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ABSTRACT OF THE DISSERTATION

TDD Massive MIMO Systems: Channel Estimation, Power Optimization,
and Access Point Location Design

by

Elina Nayebi

Doctor of Philosophy in Electrical Engineering (Communication Theory and Systems)

University of California, San Diego, 2018

Professor Bhaskar D. Rao, Chair

With an ever-increasing demand for higher wireless throughput, there has been grow-
ing interest in massive multiple-input multiple-output (MIMO) as a key technology for future
wireless networks. This dissertation addresses some of the key aspects of this technology that
include: 1. precoding, power optimization, and access point (AP) location design in cell-free
massive MIMO systems with distributed APs; 2. semi-blind channel estimation in massive
MIMO systems.

Cell-free massive MIMO is a special deployment of massive MIMO systems with a

large number of distributed low-cost low-power single antenna APs serving a much smaller
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number of users. The cell-free system is not partitioned into cells and each user is served by
all APs simultaneously. The downlink capacity lower bounds for conjugate beamforming and
zero forcing precoders in cell-free systems are derived in this dissertation. To further increase
the achievable throughput, max-min power optimization algorithms are formulated, and low
complexity max-min power allocation algorithms are developed. We also introduce a tech-
nique that employs /;-norm sparsity penalty in the max-min power optimization for conjugate
beamforming that helps us decrease the number of APs that serve a user in a practical system.

The uplink capacity lower bounds for minimum mean squared error (MMSE) and large
scale fading decoding receivers in cell-free systems are provided. A deterministic approxima-
tion for signal-to-interference-plus-noise ratio of MMSE receiver is obtained with an unlimited
number of APs and user devices.

Next, AP location design problem is investigated to maximize the sum-throughput and
the minimum-throughput in uplink transmission of cell-free systems with an arbitrary user
distribution. Utilizing compressed sensing techniques, the AP placement problems are formu-
lated as convex optimization problems. An AP location design algorithm is also presented in
an alternative small-cell system in which each user is served by only one AP.

Finally, semi-blind channel estimation for multiuser massive MIMO systems is in-
vestigated. Multiple semi-blind channel estimation techniques based on the expectation-
maximization algorithm are developed by considering different priors on data symbols. Cramer
Rao Bounds (CRBs) for semi blind channel estimation are derived for deterministic and
stochastic (Gaussian) data symbol models to give us an analytical understanding of the semi
blind scheme’s performance. To get insight into the behavior of a massive MIMO system,
the asymptotic behavior of the CRBs as the number of antennas at the base station grows is

analyzed.
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Chapter 1

Introduction



1.1 Background on Massive MIMO Systems

Multiple-input multiple-output (MIMO) technology is one of the key components to
increase spectral efficiency of a wireless network [6-8], which can be categorized into three
main groups: 1. point-to-point MIMO, 2. multiuser MIMO, 3. massive MIMO. Point-to-point
MIMO is the simplest variant of a MIMO system, which refers to communication between
an access point (AP) and a user that are equipped with multiple antennas. Point-to-point
MIMO system improves reliability of communication via spatial diversity. Under favorable
channel conditions, having multiple transmit and receive antennas provides us with the spatial
degrees of freedom, which can be exploited to transmit multiple data streams over the MIMO
channel and increase the channel capacity [8]. Define by G € CM*¥ the channel matrix
between the transmitter and receiver equipped with M and K antennas respectively. The
spectral efficiency (in bits per second per hertz) of a point-to-point MIMO for a deterministic
and constant channel with additive white Gaussian noise and perfect channel state information

(CSI) at receiver is expressed as [9]
C = log, det (IK n %GHG> , (1.1)

where p is the signal-to-noise ratio (SNR). Let Ay, - -+, Anin(ar,x) be singular values of G.

Then the spectral efficiency (1.1) can be rewritten as

min(M,K)

C= Y log, (1+%)\§). (1.2)

i=1
From (1.2), it is observed that the capacity grows linear in min (M, K') without increasing
transmit power or bandwidth. The upper and lower bounds on (1.2), when the channel matrix

is normalized as tr (G#G) ~ MK, are given by [10]

(1.3)

M, K
log, (1+ pK) < C < min (M, K)log, (1 + M) .

M



The distribution of singular values of GG has an important role on achievable rate of the system.
In the rich scattering propagation environments and a high SNR regime, the achievable rate
of a point-to point MIMO is proportional to the rank of the channel matrix, i.e, min (M, K).
In other words, the upper bound in (1.3) is achieved when the singular values of G are all
equal [10], [11] . However, line-of-site conditions cause rank deficiency in channel matrix
and degrade performance of the point-to point MIMO systems. The lower bound in (1.3) is
obtained when only one singular value of channel matrix is non-zero [10], [11].

In multiuser MIMO technology, a single transmitter serves multiple receivers that uti-
lize the same time and frequency resources in a communication system. These systems provide
advantages over point-to point MIMO: they are less sensitive to the propagation properties
of the environment, and a single antenna suffices at each user device making them relatively
cheap devices. Therefore, multiuser MIMO has been largely deployed in communication stan-
dards, such as 802.11 (WiFi), 802.16 (WiMAX), and long-term evolution (LTE). However, in
the downlink transmission of multiuser MIMO, both AP and users must know the propagation
channel. Thus, considerable amount of known pilot sequences should be used to learn the
channel coefficients. Advantages and challenges associated with the multiuser MIMO sys-
tems and their performance analysis can be found in [12], [13], [14], and references therein.
The sum spectral efficiency of multiuser MIMO with K single-antenna user devices in uplink

and downlink transmissions is given by [9]

C" = log, det (Iny + puGG") | (1.4)
oV = log, det (I GPGH 1.5
pmax log, de (I + pa ), (1.5)

where p, and py are the uplink and downlink SNRs respectively. In uplink spectral efficiency
(1.4), the CSI is only required at base station. However, in the downlink spectral efficiency

(1.5), the CSI is required at both base station and user devices.



Massive MIMO is a scalable form of multiuser MIMO, where APs are equipped with
large number of antenna elements [15], [16]. One of the key distinctions between multiuser
and massive MIMO systems is that the number of AP antennas is much larger than the num-
ber of users in massive MIMO (see Figure 1.1). With the growing demand for throughput in
wireless networks, massive MIMO is a promising technology that achieves much better perfor-
mance compared with the multiuser MIMO. With excessively large number of AP antennas,
massive MIMO serves many users in the same time-frequency resources. Adding more anten-
nas to the AP results in higher system throughput, and narrower beams (see [10, Figure 2]).
Moreover, one can utilize large number of low-cost low-power antenna elements as opposed

to expensive amplifiers that are used in conventional multiuser MIMO systems.

(<))

Figure 1.1: Massive MIMO.

In time-division duplex (TDD) protocol, the uplink and downlink physical channels are
reciprocal [17]. Thus, propagation channel can be measured in uplink and used for both uplink
data detection and downlink bemaforming. Most emphasis in massive MIMO systems is in
TDD protocol rather than frequency-division duplex (FDD) due to the fact that the amount of
pilot overhead to estimate the uplink channel coefficients is independent of the number of AP

antennas, and the users are not required to feed the channel coefficients back to the AP. While



the focus of this dissertation is on massive MIMO systems with TDD protocol, it is important
to note that in environments with enough special structure in the propagation, sparse properties
of channel matrix in a particular domain can be exploited to use smaller number of downlink
training pilots and uplink feedback to estimate the channel and hence one can utilize FDD
operation in massive MIMO systems as well [18], [19].

TDD massive MIMO technology has many advantages over multiuser MIMO. It re-
quires only AP to know the propagation channel. The number of training pilots depends only
on the number of users and hence massive MIMO is scalable with respect to the number of
AP antennas.

We denote the channel matrix between M/ antennas at the base station and K single
antenna users in massive MIMO by G € CM*X | which can be modeled as the product of

(CMXK

small scale fading factor H € and a diagonal large scale fading factor B € R¥*K ag

follows
G = HB'?, (1.6)

In massive MIMO, with independent small scale fading coefficients , columns of the channel
matrix become asymptotically orthogonal, as the number of base station antennas increases

[15], i.e.,

%GHG " B (1.7)

M—o0

This feature, which is a result of law of large numbers, is referred to as the channel hardening

effect in massive MIMO. The achievable rates in (1.4) and (1.5) with infinite number of base



station antennas and favorable propagation conditions (1.7) given in [10] are as follows

K
u M>K

cY TR Zlogg(l—i-]\/[puﬂi) (1.8)
i=1

CctYES max ilog (1+ Mpapif3:) (1.9)
P20 o '
> pe=1
k=1

In [11], it has been shown that conjugate beamforming, a simple linear precoding
scheme, can achieve the achievable rate in (1.9) when the number of base station antennas
grows to infinity. A similar result is also obtained in uplink: the simple linear matched-
filtering (MF) processing at the base station achieves the multiuser uplink capacity defined in
(1.8). This result shows that simple linear precoding and decoding schemes such as conjugate
beamforing (CB) and zero-forcing (ZF) precoders can be used in massive MIMO. In [9] and
[15], it is shown that the effects of uncorrelated noise, small scale fading, and non-coherent
interference are eliminated when the number of base station antennas increases under the
favorable propagation conditions (1.7). Therefore, simple power control algorithms can be
deployed that no longer depend on the frequency.

One of the challenges in massive MIMO systems, is pilot contamination problem [15],
[20], which emerges in multi-cell scenarios when the number of users is larger than the length
of pilot sequences. Due to the limitation on channel coherence interval, the length of training
pilots is limited. Therefore, training pilots of users in neighboring cells will be non-orthogonal.
This leads to channel estimates that are contaminated by pilots transmitted by users in other
cells and results in coherent interference that unlike non-coherent interference grows with the
number of AP antennas. Pilot Contamination effect is a severe limiting factor for achievable
data rate that degrades system performance considerably. Several channel estimation, precod-
ing, and postcoding techniques have been introduced to mitigate the pilot contamination effect.

For example, in [20], a multi-cell minimum mean squared error (MMSE) based precoding is



proposed. In [21] and [22], large scale fading decoding (also known as pilot contamination
postcoding) for cellular massive MIMO is proposed, in which the base station of neighboring
cells cooperate by sharing between themselves the large scale fading coefficients. In [23], the
authors propose an eigenvalue decomposition-based approach to estimate channel coefficients

that mitigates the pilot contamination problem to some extent.

1.2 Dissertation Contributions and Organization

Performance of massive MIMO systems with co-located antenna arrays are well stud-
ied in the literature, e.g., see [24], [11] and references therein. Another deployment of massive
MIMO systems is a network comprising a large number of distributed single-antenna APs,
where each user served simultaneously by all of the APs (see Figure 2.1). We call such a
system Cell-Free Massive MIMO and investigate its performance in chapter 2. Since APs are
spread out over a designated area in the cell-free systems, each user is close to a few APs, and
thus can benefit from diversity against shadow fading. Hence, cell-free massive MIMO offers
more coverage probability and power efficiency compared with the co-located systems. We
derive capacity lower bounds for cell-free systems utilizing CB and ZF precoders and formu-
late max-min power control algorithms to provide equal throughput to all users. A number
of low complexity power allocation algorithms for conjugate bramforming and zero-forcing
precoders are also proposed that have significantly smaller computational complexity and yet
achieve near-optimal performances. We quantitatively compare the performance of cell-free
massive MIMO to that of a small-cell system in which each user is served by only on AP. We
present a technique to reduce the number of APs serving each user for CB by utilizing ¢;-norm
sparsity penalty term in the max-min optimization problem.

Chapter 3, provides uplink performance study of cell-free systems with MMSE and



large scale fading decoding (LSFD) receivers. The LSFD receiver maximizes the achievable
throughput using only large scale fading coefficients between APs and users. Capacity lower
bounds for MMSE and LSFD receivers are derived and a deterministic approximation for
signal-to-interference-plus-noise ratio (SINR) of MMSE receiver is obtained when the number
of APs and users grow infinitely large, which is an accurate approximation even for a small
number of APs and users.

Performance of cell-free systems are largely influenced by AP locations, which needs
to be optimized according to the user distribution in the system. In chapter 4, using compressed
sensing techniques, two AP location design algorithms are obtained to maximize the sum-
throughput and the minimum-throughput in uplink transmission of cell-free systems. We also
introduce another AP location design algorithm in a small-cell system in which each user is
served by only one AP.

In massive MIMO systems, the downlink linear precoding and uplink decoding oper-
ations require channel state information at the base station, and hence the actual propagation
channels are required to be measured [16]. In chapter 5, we investigate semi-blind channel
estimation for multiuser TDD massive MIMO systems with co-located antenna arrays. We
derive a number of channel estimation algorithms using both uplink training pilots and data
symbols. We derive a tractable expectation-maximization (EM) algorithm using a Gaussian
prior for the unknown data symbols. An alternate EM algorithm is also derived by employ-
ing suitable priors on the channel coefficients, which outperform the EM algorithm with no
channel priors in the low SNR regime. We further derive another semi-blind channel estima-
tion algorithm based on the EM algorithm by using Gaussian mixture model (GMM) for the
unknown data symbols that outperforms the EM algorithm with Gaussian prior as the SNR or
as the number of antennas at the base station increases. Cramer Rao Bounds (CRBs) for semi

blind channel estimation are derived for deterministic and stochastic (Gaussian) data symbol



models to give us an analytical understanding of the semi blind scheme performance. To get
insight into the behavior of a massive MIMO system, the asymptotic behavior of the CRBs as
the number of antennas at the base station grows is analyzed. In summary, semi-blind channel
estimation methods become closer to the genie-aided maximum likelihood estimator based
on known data symbols as the number of base station antennas increases, making semi-blind

estimation more attractive for massive MIMO systems.



Chapter 2

Precoding and Power Optimization in

Cell-Free Massive MIMO Systems

10



Cell-free massive multiple-input multiple-output (MIMO) comprises a large number
of distributed low-cost low-power single antenna access points (APs) connected to a network
controller. The number of AP antennas is significantly larger than the number of users. The
system is not partitioned into cells and each user is served by all APs simultaneously. The sim-
plest linear precoding schemes are conjugate beamforming and zero-forcing. Max-min power
control provides equal throughput to all users and is considered in this chapter. Surprisingly,
under max-min power control, most APs are found to transmit at less than full power. A power
allocation algorithm is proposed for conjugate beamforming to reduce the number of effec-
tive APs that serve a particular user in cell-free massive MIMO. The zero-forcing precoder
significantly outperforms conjugate beamforming. For zero-forcing, a near-optimal power
control algorithm is developed that is considerably simpler than exact max-min power con-
trol. An alternative to cell-free systems is small-cell operation in which each user is served by
only one AP for which power optimization algorithms are also developed. Cell-free massive
MIMO is shown to provide five- to ten-fold improvement in 95%-likely per-user throughput

over small-cell operation.

2.1 Introduction

A comprehensive wireless system should provide uniformly good service throughout
a designated area. To that end, massive multiple-input multiple-output (MIMO) has attracted
considerable attention as a candidate for the fifth generation physical layer technology [15],
[10], [25].

Massive MIMO is a scalable form of multiuser MIMO. In [13], [14], [26] MIMO
systems, with the assumptions that both ends of the link know the propagation channel and

dirty paper coding is used, were studied. It was shown that such systems have very large
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capacity that grows along with the number of base station antennas. The above assumptions,
however, would forever limit the practical size of the wireless system. Instead massive MIMO
systems proposed in [15] assume that only the base stations know the propagation channels
and simple linear precoding is used instead of dirty paper coding. These assumptions make
massive MIMO systems fully scalable with respect to the number of base station antennas.
Multi-cell massive MIMO systems, in which each cell is served by an array of co-
located antennas, are well understood, e.g., see [24], [11] and references therein. A diametri-
cally opposite massive MIMO deployment that would serve the same designated area, which
could be an isolated village, a college campus, or an entire metropolitan area, is a network
comprising a large number of randomly-located single-antenna access points (APs), with each
user served simultaneously by all of the APs. We call such a system Cell-Free Massive MIMO.
Some of the limitations and advantages of the networks with distributed APs have been
already studied under different names and settings, e.g., see [27-37]. In [31], the authors stud-
ied distributed algorithms for multi-cell beamforming and power allocation without data shar-
ing among base stations. By contrast, in our work, all APs transmit data symbols to the users.
In [32], performance of cooperative multi-cell zero-forcing (ZF) beamforming with a user se-
lection scheme has been studied. The system performance is investigated in terms of sum-rate.
In [33], downlink performance of multi-cell system with ZF beamforming in frequency divi-
sion duplexing (FDD) system is studied in terms of sum-rate. In [34], the average sum-rate
performance of distributed antennas for massive MIMO systems in uplink transmission is in-
vestigated, while all users transmit with the same power. In contrast, in this work, we consider
time-division duplex operation (TDD) and analyze downlink performance of cell-free systems
with emphasis on per-user throughput, rather than sum-throughput, by using max-min power
allocation algorithms. In [35], capacity lower bounds of a multi-cell massive MIMO system

has been derived for uplink and downlink transmission. In [36], asymptotic rate performance
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of downlink multiuser systems with distributed antennas and perfect channel state information
(CSI) was studied. By contrast, we take into account the effects of imperfect CSI with finite
number of APs and users. In [37], the authors study uplink performance of large-scale dis-
tributed antenna settings with matched filtering (MF) receiver. They exploit low-rankness of
users’ channel covariance matrices to improve channel estimation and interference rejection
under the assumption that all users share the same pilot sequence. However, further research
is required in order to thoroughly understand these systems from the massive MIMO point of
view with the goal of providing uniformly good service for all, or almost all, users.

In [38], [39], performance of conjugate beamforming (CB) in cell-free systems has
been investigated with emphasis on pilot assignment algorithms to mitigate pilot contami-
nation effect. The max-min power allocation in CB is used to increase the system perfor-
mance. This power allocation algorithm involves a non-convex optimization problem with
high computational complexity. In this work for CB precoder we propose low complexity
power allocations algorithms (see section 2.3.2, 2.3.3, and 2.3.4) that have only moderate loss
in terms of the system performance, but have significantly smaller complexity than the algo-
rithm in [38], [39]. We further consider ZF precoder in cell-free systems with max-min power
allocation, and introduce a simple near-optimal power control algorithm. We assume low mo-
bility users. Since users move slowly the number of available orthogonal pilots is significantly
larger than the number of users (see section 2.2.2), and therefore the pilot contamination is
negligible in our systems.

Similar to [38], [39] we assume that all APs are connected to a network controller
(NC) via an unspecified backhaul network. The controller conducts linear precoding and
optimizes the transmit powers to improve the system performance. We propose several power
allocation algorithms, with different levels of complexity. We further derive capacity lower

bounds for cell-free systems utilizing CB and ZF precoders. These bounds take into account
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the channel estimation error, the effective channel uncertainty at users, and other important
parameters, that many papers ignore. The performance of cell-free systems in [38] is compared
to that of small-cell systems using MF receiver. As a counterpart we also consider a small-cell
system in which a user is served only by a single AP which is typically the closest one. For
small-cell system we also consider MF receiver and ZF precoder, propose power optimization
algorithms, and derive capacity lower bounds.

For performance criteria we use the minimum rate among all users and 5%-outage
rate, which is the smallest rate among 95% of the best users. In future wireless systems all,
or almost all, users will have to be served with large rates. So we believe that these criteria
are more meaningful compared with the often used sum throughput. We formulate a number
of max-min optimization problems to optimize the above criteria. The max-min optimization
does not necessarily give the optimal 5%-outage rate. We still use the max-min optimization as
an engineering tool for optimization of this criterion, and it leads to good system performance.

The main results of this work are the following. We show that cell-free systems give
a very significant gain (5 — 10 fold) over small-cell systems, i.e., a system where each user is
served by a single AP. The ZF precoder, significantly outperforms CB. We present a counter-
intuitive result that the optimal max-min power control for CB requires that most APs would
transmit with powers that are visibly smaller than the transmit power limit. Motivated by
this result, we propose low complexity power allocation algorithms for CB precoder. In a
real life cell-free system, each user will be served not by all APs, but by a subset of them
located around the user, which can be viewed as an intermediate case between cell-free and
small-cell systems. To this end, we further propose a max-min power allocation algorithm for
CB precoding based on ¢;-norm penalty that decreases the number of APs that serve a user.
For ZF precoder we propose a suboptimal power allocation algorithm scheme. We show that

this algorithm has near-optimal performance while its complexity is very low. For small-cell
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systems we also consider MF receiver and ZF precoder and power allocation algorithms. We
conclude that cell-free systems, with ZF precoder in particular, outperform small-cell systems
(about 10 times) in terms of 5%-outage rate. To the best of our knowledge, the above technical
problems with our system settings have not been addressed in the literature yet.

The chapter is organized as follows. Section 2.2 describes the system model and chan-
nel estimation. In sections 2.3 and 2.4, we investigate CB and ZF precoders for cell-free
massive MIMO system with max-min power control. In section 2.5, we consider small-cell
systems. Finally, simulation results are presented in section 2.6.

