TAC IS IN 'TRUE' GATE
50 BRA
51 IF X G1
52 INC Y ST1
53 ELSE
54 IF G2
55 INC Y ST2
56 KET
57
58 ELSE
59 IF RANDOM
60
61 * HERE IF TAC IS IN 'RANDOM' GATE
62 BRA
63 IF X G1
64 INC Y SR1
65 ELSE
66 IF G2
67 INC Y SR2
68 KET
69 KET
70
71 ELSE
72 SET EVSIZE=l
73 KET

6.2. 2-DIMENSIONAL GATES

June 1987

Sometimes. one desires to use a region in 2-dimensional space as a gating condition. One can do this by using a
2-dimensional gate (G2D) which is tested in the same way as a I-dimensional gate (GATE). 2-D gates are first

Version 6J PUB·3062

..

' ..

EVA Reference Manual June 1987

defined by using the program GATES which writes the gates on disc partition RRI where EVA then finds them.
A 2 D gate is merely a region of a plane with 256-channel X and 256 channel Y resolution. The number in the
accumulator is used on the x coordinate, while a special Y register contains the Y coordinate. A simple example
of a sort using a 2-D gate follows.

Lines 4-5 are the formats which will be used to get the parameters for the X and Y axes. Note that they are both
8 bits (256 channels) in length. In line 14 a 2-dimensional gate named R is declared. EVA will use the first gate
that it finds on the disc for R. Line 23 gets EY into the Y register. In line 26 the gate R is tested. If it is true, i.e.,
the point EX,EY lies within region R, the program continues to line 27 where the gated spectrum, 00, is incre­
mented. Line 29 increments the singles spectrum, DS. This example illustrates how a 2-dimensional gate can be
used to select a region in 2-parameter space.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Version 6J

:/; SAMPLE 2 :/; A PROGRAM USING A 2-DIMENSIONAL GATE
BRA

:/; DEFINE THE WORDS IN THE EVENT
FORMAT EX 1,4,11
FORMAT EY 2,4,11
FORMAT DF 3,4,15
FORMAT END 4,0,3

:/; DEFINE SPECTRA
SPEC DS 4096,2
SPEC DG 4096,2

:/; DEFINE GATES AND VARIABLES
G2D R :/; R IS 2-D GATE ARRAY
IVAR D *
IVAR EVSIZE :/; EVENT SIZE

:/; EVENT ANALYSIS BEGINS HERE
IF END EQ 15

BRA
SET EVSIZE=4
GET D DF
GETY EY
GET EX
BRA

IF R
INC D DG

KET
INC D DS

KET
ELSE

SET EVSIZE=l
KET

- 17· PUB·3062

EVA Rererence Manual June 1987

6.3. VARIABLE LENGTH EVENTS

This program uses the subscripting capabilities of EVA to process zero-skipped data. In this example the raw
event data is assumed to have a GELI detector in word 1, a TAC in word 2, followed by 1 to 6 NAI counter
values, with a final end of event FLAG word. Each counter value has a 4-bit TAG in bits 0-3. The FLAG word
has a tag value of 15. Any of the NAI counters will be missing if the corresponding counter did not fire. The
GELI, T AC, and end of event FLAG word will always be present.

The program will create the following spectra:

SINGLE(1) through SINGLE(8), a singles spectrum for each counter.

CSPEC, a spectrum which shows the number ofNAI counters present per event.

GS(I) through GS(6), a spectrum for each NAI counter which will be incremented only when the GELI and TAC
are within specified gates.

In this example we use the subscripted form of the SPEC and IV AR statements. The subscript N is used to access
the different words in the event and the subscript C is used to access the different spectra. Since the number of
words per event is variable, EVSIZE must be recomputed for each event.

This program uses the symbolic form of the BRA-KET statements which some users may find easier to read.
Lines 45-55 are an example of a loop constructed from STEP and REPEAT statements. Lines 71-76 are an

example of a FOR-NEXT loop.