Throughout the chapter superscripts 7,* , and  denote transpose, complex conjugate
and hermitian operations respectively. Uppercase and bold symbols are utilized to denote
matrices and vectors respectively, and [E() is the expectation operator. Operator diag{A}

denotes the column vector of the main diagonal elements of matrix A.

2.2 System Model and Channel Estimation

2.2.1 Cell-Free System Model

Unlike cellular wireless networks, in a cell-free system we do not partition the network
into cells and do not assign users to particular base stations. Instead we assume that a geo-
graphical area is covered by M randomly distributed single antenna APs. We assume that in
this area there are K single antenna users, and that A/ > K. An example of a cell-free system
is shown in Figure 2.1. In contrast to a standard cellular network, in a cell-free system each
user is served not by one base station, but by all APs simultaneously. All APs are connected
to a NC (not shown in Figure 2.1).

We use a flat fading channel model for each OFDM subcarrier. The OFDM subcarrier
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Figure 2.1: Cell-free system. All APs serve all users.

index is omitted for simplicity. Size of the overall area is considered small enough that the
largest difference between propagation time from any two APs to a user is smaller than the
duration of the OFDM cyclic prefix. The channel coefficient between AP m and user k is

given by

Imk = V/ Bmkhmka (21)

where 3, is the large scale fading coefficient which accounts for path loss and shadowing
effects. This coefficient changes slowly and hence can be accurately estimated and tracked.
Throughout the text we assume the NC knows the coefficients (3, Vm, k. The second factor
honge ~ CN(0, 1) is the small scale fading coefficient. We assume that these coefficients are
1.1.d. random variables that stay constant during a coherent interval and are independent in
different coherent intervals. For a wide-band OFDM system (3,,,; is independent of frequency,
while h,,; has frequency dependence and a Nyquist sampling interval in frequency that is
equal to the reciprocal of the channel delay-spread. We denote by G € CM*E | [G],.x = G
the channel matrix between all APs and users. We further assume channel reciprocity, i.e.,
that the uplink and downlink channel coefficients are the same.

We focus on the scenario of users with mobility less than 10km/h. In other words we
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assume that most of our users are pedestrians, which is typically the case in real life scenarios.

2.2.2 Channel Estimation

The main idea of cell-free systems is that each user is served by all APs. In order
to reduce interference between signals intended for different users the APs should form their
transmitted signals by taking into account the channel coefficients. Thus, estimation of these
coefficients is an important part of the communication protocol.

In this work we assume that the TDD protocol described in [40, Figure 3], is used.
At the first step of this protocol all users simultaneously and synchronously transmit pilot
sequences ¥, - - , ¥ € C7, which propagate to all M APs. At the second step all APs get
estimates g, of g, and use these estimates to beamform data to all users.

We assume that pilot sequences ¢,,7 = 1,--- , K, assigned to the corresponding users
are orthonormal, i.e., ’l,[)iH P ;= d;;. As we mentioned before we assume the mobility of users
less than 10km/h. For such speeds and carrier frequency of 1.9 GHz, the coherence interval is
large, which enables using a large number of orthogonal pilots for channel estimation. Hence
it is reasonable to assume that these pilots are assigned to users in such way that users with
the same pilot are located far away from each other and the pilot contamination (coherent

interference resulting from two or more users sharing the same pilot sequence) is negligible.

Remark 2.1. In the case of cell-free systems with users of high mobility, the number of orthog-
onal pilots is significantly smaller and the pilot contamination caused by reuse of the same
pilots may result in additional interference, see [39]. The main goal of this chapter, however,
is to understand the phenomenology associated with precoding techniques (CB and ZF) and
power allocation algorithms in cell-free systems. We believe that the obtained power alloca-

tion algorithms will be applicable in cell-free system where some users have high mobility.
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The received signal sequence in the training step at the m-th AP is

K
Yn = VPrT Z gmzwz + Wiy, (22)
=1

where p, is the uplink power and w,,, ~ CN (0, I,) is additive noise and 7 is the length of pilot

sequences. AP m computes the MMSE estimate of g, as

~ PrTPmk H
_ VP, 2.3
Imk 1+ po7 Bk Y (2.3)

Let Gk = gmk — gmr be the channel estimation error. It is well known that g,,, and g, are

uncorrelated and (see [41, Chapter 11])

ka- ~ CN (07 Oémk) s gmk ~ CN (07 ﬁmk - amk) s (24)

Pr’rﬁgnk

where amr = 7 o

In the following sections we analyze two main linear precoding schemes in downlink
transmission: conjugate beamforming precoding and zero-forcing precoding. As mentioned

in section 2.1, throughout this chapter we consider the max-min optimization problems.

2.3 Conjugate Beamforming

In this section, we consider CB precoding combined with transmit power optimization.

Conjugate Beamforming with Power Optimization
e AP m estimates [3,,,, kK = 1,--- , K and sends them to the NC.

e NC computes power coefficients 7,,,, ¥Ym, Vk (defined later in this section) as a function

of large scale fading coefficients (3,,;) and sends them to corresponding APs.
e Users synchronously transmit pilot sequences v;,7 = 1,--- | K.

e AP m gets estimates G, k=1, , K.
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e With conjugate beamforming precoding, the m-th AP transmits the signal

K
T = /DT D Vil 2.5)
i=1

where s; is data signal intended to user ¢, with E (|s;|*) = 1, and p; is the transmit
power limit of each AP. The quantity 7,,; is the power coefficient used by AP m for
transmission to user ¢. By optimizing coefficients 7,,; we hope to significantly increase

the system performance.

The signal received by the k-th user is

M
Ye = Y GmkTm + Wk, (2.6)

m=1
where wy, ~ CN(0, 1) is additive noise. We assume that user £ is only aware of the statistics of
the estimated channel coefficients E (|g,x|?) = @k, Vm, which is a result of channel harden-
ing in massive MIMO systems [15]. A general capacity lower bound for massive MIMO sys-
tems has been derived in [35] and a more specific bound for cell-free systems is given in [39].

With our notations, the downlink achievable rate of user k& for CB is Rj, = log,(1 + SINRy),

where

M 2
Pf (Zmzl \/Umkoémk)

K M ’
1+ Pf Zi:l Zm:l nmiﬁmkami

SINRj, = 2.7)

For the sake of completeness, we present a proof of this bound in appendix 2.9.A.

Note that the achievable rate using the SINR expression in (2.7) is obtained under the
assumption that users are only aware of statistics of channel coefficients. In [39, Figure 2] it is
shown that in massive MIMO systems the achievable rate ([?;) obtained by this assumption is
close to the achievable rate in the case where the users know the instantaneous channel gain.
Also note that the achievable rate using (2.7) is a function of only the large scale fading coeffi-

cients and not of the small scale fading coefficients. Therefore, for conducting transmit power
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optimization it is enough for APs to transmit (by backhaul network) only coefficients 3, to
the NC. Using these coefficients, the NC finds optimal, or near optimal, power coefficients
Nmi and conveys them to the corresponding APs. Note that coefficients [3,,; do not depend
on OFDM subcarrier index and change slowly (about 40 times slower than small scale fading
coefficients [42]). Thus, the overall needed backhaul traffic is quite small. In a wide-band
system the SINR has no frequency dependence, and power coefficients are independent of
frequency as well.

In the following subsections we present optimal and suboptimal power optimization

algorithms.

2.3.1 Optimal Power Allocation

We would like to find power coefficients 7,,,, Ym, Vk, that maximize the minimum
SINRj,, VE, under the constraint that the transmit power of each AP is limited by p . Using

(2.5), we obtain that the expected transmitted power of the m-th AP is equal to

K
E (|xm’2) = Py anzamz
=1

Denoting n = (N :m=1,--- M, k=1,--- | K), we formulate the following

max-min power allocation problem:

M 2
Py (Zm:l Vi nmkamk>

maxmin SINRg(n) = (2.8a)
nok L4 S S i Bk Qmi
K
SUY Wit <1, m=1,--+ M. (2.8b)
=1

The problem in (2.8) is quasiconcave (see [39, Proposition 1]), which allows us to use

the bisection method (see [43, chapter 4.2.5]). In order to employ the bisection method, we
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first formulate the following equivalent problem

max t
n,t
s.t. SINRi(n) >t, k=1,--- K, and (2.92)
K
D it S 1, m=1,000 M. (2.9b)
=1

Since SINRy(n) is quasiconcave, SINR,(n) > t, k = 1,--- , K, is a convex set. Thus, for a
fixed ¢, the domain of constraints in (2.9) is convex and it is easy to determine whether a given
t is feasible or not. Hence we can apply the bisection method as follows. First, we choose
an interval (¢,,t,) that contains the optimal value ¢°". Next, we check the feasibility of the
midpoint t = W If ¢ is feasible, the search interval is updated to (¢,t,), otherwise it is
updated to (#;,t). We continue until the search interval is small enough.

The complexity of the bisection method is quite high. In next three subsections we

consider algorithms for suboptimal power allocations with significantly smaller complexities.

2.3.2 Full Power Transmission

A simpler power control strategy, is to permit every AP to transmit with full power,
ie, > fi 1 ImiQm; = 1. In this case the denominator of SINR in (2.7) becomes a constant (not

a function of 7,,;) and the max-min power allocation problem can be formulated as follows

M 2
Pf (Zm:l YV nmkamk>

max min SINRg(n) = (2.10a)
n k 1 + pf er\r/{ZI 6mk
K
S Y Mmilmi =1, m=1,--+ M. (2.10b)
=1

Proposition 2.1. The objective function min,, SINRy(n) in (2.10a) is a concave function of n

and the problem (2.10) is convex.

Proof. See Appendix 2.9.B. [
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Numerical algorithms for solving convex optimization problems are well known, e.g.,
see [43], and have significantly smaller complexity than the bisection method.

Rather surprisingly, our numerical results presented in Figure 3.1 in section 2.6 show
that the full power transmission results in more than 100% degradation in terms of 5%-outage
rate compared to the optimal max-min power allocation.! This indicates that the optimal max-
min power control requires that some of the APs transmit at less than full power.

To explain why the optimal ming SINRy in (2.8) is not achieved with full power, we
point out that the problem is quadratic and hence, the optimal point is likely in the interior of
the admissible set. This is in contrast to linear optimization, where the optimal value is always
achieved on the boundary, i.e., full power transmission.

This observation prompted us to check how the optimal transmit power of AP m (at

the optimal solution of (2.8)) formulated by

K
P =05 > il
=1

depends on the maximal large scale fading coefficient 3).** = max;, [3,,x associated with this
AP. In Figure 2.3 in section 2.6, we present the scatter plot of p%"' versus 5-**. One can
observe that if the number of APs (M) is large, the optimal powers of most of the APs are
quite small and that p?" and S2®* are strongly correlated.

Motivated by this nontrivial observation, we propose below two heuristic algorithms
that significantly improve the performance of full power transmission and have moderate com-

plexity.

'Parameters of the numerical experiments are presented in full detail in section 2.6.
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2.3.3 Heuristic Fixed-Power Transmission

With heuristic fixed-power transmission we assume that AP m transmits with fixed
total power p,, (87) = e(=*%=") where the exponent factor \ is chosen to fit the best expo-
nential function to the power scatter plot in Figure 2.3 for a given M and K. Note that both
the power scatter plot and A are obtained offline “once and forever” and therefore they do not
contribute to the complexity of the power optimization.

With this assumption, the max-min power allocation is given by

M 2
Pf (Zmzl V nmkamk>

max min SINRg(n) = (2.11a)
nok L+ pf Y aet Pl
K
S.t. aniami:pm, m=1,---,M. (2.11b)
i=1

This algorithm has the same online complexity as the optimization problem in (2.10).
However we get a significant, about 140%, improvement in terms of 5%-outage rate (see

Figure 3.1).

2.3.4 Heuristic Uniform Power Coefficients

Now we would like to drastically reduce the complexity of finding power coefficients
Nmi Without loosing much of the performance.

We again assume that AP m transmits with fixed power p,,(82>) = e(=*=") and
that power coefficients are only functions of m. Thus, 7),,, is the same for all users, i.e.,
Nmk = TMm, Vk, and the power coefficients can be calculated directly from the per antenna

power constraints (2.11b) as

_ Pm (Bgax>
" Zfil Qi

From online computational complexity point of view, the optimal power allocation

(2.12)

algorithm in section 2.3.1 is the heaviest amongst all methods. The full power transmission
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and the heuristic fixed-power transmission in sections 2.3.2 and 2.3.3 have similar complexity,
while for large M the performance of the heuristic fixed-power transmission is closer to that
of the optimal power allocation algorithm (see section 2.6). At each step of the optimal power
allocation algorithm, we need to solve the convex feasibility problem (2.9). Whereas in the
heuristic fixed-power transmission, we only need to solve one convex problem (2.11). More-
over, the constraints in (2.11b) are active, which can reduce the complexity of the search in
the convex optimization problem. The heuristic uniform power control (2.12) is the simplest
method with almost zero online complexity. In addition, this power control can be performed
at each AP independently rather than at the NC, and therefore does not require a backhaul
link, which could be a crucially important feature for building practical communication sys-
tems. Moreover, according to the results of section 2.6, the performance of this scheme is
quite close to the performance of the scheme with heuristic fixed-power transmission. Note
that the heuristic power control methods require obtaining the power scatter plot and the fitting

of the exponential function which are done offline only one time.

Remark 2.2. Note that the exponential behavior of power scatter plot in Figure 2.3 holds
only for large M. Therefore, the performance of the heuristic power control methods is closer
to the optimal one if M is considerably larger than K, which is the case in massive MIMO

systems.

2.3.5 Access Point Selection Scheme

In practical cell-free systems, each user will be served by only a portion of APs. In
numerical results for optimal max-min power allocation algorithm, we show that in fact this
is the case and only a fraction of APs serve each user in cell-free systems (see Figure 2.8). In

this section, we propose a power allocation algorithm for CB precoder to further reduce the
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number of APs that serve each user in cell-free massive MIMO. We achieve this by imposing
an {;-norm penalty of the square root of power coefficients in max-min power allocation and
enforcing the power coefficients to be sparse. Let ¢t°" be the optimal min; SINR, at the
optimal solution of (2.9). For a constant parameter 0 < ¢ < 1, we formulate the max-min
optimization problem by adding a sparsity penalty to the objective function as follows

K M
min SN Vi (2.13a)

i=1 m=1

s.t. SINRy(n) > ¢ x t%, k=1,--- K, and (2.13b)
K
aniami < 17 m = ]-7 7M'
=1

We can turn problem (2.13) into a convex optimization problem by a simple change of variable
#mi = /Nmi- Note that in order to solve problem (2.13), one needs to first obtain the optimal
min; SINR;, in (2.9) that is denoted by ¢°"'. The ¢;-norm penalty in (2.13), simply enforces
the power coefficients to be sparse. In other words, 7,,, will be close to zero for most values of
m meaning that the corresponding APs will not be transmitting to the k-th user. Therefore, the
effective number of APs serving each user will be smaller than /. At the optimal solution of
(2.13), SINR of all users will be equal to ¢ xt°P* < t°P', where ¢ is a predetermined constant that
controls the sparsity level of the power coefficients. When c is small, the power coefficients
will be more sparse. However, it comes at the expense of lower achievable rates (see Figure

2.8).

2.4 Zero-Forcing

In this section, we investigate the downlink performance of a cell-free system with ZF
precoder.

Zero-Forcing Precoder with Power Optimization
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e AP m estimates 3,,x, k = 1,--- , K and sends them to the NC.

Users synchronously transmit pilot sequences ,,7 = 1,--- , K.

AP m gets estimates §,,x, £k = 1,--- , K and sends them to the NC.

NC computes power coefficients as a function of large scale fading coefficients (5, ).

NC forms ZF precoding vectors using channel estimates (g,,;) and power coefficients

(7mk), and then sends precoding vectors to the corresponding APs.

The idea behind ZF linear precoder is that signal transmitted to a user does not create
interference to other users [8]. Usually ZF precoder is defined by the pseudo inverse matrix
A=Gr <@TG*) 71, where [G]mk = (i 18 an estimate of channel matrix G. With this A we
have GTA = [ K, 1.€., the interference is completely canceled. In [44], it was pointed out that
this ZF precoder is in general suboptimal for the power control problem subject to per antenna
power constraints and finding an optimal precoder involves numerical algorithms. However,
for simplicity, we will use the above ZF precoding matrix. Let H € R™*¥ be a matrix with
entries [H],,;, = \/Tmk. We define precoding matrix for the cell-free power allocation problem

as Azr = A® H, where © is the Hadamard or entry-wise product. Elements of Az are

[AZF]mk:aanZ:\/nmkamka m:]-a"'7M7k:1a"'7K' (214)

In order for GT A zr to be diagonal, to avoid interference, it is necessary to have 1y, = - -+ =
Ny for any k. Thus power coefficients should be only functions of k, i.e., . = 7%, and

therefore

Agp = G (GTG P, (2.15)
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where P is a diagonal matrix with /71, ..., /Nx on its diagonal. The k-th user receives

Yk = \/pfngZFs +wy, = \/pr(gy + Qk)TCA?*(CA?TCA?*)’lps + wy,

= pfnk3k+\/pfgf@*(éTG‘*)‘lPs +wy, (2.16)
W—/ S ~ /
JO J1
where g, = (g1x, - - - ,ng)T, s=(s1,-.-, SK)T, Jo is the signal part, and J; results from the

channel estimation error. The achievable rate expression with ZF precoder is presented below.

Theorem 2.1. An achievable rate of user k with ZF precoder is log, (1 + SINRy, ), with

SINR}, 2 = £r , 2.17)
Lt pg 2 ima ki
where yy; is the i-th element of the following vector
~, = diag {E <(@T@*)’1GTIE (@:7) é*(GTG*)*l) } , (2.18)
and E (g;;g{) is a diagonal matrix with (S — umg) on its m-th diagonal element.
Proof. See Appendix 2.9.C. [
2.4.1 Optimal Power Allocation
Letay,, -, af, and gy, - -, g{), be the rows of matrices Azx and G respectively.
We define vector
8, = diag {E((GTG*)*lg[m]g@](GTG*)*) } . (2.19)
The transmitted power from AP m is given by
T _* ~H (AT Ax\—1 ~H (AT Ax\—1 =
prE (a[m}a[m]) = prE( (g[m](G G") P) (g[m](G G") P) )
= py trace <P2E ((GT@*)‘lg[m}Qﬁi} (GTG*)_1> >
K
= pr ) i (2.20)
i=1
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We formulated the max-min power allocation problem with per antenna power con-

straints as follows

max min SINRy, zr(n) = pfn; (2.21a)
nok L+ py D iy ik
K
SUY milm <1, m=1,.., M. (2.21b)
=1

As we mentioned earlier, the power coefficients must be functions of £ only in order to cancel
the interference to other users. Despite this fact, the transmitted power from AP m to user k,
prlaZE > = prnrlame|? is function of both m and k.

The numerator and denominator of SINRy, zr(n) in (2.21a) are linear functions of 7).
Thus SINR;, zr(n) is a quasilinear function and we can again use the bisection method to

solve (2.21). The feasibility problem at each step of bisection method can be expressed as

find n
st. SINRy zp(n) >t, k=1,--- K, (2.22a)
K
> Mibmi <1, m=1,., M (2.22b)
i=1

The following Lemma is very useful since it allows us to significantly reduce the com-
plexity of problem (2.22) and further problems (2.21), (2.32), (2.37), and (2.38). Despite the

claim in Lemma 2.1 being simple, the proof turned out to be nontrivial (see Appendix 2.9.D).

Lemma 2.1. Suppose 1 and i’ > 0 are two vectors such that
SINR}C7ZF(’I’]) =t and SINRk7ZF(7’]/) Z t, forkj = 1, ce ,K.
Then we have 0 < 1) < 1)/, where the vector inequality is applied element-wise.

Proof. See Appendix 2.9.D. [
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Corollary 2.1. If SINRy, zr(n) = t, Yk, doesn’t have a feasible solution satisfying constraints

in (2.22b), then SINRy, zr(n) > t, Vk, doesn’t have a feasible solution either.
Proof. See Appendix 2.9.D. [

According to Corollary 2.1, to check the feasibility of SINR zr(n) > t, it suffices to
only check the feasibility of SINRy zr(n) = ¢, which is equivalent to solving a system of K
linear equations. This allows us to avoid solving the convex feasibility problem (2.22).

Note that v, in (2.18) and 4., in (2.19) are functions of only the large scale fading
coefficients and the expectation is taken over small scale fading coefficients. The NC can
estimate them in two ways:

1. Every time the large scale fading coefficients change, NC generates multiple dummy ran-
~ durnmy

dom variables g™ ~ CN (0, avi;) that have the same statistics as the channel coefficients

defined in (2.4). These random variables are then used to compute v, and J,,.

2. An alternative way is to update §,,, using exponential smoothing. Denote the current esti-

mate by O m. Every time the NC obtains new estimates of channel coefficients G, it updates

A

5m = osz + (1 - Oé>5m,curr, where 5m,curr = dlag {(GATGA*)_lg[m}g?”}(GATGA*>_1} and

0 < a < 11s a constant. Parameter -y, can be estimated using a similar procedure.