1 # SAMPLE 3 # A PROGRAM TO SORT VARIABLE LENGTH EVENTS
2
3
4
5 # ===== DEFINE THE EVENT STRUCTURE =====
6
7 FORMAT TAG 1,0,3 # COUNTER NUMBER OR END EVENT FLAG
8 FORMAT ADC 1,4,15 # COUNTER VALUE
9

10 DATA GELI .1 # FIRST WORD IS GELI
11 DATA TAC 2 # 2ND WORD IS TAC
12
13 # ===== DEFINE SPECTRA =====
14

SPEC SINGLE(8) 4096,2
SPEC CSPEC 6,2

8 SINGLES SPECTRA
NAI COINCIDENCE SPECTRUM

15
16
17
18
19
20

SPEC GS(6) 4096,2 # GATED SPECTRA FOR THE 6 COUNTERS

21
22
23
24
25

Version 6J

===== DEFINE VARIABLES

RAW PARAMETERS SAVE HERE TO AVOID THE OVERHEAD OF
UNPACKING EACH PARAMETER TWICE

IVAR ADC1(8)

PUB·3062

EVA Rererence Manual June 1987

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

Version 6J

TAG VALUES ARE SAVED HERE TO AVOID THE OVERHEAD OF
UNPACKING EACH PARAMETER TWICE

IVAR TAG1(8)

IVAR N
IVAR C

WORD NUMBER IN EVENT
COUNTER NUMBER

IVAR NMAX
IVAR EVSIZE

SUBSCRIPT OF LAST COUNTER IN EVENT
EVENT SIZE

===== DEFINE GATES =====

GATE GELIGATE 3000,3500
GATE TACGATE 1000,2500

SORTING BEGINS HERE

IF TAG EQ 1

SET N=l

GET C TAG(N)
IF NE 15

STA TAG1(N)
INC ADC (N) SINGLE (C)
STA ADC1 (N)
STEP N,l
REPEAT

SET EVSIZE=N
SUB 1

ENSURE BEGINNING OF EVENT

INITIALIZE LOOP TO
FORM SINGLES SPECTRA

C IS COUNTER NUMBER
TEST FOR END OF EVENT
SAVE TAG VALUE

SAVE PARAMETER VALUE
INCREMENT N TO NEXT WORD IN EVENT
GO BACK FOR NEXT WORD

SET EVENT SIZE

STA NMAX # SAVE LAST COUNTER'S SUBSCRIPT

IF GELI AND TAC ARE WITHIN GATES, AND THERE
ARE ONE OR MORE NAI COUNTERS PRESENT, INCREMENT
THE COINCIDENCE SPECTRUM AND THE GATED SPECTRA

IF ADCl(GELI) GELIGATE
IF ADC1(TAC) TACGATE

IF NMAX GT 2
SUB 2
INC CSPEC
FOR N=3,NMAX

LDA C TAG1(N)
SUB 2

INCREMENT COINCIDENCE SPECTRUM
INITIALIZE 'FOR' LOOP

STA C # FORM SUBSCRIPT OF GATED SPECTRUM
INC ADC1(N) GS(C) # INCREMENT GATED SPECTRA

NEXT N

·19· PUB·3062

EVA Reference Manual

77
78
79
80
81

Version 6J

ELSE
SET EVSIZE=1

* HERE IF FIRST WORD DID NOT HAVE TAG
* SET EVSIZE TO SEARCH FOR NEXT EVENT

.20·

June 1987

1

PUB·J062

•

EVA Reference Manual June 1987

7. APPENDIX B: PROGRAM OPTIONS

A number of the program option bits are tested by various routines in EVA. Except for options 7 and 8, they are
primarily intended for debugging the EV A compiler.

When EVA is executed, all options are automatically set to zero (oft).

To set any option(s) the user must first start EVA in the normal way, then type CfRL-C (on the DECwriter or any
CRT) and then type:

lEV AlPOP N,N,N •• -

where the N's are the options to be set.

for example, to set options 2 and 7 type CIL-C, then:

lEV AlPOP 2,7

Table of Program Option Bits
Bit Action
0 Print dump of compiled program in hexadecimal
1 Print dump of 2 dimensional 2ates
2 Print compiled instructions for each line
3 Print symbol table at end of compilation
4 Print spectrum descriptors at end of compilation
5 Dump each spectrum on printer {during WRITE)
6 Dump buffer pointers during sorting
7 Immediately terminate tape search or sort in progress
8 Pause sorting while this option is set.

Option bit 8 is used by the analysis program SUSIE to give priority to the interactive user. The bit is set
while SUSIE is calculating or reading the disk, and is reset while SUSIE is waiting for the next keyboard
command. If SUSIE is terminated by an abort, it may leave this bit set which will cause EVA to remain
paused. When this happens, you can restart EVA by typmg CfRL-C, then:

lEV AJPOP NOS

Version 6J PUB·3062

~ ...;;...:-

LA WRENCE BERKELEY LABORATORY
TECHNICAL INFORMATION DEPARTMENT

UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

-~ --....