Note that if we use method 1 to compute =, and §,,, the NC needs to perform the optimal

power control algorithm in (2.21) only when the large scale fading coefficients change.

2.4.2 Low Complexity Power Allocation Algorithm

The computational complexity of power allocation can be further reduced by obtaining
an accurate approximation of the optimal solution of (2.21) instead of finding the true solution.

When the channel estimation error is zero, i.e., §,,x = 0, the max-min power control for ZF
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precoder has a closed form solution which we use to obtain simple heuristic power coefficients
(n™*) as an approximate solution to problem (2.21). If we assume that g, is zero, then the

optimization problem takes the form

maxmin SINRE, 1 (11%) = pyni (2.23a)
K

sty meb <1, m=1,..M, (2.23b)
i=1

where the superscript pc denotes perfect CSI and 6%, is the i-th element of the following vector
ot = diag {E((G7G") " gygfty (GG ) | (2.24)
which is equivalent to the vector d,, in (2.19) with g, = 0.

Lemma 2.2. Suppose n® is the optimal solution of the optimization problem (2.23), then there

exists m' € {1,--- | M} such that AP m’ transmits with full power, i.e., S 0 nP0%, = 1.
Furthermore, the optimal power coefficients are given by nfc =1/ Zfil 55;2-, Vi=1,---, K.
Proof. See Appendix 2.9.E. [

This Lemma prompts us to use the heuristic solution

K
nilpx — .= n;{vx =1/ (maxz 5mi> 7 (2.25)
i=1

as an approximation of the optimal solution of (2.21). Note that d,,; in (2.25) is defined in
(2.19) and contains the effect of channel estimation error.

Results presented in Figures 3.1 and 3.2 in section 2.6, show that the rates obtained by
this approximation, i.e., log, (1 + SINRy zr (n*)), are virtually optimal, while the computa-
tional complexity of (2.25) is drastically smaller than the one of (2.21).

An intuitive explanation of the virtual optimality of (2.25) is the following. Lemma

2.2 is based on the assumption that channel estimation error is zero, i.e., g, = 0. In real life
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scenario with enough uplink pilot transmit power, we are close to this regime. According to
(2.4), Var(gmk)/Var(gme) = 1/pp7Bmi- If AP m is close to user k, then the above ratio is
typically small, which can be interpreted as that g,,x is negligible. The APs that are far from
user k£ may have larger estimation error, however, their contribution in transmission to user &
is not significant, and hence the estimation error does not degrade the performance.

The following proposition rigorously shows that with enough uplink power, approxi-

mate power control results in near-optimal SINR values.

Proposition 2.2. Let n°" and n** respectively denote the optimal solution of the max-min
power control problem (2.21) and the power coefficients defined by (2.25). For every e >

there exists a threshold p,(€) such that whenever the uplink pilot transmit power p, > p,(€),
|SINR 2 (n°") — SINRy, 25 (™) || <€, k=1,--- K. (2.26)
Proof. See Appendix 2.9.F. [

Note that since all norms, e.g., 1-norm, Frobenius norm, and infinity-norm, on a finite-
dimensional Banach space are equivalent, any norm can be used in Proposition 2.2.

We now evaluate the complexity of computing power coefficients 7°"* in (2.25), which
is equivalent to computing d,,, ¥m. The dominant factor in computing d,, in both methods
discussed in section 2.4.1, is computing 8, cur = diag {(GTG*)—lg[m]g{jn] (GTG*)‘l} (either
using true channel estimates or dummy random variables). Calculation of ,,, ¢y consists
of multiplying matrices of size K x M and M x K, a matrix inversion of size K x K,
multiplication of matrix of size K x K by vector of size K x 1 for M times, and MK
multiplications. Thus, under the assumption of M > K, the dominant factor is of order
O(MK?), which is the same as the computational complexity of ZF precoding matrix A =
G*(GTG*)~1. Therefore, the power control method defined in (2.25) is not the limiting factor

in terms of complexity.
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2.5 Small-Cell

Small-cell systems are often considered as a candidate for future generations of wire-
less systems. Challenges and potentials of small-cell systems are addressed, for example,
in [45], [39]. Below we estimate the performance of small-cell systems and compare it with
the performance of cell-free systems. We use the same description of small-cell systems as
in [39].

We assume that M APs and K users are randomly located within the same area as
in the case of cell-free systems. Each AP serves at most one user at a time and M — K
access points remain silent as shown in Figure 2.2. This can be viewed as M small cells, each
equipped with a single antenna AP. Optimal assignment of K out of M access points to K
users is a hard combinatorial problem. A simple greedy solution is to assign to user k the AP

my, with the largest slow fading coefficient (3,,, ) among available APs, i.e.,

my = argmax [y 2.27)

n: AP n is available

(<g>)

Figure 2.2: Small-cell system. Each user is served by one AP.

Since each user is served by only one AP, channel does not harden and we assume that

user k£ knows g, i either via a downlink training sequence or error-free feedback from AP
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my. AP my does not conduct any precoding, but simply transmits data symbol s; and user &

receives

K
Uk = DIk Gk Sk /DI Gk Si + Wi, (2.28)

i=1,i#k

where wy, ~ CN (0, 1) is additive Gaussian noise and 7, € [0, 1] is power coefficient of AP

. . A an, . .
my. User k uses MF receiver, i.e., §, = ﬁyk, to recover data signal s;. Achievable rate of
mp,

the k-th user with MF is given by [39]

1
E (log, (1 + SINRy)) = Ee“’“Ei(uk), (2.29)
where
~ 2
SINR,, = 21 1l , (2.30)
L pp D ey M Brnike — PNk Qg
and

K
L = 1+ Pr Zi:l Us /Bmz’7k — PMeCmy k
Pf NeCmy, k

, (2.31)

and Ei(z) = f;o eTftdt is the exponential integral. Similar to the cell-free system, we also

apply the max-min power allocation with per antenna power constraints

max mkin SINRg(n)
7

st.0<m, <1, k=1, K. (2.32)

Similar to (2.21) this optimization problem is quasiconcave and therefore can be solved by
using the bisection method. A lemma and corollary similar to Lemma 2.1 and Corollary 2.1
can be proved for the above optimization problem. Therefore for the feasibility check it is
enough to solve a system of K linear equations.

Simulation results in section 2.6 show that ZF precoder in cell-free systems signifi-

cantly outperforms CB precoder. Hence it is natural to ask whether small-cell systems with
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ZF precoder would have better performance compared to MF receiver. Below we formulate
the corresponding power allocation problem for ZF precoder in small-cell systems and answer
this question negatively.

We assume that K selected APs denoted by my,--- ,mg, are connected via a back-
haul network and jointly form the precoding matrix A to serve K users. Denote by G =
(G k) <ir<x the estimated channel matrix between all selected APs and all users in the small-
cell system. With full rank assumption of G, the precoding matrix is A = <@T> - P, where
P is a diagonal matrix with /71, -+, /1 on its diagonal. The received signal at the k-th

user is given by

Yk = /Priwsk + /prar (GT) T Ps +uwy, (2.33)
—— P -
Jo Ji
where G, = [Jimy ks ,ng’k]T is the estimation error of channel coefficients between all

selected APs and user k and wy, ~ CN (0, 1) is additive Gaussian noise.

Theorem 2.2. An achievable rate of the k-th user in small-cell scheme with ZF precoding is

log(1 + SINRy. zF), where SINRy, 75 is given by

SINR, ;1 = P , (2.34)
L+ pp D imy Milki

where vy; is the i-th element of the following vector

v, = diag {E ((G")'E (gig1) (G") ) }. (2.35)

2
PTT/mek

Tror B,y 01 its i-th diagonal element.

and E (g;;g{) is a diagonal matrix with [3,,, j —
Proof. See Appendix 2.9.G. U
-1
Letaf, |, , &, be the rows of matrix <GT> and define vector o, by

[mi]? """ Sl

O, = diag {a],, 00, }- (2.36)
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Then the instantaneous transmitted power from AP my, is p; Zfil 1i0m, i- The power alloca-

tion problem with ZF precoder and instantaneous transmit power constraints can be expressed

as
. PNk
max min SINR, zp(n) =
nok I+ py Z’Llil NiVki
K
SUDY niomi <1, k=1, K. (2.37)
i=1

Let ¢,,, = E (o, ), where the expectation is taken over small scale fading coeffi-

cients. The max-min power allocation problem with average per antenna power constraints is

given by
. PsMk
max min SINRg zp(n) =
nok L+ py Zfil NiVii
K
SUDY 0 <1, k=1, K. (2.38)
i=1

Both problems in (2.37) and (2.38) are quasilinear and similar to (2.21) bisection
method can be used to solve them. Corollary 2.1 reduces the complexity by solving a system
of K linear equations to check the feasibility of the problem instead of solving an optimization

problem.

2.6 Numerical Results

We consider a square dense urban area of 2 x 2 km? which is wrapped around to avoid
boundary effects. We also consider M randomly placed APs and K randomly placed users.

For large scale fading coefficients we use the COST Hata model

10 logIO(ﬁmk) =—136—-35 10g10<dmk) + Xonk, (2.39)
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Figure 2.3: Scatter plot of p%'/ps versus 82** of all APs for CB under optimal power

allocation with different number of APs and K = 4.

where d,, is the distance between AP m and user k in kilometers and X, ~ N (0, 02 ,) with
osmad = 8 dB. The noise variance at the receiver is assumed to be a?u =290 x kK x Bx NF,
where x, B, and N F' are Boltzmann constant, bandwidth (20 MHz), and noise figure (9 dB)
respectively. The maximum transmitted power of each AP antenna and user, p; and p,., is 200
mW, unless stated otherwise. Length of all pilot sequences is 7 = K.

Experiment 1: We would like to show that in the case of CB the max-min optimization
(2.8) requires that most of APs must transmit with low powers as we indicated in section 2.3.2.

Let p?* = py Zfi | MmiQm; denote the optimal transmit power of AP m defined by
(2.8). By g we denote the largest slow fading coefficient between AP m and users, i.e,
pmax = maxy k. Figure 2.3, shows the scatter plot of p'/p; versus Sn® for m =
1,---, M, over 100 iterations for three values of M, and K = 4. It can be observed that
for M = 8, almost all APs transmit with full power which shows that when M is small, the

full power transmission scheme given in (2.10), whose complexity is relatively small, is near
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Figure 2.4: Scatter plot of p'/ps versus 32 of all APs for ZF under optimal power

allocation with different number of APs and K = 4.

optimal. However, for larger values of M, the APs that have large 5,7** should transmit with
low power. Typically a large 5.** indicates that the distance between AP m and at least one
of the users is small. So we conclude that in systems with a large number of APs (M), the
APs that are closer to users usually transmit with smaller power. Comparing cases M = 32
and M = 128 we see that this behavior becomes more and more pronounced as M grows. We
conduct the same experiment for ZF precoding. The results are presented in Figure 2.4. Note
that for ZF precoding, we have also observed that optimal power control strategy does not use
full power for most of the APs.

Experiment 2: In this experiment, we compare achievable per-user rates of cell-free
and small-cell systems with CB and ZF precoding and the power optimization algorithms
considered in the previous sections. For small-cell system we consider two possible scenarios.
In the first scenario, we assume that each AP antenna has the same maximum transmit power

as in the cell-free system, i.e., 200mW. Thus, the hardware cost of APs for both small-cell and
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cell-free systems is about the same. In this scenario, however, the total transmit power limit of
cell-free system, in which all M APs are active, is larger than small-cell system, when only K
APs are active. For this reason, we also consider the second scenario in which the maximum
transmit power of each small-cell AP is equal to M /K - 200mW. In this case the total transmit
power limit for both systems is about the same. However, in the latter case more powerful
amplifiers are needed for each AP antenna in the small-cell system. Also note that according
to Figure 2.3 in the cell-free system, the total transmit power of CB with optimal and heuristic
power allocation algorithms is much less than the total power limit when M is large.

The empirical CDFs of per-user rates for all scenarios with M/ = 128 and K = 16 are
plotted in Figure 3.1. The horizontal line corresponds to 5%-outage rates. The curve “Small-
Cell MF Full Power" corresponds to the small-cell system with equal power coefficients
(m = -+ =ng = 1), 1.e., each AP transmits at full power. The CDF “Cell-Free ZF Low Com-
plexity Power Allocation” (dashed red) corresponds to R = log,(1 + SINRy, z# (7°%)),
where n™* is the approximate power coefficients defined in (2.25) and SINRj zr is given
in (2.17). The curve “Cell-Free ZF Optimal Power Allocation" (solid red) corresponds to
R =log,(1 + SINRy, zr (1)), where 7 is the optimal solution of (2.21).

First, we note that the performance of cell-free ZF system with low complexity ap-
proximate power allocation defined in (2.25) is virtually indistinguishable from the system
with optimal powers, which coincides with the results of Proposition 2.2. Second, we see
that the cell-free system with ZF precoder significantly outperforms cell-free system with CB,
and all small-cell systems. Third, the small-cell system with MF and full power transmission
provides superior 5%-outage rate compared to the small-cell system with ZF precoder and
max-min power allocation. Finally, we note that in the small-cell system, ZF precoding with
instantaneous power constraints significantly outperforms ZF precoding with average power

constraints.
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Next, we observe that cell-free systems are visibly better than small-cell systems. The
optimal power allocation in cell-free CB and cell-free ZF systems respectively give 5.36 and
10.02 fold improvements in terms of 5%-outage rate over the small-cell system with full power
transmission (7 = --- = nx = 1) and maximum antenna transmit power 200mW. In the
scenario when the maximum antenna transmit power of small-cell system is equal 128/16 -
200mW, we get 5.26 and 9.83 fold improvements respectively.

Furthermore, it is important to note that 5%-outage rate of cell-free CB with optimal
max-min power allocation is close to 5%-outage rates of the cell-free with heuristic power
allocations.

It is also interesting to note that small-cell with max-min power allocation produces
inferior performance in terms of 5%-outage rate compared to the small-cell system with full
power transmission. This indicates that max-min optimization is not the near optimal tool to
maximize 5%-outage rates in small-cell system.

Figure 3.2 presents similar results but for worst rate (minimum rate) among K users
for given realization of large-scale coefficients 3,,;. One can see that again cell-free systems
significantly outperform small-cell systems. Note that with max-min power control, rates of
all users are the same for each realization.

Experiment 3: We further investigate the performance of small-cell systems in which
the total number of APs (M) is reduced but their individual transmit power is increased. The
results are shown in Figure 3.3. In all curves K = 32. One can see that as we decrease the
number of APs from 256 to 128 and further to 64 the performance of small-cell system in terms
of 5%-outage rate significantly degrades despite the fact that the maximum transmit power is
growing by a factor of 4 and 8 respectively. In the small-cell scheme, each user selects the
largest of a multiplicity of (heavy-tailed log-normal) large scale fading coefficients. Therefore,

the small-cell system benefits from super-diversity gain for large values of M. This fact also
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Figure 2.5: CDFs of the achievable per-user rates for cell-free and small-cell schemes under

different power allocations with /M = 128 and K = 16.

explains why in small-cell scheme some users may have rates several times greater than the
typical rate of users in cell-free system, as evident by studying Figure 3.3.

Experiment 4: In this experiment, we study the effective number of APs that are con-
tributing in transmission to a particular user. The effective number of APs serving users is
defined as the minimum number of APs that provide 95% of the total transmitted power to a
particular user. Figure 2.8 shows the CDF of the effective number of APs serving each user
with CB and ZF precoders using the optimal max-min power allocation and the AP selection
algorithm in Section 2.3.5 for M = 128 and K = 16. In problem (2.13), we set ¢ = mt::#
where t°P" is the optimal min; SINRj in (2.9), and 0 < « < 1 is the ratio between achievable
rate obtained by problems (2.13) and (2.9). For example, with o = 0.9, the achievable rate
obtained by problem (2.13) is 90% of the optimal achievable rate obtained by (2.9). In Figure
2.8, the effective number of APs obtained by problem (2.13) is plotted for different values of
a. One can see that only a fraction of APs are contributing in transmission to a user. It can

be observed that the effective number of APs transmitting to a particular user is much smaller

with the power allocation algorithm (2.13). More specifically, with only 1% smaller achiev-
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Figure 2.6: CDFs of the worst achievable rate for cell-free and small-cell schemes under

different power allocations with M/ = 128 and K = 16.

able rate (o = 0.99), the median of effective number of APs obtained by (2.13) is about 36%
less than that of the the problem (2.9). Figure 2.9 shows the CDF of per-user achievable rates
obtained by power allocation algorithm (2.13) for different values of . Note that the number
of APs needed for achieving a good performance depends on many factors, such as channel
model, density of APs and users, correlation between channel coefficients, etc.

Experiment 5: In this experiment, we compare performance of cell-free and small-cell
systems as the number of APs and users increase with constant ratio. Table 2.1 contains per-
user 5%-outage and median rates of cell-free system with max-min optimal power allocation
and small-cell system with full power transmission. The ratio between number of APs and
users is 8 in all cases. We observe that the 5%-outage rate of the small-cell scheme with full
power transmission remains almost unchanged as the number of APs and users increase (with
constant ratio). On the other hand, such an increase in the network size directly translates to a
superior performance for the cell-free scheme with CB and ZF precoders.

Finally, we note that CDFs of the cell-free system with the optimal power allocation in

all figures are nearly vertical. This means that the performance of the system stays almost the
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Figure 2.7: CDFs of the achievable per-user rates for cell-free and small-cell schemes with

different M and transmit powers.

same for different channel realizations, which is a desired feature for wireless communication

systems.

2.7 Conclusion

We studied downlink performance of cell-free massive MIMO systems in terms of the
minimum rate among all users and 5%-outage rate. In cell-free massive MIMO, all distributed
APs serve all users simultaneously providing uniformly good services to all users. We consid-
ered power optimization algorithms using max-min criterion for cell-free massive MIMO and
small-cell systems with CB and ZF precoders. For cell-free systems with CB, we proposed
low complexity heuristic power allocation algorithms. Numerical results indicate that these
heuristic algorithms have only moderate loss in terms of 5%-outage rate, but have significantly
lower computational complexity compared with the optimal power allocation. We proposed a
technique to reduce the effective number of APs that serve a user for CB precoder by employ-

ing an ¢;-norm sparsity penalty in the max-min power optimization. For cell-free systems with
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Figure 2.8: CDF of effective number of APs serving each user for cell-free CB and ZF

precoders with M = 128 and K = 16.

ZF precoder, we proposed methods for finding optimal and suboptimal powers. The method
for finding suboptimal powers is based on a perfect CSI model; it has very small complexity
and its performance happened to be virtually optimal. We compared our results with a small-
cell scheme in which each user is served by a single AP. Even though, in a small-cell scheme
users are aware of CSI and power allocation algorithms are applied more frequently (about 40
times more than in a cell-free system), the simulation results show that we can achieve higher

rates (in terms of 5%-outage and minimum rate) with the cell-free massive MIMO scheme.
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2.9 Appendices

2.9.A Derivation of the Capacity Lower Bound

Proof. The received signal in (2.6) can be written as

M M K
Yk = Z VOmkE ([Gmi|?) sk + Z Z /P 1 i Gk i Si
m=1

m=1 i#£k
A ~ - s
To: useful signal T : interference
M M K
~ 2 ~ 2 ~ A
+ E VPt (9mk)” = E (|Gme]?)) s& + E E VP MmiGmk i Si + Wi (2.40)
m=1 m=1 i=1
N >
VvV e
Ts: lack of channel knowledge at user Ts: channel estimation error
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Table 2.1: 5%-outage and median per-user rates of cell-free and small-cell schemes with

different number of APs and users.

Cell-Free CB Optimal Cell-Free ZF Optimal
Small-Cell MF Full Power

Power Allocation Power Allocation

M=64|M=128| M =256 | M =64 | M =128 | M =256 | M =64 | M =128 | M = 256

K=8| K=16 | K=32 | K=8 | K=16 | K=32 | K=8 | K=16 | K=32

5%-outage 0.5 0.51 0.51 2.38 2.82 3.05 3.16 5.28 7.17

Median 3.02 3.47 3.61 2.56 291 3.07 4.23 6.00 7.74

Since data signals intended to different users are uncorrelated and white additive noise is
independent from data symbols and the channel coefficients, it is easy to check that terms 7y,
Ty, Ts, T5 and wy, are mutually uncorrelated. According to the results from [46], the worst case
noise for mutual information is Gaussian additive noise with the variance equal to the variance

of T} 4+ T + T35 + wy,. Hence the achievable rate is lower bounded by log, (1 + SINR;,), where

E (|7
SINR;, = 2“ o )2 . (2.41)
L+ E (|Th]" + | To|” + |T5]7)
Variances of Ty, T}, T5, and T5 can be computed as
2
(‘TO - <Z V NImk Odmk) 5 ‘Tl — Pf Z Z NmiOmkOmi,
z;ék m=1
|T2 = pPf Z nmkamk’ |T3 = ps Z Z nmz Bmk - amk:) (07 R
i=1 m=1
(2.42)
By substituting the variances in (2.41) we complete the proof. 0

45



2.9.B Proof of Proposition 2.1

Proof. Define ¢, = Sk . For 0 < 6 <1 we have
f b \/1/Pf+2%:1 Bmk -

Y 2
SINR (6 + (1 — 0)n') = (Z ka\/enmk +(1— 9)77;11@)
m=1
M 1
2
Z CrmkCnk |:027]mk77nk + (1 - 9)2777/%77;1{ + 6<1 - 9)(77mk:77;k + Unknink)
1 n=1

ﬁtnﬂz

@ M M -
> Z Z CrnkCrk [ (ex/nmknnk +(1—=0)y U%k%k) }

m=1 n=1
— 9SINR, (1)) + (1 — 0)SINR4 (1), 2.43)

where (a) follows from the fact that Arithmetic mean is larger than the Geometric mean,
i€, Nkl + Tkt = \/m The above inequality implies that SINRy(n) is a
concave function of 77. Since the minimum of concave functions is a concave function, the
objective function (2.10a) is concave and constraints (2.10b) are linear. Thus, the problem

(2.10) is convex. ]

2.9.C Proof of Theorem 2.1

Proof. Since data symbols, additive noise, and channel coefficients are mutually independent,
it is easy to show that terms Jy, Ji, and w;, are mutually uncorrelated. Based on the worst-case
uncorrelated additive noise [46], the achievable rate is lower bounded by log, (1 + SINRy, zr),

where

E (|-Jol*)

SINR = —
BRI E ()

(2.44)
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Variances of Jy and J; can be computed as E (|.Jo|*) = psnx and

~ A A 2
(1) = o8 ([afce @iy pf)

iy trace{PQE((éTé*)—léT]E (g;a7) G*(GT(;*)—l) }

K
= pp Y ki (2.45)
i=1
where 7y; is defined in Theorem 2.1. ]

2.9.D Proof of Lemma 2.1

Before starting proof of Lemma 2.1, we remind the definition of M-matrices [47]:
Matrix A € RE*K is an M-matrix if it can be expressed in the form A = sI — B, where
B = (b;;) with b;; > 0, forall 1 <4, j < K, and s is greater than the maximum of the moduli

of the eigenvalues of B, and [ is an identity matrix.

Proof of Lemma 2.1 . Suppose 7 is the solution of SINR. zr(n) =t, k= 1,--- , K and vec-
tor ' > 0 satisfies SINRy, zr(n’) > ¢, k =1,--- , K. Denote the maximum SINR, z»(n’) by
SINR; 7 = max; SINR; zr(n’). It is clear that SINR; » is an increasing function of 77;- and a
decreasing function of 7; for i # j. If we reduce 7, then SINR; 1~ decreases and SINR; z (1)
increases for all i # j. By continuing this procedure, we will achieve a vector n® > 0 such
that SINR, z#(n?) = t5, to > tand n® < n'. Let 7, = 1/t and my = 1/1,. Define matrix
B € CK*K [B];; =, fori # j and [B]; = 0, and vector d = [ L. ir € RE. Then

EJ " py

we have the following system of K linear equations
(B—mI)n+d=(B—ml)n® +d=0. (2.46)

Since B is a non-negative matrix, from Perron-Frobenius theorem we know that there

exists a left eigenvector v of B with corresponding eigenvalue r such that all components of v
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are non-negative and r is Perron-Frobenius eigenvalue with the largest absolute value among
all other eigenvalues of B. Since all elements of vector d are positive, it follows from (2.46)
that Bn® < m,n?. If we multiply both sides of Bn® < 7,1 by non-negative vector v,

we get
Tp, 2 _ T, (2 T, (2)
v Bn'YY =rv n'Y <mv'n'. (2.47)

Since fan(z) is positive, we can conclude that » < 7. Since m; > 7y, from above equation
we have r < my < 71, which yields that (7 — B) and (mo/ — B) are M-matrices. One of
the properties of an M-matrix is that it is invertible and its inverse is a non-negative matrix.
Therefore all entries of n = (m [ — B)_1 d > 0 are non negative. After adding mon to the

both sides in (2.46) and rearranging we get
n® =0+ (12l = B)™ (m — m) . (2.48)

and since all elements of matrix (7, — B) ™" and vector (m; — m,)n are non negative, we can

conclude that 0 < i < n® < 7 which completes the proof. 0

Proof of Corollary 2.1. Suppose n' is the solution of SINR, zp(n) =t, k =1,--- | K,
which doesn’t satisfy feasibility constraints in (2.22b) and let n® be any vector that satisfies
SINR;, zr(n®) > t, k = 1,---, K. From Lemma 2.1 we know ") > 0. Hence, the
infeasibility of ") means that there exists m’ € {1,---, M} such that Zfil ni(l)ém/i > 1.

Since n® > ) (see Lemma 2.1), then 5 is also infeasible, i.e,

K K
1< 000 <> 0P80 (2.49)
=1 =1
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2.9.E Proof of Lemma 2.2

Proof. Let n®° be the optimal solution of the optimization problem (2.23). Denote the optimal

power transmitted from AP m by

K
Pm =Y 16h, m=1-- M. (2.50)

=1
It is clear that there exists m’ € {1,---, M} such that p,, = 1, otherwise one can replace

n; with n;/max,, p,,, Vi, which would improve the optimal value while still satisfying the

problem constraints. Next we define

= min 7 < max 7 = @51)

Now assume 7;° < 7. In the following we show the existence of a new set of feasible power
coefficients denoted by 7 such that min SINR}, (7)) > miny SINR}", . (n®°), which is

a contradiction to the optimality assumption. First we assume 7} is the unique minimizer.

c c . [ n-n
Define ¢ = 6, /6>, and € = min { A C}, where

1+c
. 1 — Pm pc pc
C = min W 6ml - C(Smu > 07pm ;A 1,. (252)
m ml — COmu
The new power coefficients given by
(
meot e k=1,
M = PC—cxe k=u, (2.53)
pe .
Uz otherwise,

yield in new set of feasible transmitted power constraints, which can be written as
K
Z i Oppg = Pm + €(0pyy — O,
=1

Pm, 672; - C(Srprfu < O?
< (2.54)

1, o —cdore, >0,

P!
m
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From the definition of e it follows that

pc pc pc pc

~pe pe pe | T — 7 pe T, — ™
= ey L el N

™ m > 1) Ty 1+

< P — ce = nP°. 2.55
1 _|_ Is — T]u ce nu ( )

Therefore, miny, SINR}', (79%) = psiif” > ppn) = ming SINR}, . (0P°), which is a contra-

diction. This completes the proof for n}* = - - - = nf’, which immediately translates to
== =1/ <Z 55;) . (2.56)
=1

Note that if 7} is not the unique minimizer, similar proof follows by applying the same

procedure for multiple times until all such 7)}“s are replaced with a larger value. 0

2.9.F Proof of Proposition 2.2

Proof. LetT = [, ... ~,] and A = [§,,...  §,,] be matrices containing vectors defined
in (2.18) and (2.19) respectively. By Lemma 2.1, n°" (A, T") is a continuous function of A

and I'; i.e., for every e > 0 there exists e, e > 0 such that
e
7P (A, T) — 0" (Ao, To)|| < 5 (2.57)

for all matrices A and I" where ||[A — Ag|| < e; and ||[I" — I'g|| < ey. The power coefficients

defined in (2.25) are also continuous functions of A, i.e., for every e > 0 there exists an e3 > 0

such that
e
1" (A) = 7™ (Qo)l| < 3, (2.58)
for all A with ||[A — Ag|| < es. Define matrix AP = [5?07 e ’51]’\2] containing vectors

defined in (2.24). Let 'y = 0 and Ag = AP® in (2.57) and (2.58). For given ey, €5, e3 > 0, we

can find an uplink power p,. such that ||[A — AP°|| < min {e;, ez} and ||T'|| < eg. From (2.57)
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and (2.58) we conclude that

€
[ (A,T) =7 (A%, 0)] < £,
apx apx C €

I (A) = ™ (A7) < £. (259)

From Lemma 2.2 we have n°"* (AP¢, 0) = 5 (AP®). So we have
17 (A, T) =7 (A = [0 (A, T) = n** (AF) + 0 (AF) — ™ (A)]
< |[In°" (A, L) = ™ (AP)[| + [[9** (A) — 7™ (AF)]]

e e
<-4+ =-=e. 2.60

5 + 5 e ( )

Note that SINRy, zr (1) is a continuous function of 7. Therefore we can conclude that for

every € > 0 there exists an uplink power p,.(¢) such that |n°" (A, ') — n* (A)|| < e implies
|SINR 2 (n™) — SINRy, zp (™) || <€, k=1,--- K. (2.61)

]

2.9.G Proof of Theorem 2.2

Proof. 1t is clear that terms Jy, Jq, and wy, in (2.33) are mutually uncorrelated. Hence, from

(2.33) we can obtain SINR of the k-th user as follows

E (.
SINR = ——— 2.62
where E (|.J1|?) = pyn, and variance of J; is computed as
. 2
B () = o [afcrypsf)
= p; trace {PQE ((G*)_IE (9;.91) (GT)_I)}
K
=pr > Mivis (2.63)
i=1
where v; is defined in (2.35). [
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Chapter 3

Performance of Cell-Free Massive MIMO

Systems with MMSE and LSFD Receivers
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Cell-free massive multiple-input multiple-output (MIMO) comprises a large number
of distributed single-antenna access points (APs) serving a much smaller number of users.
There is no partitioning into cells and each user is served by all APs.

In this chapter, the uplink performance of cell-free systems with minimum mean squar-
ed error (MMSE) and large scale fading decoding (LSFD) receivers is investigated. The main
idea of LSFD receiver is to maximize achievable throughput using only large scale fading
coefficients between APs and users. In this chapter, capacity lower bounds for MMSE and
LSFD receivers are derived. An asymptotic approximation for signal-to-interference-plus-
noise ratio (SINR) of MMSE receiver is derived as a function of large scale fading coefficients
only. The obtained approximation is accurate even for a small number of AP antennas and
users. MMSE and LSFD receivers demonstrate five-fold and two-fold gains respectively over

matched filtering (MF) receiver in terms of 5%-outage rate.

3.1 Introduction

In recent years massive multiple-input multiple-output (MIMO) has attracted consid-
erable attention as a candidate for the fifth generation physical layer technology [15], [10].
Cell-free massive MIMO is a particular deployment of massive MIMO systems with a net-
work of randomly-located large number of single-antenna access points (APs), where the ge-
ographical area is not partitioned into cells and each user is served simultaneously by all of
the APs [2], [39].

Some of the advantages and limitations of the networks with distributed APs can be
found in [2,27,28,34,39]. In particular in [2], [39], the performance of downlink transmission
and uplink transmission with matched filtering (MF) receiver in cell-free massive MIMO sys-

tems have been studied. In this chapter, we first consider uplink minimum mean squared error
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(MMSE) receiver. We further propose a suboptimal MMSE receiver called partial MMSE
(PMMSE) and demonstrate that it has virtually optimal performance. In [34], the authors
study uplink performance of cellular massive MIMO systems with distributed antenna clus-
ters in each cell. They consider MMSE and MF receivers with coordination among distributed
antenna clusters in each cell. In contrast, we assume all distributed APs coordinate with each
other to form the postcoding vectors and detect the signals transmitted by users. In [48], ran-
dom matrix theory results are used to study performance of cellular massive MIMO systems.
Motivated by [48], we applied random matrix theory to derive a tight approximation of the
PMMSE in cell-free systems as a function of large scale fading coefficients with cooperation
among distributed APs. Since the performance gap between MMSE and PMMSE receivers is
negligible, our approximation is also very accurate for the optimal MMSE receiver, which is
confirmed by the numerical results even for a small number of APs/users.

In [21] and [22], large scale fading decoding (LLSFD), also known as pilot contamina-
tion postcoding, was proposed to reduce interference in cellular massive MIMO systems. In
LSFD, base stations cooperate by using only the large scale fading coefficients. In this work,
we propose generalization of the LSFD receiver for cell-free massive MIMO systems and de-
rive its signal-to-interference-plus-noise ratio (SINR) expression as a function of large scale
fading coefficients.

We further derive an expression for SINR of cell-free systems with MF receiver in the
regime when the number of users is constant and the number of APs grows without limit. Our
result shows that in this regime, the system performance is limited by the coherent interference
resulting from two or more users sharing the same pilot sequence.

In numerical experiments, we evaluate the system performance under independent and
correlated shadow fading models. Results show that MMSE and LSFD receivers provide

significant gain over MF receiver. MMSE receiver outperforms LSFD receiver while the latter
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has smaller complexity.
The chapter is organized as follows. Section 3.2 describes the system model and chan-
nel estimation. In section 3.3, we investigate MMSE, partial MMSE, and LSFD receivers in

uplink transmission. Finally, numerical results are presented in section 3.4.

Throughout the chapter diag (a;), <i<n denotes diagonal matrix with ay,--- , a, on its
diagonal. If §; = {ay, - ,a,} € N*land S = {0y, - ,0,} € N™*! where o; and o;s
are in the increasing order, then operator [v;], s denotes the column vector [v,,, - Vo]

and operator [[v;;]]

Vaqo1s 5 Vajom
1€851,jE€ES2 :|

denotes the n X m matrix [

Vanoi, s Vapom

3.2 System Model and Channel Estimation

We consider a geographical area with M randomly distributed single-antenna APs and
K single-antenna users, assuming that X' < M. All APs are connected to a network controller
(NC) via an unspecified backhaul network. All APs and users are perfectly synchronized in

time. The channel coefficient between AP m and user k is given by

Imk =V Bmkhmlm (31)

where (3, is the large scale fading coefficient which accounts for path loss and shadow fading
and N,,x ~ CN (0,1) is the small scale fading coefficient. The large scale fading coefficients
change slowly over time and are assumed to be known at the NC. The small scale fading
coefficients are 1.1.d. random variables that stay constant over a channel coherence interval.

We assume time-division duplex (TDD) protocol, i.e., all users synchronously send
randomly assigned orthonormal pilot sequences (2, - - - , 2, € C™*', where ¥} Y, =06(i —
7)) to allow APs to estimate channel coefficients, which they further send to the NC.

We consider short channel coherence interval (due to high user mobility) and therefore

7 is small and K > 7. Hence each pilot is reused by several users, which results in the pilot
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contamination, [21], [22]. In [39], a greedy pilot assignment scheme in cell-free systems has
been introduced, which is shown to improve the performance of cell-free system compared
with the random pilot assignment scheme. However, for simplicity we consider the random
pilot assignment in the cell-free systems.

All users are partitioned into 7 sets Sy, - - - , S, in a way that users in S; use pilot 1.
Let b; be the index of the pilot sequence transmitted by the ¢-th user. The received signal in

the first step of the TDD protocol at the m-th AP is given by

K
Yy = VT D Gnithy, + Wi, (3.2)
=1

where p is the uplink transmit power of each user and w,, € C™! ~ CN(0, 1) is additive

Gaussian noise. The m-th AP computes the MMSE estimate of g, as

\/p_Tﬁmk:

1 + IOT Ziesbk ﬁmz

i LT (3.3)

It can be verified that g,,, and the channel estimation error g,,x = gmkr — Gmi are uncorrelated

Gaussian random variables with distributions

Gmk ~ CN (0, i) s Gk ~ CN (0, Bk — i) (3.4)

2
pTB'mk

A — 6mz A - o, .
w Note that g,,,; = Gmi, for every i, k € Sp,. Therefore, it is

Bmk

where o, =
enough for AP m to choose one user u; € §; and send only the channel estimates g,,;, J =
1,---,7tothe NC.

Let 7; denote the power coefficient used by the i-th user to transmit uplink data. For

notation convenience we define

A; £ diag (O‘mi)ngM? B; = diag (5mi)1gm§M7

K
C; 2 B, — A, D £p> nCi+1. (3.5)

i=1
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3.3 Uplink Data Transmission

At the second step of the TDD protocol, users send data symbols and the m-th AP

receives

K
Ym = VP YA/ MiGmiSi + W, (3.6)
i=1

where w,, ~ CN(0, 1) is additive noise and s; is the data signal transmitted by the i-th user.
The NC uses estimates §,,,x to form postcoding vectors v, and obtains estimates of data signals
Sp = ka (Y1, -+ ,yM]T , k=1,---, K. Using the worst-case uncorrelated additive noise, the
uplink achievable rate of the k-th user is R = E (log, (1 4+ SINRy)), with

PWkUkHQkaHUk

SINRk (Uk) = = K - p )
v}, (p > ik 997 + D) Vg

(3.7)

where g; = [G1i, - , Mi]T. Note that the achievable SINR of the k-th user in (3.7) is obtained

by taking into account the channel estimation error and pilot contamination effect.

3.3.1 MMSE Receiver

First, we consider MMSE receiver, which maximizes SINR of each user. The MMSE

vector to decode the data symbol of the k-th user is given by

K -1
o o <p2nigigf + D) - (3.8)
=1

Note that the MMSE vector in (3.8) contains channel estimates of all users in the network.
Thus, it is optimal in the sense that it maximizes SINR of each user. Whereas in cellular
systems, the MMSE vector at cell ¢ only contains the channel vectors of cell ¢ and the second-

order statistics of channel coefficients between base station at cell £ and all users in the network
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[34,48]. The achievable SINR of the k-th user with MMSE receiver is given by
~ H K ~ ~H -1 ~
gy (,0 D oim1 9:9; + D> g

1
A K ~ N R
ﬁ - ng (p Zi:l mgigf + D> Jr

SINR}™* = SINR,, (v}™) = (3.9)

The Monte Carlo simulation of R}™* = log, (1 + SINR};***) requires long averaging
over small scale fading coefficients h,,;. Hence, it is desirable to have an approximation of
Ry™ as a function of large scale fading coefficients only. The correlation between the channel

estimates (i.e., g = gmk

gmi for i,k € S, ) does not allow us to use random matrix theory
tools ([49, Theorem 1,2], [48]) to achieve this goal. Below we propose partial MMSE receiver
whose performance is very close to the performance of the MMSE receiver and allows us to

overcome this problem.

3.3.2 Partial MMSE Receiver

LetZ, = S, U {ugk), sl u® }, where u§k) € §; is the index of a user from §;, whose

selection rule is discussed later. The partial MMSE vector for user £ is then defined by

—1
UZ:MMSE — m(p Z mgzgf{ +p Z E(mnglf{) + D) gk

1€T) i¢ Ty
-1
= VP (p > gl + Q) i (3.10)
1€Ty

where

Q:PZTh‘Brl-pZmCi—i-I.

i2 Ty i€Ty,

Note that 7, contains one user from each non-coherent interference group S;, j # k, and
all users that cause coherence interference to user k. Recall that in massive MIMO systems,
the coherent interference is the dominant impairment which limits the system performance
when the number of antennas increases without bound [15]. Therefore, in the partial MMSE

receiver we include channel vectors of all users that use the same pilot sequence as user k.
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(k) (k)

The users u; ', - -+ ,ur ' should be chosen such that vectors g;,7 € Zj, in (3.10) have the major

contribution in (3.8) and hence (3.10) becomes close to (3.8). Numerical results show that a

k) k)

random selection of users u; ', - -, ug from the corresponding sets Sy, - - - , S, leads to poor

performance (see Figure 3.1). A method for smart choice of these users can be formulated as

following
ulV =argmax B1 B, j=1.- .7, (3.11)
iESj
where 3, = [f, - ,BMZ»]T. In other words, we choose user uﬁ»k) € §; that is in the close

vicinity of the k-th user. The SINR}™** can be obtained by substituting v;"™* in (3.7).

In the following theorem we apply random matrix theory to obtain an asymptotic ap-
proximation of R™* = log, (1 + SINR™**) when M and K grow infinitely large while the
ratio M/k is finite. This asymptotic result is used as an approximation for finite values of M
and K similar to [49] and [48], in which the approximations are derived for multiple-input

single-output broadcast channel and cellular systems respectively.

Theorem 3.1. Assume matrices A;, C;, 1 = 1,---, K have uniformly bounded spectral
norms. For the partial MMSE receiver defined in (3.10), when M and K grow infinitely
large such that 0 < liminf % < lim sup,, % < 00, we have

a.s.

RIVMSE _ Jog, (1 + SINRPM™MS) = 0, (3.12)
where
~ . \2
SINR;™ — n i) T (3.13)
0(D)+p > mA+p 2 nb(A)+p > (G Bru(AT))
1€8p, \{k} i€y 1€ \Sp,, portr( ATy

and all parameters in SI&RZMMSE are summarized in Tables 3.1 and 3.2.

Proof. See Appendix 3.7.A [
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Table 3.1: Parameter definitions in Theorem 3.1 (Part I).

-1
t (3
55) %trAi(ﬁ > +5<r o+ MQ)
JELK\Sp,,
5; lim 6\, with 6% = M
t—o00

-1
T (# x #+h0)

JELK\Sp,

%tr (nmA;TAT)
M(1+6)

) .]7l€Ik\Sbk

J

& (H) | [0, (H) }jgk\sbk =(I—J) " [t (A THT)]

: » 0 A3 (H)
T (H) THT+Tf > “GwT
JELK\Ss,,

(1) -
t i

0" 3 %UA@'(% 2 1+5,,(t n MQ)

J€Te\{n)
5 lim 67, with 6", = M
t—00

-1
T (# = 4 +30)

JET\{n}
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Table 3.2: Parameter definitions in Theorem 3.1 (Part II).

” & [ (A24°7)]

jESbi

0| r g | [y (44T

iGSbk 7j esbk

vilH) | 3 [ (47477 (D)

jGSbk

N () | 2 ([ (4724t () ]

i€8p, .1 €S,

A artr (AV2AVT) — Ty,

st (AT () = 2Re (v (H)' Ty, )

+ DTN (H) Ty,
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Note that the approximation SIﬁRZMMSE in (3.13) is a function of large scale fading
coefficients only, and although it has a long formulation, it can be easily calculated numerically

for large values of M and K.

3.3.3 Large Scale Fading Decoding

Next, we propose the LSFD receiver for cell-free systems. The main idea of LSFD
receiver is that postcoding vector and power coefficients depend only on the large scale fading
coefficients. Since these coefficients are independent of frequency and change (about 40 times)
slower than small scale fading coefficients, LSFD allows one to reduce the computational
complexity in NC, which is very desirable in real life systems.

The m-th AP sends y,, to the NC. Utilizing MF, the NC computes s,,; = g.,;¥m and
estimates data symbol s; by using linear combination of all received signals as following

M K
$e=_> Uilmi (3.14)
m=1 i=1
The NC computes postcoding coefficients vy,,; and power coefficients 7 as a function of large

scale fading coefficients only.
Lemma 3.1. The estimate of data symbol 5y, in (3.14) can be simplified as

8, = vyl 3, (3.15)
where vj, = [v1g, - - - ,ka]T and 8 = [S1g, - - ,§Mk]T.

Proof follows directly from the two facts. First, s; and §,,,;,7 ¢ S, are uncorrelated

and hence assignment v,,,; = 0,7 € Sp, in (3.14) does not result in any performance loss, and

the second fact is that 3,,,; = gmk Smk; © € Spy,.
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Theorem 3.2. Achievable SINR of the k-th user with LSFD receiver is given by

H H
PNEVy Ho by Uk
SINR;, (vg) = , (3.16)
P Ziesbk\{k} mivy ppi vk + vil Avy
where A = dlag (p ZK Thamkﬁmz + amk) and i = LBk P .
=t 1<m<M T gy, i || et
Proof. See Appendix 3.7.B [l

LSFD

Based on Rayleigh quotient theorem [50], the optimal v}*™ which maximizes SINR of
each user in (3.16) is given by
—1

v = p > mupl +A | (3.17)
i€Sp, \1k}

The optimal SINR of the k-th user is then given by

-1

SINRP™ = piepasl | 0 > mipapel + A gy (3.18)
€8y, \{k}
The power coefficients § = [y, -+ , 7 K]T in (3.18) can be obtained through solving the max-

min power allocation problem with per user transmit power constraints, which is formulated

as

max mkin RP™ =log, (1 + SINR™) , (3.19a)
n

st. 0<m <1, i=1,---,K. (3.19b)

In order to solve the max-min optimization problem (3.19), we reformulate it as the following

power optimization problem

max t
n,t
s.t. SINRP™ (n) >t, k=1,--- K, (3.20a)
0y <1, 1=1,--- K. (3.20b)
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Let ¢° denote the optimal value of ¢ in (3.20). Next, we define the vector function I; (1),
which helps to determine if ¢ < ¢°" or not. The k-th element of I; (1) is defined as follows
t
1" (n) £ ., k=1, K. (32D
Py (p D ies, \(k) Tk + A) W,

It is easy to observe that the constraint in (3.20a) can be written as n > I, (n). We recall the
definition of standard interference function from [51], which refers to any function I, (n) that

satisfies the following properties for all n > 0:
1. I,(n) > 0is positive.
2. Ifn>n',then I, (n) > I;,(n).
3. Forallaw > 0, al; (n) > I; (an).

Lemma 3.2. For any fixed value t > 0, the function I, (n) defined in (3.21) is a standard

interference function.

The proof follows from the definition in (3.21) and hence is left to the reader.

Denote by 7} the fixed point solution of
n=min{l,I;,(n)}. (3.22)

It has been shown in [51] that the fixed point solution 7 for any standard function I, (1) has

the following property that
n>1,(n) ifandonlyif 30 <m < 1suchthatn > I,(n). (3.23)

We refer to this evaluation as the feasibility check on ¢. This fact provides us a tool to develop
bisection method to solve max-min optimization (3.20), which starts with two values of #; and
t,, for which the constraints (3.20a), (3.20b) are respectively feasible (¢;) and not feasible (%,,).
The bisection method then recursively narrows down the interval (¢;,t,) as summarized in

Algorithm 1 until the interval is small enough.
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Algorithm 1 LSFD max-min optimization problem.

1) Choose an interval (¢, t,,) that contains the optimal ¢°%, i.e., t; < t°P" < t,.

2) For midpoint ¢ = %%’ find the fixed point solution 7) using the following iteration
nt) = min {1,1, (V) }. (3.24)

3) If ¢ is feasible meaning that the fixed point solution 7 satisfies ) > I, (7)), then set
t; < t, otherwise set t,, < t.

4) Continue steps 2 and 3 until the search interval is small enough, i.e., t, — t; < e.

3.3.4 Asymptotic Analysis of MF Receiver

In this subsection, we provide the SINR expression for MF receiver when the number

of APs grows without limit.

Theorem 3.3. Achievable uplink SINR of the k-th user for MF receiver, i.e., v}" = [1,- - | I]T,
with unlimited number of APs (M — oo and K = constant) and independent large scale

fading coefficients is given by

SINR, (o)) "y — i (3.25)
Cl Mo Y
€Sy, \{k}
where [i; is defined as
M
Hi = ]\}linoo s Z:l Ko
/ . — pTBmk/Bmi
with Hmi = I+pr EjESbZ_ B
Proof. See Appendix 3.7.C. U

Note that the denominator in (3.25) corresponds to power of the pilot contamination
related interference. Similar to the cellular massive MIMO systems, SINR of the k-th user

using MF receiver is limited by the effect of pilot contamination. However, we observe that
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by increasing M, the SINR of cell-free system becomes a deterministic constant whereas the

SINR in cellular systems remains dependent on the large scale fading coefficients.

3.4 Numerical Results

We consider a square dense urban area of 2 x 2 km? with M randomly located APs
and K randomly located users. The area is wrapped around to avoid boundary effects. For

large scale fading coefficients, we consider a three-slope path loss model [52] as follows

(
c di < 0.01 km
fuk =13 0.0lkm < dy <0.05km, (3.26)
mk
CoZm
% dj, > 0.05 km
\ “mk

where d,,,; is the distance in kilometers between user k£ and the AP m, and z,,; is the log-
normal shadow fading, i.e., 101og;o zmx ~ N(0,02,4) With ogaq = 8 dB. For dj, > 0.05 km

we use COST-231 Hata propagation model

10log,y co = — 46.3 — 33.91og,, f + 13.821og,, hp

+ (1.1log,o f — 0.7)hg — (1.56log,, f — 0.8), (3.27)

where f = 1900 MHz is the carrier frequency, hg = 15 m is the AP antenna hight, and
hr = 1.65 m is the user antenna hight. Parameters c; and ¢, in (3.26) are chosen in a way that
path loss remains continuous at boundary points.

To model the correlation between large scale fading coefficients caused by closely
located users and/or APs, we use the same correlation model as [39, Equations (53) and (54)]
for shadow fading with parameters 6 = 0.5 and dgecor = 0.1 km. The noise variance is

a?} =290 x Kk x B x NF, where k, B, and N I are Boltzmann constant, bandwidth (20 MHz)
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and noise figure (9 dB) respectively. We assume users transmit with equal power 7; = 1, 7 =
1,---, K and p = 200 mW.

Figure 3.1 depicts CDFs of R™**, R™"* with the heuristic user selection approach
given in (3.11), R™"t with random user selection, RpvvsE log, (1 + SIﬁR"MMSE), and R“™
with independent large scale fading coefficients. The CDF of per-user throughput achieved by
MEF receiver [39] is also included in the figure for comparison. The horizontal line corresponds
to 5%-outage rate which represents the smallest rate among 95% of the best users. One can
observe that the asymptotic approximation of MMSE receiver is very tight. MMSE and LSFD
receivers respectively provide 5.1-fold and 2.6-fold gain over the MF receiver in terms of
5%-outage rate. Performance of the LSFD receiver lies between the simple MF receiver and

MMSE receivers. Compared to the MMSE receiver, LSFD reduces the overall complexity of

the system.
1 :
0ol —— MMSE
' Partial MMSE
0.8} Approximation
N Partial MMSE
' Partial MMSE with
0.6} Random User Selection
% — LSFD
O 05 Matched Filtering
0.4}
0.3}
0.2}
0l1r 5%—-0Outage: Rate ’ S
O . 1 ot —-é L L L L Il
10° 10*

per-user throughput (bits per second per hertz)

Figure 3.1: CDFs of the achievable per-user rates for LSFD and MMSE receivers with

M = 1000, K = 50, and 7 = 10.

Figure 3.2 shows 5%-outage and mean values of RME RPMMMSE - RPMMSE yergug the num-

ber of APs under independent and correlated shadow fading. We point out that in all con-
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large scale fading
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large scale fading

O i i
32 64 128 256 512 1024 5000 10000

M (number of access points)

Figure 3.2: 5%-Outage and mean rates versus M for correlated and independent large scale

fading with K = 16 and 7 = 4.

sidered scenarios, the partial MMSE is virtually optimal and our approximation Rg;;;;; is very
accurate. It is to be noted that the shadow fading correlation significantly affects the system
performance.

The CDFs of per-user rates for different number of APs and users are plotted in Figure
3.3. The ratio between number of APs and users is constant in all cases, i.e., /K = 8 and

K[> = 4. We observe that the 5%-outage rate of MMSE and partial MMSE receivers increase

as the network size increases.

3.5 Conclusion

In this chapter we studied the uplink performance of cell-free systems with MMSE
and LSFD receivers. To study the asymptotic behavior of the cell-free systems, a more
tractable (and hence suboptimal) MMSE receiver is introduced. The achievable rates of

MMSE, PMMSE, and asymptotic approximation are shown to be very close. The numerical
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Figure 3.3: CDFs of the achievable per-user rates for MMSE receivers with different number

of APs and users.

results confirm that the asymptotic approximation is very accurate even for small number of
APs and users. A generalization of LSFD receiver for cell-free systems is introduced, which
depends on the large scale fading coefficients only. While MMSE and LSFD demonstrate

significant gains over MF, there is a considerable gap between MMSE and LSFD receivers.
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3.7 Appendices

3.7.A Proof of Theorem 3.1

For notational simplicity, we define the following matrices

~ A H
U=Q+p Z 9:9: R:I_'_p[[\/nm] 1UT gJHieSkaGSbk
iGIk\Sbk
K
Z = [[\/ pniAmi]]lngMﬂ'eSbk ’ W= pz ﬁzQ@QzH + Q (3-28)
1€y,

We will need the following preparatory lemma to prove Theorem 3.1.

Lemma 3.3. Let g; ~ CN (0, A;) be the channel estimates defined in (3.3). Assume H €
CM*M js q Hermitian non-negative definite matrix with uniformly bounded spectral norm

with respect to M. Then, for i € S, , we have

1 a.s
g,U"g, = ot <A}/ 2A}/QT) M‘K?éo 0, and

a1
gl U™ HU g, — —tr (AWAWT’ (H)) o, (3.29)

M,K—o0

where T and T' (H) are defined in Table 3.1.

Proof. Channel estimate g;, for every ¢ € S, , can be written as g, = A}/ szk, where hy ~

CN (0, 1) is complex normal random vector. For i € S, , we have

1 - 1 1 100
9, U"g,; M k (MU) i hy,
1 o, 1 .
- - N H 41/2 1 L ,1/2
gy U'HU 1gi—wh Ay (MU) H(MU) A hy. (3.30)

By [53, Theorem 3.4], we have

1. 1 N\ e
thHA}/?(MU) Av2h, - L 7 <A1/2A1/2( U) )MTWO
1

M

1

M
2hHA1/2(MU)—1H(_U) A1/2hk ]\i (Al/zAl/Q(]\l/[U)_lH(iU)_1> as. 0

1
M
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From [54, Theorem 1], we obtain

1 12 172, 1 -1\ 1 1/2 41/2 as.
Mtr(Ai A (=) ) e (A2A°T) e (3.32)

By using [54, Theorem 2], we get

1 12 4172, 1 -1 1 -1 1 12 1/2rp as.
ot (AZ. AP (0) T H (52U) —tr (A4 (1)) 0 (633
which completes the proof. U
First, we divide the numerator and the denominator of SINR;"™* by . Then, the

useful signal power is given by

= il |ng gk : (3.34)

To

E "Uk Qk;

The denominator of SINR;™** can be rewritten comprising of four components

1 .
— vy (pnggl +D> vy =g W' DW g, +g{/W™p Z 0:9:9; W'y
P o > €S (k)

(. J
~~

Ts

+gi W pngzng G +ai W Z 19:91 W' gy . (3.35)
i¢ Ty, 1€ZE\Sp,,

v
A g
~~ ~~

Ts Ty

Consider terms 7y = pn |gk W~ gk‘ and 75 = ngbk\{k} oni |gEW g, 2, Using matrix

inversion lemma [55, Eq. C.7], term g,J¥ ~1g, can be written as

9/ Wlg, = Vomg' U™ g, — /pmg U™ ZRT' 2 U (3.36)
By applying Lemma 3.3 and the continuous mapping theorem [56], for 7 € S, , we obtain

GiUZ 4T 5 0, and RU-T' (3.37)

M,K—o0 M,K—o0
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Combining (3.36) and (3.37), and using the continuous mapping theorem [56] yields
2 a.s. 9 a.s.
Ty = pm} 2 0 and - Th— S X —— 0. (3.38)

) M,K—oc0
1€8p, \{k}

By matrix inversion lemma [55, Eq. C.7], term 7T} is given by
T, =g, /U 'DU 'g, — 2Re (g, U 'DU'ZR™'Z"U ' g,)
+glU ' ZR'\ZHPU DU ZRT 2 U g, (3.39)
By Lemma 3.3, it follows that

1 .
~Hrr—1 -1

GiU'DUZ — v, (D)"Y — 0

M,K—0c0
ZHU-'DUZ — N (D) — 0. (3.40)
M,K—o00
From (3.37) and (3.40), it follows that
T, —0(D) — 0. (3.41)

M,K—0c0

Now consider term gF W ='g,gFW~'g, in T3. From [53, Theorem 3.4], for i ¢ Z;,, we obtain

a.s.
gIWwlg.gfw g, — giwtAW g, o 0. (3.42)

a.s.
Similar to (3.41), it is clear that g W' A, W ~1g, — 0 (A;) P 0. Thus, we have
K —00

Ty =S i (A) — 0. (3.43)

M,K—00
1¢Ty,

Define Wy = W — pn;g,97. Note that where W(;) and g, are independent. By applying the
matrix inversion lemma [53, Lemma 6.2], term pn;,gZ W—1g,g""W—1g, in T} is written as
9 W' 9.9 W g

.
(14 pnigl'W'a,)

P g W g.97 W g, = pn; (3.44)
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Similar to the derivations in Lemma 3.3, we can show that

1 a.s.
H”r sl
o 9i = AT 2 0

where 7" is defined in Table 3.1. By [53, Theorem 3.4], for i € 7, \ Sp,, we have

a.s.
9 W' a:97 W' g, — g W AWl g, —— 0.

M,K—0c0

By (3.41) and [57, Rank-1 perturbation lemmal, it follows that

GEW AW g, —0(A) — 0.

M,K—oc0

Thus, by the continuous mapping theorem [56], it yields

a.s

> o () 500

2
TSy, (1 + pm tr (A T”)) M, K —00

We complete the proof by combining (3.38), (3.41), (3.43), and (3.48).

3.7.B Proof of Theorem 3.2

The estimate of data symbol in (3.15) can be written as

(3.45)

(3.46)

(3.47)

(3.48)

M
Ski szfnkgmk Z PV B (Gt Gm) SkJrZ Z PNV B (i imi) i
m=1

m=1ic8,, \{k}

J/

-~

To: useful signal T : pilot contamination

M
+ Z Z VPV (g;knkgmi — E (Grp.9mi) )Si

m=1 iGSbk

J

~
T5: lack of channel knowledge

+ Z Z PVt Gk Grmi Si + Z Ve O 1 W

m=1i¢S,

>

g

. T4: noise
T3: interference 4

(3.49)

Since data symbols of different users and additive Gaussian noise are mutually independent,

terms Tg, Ty, T5, T3, and T, are mutually uncorrelated and have zero mean. According to [46],
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the worst case noise in terms of mutual information is Gaussian noise with variance equal to

the variance of 17 + 715 + T3+ T}. Hence achievable rate is lower bounded by log (1 4+ SINRy,),

where
E (7o)
SINR, = . (3.50)
FTE(DP A+ TP+ TSR+ T4
Variances of terms 7¢, 11,715,153, and T} are given by
2 2
E (IT0]*) = pme (vf i)~ E(TP) = Y o (vim)
€Sy, \{k}
|T2 Z P Z |Umk|2amkﬁmia |T3 Z PN Z |Umk:|2amk;6mia
lESbk m=1 Zi‘sbk m=1
E (|Tu[?) Z [ e (3.51)

where p; is defined in Theorem 3.2. Substituting the variance in (3.50) completes the proof.

3.7.C Proof of Theorem 3.3

The achievable uplink SINR of the k-th user with MF receiver is given by
Y 2
Pk ( 21 umk>

M 2 M K
pod M <Z::1Mmz‘) + > Qi (1+Pz:177iﬁmi)

)

SINR, ('vk — 1, ,1]T) -

ieSp, \{k} m=1
(3.52)
From the central limit theorem and the continuous mapping theorem [56], we have
1 M ? A
(M mZ:luk> — iy — 0. (3.53)

For constant /X, we have

M2 Z Amk (1 + P Z 77167711) J\/[—>oo (354)

By substituting (3.53) and (3.54) in (3.52), we complete the proof.
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Chapter 4

Access Point Location Design

75



4.1 Introduction

Wireless networks with distributed access points (APs) have attracted a lot of attention
due to their capability in providing enhanced network coverage, capacity, and power effi-
ciency [34], [58], [59]. The advantages associated with distributed systems highly depend
on the AP locations. In this chapter we investigate AP location design problem in cell-free
massive multiple-input multiple-output (MIMO) and small-cell systems that were introduced
in Chapter 2. We propose new algorithms to obtain optimal location of APs that are based on
distribution of users in the network.

Cell-free massive MIMO is a particular deployment of massive MIMO with distributed
APs, in which there are no cell boundaries and each user is served with all distributed APs
(see Chapter 2). This system combines the notion of massive MIMO systems with distributed
MIMO providing uniformly good service for all users in the network [1], [39].

An alternative wireless network with distributed APs is small-cell system in which
the APs do not cooperate and each user is served by only one AP. Compared with the cell-
free massive MIMO, small-cell systems are simpler as they require much less backhaul and
coordination among APs at the cost of reduced per-user throughput as observed in Chapter 2
and [39]. However, these two systems are the extreme scenarios in distributed MIMO system:s.
In real-life systems with distributed APs, each user will be served by a few APs.

In order to maximize the average ergodic capacity, the authors in [60] propose a
squared distance criterion for designing antenna locations in generalized distributed antenna
systems. They minimize the expectation of the squared distance between a randomly located
user and the nearest antenna port, which is equivalent to codebook design problem in vector
quantization for which the Lloyd algorithm is a popular approach. In [61], the authors inves-

tigate the optimal deployment of APs and base stations (BSs) in a two-tiered wireless sensor
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network to minimize the average sensor and AP powers. For a uniformly distributed one-
dimensional network, they determine the optimal deployment of APs and BSs. They propose
one- and two-tiered Lloyd algorithms to numerically optimize node deployment for general
scenarios. In [62], the authors study uplink performance of a distributed massive MIMO sys-
tem in a single cell scenario. They obtain optimal radius of the circular BS antenna array that
maximizes the average rate and then numerically show that the circularly distributed massive
MIMO can significantly outperform massive MIMO systems with co-located antenna arrays.

In this chapter, in contrast to other works, first we consider cell-free systems with
zero-forcing (ZF) detector. For performance criteria, we use sum-throughput and 95%-likely
per-user throughput, which is the smallest rate among 95% of the best users. To that end we
develop two AP placement algorithms to maximize the sum-throughput and min-throughput
of the users in the system. We call them max-sum and max-min algorithms respectively.
The max-min optimization does not necessarily provide the optimal 95%-likely throughput.
However, we use it as an engineering tool for optimization of this criterion. We formulate the
AP location optimization problems in a way that resemble the general sparsity problems, and
we leverage this structure to solve the AP placement problems efficiently. In this chapter, we
consider uplink transmission. However, similar algorithms can be deployed in the downlink
as well. Numerical results show that the proposed max-sum algorithm provides the highest
sum-throughput compared with the Lloyd algorithm and random AP locations. However, the
simple Lloyd algorithm results in the highest 95%-likely per-user throughput compared with
the proposed max-min algorithm and random AP locations.

Next, we consider AP location design problem in small-cell systems. Since the APs
do not cooperate in a small-cell system, we consider matched-filtering (MF) detection and
propose an iterative algorithm to find optimal location of APs by taking into account the effect

of interference in the system. The proposed algorithm is based on the k-means algorithm in
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vector quantization that involves assignment and update steps. In [60], authors used the Lloyd
algorithm to find the location of APs. In contrast to the Lloyd algorithm, which minimizes the
average squared distance between a user and the nearest AP, our proposed method minimizes
the average distance between a user and the serving AP as well as the average interference
that the user experiences in the system. Numerical results show that we obtain about 1.4-fold
improvement in 95%-likely per-user throughput over Lloyd algorithm. However, simplicity of
the Lloyd algorithm and its good performance still makes it an attractive approach in selecting
the location of distributed APs.

The chapter is organized as follows. Section 4.2 describes the system model and uplink
transmission in cell-free massive MIMO. In section 4.3, the problem of AP location design in
cell-free massive MIMO is discussed and two AP placement algorithms are proposed. Section
4.4 provides system model and achievable rate analysis in small-cell systems. In Section 4.5,
the AP location optimization problem in small-cell systems is investigated. Numerical results
are presented in section 4.6. Section 4.7 concludes the chapter.

Throughout this chapter, we use superscripts *, 7, and ¥ to denote complex conjugate,
transpose, and hermitian operations respectively. Uppercase symbols denote matrices and bold

symbols denote vectors. [E(.) is the expectation operator.

4.2 Cell-Free Massive MIMO System Model and Achiev-

able Uplink Rate Analysis

4.2.1 System Model

Consider uplink transmission in a geographical area that is covered by M single an-

tenna APs and K single antenna users, where M > K. An example of a cell-free system is
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depicted in Figure 2.1 in Chapter 2. All APs are connected to a network controller (NC) via
a perfect backhaul network that is error-free. Each user is served by all APs simultaneously.
We assume a flat fading channel model for each orthogonal frequency-division multiplexing

(OFDM) subcarrier. The channel coefficient between AP m and user k is given by

Imk = V Bmkhmlm (41)

where 1 and h,,x ~ CN(0,1) are the large scale and small scale fading coefficients re-
spectively that are mutually independent. The OFDM subcarrier index is omitted in (4.1) for
simplicity. Large scale fading coefficient [3,,x, which includes both path loss and shadow fad-
ing effects, changes slowly and can be accurately estimated and tracked. We assume small
scale fading coefficients h,,,, m = 1,--- /M, k = 1,--- , K are i.i.d random variables that
stay constant during a coherent interval and change to independent values at the next coherent

interval. For simplicity, we assume that perfect channel state information is available at the

NC.

4.2.2 Achievable Uplink Rate Analysis

In the uplink transmission, users transmit data symbols and the mth AP receives

K
Ym = Y A/ PrGmisi + W, (4.2)
=1

where w,, ~ CN (0, 1) is additive noise, p, is the uplink transmit power, and s; is the data
symbol of user ¢ with unit power E ( |s; ]2) = 1. We assume data symbols of users are mutually
independent and all users transmit with equal power E (‘\/ESZF) = p,. In Chapter 2, we
showed that in downlink transmission of cell-fee massive MIMO the ZF precoder, which
has a reasonably low complexity, significantly outperforms conjugate beamforming precoder.

Hence, here we consider linear ZF detector at the NC to null out interference from other users
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and we assume perfect channel state information (CSI) is available at the NC. The mth AP
sends ¥,,, to the NC and the NC forms the ZF detector using the pseudo inverse of channel

matrix Ayp = (GHG)f1 GH (see [8]) as follows

r=Azry = \/prs+ (GHG)_1 GHw, 4.3)
T T T . .
where y = [y1, -+ ,ym] » 8§ = [$1,-+ ,Sk] , and w = [wy,--- ,wy] . Considering the

fact that worst case noise is Gaussian noise [46], the achievable uplink rate of user £ is lower

bounded by Ry = log (1 + SNRy,), where the signal-to-noise ratio (SNR) is given by

pr
E([(G"6)7],)

The asymptotic achievable SNR of the kth user, with unlimited number of APs (M — c0) and

SNR;, =

4.4)

finite number of users K is given by [62]

1

MSNRk frand Pr B 4.5)
where 3, is defined as
| XM
= A
B & lim — Zl B (4.6)

To simplify the AP location optimization problems in the next section, we will use the SNR

expression in (4.5) as an approximation of the achievable SNR in (4.4).

4.3 Access Point Location Optimization in Cell-Free Mas-
sive MIMO

In this section, we propose two algorithms to obtain the optimal location of APs in

cell-free systems.
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Figure 4.1: APs on grid points.

The optimization of the AP locations with arbitrary AP locations can result in a com-
putationally complex optimization problem. Therefore, to simplify the AP location design
problem, we assume APs can only be placed on predefined grid points as shown in Figure 4.1.
Let N denote the number of grid points in the area and let us enumerate them in some arbi-
trary order n = 1,--- , NV and suppose N > M. As N increases and the grid gets finer, the
accuracy of finding optimal AP locations increases. Now the problem of finding AP locations
becomes a combinatorial problem of choosing M out of N locations. Define € {0, l}N,

where z,, = 1 indicates that there is an AP at gird point n. Using the approximation (4.5), the

81



achievable SNR of users with large number of APs can be expressed as

0]
B 7 r 7 0
SNR; Bin B - Bm T
SNR; Bia P2 -+ B2 0 @
~ Pr X ! , .
0
SNRg bik Box - Bk B
N\ ~ v . ~ O
b A —

where the (n, k)th element of matrix A € R¥*Y ie., [A] , = Bk, denotes the large scale
fading coefficient between the nth grid point and the kth user. Vector b € R¥ in 4.7 denotes
the approximate achievable SNR of all users.

In the next two subsections, we will optimize the AP locations based on two criteria:
1. Max-min criterion, in which we maximize the minimum rate among all users; 2. Max-sum
criterion, in which we maximize the sum-throughput of the users. For each criterion, our goal
is to find the optimal location of APs by finding location of the M non-zero elements of @ in

4.7).

4.3.1 Max-Min Algorithm

Max-min criterion provides equal throughput to all users in the network. Given a target

per-user SNR of ¢, we set b = ¢ [1,--- ,1]" and formulate the problem of finding AP locations
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on the grid points as follows

mai:n HwHZo

s.t. Ax > b,
x e {01}V, (4.8)
where [|z||,, = [{n:z, # 0}| is the number of non-zero elements of . The problem in

(4.8), with the assumptions of X < N and N > M, resembles a general sparsity problem
in which the aim is to reconstruct the sparse signal  from measurement vector b [63]. In
other words, we would like to find locations of M non-zero elements in x for a target SNR
vector b. The optimization problem (4.8) is non-convex and usually requires combinatorial
optimization. Using common compressed sensing techniques, we simplify the problem by

replacing {y-norm with ¢;-norm and relaxing the constraints as follows

min [e]|,
st. Ax > b,

0<xz <1, 4.9)

where |||, = S°N | |,| denote that £,-norm of . The problem (4.9) is a linear program-
ming optimization and can be efficiently solved (see [43, chapter 3.3]). After obtaining the
optimal solution of (4.9), we choose the M largest non-zero elements of x° as the locations of
APs. To capture randomness of the user locations, we place a large number of users (/K > M)
in the area when solving (4.9). However, in a cell-free massive MIMO system, the number
of served users at each given time is much smaller than the number of APs. Therefore, in the
data transmission phase, when we compute the actual achievable rate obtained by the system
we choose small values for K < M.

Note that in (4.9), finding the optimal target per-user SNR ¢ doesn’t change the location
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of non-zero elements in . In other words, if we replace b with ab, the optimal solution will
be ax. Thus, finding the optimal b is not necessary as long as x°" contains M non-zero

elements.

4.3.2 Max-Sum Algorithm

In this section, our criterion for choosing AP locations is to maximize the sum-through-

put. To this end, we will use the following inequity

K K
1 (a) 1
17 ;:1 log, (1 4+ SNR;) < log, (1 + e ;:1 SNRi> (4.10)

to maximize the sum-SNR, which is an upper bound for the actual problem. Note that (a) in
(4.10) directly follows from Jensen’s inequality. Denote by a! the kth row of matrix A. Then

the average achievable SNR of users can be expressed as

1 & 1 &
= > SNR; = = > ajw. (4.11)
=1 k=1

The AP placement problem with the goal of maximizing the average achievable SNR of users

is formulates as
1 &N
mgx 174 Z a, T
k=1
s.t. ||:1:||ZO =M,

xz e {0,117V (4.12)

Following the similar procedure as in Section 4.3.1, we relax the AP location optimization

problem (4.12) as

0<z <1, (4.13)
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which is a linear programming optimization and can be efficiently solved. In order to solve
(4.13) and to capture the full randomness in simulations, we generate a large number of users
(K > M) according to the density of users in the area, which is similar to Section 4.3.1.
Note that after solving problems (4.9) and (4.13), one can redefine the grid points
according to the solution and solve the problems again to further tune the location of APs on

a finer grid.

4.4 Small-Cell System Model and Achievable Uplink Rate
Analysis

In this section, we provide the small-cell system model and achievable uplink rate of
the system. The channel model is the same as (4.1). For large scale fading coefficient between

AP m and user £ we consider the following model

Co 1P — @l < 7o "
i &kv Hpk—qu>7“0, 9
1Pr — @,

where ||.|| denotes the /5-norm, q,,, € R? and p,, € R? denote the position vectors of AP m and
user k respectively, and z,,, is the log-normal shadow fading, i.e., 101og, z,ux ~ N (0,02.4)-
In the small-cell system, there is a cell around each AP in which only one user is served
by the corresponding AP. This can be viewed as M small cells, each equipped with a single
antenna AP. Let k£, be the index of the user that is served by AP m in cell m. In the uplink

transmission, users send data symbols and the mth AP receives

M
Y = D /Prmi, Sk, + Wi, (4.15)

m/=1

where w,, ~ CN (0, 1) is additive noise, p, is the uplink transmit power, and s; is the data

symbol of user ¢ with unit power E (’82‘2) = 1. The mth AP uses MF detector to estimate data

85



symbol s as

. Gk G
Skm — ’ mkm | ym /pT‘ ‘gmkml Skm —|— Z /pr | mkm ‘ gmkm/ Skm’ +Um, (4.16)
m S—— dm
" To: desired signal N m/=1,m'#Em " _

Ti: 1nterference

where v,, ~ CN (0, 1) is additive Gaussian noise that has the same distribution as w,,. Uplink

achievable rate of the user k£, with perfect CSI and MF detector is given by [39]

1
E (log, (1 + SINRg,,)) = ﬁe”kEi(,uk), (4.17)
n
where
MM, hm 2
SINR, = —" B km]\i Fon| 7
1+ Pr Zm’;ém ﬂmkm/
and
1 + Pr Z%’;ﬁm ﬁmkm/
Hi = )
prﬁmkm
and Ei(z) = f tdt is the exponential integral. Note that the achievable rate (4.17) is

conditioned on the large scale coefficients and depends on the location of APs and users.

4.5 Access Point Location Optimization in Small-Cell Sys-
tems

In this section, first, we review the Lloyd algorithm to solve the AP location optimiza-
tion problem in small-cell systems. Then, we propose an algorithm for AP location design

that considers the effect of interference as well.

4.5.1 Lloyd Algorithm

Below, we follow the similar steps as in [60] to show that the location of APs in a

small-cell system can be chosen using the Lloyd algorithm. Consider a single user scenario
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(K = 1) in which the user is served by the closest AP denoted by index my,,, i.e.,

Mmin = argmin ||p — anQ, (4.18)

n

where p is the position vector of the user. In the large scale fading model (4.14), ¢ is much
smaller than the dimensions of the area. Hence, the large scale fading coefficient between user

and AP my,;, can be approximated as

1 mmin (4.19)

I5} R~
Mmin ‘ v

P~ .,

The average ergodic rate of the user by averaging over the user position is given by

vt P P 2
C=E,., (10g2 (1 + 2 H;J . ;"“)) , (4.20)

where the expected value is taken over small scale fading A, , shadow fading z,, . , and

user location p. Using Jensen’s inequality, the ergodic rate C' is lower bounded by

(s hm i 2 Mmi
C>E,. |log, |1+ L4 AT me | 4.21)
2
]Ep <Hp - qmmin )
The AP locations q,, - - - , q;, are found by maximizing the lower bound (4.21), which corre-

sponds to minimizing the average minimum distance as follows

min 1, (HP ~ i, 2) : (4.22)
M

q1, .9

The average minimum distance in (4.22) is give by

M
VX [ pal ), w2
m=1"YPERm

where f(p) is the probability density function of user location, and region R, is defined as

Ep (Hp ~ o

Ro=A{p|llp - aull < llp - a,l, Vn #m}. (4.24)
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As pointed out in [60], (4.23) is similar to the distortion function in codebook design in vector
quantization and Lloyd algorithm is a common approach to solve it [64]. In [65], it has been
shown that with infinite number of quantized points, which corresponds to the number APs
in our problem M — oo, the distribution of the quantized points (location of APs) in an r

dimensional space is

fr0 (p)
)\r(p) = ffr/(T“)(p’)dp”

(4.25)

where 7 = 2 in our problem.

4.5.2 Proposed Algorithm

As shown in the previous section, Lloyd algorithm is an approach to obtain AP loca-
tions in a single user system or in scenarios that interference is negligible. Our goal in this
section is to modify the Lloyd algorithm to include the effect of interference. To this end we
use the k-means clustering algorithm, which is an iterative clustering algorithm in vector quan-
tization consisting of an assignment (classification) step and an update step [66]. An initial set
of random locations is considered for APs and a set of user locations is generated based on the
user density function. In the assignment step, the area is partitioned into M cells denoted by
S, m = 1,--- M by the nearest neighbor rule such that cell S,,, contains the users whose
distance to AP m, which is defined later, is less than or equal to its distance to any other AP.
At the update step, the centroid of each cell is computed which will be the new location of
AP at that cell. This procedure is continued until the cell assignments no longer change. In
contrast to the Lloyd algorithm, we define a distance function based on the average distance

of a user and APs and the average interference that a user experiences. We formulate the AP
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location optimization problem in small-cell systems as follows

M

Lmin / d(p, q,,) f (p)dp, (4.26)
81,---,81\4 m=1 pES

where d(p, q,,) is the distance function between AP m and user at location p, f(p) is the

probability density function of user locations, and cell S,,, is defined as

Sn ={pld(p,q,,) <d(p,q,), Vn #m}. (4.27)

We define the heuristic distance function d(p, g,,,) as follows

631
]Es,h,z (‘T0|2)

where T;, and 7T} are, respectively, the desired signal and interference terms given in (4.16).

d(p,q,,) = + B, (IT0), (4.28)

The first term in (4.28) is the inverse of the average desired signal power, where the average is
taken over data symbol, small scale fading, and shadow fading coefficients. The second term
in (4.28) is the average interference power, where the expectation is taken over small scale
fading, shadow fading, data symbols, and location of interfering users p. The ratio a £ g—“l’ is
a factor that determines importance of interference over desired signal power. When « is set to
zero, (4.26) is the same as Lloyd algorithm. For large values of «, i.e., « — o0, optimization
problem (4.26) only minimizes interference without considering the desired signal power.
Thus, « is parameter to be optimized. In the model for large scale fading coefficients (4.14),
ro is much smaller than the dimensions of the area. Therefore, we can approximate large scale

fading coefficient (3,5 as

B o 2 (4.29)
1Pr — @l

After carrying out the expectation operations in (4.28), for a; = p,¢1E (z,x), the distance

function can be written as

(o) —lp-anl+a 3 /

i pes, 1P —qm!

g P @30
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Algorithm 1 AP location design in small-cell systems.

Initialization Step:
Generate N user locations p,,--- ,py according to the user distribution f (p),

where N > M and initialize AP locations q,,, m = 1,---, M using Lloyd al-

gorithm.
Assignment Step:
Foralli =1,---, N, assign user ¢ to region S,,, with the least distance, i.e.,

m; = argmind (p;,q,,) ,

where d (p;, q,,) is given in (4.31).

Update Step:
Compute new AP locations q,, - - - , q,, as follows
q\i™) =q¥) — > (@ -p)pi—q." e Z > }JW.

| m|p1€Sm n;ém‘ n| P;ESn ||pJ m}
Termination: Repeat assignment and update steps until convergence or until a maximum

number of iterations is reached.

For tractability of the AP location optimization problem, we calculate the integrals in (4.30)
numerically. To this end, we generate large number of users with locations denoted by
p;, © = 1,--- N according to the probability distribution f (p) and approximate the dis-

tortion function (4.30) as

2

4.31
s lp—aal qmll”’ @0

M
d(p.q,)~p—aq.l"+o >

n=1n#m

!SI

The optimization problem (4.26) is solved in the following iterative manner. First,
we initialize the AP locations q,, - - - , q;, using Lloyd algorithm. In the second step of the

algorithm, we keep AP locations q,,--- ,q,, constant and assign users to cells S,,, m =
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,1---, M based on the distance function defined in (4.31) such that cell S,, contains all the
users whose distance to AP m is smaller than or equal to its distance to any other AP. In the
third step of the algorithm, we hold Sy, - - - , Sy constant and find AP locations that minimize

(4.26) for which we employ the steepest descent method as follows

. , 0
gl = g _ 05— / d(p. q,,)f(p)dp, (4.32)
qm pGSm

where ¢ is the step size and ¢ denotes the iteration index in the steepest descent algorithm. In

order to numerically solve for g,,, m = 1,--- , M, we approximate the integral in (4.32) as
a d(p.a,) f)dp~ 2= > (@ —p;)lp; — @l
aqm pGSm ‘Sm’ piesm

M
8 (Pj - 4q,,)
Lo P " m) (4.33)
251 2 Ty -

The steps of finding AP locations are summarized in Algorithm 1.

4.6 Numerical Results

4.6.1 Cell-Free Massive MIMO

We consider a square area of size 2 x 2 km? with M APs and K users. The area is
wrapped around to avoid boundary effects. We select equally spaced grid points in the area.
In cell-free massive MIMO, we use three-slope path loss model [52] for these coefficients as

follows

1 dmk S To

Bk = 72~ 70 = dmk =71, (4.34)

dmk 2 1
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where d,,,;, is the distance between AP m and user £ in kilometers. We choose dg = 0.01km
and d; = 0.05km. ! Path loss parameters c¢; and c; in (4.34) are chosen such that path loss
remains continuous at boundary points: ¢; = rZ, ¢y = rar{>. We use Gaussian mixture model

for user locations as
3
f(®) =Y _piN (plp, oil), (4.35)
=1

with equal weights p; = 1/3 and mean locations g, = [—0.5,0]" km, g, = [0,0.5]" km, and
ps = [0.5, —0.5]T km, and variances o; = 200, + = 1,2, 3. A realization of this distribution

is depicted in Figure 4.2.

Figure 4.2: A realization of user locations for Gaussian mixture distribution in (4.35).

Note that each run of the AP location optimization algorithms (in cell-free and small-
cell systems) results in different AP locations. Therefore, in all experiments, we run each
algorithm multiple times and choose the solution that give us the best performance.

Experiment I: In this experiment, we provide a comparison between achievable rates
of cell-free massive MIMO obtained by randomly placed APs, the Lloyd algorithm, and the

proposed algorithms in Sections 4.3.1 and 4.3.2. Figures 4.3 and 4.4, respectively, show the

!Shadow fading is ignored in large scale fading model for simplicity.
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Figure 4.3: Sum-rate versus transmit power p, in cell-free massive MIMO for M = 32,

K =4,and N = 50 x 50.
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Figure 4.4: 95%-likely per-user rate versus transmit power p, in cell-free massive MIMO for

M =32, K =4,and N = 50 x 50.
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Figure 4.5: AP locations obtained by different AP placement algorithms in cell-free massive

MIMO for M = 32, K =4, p, = 20dB, and N = 50 x 50.

Figure 4.6: A realization of user locations for Gaussian mixture distribution with mixture

weights of 0.2, 0.2, 0.6.

sum-throughput and 95%-likely per-user throughput versus transmit power in cell-free mas-

sive MIMO for M = 32, K = 4, N = 50 x 50. The 95%-likely throughput is the smallest

rate among 95% of the best users. In the figures, the curve “Distribution Centers” is obtained
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by placing APs at the centers of the mixture model g, o, and p5. The curve “Random Lo-
cations” denotes a cell-free system with randomly placed APs. Rates achieved by the Lloyd
algorithm are also plotted in the figures. It is to be noted that the max-sum algorithm provides
the best sum-rate among all algorithms in Figure 4.3. Max-min algorithm in Figure 4.4, pro-
vides higher 95%-likely rate compared with random AP locations and the case where APs are
located at distribution centers. However, the Lloyd algorithm outperforms max-min algorithm
even though it is designed for a small-cell system with single user. Part of this loss is due to
the fact that in the Lloyd algorithm, APs can be placed in any location in the area, whereas in
the max-min algorithm, APs can only be placed on the grid points. It is expected that as the
number of grid points /V increases, the gap between the two curves decreases.

Figure 4.5 shows the AP locations obtained by max-min and max-sum algorithms
in Sections 4.3.1 and 4.3.2 for M = 32, K = 4, N = 50 x 50, and p, = 20dB. It can
be observed that with the sum-rate criterion, the APs are located closer to the distribution
centers. Whereas, with the min-rate criterion, the APs are more dispersed over the area. This
observation is consistent with intuitive reasoning that the systems with co-located APs, in
general, can provide higher sum-throughput compared with the systems with distributed APs,

while the distributed APs provide larger 95%-likely and minimum rates.

4.6.2 Small-Cell

We consider a wrapped around square area of size 2 x 2 km? with M APs. Each AP
serves only one randomly selected user in its cell. Therefore, at any given time, /M APs serve
M users. For large scale fading coefficient we use model (4.14) with path loss exponent v = 2.

However, for simplicity, we ignore shadow fading z,,;, in (4.14). For ||p, — q,,,|| < ro we use
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Figure 4.7: AP locations obtained by the proposed and Lloyd algorithms in small-cell

system for M = K = 16, o = 1.6 x 108.

COST-231 Hata propagation model

10log,yc1 = — 46.3 — 33.91og,, f + 13.8210og,, hp

+ (1.11og, f — 0.7)hg — (1.56logy, f — 0.8), (4.36)

where f = 1900 MHz is the carrier frequency, hz = 15 m is the BS antenna height, and

hr = 1.65 m is the user antenna height. Path loss parameter ¢, in (4.14) is given by

We choose dy = 0.01km. We use Gaussian mixture model for user locations given in (4.35)
with weights p; = 0.2, po = 0.2, p3 = 0.6, and mean locations p; = [—0.5,0]T km, p, =
0,0.5]" km, and gy = [0.5, —0.5]" km, and variances o; = 150, i = 1,2, 3. A realization of
this distribution is shown in Figure 4.6. User transmit power is set to p, = 200 mW. The noise
variance at the receiver is a?u =290 X Kk Xx B x NF, where s, B, and NF are Boltzmann

constant, bandwidth (20 MHz), and noise figure (9 dB) respectively. The maximum number
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Figure 4.8: CDF of achievable per-user rates in small-cell system for M = K = 16,

a=1.6 x 108,
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Figure 4.9: CDF of the worst rate in small-cell system for M = K = 16, « = 1.6 X 108.
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Figure 4.10: AP locations obtained by the proposed and Lloyd algorithms in small-cell

system for M = K = 16, o = 5 x 108,

of iterations in the proposed algorithm is set to 50.

Experiment 2: In this experiment, we compare achievable rates obtained by our pro-
posed method and the Lloyd algorithm in small-cell systems. Figure 4.7 shows the AP lo-
cations obtained by the Lloyd algorithm and the proposed algorithm for M = K = 16 and
a = 1.6 x 108, It is to be noted that the distance between APs obtained by the proposed
algorithm is more than that of the Lloyd algorithm, which is due to effect of interference in
the proposed algorithm.

Figure 4.8 shows the CDF of per-user rates given in (4.17) for M = K = 16 and
a = 1.6 x 108 obtained by the proposed method and the Lloyd algorithm. The achievable rate
of a system with randomly located APs is also plotted in the figure. Figure 4.9 presents the
similar results for the worst rate (minimum rate) among users for given realization of large-
scale coefficients. It can be observed that the proposed algorithm provides about 1.4-fold in

95%-likely rate and improves the worst rate of the system over the Lloyd algorithm and that
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Figure 4.11: CDF of achievable per-user rates in small-cell system for M = K = 16,
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Figure 4.12: CDF of the worst rate in small-cell system for M/ = K = 16, a = 5 X 108.
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both algorithms outperform the system with randomly located APs.

Figures 4.10,4.11, and 4.12 show the similar results for M/ = K = 16 and o = 5% 108.
For smaller values of «, location of APs obtained by our algorithm is similar to that of the
Lloyd algorithm. However, when we increase «, interference becomes the dominant term in
(4.28) and the distance between APs increases. Therefore, «v is a parameter that needs to be

optimized in the proposed algorithm.

4.7 Conclusion

In this chapter, we investigated AP placement problem in cell-free massive MIMO and
small-cell systems. For each system, we provided AP location design algorithms to improve
the system throughput. In cell-free massive MIMO, two algorithms are proposed based on
two criteria: maximizing the sum-throughput and minimum-throughput. The AP location op-
timization problems in the cell-free massive MIMO are transformed into linear programming
problems that can be solved efficiently. For the sum-throughput criterion in cell-free mas-
sive MIMO, the proposed algorithm provides significant improvement over a cell-free system
with randomly located users. However, in cell-free system, the Lloyd algorithm can provide
higher 95%-likely per-user rates. In small-cell system the proposed algorithm is based on the
k-means clustering algorithm with a cost function that is based on the distance between APs
and the served users as well as the average interference from other small cells. The proposed
algorithm improves 95%-likely and minimum rates over the Lloyd algorithm. However, sim-
plicity and good performance of the Lloyd algorithm makes it an attractive approach to design

AP locations in small-cell systems.
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Chapter 5

Semi-blind Channel Estimation
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Motivated by recent developments in time-division duplex massive multiple-input mult-
iple-output (MIMO) systems, this chapter investigates semi-blind channel estimation for mul-
tiuser MIMO systems. A tractable expectation-maximization (EM) algorithm is derived for
semi-blind channel estimation by assuming a Gaussian distribution for the unknown data sym-
bols, which improves channel estimates even when the data symbols are drawn from a finite
constellation, such as quadrature phase-shift keying. An alternate EM algorithm is also de-
rived by employing suitable priors on the channel coefficients and it is shown to outperform
the EM algorithm with no priors in the low signal-to-noise ratio (SNR) regime. To improve
the estimation performance for discrete constellations, another EM based channel estimation
algorithm is developed based on a Gaussian mixture model (GMM) for the unknown data
symbols.

To analytically understand the performance of the semi-blind scheme, Cramer-Rao
bounds (CRBs) for semi-blind channel estimation are derived for deterministic and stochastic
(Gaussian) data symbol models. To get insight into the behavior of a massive MIMO system,
the asymptotic behavior of the CRBs as the number of antennas at the base station (BS) grows
is analyzed. The numerical results show the benefits of semi-blind estimation algorithms
as measured by the mean squared error. The EM algorithm with a Gaussian prior provides
superior channel estimates compared to the EM algorithm with a GMM prior in low SNR
regime. However, the latter one outperforms the EM algorithm with Gaussian prior as the
SNR or as the number antennas at the BS increases. Furthermore, the performance of the
semi-blind estimators become closer to the genie aided maximum likelihood estimator based
on known data symbols as the number of antennas increases. This result is consistent with
the asymptotic analysis of the two CRBs indicating that semi-blind channel estimation for

massive MIMO systems is very promising.
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5.1 Introduction

To achieve the expected high capacity gains in multiple-input multiple-output (MIMO)
systems, channel state information (CSI) is an important factor and in practical systems is de-
termined by the accuracy of the channel estimates. A simple method to estimate channel
coefficients is via training or pilot sequences [40]. As the number of users in time-division
duplex (TDD) systems increases, the length of the pilot sequences required to estimate the
channel accurately increases, which results in lower spectral efficiency. An approach for im-
proving the quality of the estimates of the channel coefficients is to use the information in the
unknown data symbols instead of only using the pilot sequences [67—73]. With this approach,
one has the option of obtaining more accurate channel estimates or utilizing smaller number
of pilot symbols to estimate the channel coefficients with the same accuracy. In frequency-
division duplex (FDD) systems, more accurate channel estimates results in better detection of
unknown data symbols at the receiver. In TDD systems, where uplink and downlink phys-
ical channels are assumed to be reciprocal [17], better channel estimation not only leads to
better uplink detection but it also helps the base station (BS) to form more accurate downlink
precoders. In massive MIMO systems the emphasis in transmission protocol is mostly on
TDD rather than FDD [15], [10]. Therefore, massive MIMO systems benefit from semi-blind
channel estimation in both uplink and downlink transmissions making semi-blind estimation
more attractive for next generation wireless systems. This motivates our re-examination of
semi-blind channel estimation with an eye towards massive MIMO systems.

Another data aided channel estimation scheme is blind channel estimation based on
the received data signal only. With the blind estimation, the channel can only be identified
within some ambiguities, whereas in the semi-blind estimation the channel coefficients can

be completely identified under certain conditions [67]. In addition, adding a few training
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sequences significantly improves channel estimation quality over the blind estimation [69,
Figure 1]. Therefore, in this work, we focus on the semi-blind channel estimation using both
training and data symbols to estimate the channel.

Semi-blind channel estimation has been investigated in several papers, e.g., [67-72]
and references therein. In [67], the authors study the conditions under which the chan-
nel and the data signals are blindly and semi-blindly identifiable for an underdetermined
MIMO system. They obtain blind and semi-blind channel estimates based on an expectation-
maximization (EM) algorithm in the frequency domain and utilize a discrete random variable
model for the unknown data. In [68], two iterative channel estimators based on the EM algo-
rithm are proposed. In [69], Cramer-Rao bounds (CRBs) for semi-blind, blind and training se-
quence based channel estimation for single-input multiple-output (SIMO) systems are studied
and compared. In [70], the authors study two semi-blind channel estimators for SIMO sys-
tems based on maximum likelihood (ML) estimation with deterministic and Gaussian models.
The asymptotic performances of the estimators in [69], [70] are studied when the length of the
training sequences and data sequences grow infinitely large. In [72], a semi-blind estimation
technique for MIMO systems is introduced, which uses an iterative two-level optimization
loop to jointly estimate channel coefficients and data symbols.

In contrast to the previous works, we investigate four different semi-blind channel
estimation schemes based on the EM algorithm. In the first algorithm, we use Gaussian dis-
tribution for the unknown data symbols which leads to a simple closed form solution in the
E-step of the EM algorithm. Fortunately, numerical results illustrate that the performance of
the algorithm with symbols drawn from a finite constellation such as quadrature phase-shift
keying (QPSK) and Gaussian priors are similar making the assumption practically relevant.
An alternate EM algorithm is derived based on utilizing additional channel priors and this

leads to enhancement in performance. To improve the performance of channel estimation for
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the case when data symbols are drawn from a discrete constellation, we consider a heuristic
algorithm by demapping the conditional mean of the data symbols to the nearest constella-
tion point in the EM algorithm. Numerical results illustrate that in the high signal-to-noise
ratio (SNR) regime, this heuristic algorithm considerably outperforms the EM algorithm with
Gaussian prior. Motivated by this observation, to provide support for the procedure, we pursue
deriving an analytically rigorous EM algorithm assuming a Gaussian mixture model (GMM)
for data symbols which achieves a performance similar to the heuristic algorithm. We study
effects of semi-blind channel estimation in regular MIMO and massive MIMO systems and
compare the performance of the semi-blind algorithms with two ML estimators; one based on
only the pilot sequences and the other one assuming all the data symbols are known at the
receiver. For performance criteria we use mean squared error (MSE) and symbol error rate.
Numerical results indicate that the semi-blind estimation schemes provide better channel es-
timates compared with channel estimation based on training sequences only. To analytically
understand the performance of the methods, we derive the CRBs, deterministic and stochastic,
with two common assumptions on the transmitted data symbols [74—76]. In the deterministic
CRB, we assume the data symbols are unknown deterministic values. Whereas in the stochas-
tic CRB, we assume the data symbols are drawn from a Gaussian distribution. In previous
works, asymptotic behavior of CRB or estimators is studied when number of data symbols
grows infinitely large [69], [70], [74]. In this chapter, we study behavior of CRBs in mas-
sive MIMO systems with unlimited number of antennas at the BS. Results indicate that as
the number of antennas increases, the deterministic CRB converges to the CRB of a system
with known data symbols and the stochastic CRB converges to the CRB of a system with
orthogonal pilot sequences of size equal to the whole transmission block (training plus data).
Numerical experiments are presented to support the analysis. For TDD systems, the uplink

channel estimation also impacts the downlink beamforming performance. In the numerical
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experiments, we also demonstrate the benefits of semi-blind channel estimation for downlink
beamforming. Numerical results show that semi-blind channel estimation results in a signif-
icant improvement in downlink achievable rate compared to the ML training based on pilots
alone.

The chapter is organized as follows. In Section 5.2, we describe the system model and
two ML estimators. In Section 5.3, four semi-blind channel estimation algorithms based on
the EM algorithm are derived followed by a discussion on the effects of channel estimation
in downlink beamforming. In Section 5.4, CRBs under two sets of assumptions on the data
symbols are obtained and their asymptotic behavior with respect to the number of antennas is
analyzed. Finally, numerical results are presented in Section 5.5 and we conclude the chapter
in Section 5.6.

Throughout the chapter, we use superscript ¥ to denote conjugate transpose, © to de-
note transpose, * to denote complex conjugate, uppercase symbols to denote matrices, and
bold symbols to denote vectors. [E(.) and tr(.) are the expectation and trace operators respec-
tively. The spectral norm of matrix A is denoted by ||Al|,. We use diag(a) to denote the

diagonal matrix whose diagonal entries are entries from the vector a.

5.2 System Model and Channel Estimation

5.2.1 System Model

We consider a single cell with a BS equipped with A/ antennas and randomly located
K single antenna users, where M > K. We study uplink transmission in a communication
system with TDD protocol. However, similar estimation techniques can also be applied to

a system with FDD protocol. We consider a flat fading channel model for each orthogonal
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frequency-division multiplexing (OFDM) subcarrier. The OFDM subcarrier index is omitted

for simplicity. The channel matrix between the BS and users is given by
G = HB'?, (5.1)

where H € CM*X is a matrix representing small scale fading and B € R¥*¥ is a diagonal

matrix that is given by

B = ’ (5.2)

where [, is the large scale fading coefficient between BS and user & that accounts for the
path loss and shadow fading. We assume columns of / are independent from B and are i.i.d
circularly-symmetric complex normal vectors hy ~ CN (0, I5;). We consider a time block
fading model, where channel vectors hy, k = 1,---, K are constant during a block of N
symbols and change to independent values at the next coherence block. The model can be
simplified down to a point-to-point MIMO system by assuming 3, = - - - = (k.

We further assume perfect channel reciprocity, i.e., the uplink and downlink channel
coefficients are the same. Although the propagation channel itself is reciprocal, the hardware
chains in the transmit and receive sides are not identical. Thus, in practice, channel calibration
is required to enable exploiting channel reciprocity. Since the parameters that result in the
mismatch between uplink and downlink channels change slowly, they can be estimated using
small overhead signaling [17], [77].

We consider uplink transmission in which users send L known pilot sequences fol-
lowed by (N — L) unknown data symbols. The uplink signal received by BS at time n is given

by

y[n] = Gs[n] +v[n], n=0,--- , N —1, (5.3)
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where s[n] € C**! forn = 0,---,L — 1 are known pilot sequences and s[n] € CK*!

forn = L,--- N — 1 are the unknown data symbols with unit power E (s[n]s[n]") = Ik
and v[n] ~ CN(0,021)) is additive Gaussian noise. Let S, = [s[0],---,s[L —1]] and
Sq = [s[L],---,s[N — 1]] denote, respectively, the known pilot sequences and data symbols

in a channel coherence time. Similarly, let Y}, and Y; represent the row stacked received
training output and received data signals respectively. The complete transmit and received

symbols are given by S = [S, S;] and Y = [V, Y] respectively.

5.2.2 Performance Metric

Since we are estimating a vector, one of the scalar performance criteria we use to
demonstrate the improvement in channel estimation, is MSE, i.e., trace of the error covariance

matrix. The following Lemma motivates the use of this criterion as our performance measure.

Lemma 5.1 ([71, Lemma 1]). Let A, B € C"*" be positive definite matrices and let A > B,

ie, u Au > u’ Bu,Vu € C"'. Thentr(A) =tr(B) <= A= B.

Assume A and B are the error covariance matrix and the CRB matrix respectively. As
the MSE of channel matrix becomes closer to the trace of CRB, then the error covariance ma-
trix approaches the CRB. Thus, we will use MSE in most of the numerical results to illustrate

the accuracy of the channel estimates.

5.2.3 ML Estimators

In this section, we provide reviews of a commonly used ML estimator utilizing only
the training symbols as well as a full data ML estimator with the assumption of perfect data

estimation which will serve as an upper bound on the performance of semi-blind estimator.
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Training Pilot Sequences

A simple conventional method to estimate channel coefficients is with the aid of known
training sequences. The ML estimate of the channel matrix G based on the pilot sequences

(Sp) is given by
Gy = (Y81 (S,50) . (5.4)

In [78], it has been indicated that the training sequences that minimize the MSE subject to the
total transmit power, are orthogonal sequences, i.e., SpSf = LIk. The corresponding MSE
is given by

Ay MKo?
E (|6 - Ghull}) = =72 (55)

To obtain a reliable channel estimate with this method, large number of training se-

quences is required which reduces the achievable throughput of the system.

Full Data

The upper bound on the performance of semi-blind channel estimation is the case when
all data symbols are known, i.e., genie aided. In this case, all N symbols (.5) are assumed to
be known at the BS which provides a lower bound on the achievable MSE. This will serve as
an estimator that the semi-blind procedure can aspire to imitate. The channel estimate based

on all data symbols is denoted by G! and is given by

A u _1

Gt = (YS8™) (88™) 7, (5.6)
and the corresponding MSE can be computed as

E <||G - éﬁ{n%) — Mot (E ((SSH)_1)> . (5.7)
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Remark 5.1. Note that in multi-cell massive MIMO systems, usually, the length of the train-
ing sequences is not long enough to separate the channels of all users which results in pilot
contamination effect [20]. The main goal of this chapter, however, is to first understand the
phenomenology of semi-blind estimation in single cell scenarios with large scale antenna ar-
rays. Therefore, in numerical results, we consider orthogonal pilot sequences and leave the

pilot contamination effect in multi-cell scenarios for future work.

5.3 Semi-blind Channel Estimation and Downlink Beam-
forming

In this section, we develop four semi-blind channel estimation schemes based on the
EM algorithm. Computational complexities of these estimators are compared with that of the
ML estimators in Section 5.2.3. The effect of semi-blind estimation in downlink beamforming

is also presented.

5.3.1 Uplink Semi-blind Channel Estimation
The ML estimate of GG based on both received training and data signals is given by
Gy = argmax logp (Y|G). (5.8)
a

Obtaining a closed form solution to this incomplete data problem is known to be hard [79].

In [71], an iterative algorithm has been proposed to solve the problem.

EM Algorithm with Gaussian Prior

An alternative way to solve the problem in (5.8) is to use the EM algorithm. The EM

algorithm is an iterative algorithm where the channel estimate is updated (G,.1) based on the
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old estimate (é ¢) in the following manner:

Grr = arggnax E s, v.éo (logp (Y, Sq4|G)), (5.9)
where (Y, Sy) is the complete data. As can be seen from (5.9), the computation involves an
expectation evaluation (E-step) and a maximization (M-step). At each iteration of the EM
algorithm, the likelihood function increases until a local maximum is achieved [55]. In the
E-step, the expectation utilizes p(S;|Y, G,), the conditional density of S; given Y and the old
estimates of the unknown parameters. The expected value of the log likelihood function of the
received signal, i.e., E g v ¢,y (logp (Y, Sa|G)), is given by

L1y s N1y )
L = const — Z p yn| — Gs[n]H - Z J_ng(Sd\Y,G‘z) (Hy[n] — Gs[n]“ ) . (5.10)

n=0 n=L

Carrying out the maximization (M-step), one can show that the channel estimation at the

(¢ + 1)th iteration is given by [67]

(%+p:(ﬁﬁf+lﬁE<Sﬂéby>H)<@ﬁf%4EC%ka%Jﬂ> EENCRTY
To compute the updated estimate (5.11), there are a few expectations that are needed, and the
details of the expectation computation needed to complete the E-step of the algorithm has not
been mentioned explicitly in [67]. Using a discrete random variable model such as QPSK
modulation for data symbols leads to excessively complex E-step which grows exponentially
with K (see Appendix 5.8.A for details). Thus, for tractability of the problem, we assume that
the data symbols are Gaussian, i.e., s[n] ~ CN (0,Ix), n=L,--- ,N — 1. Given G, S, and
Y are jointly Gaussian. Thus, E(S,|Gy,Y) and E(S4S5 |Gy, Y) in (5.11), can be computed
from the conditional density of circularly symmetric Gaussian random vectors. The E-step of

the EM algorithm based on the estimates at the (th iteration is given by
Agroa -1 4
Hy, = (GfGe + aﬁfx) Giylnl,

~ ~ —1
#:ﬁ@ﬁ@+ﬁ&), (5.12a)
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and the M-step at (¢ + 1)th iteration is given by

N-1

N—-1 —1
G = (YpSf +y y[n](uf;)H> (SpSf + 3 (b + W)) . (5.12b)
n=L n=L

Derivation of the E- and M-steps are presented in Appendix 5.8.B.

EM Algorithm with Channel Priors

We now present a variant by using priors on the channel coefficients. Given the large
scale fading coefficients B, channel matrix G is Gaussian. We can add Gaussian priors for the

channel coefficients to the likelihood function as follows
L=E,s,vea, logp(Y,S5|G)) +logp(G|B). (5.13)

In Appendix 5.8.C, it is shown that the E-step of the EM algorithm with channel priors is the
same as in (5.12a) and the M-step is modified, in which the likelihood function is maximized

for G and B separately at each iteration. This results in the following update procedure.

N—1 N—1 -1
ég_H = (1/;751{{ + Z y[n}(uﬁ)H> Bg (SpSfBg + Z (Mﬁ(ﬂlfl)H + Eé) B@ + Uﬁ]}() ,

n=L n=L
(5.142)
~0+1)2 ~0+1)2
Boyy = diag( 934” e g%” ) , (5.14b)

where g¢, is the k-th column of Gy. Note that the resulting algorithm in fact is a generalized EM
algorithm [55], in which the likelihood function is increased in the M-step and not necessarily
maximized.

In general, the large scale fading coefficients change slower than the small scale fading
coefficients and are easier to estimate over a longer period of time and can be fixed beforehand.

In that case, B is fixed in (5.14a) from the beginning and (5.14b) is removed from the M-step.
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Heuristic Semi-blind Algorithm

We now modify the EM algorithm to improve the estimation performance when data
symbols s[n|, n = L,--- , N—1, are drawn from a discrete constellation. A heuristic approach
is to assign the conditional mean of data symbols E(s[n]|Y,Gy), n = L,--- ,N — 1, to the

closest constellation point, which results in the following E-step:

Arr oA -1 4
p, =F ((GfGe + U?JK) ny[n]) ;
o ~1
N = o2 (Gf G+ 031K> , (5.152)
where F(.) is the element-wise constellation demmaping function. Note that the M-step re-
mains the same as (5.12b):

N-1 N—1 -1
Gri = (YPSE +) y[n](uﬁ>H> <Sp5,? + (uﬁ(uﬁ)H + Ef)> . (5.15b)

EM Algorithm with GMM Prior

Numerical results in Section 5.5 suggest that the modification of the EM algorithm in
(5.15) improves the estimation performance for discrete constellations. To provide analytical
support for this heuristic approach, we derive a mathematically rigorous algorithm in the fol-
lowing by assuming a GMM distribution for data symbols which has a similar flavor. This
algorithm is also based on the EM algorithm and hence its convergence to a local maximum

is assured. Suppose data symbols have GMM distribution, i.e.,
sin] ~CN (cn,02Ix), n=L,--- ,N—1, (5.16)

where c,, € CX*! is the the transmitted constellation vector at time n that will be treated as
the unknown parameter in the EM algorithm. The hyperparameter o2 in (5.16) is the variance

of each data symbol around the corresponding constellation point. As o2 becomes smaller,
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the GMM distribution in (5.16) becomes closer to the actual discrete distribution of the data
symbols.
Let © = [G,cy, -+ ,cy_1] denote the unknown variables in the EM algorithm. The

expected value of the log likelihood of the received signal, i.e., E, gy, (logp(Y, Sa[©)), is

given by
L-1 1 N-1 1
£ =const =" llyln] = GslallP = 3 —Bys,v, (lyln] - GslnllP)
e 1n0 v n=L VU
=D SEysave, (Isn] —cal) - (5.17)
n=L 9%

The E-step of the EM algorithm with GMM is are given by

o o -1
uh = (GG + 02 (eh(e)™ + a?L) ") Gltylnl,

N N _ —1
2= 2 (Gsz + 02 (eL(e9)™ + 02Ix) 1) . (5.18a)

n

Maximizing the log likelihood function yields in the following M-step:

G = (1552 vty ) (s + 3 ity + )

n="L n=L

et =F (), (5.18b)

where F'(.) is the element-wise constellation demmaping function.The derivation of the algo-
rithm is presented in Appendix 5.8.D.

Note that all semi-blind algorithms introduce a time delay in estimating channel and
uplink data symbols as we need to collect all data symbols before carrying out the estimation,

which needs to be accounted for in implementing practical systems.
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Table 5.1: Computational complexities of channel estimation using ML training-based

estimation and full data. The mathematical operations in each step, e.g., matrix inversion,

matrix multiplication, etc., determine the complexity of the corresponding step.

AK/{L = Y;»Sf ( SPSH )_1

O(K2L)

O(MLK)

Afull H H \—1
Gl —y 57 ((§st )
O(K2N)

———
O(K3)

O(K2N)

O(MNK)

Dominant term (M > K, N > L > K): O(MLK)

Dominant term (M > K, N > L > K): O(MNK)

5.3.2 Computational Complexity

We now compare the computational complexity of semi-blind estimation with ML

estimators in Section 5.2.3 under the assumption that

M>K, N>L>K. (5.19)

Calculation of ML training-based channel estimation in (5.4) consists of matrix multiplications
with dominant factor of order O(M LK) and a matrix inversion with complexity O(K?).
Therefore, the dominant factor in calculation of (5.4) is of order O(MLK). Similarly, we
can show that the computational complexity of channel estimation with full data in (5.6) is of
order O(M NK). The calculation steps of the ML estimators based on pilots only and full
data are presented in Table 5.1.

Now we evaluate the computational complexity of semi-blind channel estimation in
(5.12). There are multiple ways to compute terms "~ ' y[n](puf)" and 37" pl ()™ in
(5.12b) and depending on the order that multiplications are carried out, some of the already

computed expressions can be later reused. Each of these cases will lead to a different overall

computational complexity. Let () denote the number of iterations required for EM algorithm
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with Gaussian prior in (5.12) to converge. After investigating all possible orders to carry out
the computational steps in the EM algorithm, we arrive at the following complexity order

under the assumptions in (5.19).
min{O((N—L+K)MKQ),O((N—L+KQ)M2)}. (5.20)

The first term in (5.2) corresponds to the computational complexities of calculating >¢ and
multiplying y[n] by (u) for Q times. The second term in (5.2) corresponds to the case
when we separately calculate G¢(GH Gy + 02Ix)~" and S y[n]y[n]” and then multiply
them together for () times. The computational steps of these cases are presented in Table 5.2.

Suppose L = K and () is small constant as observed in the numerical results. The
computational complexity of the EM algorithm with Gaussian prior is then in the order of
O(MNKQ), which is () times the complexity of channel estimation with full data. On the
contrary, the assumption of ) > % makes the computational complexity given in (5.2) to be
in the order of O((N — L + KQ)M?).

The complexity of EM algorithm with channel priors in (5.14) and the complexity
of the heuristic semi-blind algorithm in (5.15) are of the same order as the EM algorithm
with Gaussian prior. Thus, compared with the conventional training-based estimation in (5.4),
semi-blind estimation provides better channel estimates (see Section 5.5) but at the expense of
higher computational complexity.

The computational complexity of the EM algorithm with GMM prior in (5.18) also
depends on the order that multiplications in terms S~ y[n](u4)" and 3207 pl ()™ are
carried out. Each scenario, will lead to a different complexity order. After considering all
possible scenarios, we present the case that has the smallest complexity in Table 5.3. Thus,

the computational complexity of the EM algorithm with GMM prior under the assumptions in
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Table 5.2: Computational complexity of the EM algorithm with Gaussian prior using

different multiplication orders. The mathematical operations in each step, e.g., matrix

inversion, matrix multiplication, etc., determine the complexity of the corresponding step.

N—1
Scenario 1 Nzél y[n] (u,f;)H = Z y[n] y[n]" G, ( GHG, +012)[K)71
e n=L o0TRQ)
. ) O(K5Q) ’
. O(MK2Q) j
O((N-L)MKQ) .
o V)MKQ)
Nz: W ()" = (GIGy + o20,) Gl Z ylnlyln]? Co(GF G+ 021i0) ™"
already computed -— _
already computed
) O(MK2Q) ’
Dominant term (M > K, N > L > K): O(N — L)YMKQ + MK?Q)
N-1 .
Scenario 2 ngL Zy ( w —l—UgIK)
O(MK?2Q)
O((N-L)M?) h o) g
) O(MK2Q) ’
) ourKa) ’
Nz: W ()" = (GG, + 1) G Z Yyl Gu(GH Gy + o)
already computed — .
already computed
O(MK2Q) ’

Dominant term (M > K, N > L > K): O(N — L)YM? + M?KQ)

Overall complexity: min {O((N — L+ K)MKQ),O ((N — L+ KQ)M?)}

118




Table 5.3: Computational complexity of the EM algorithm with GMM prior. The
mathematical operations in each step, e.g., matrix inversion, matrix multiplication, etc.,

determine the complexity of the corresponding step.

N—1 N—-1
= . A A R 11

oyl ()" =Dyl ym"G, ( GEG, +ol(eh@) +02Ik) )
n=1L ) \“,—/ \,—/ [\ - )

O((N-L)MKQ) O(MK?Q) O((N-L)K3Q)

O((N-1)K3Q)
O((N-1)K2Q)
O(N-L)MKQ)

= ¢ (,0\H & A 2 (Al (Al \NH 2 -1\-1AH
ZL K, (“n) = EL \(Gé GZ + Oy (Cn(cn> + Us[K> ) GZ y[nl

already;gmputed
N AH A A0 /n -1
X iy[n]HGg (Gng + 02 (cfl(cf;)H +ollk) )

-~
already computed

-1

J/

J/

O(N-L)K?Q)

Dominant term (M > K, N > L > K): O(N — LYMKQ + (N — L)K3Q + MK?Q)

(5.19) is given by

O(N - L)MKQ + (N — L)K*Q + MK*Q). (5.21)

5.3.3 Downlink Beamforming

In this section, we consider the effect of channel estimation in downlink beamforming.
In TDD systems, due to channel reciprocity, the uplink channel estimates are used to form
the downlink precoders. The better we estimate the channel coefficients in uplink, the more
accurate the downlink precoders become. Thus, in TDD systems we benefit from semi-blind
channel estimation in both uplink and downlink transmissions. Note that due to the mismatch

in hardware chains of transmitter and receiver, the system needs to be calibrated before chan-
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nel reciprocity can be exploited [17], [77]. For simplicity, however, we assume uplink and
downlink channels are the same. With conjugate beamforming, the BS transmits the signal
=) fi 1\VDi H.Z_H s;, where p; and s; are the transmit power and the data signal intended to
user ¢ respectively, and g, is the ith column of channel estimate . The time index is omitted

in this section to simplify the notations. The k-th user receives

9rgi . N~ 919
U =GhT + vk = VPRt sk+ Y /Pt si U, (5.22)
lgl VP gl
Jo: desired signal 7k _

TV
J1: interference

VP gk 95
gl

where vj, ~ CN (0, 02) is additive noise. Note that the gain of desired signal, i.e., , can
be estimated at user device by sending a few downlink pilots. Since data symbols of different
users and additive noise are mutually independent, terms Jy, J1, and vy, in (5.22) are mutually
uncorrelated. Suppose §,,,; and g, are uncorrelated for any ¢ # k. According to [46], the

worst case noise for mutual information is Gaussian additive noise with the variance equal to

the variance of .J; +vy. Hence, the achievable rate is lower bounded by R;, = log,(1+SINR}),

where
pk_]gfg;
SINR, = ———— I3, (5.23)
Zpl Z ]E <‘gmk|2) ]E (|ﬁ]nzzl2> + 0—2
itk m=1 gil
Let us assume channel estimates §g,,;, m = 1,--- , M are i.i.d random variables. The follow-

ing lemma is used to further simplify the formulation of SINR in (5.23).

Lemma 5.2. Suppose G,,;, m = 1,--- , M arei.i.d random variables and let v,,, = |Hggfl"‘|2 , m=
1,--+ M. Theny,- -+ ,yu are identically distributed with mean E (y,,) = 4, m=1,--- , M.
Proof. See Appendix 5.8.E. [

Based on Lemma 5.2, the achievable rate in high signal-to-noise ratio (SNR) regime
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can be written as

pe llgill”
Ry, ~log, (SINRy,) = log, (7) + log, ( : , (5.24)
Sivi KB (lgel®) + o

where

2

glq:
7= R 2
The second term in (5.24) is the achievable rate with perfect CSI in high SNR regime. Note
that log, () in (5.24) represents the loss in capacity due to channel estimation error. As the
channel estimation accuracy increases, parameter v becomes closer to 1 minimizing the rate

loss. Thus, in numerical results, parameter log,(y) is used as our performance measure to

compare the estimation accuracy of semi-blind and ML estimators for downlink transmission.

5.4 Cramer-Rao Bound

In the following subsections we derive the CRB, covariance lower bound, for semi-
blind channel estimation. There are two common assumptions made to obtain the CRB [74],
[75], [76]: 1. deterministic model in which the data signal S; is modeled as an unknown
deterministic quantity. 2. Stochastic model where the data signal S; is modeled as a random
sequence. For each model, using results of large random matrix theory we further derive
the asymptotic behavior of CRB when M, the number of antennas, grows infinitely large

providing insight into the behavior of massive MIMO systems.

5.4.1 Deterministic CRB

Under the deterministic assumption for the data signal S;, we have

y[n] ~ CN (Gs[n),021y), n=0,--- ,N—1. (5.26)
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A general deterministic CRB of covariance matrix has been derived in [75]. Define z £

Re{z}, 7 £ Im{x},C = (%GHG)_l and

=
L

Wk[n] = EGHSk[nL >\kz =

2
gy

sk[n]*sin]. (5.27)

RYEN
3
(IID

The deterministic CRB of the covariance matrix of any unbiased semi-blind estimator of G is

given by
N-1 -1
_ T|C-C
CRB=(A-Y ol [¢Cla,| | (5.28)
c C
n=L
where
[/:\ufM ij\llfhl] . |:§\1KIIM ij\lK[A{:|
Al Ay Ml Mrlm
A= : : , (5.292)
|:§\K11M tS\KII]bI] L. |:§\KKI]W tS\KK]Ali|
A1y Arx1lm AxkIv AxkIu

andforn=0L,--- ,N — 1,

0, = “Wﬂn} —me] [WKM VVKMH . (5.29b)

Wiln] Wiln] Win] Wkin

The calculations are given in Appendix 5.8.F.

Theorem 5.1. The limit of the deterministic CRB as M — o0, i.e., the number of antennas at

the BS increases, is given by
CRB — A", (5.30)
M—o0
Proof. See Appendix 5.8.G. [

Remark 5.2. Based on the derivations in Appendix 5.8.F, matrix A~ in (5.30) corresponds
to the CRB of channel matrix G when all data symbols Sy are known. Thus, as the number of
antennas at the BS increases, the CRB of the semi-blind estimation converges to the CRB of a

genie aided system with full data in which all N symbols (S) are known at the BS.
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5.4.2 Stochastic CRB
With Gaussian assumption for the data symbols S;, we have
y[n] ~ CN (Gs[n],001y), n=0,---,L—1,

yln] ~CN(0,R), n=1L,--- ,N—1, (5.31)

where R = GG + 02I);. For deriving the result, we use the fact that the CRB on the
covariance matrix of observed data vector z ~ CN (u(a), X(«x)) for any unbiased estimate

of arbitrary « is given by [80]

oy ox. opt op
CRB'| =t (S'——3"'—— ) + 2R yi 0 5.32
[ :|U f ( 80&1‘ 8aj> + © { 8041' 804]- ( )
Leta = [g7,g7, - g%, g}@f. The stochastic CRB of any unbiased estimator of G with

the stochastic model defined in (5.31) and orthogonal pilot sequences, i.e., SPSI{{ = Llg, is

given by

_ 2L
[CRB lL’j - 0_12)

il aR) . (5.33)

. B 10 O
d(t—7)+(N L)tr(R 8%1% Jas

The calculations are given in Appendix 5.8.H.

Theorem 5.2. The limit of the stochastic CRB with orthogonal pilot sequences ( SpSf = Llg)

as M — oo, i.e., the number of antennas at the BS increases, is given by

a.s. 0‘3
CRB yand ﬁIQMK. (5.34)
Proof. See Appendix 5.8.1. 0

Remark 5.3. Based on Theorem 5.2, the CRB of semi-blind channel estimation with unlimited
number of BS antennas is equivalent to the CRB of a system where the whole transmission

block of length N acts as orthogonal pilot sequences, i.e., SS™ = N1.
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Remark 5.4. In massive MIMO systems with an increasing number of users, pilot contamina-
tion, which originates from non-orthogonal pilot sequences or the reuse of pilot sequences for
neighboring cells, is a severe limiting factor in achievable data rates [15], [20]. Increasing
length of the pilot sequences reduces the pilot contamination effect. The asymptotic results of
CRB with both deterministic and stochastic assumptions indicate that with sufficiently large
number of antennas at BS, the effective pilot length of the system increases. In other words,
using information carried in unknown data is analogous to increasing the pilot length when
only pilot sequences are used for channel estimation (see Figures 5.4, 5.7, and 5.8) but with-
out the loss in throughput. This property makes semi-blind channel estimation an attractive
approach to alleviate the pilot contamination bottleneck in massive MIMO systems which is

our future topic of study.

5.5 Numerical Results

In the numerical experiments, we consider a single cell with radius 500m and a BS
located at the center of the cell and uniformly distributed users. We use a three-slope path loss

model [52] for large scale fading coefficients as follows

(

Co di, < dy
B = % do < dp < dy , (5.35)
2
CoZ
— di > d
\ dig) k 1

where d, is the distance in kilometers between user k£ and the BS, and z; is the log-normal

shadow fading, i.e., 10log;, 2, ~ N(0, 02 ,) with og,¢ = 8 dB. For d, > d; we use COST-
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231 Hata propagation model

10log ca =— 46.3 — 33.91og,, f + 13.821ogy, h

+(1.11og, f — 0.7)hp — (156 log,, f —0.8), (5.36)

where f = 1900 MHz is the carrier frequency, hz = 15m is the BS antenna height, and

hr = 1.65m is the user antenna height. Path loss parameters c; and ¢ in (5.35) are given by

We choose dy = 0.01km and d; = 0.05km. Signal-to-noise ratio in the experiments is consid-
ered to be SNR = %. Pilot sequences (S,) and data symbols (S5;) are drawn from a QPSK
constellation and pilot sequences are chosen to be orthogonal. We initialize all semi-blind
algorithms using the ML training-based estimate in (5.4). In the EM algorithm with GMM
prior, we set o, = 0.001.

Experiment 1: In this experiment, it is shown that one can obtain more accurate channel
estimates by using semi-blind estimation. We compare MSE of the ML estimates given in
Subsection 5.2.3 and the semi-blind algorithms given in (5.12), (5.14), (5.15), and (5.18). In
this experiment, M = 8, K = 4, L = 16, and N = 512. Figure 5.1 shows the scaled MSE,
ie., E(|G—G|%)/E(Bs). of the channel estimates versus SNR for the two ML estimators and
the semi-blind algorithms. Scaled MSE of the EM algorithm defined in (5.12) with Gaussian
data symbols is also plotted in the Figure 5.1. Even though the EM algorithm with Gaus-
sian prior defined in (5.12) is obtained for the Gaussian data, one can observe that MSE of
the QPSK data is virtually indistinguishable from that of the experiment with Gaussian data
symbols. We provide the following observation to support the good performance observed.
In the Bayesian framework, the prior information is of limited importance and the posterior

density of the symbols given the received data, as required in the EM algorithm, is controlled
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by the received data [55]. In this case, the posterior is a Gaussian density with a mean close
to the actual symbol value. This can be understood by noting that (5.12a) is in fact the lin-
ear minimum mean squared error (LMMSE) estimate of symbols. In addition, if the prior
is being approximated, a non-informative prior is often used and suggested. Based on the
maximum-entropy principle, when only partial information is available on the prior distribu-
tion, the distribution with the largest entropy consistent with the partial information is a useful
non-informative prior [81], [82]. Based on the zero mean and variance of the symbols, the
Gaussian density has the maximum entropy among continuous real valued densities making
it a reasonable choice. Moreover, it is not necessary for improved channel estimation to have
exact symbol recovery. The quality of channel estimation improves as long as the estimates of
the data symbols are in the neighborhood of actual data symbols and are properly weighted by
the uncertainty in the estimate. Based on these observations, we believe the Gaussian density
is a useful approximation as a prior for data symbols and the EM algorithm obtained with the
Gaussian data assumption improves channel estimates even when the data symbols are drawn
from a discrete constellation.

One can observe that all semi-blind algorithms provide better channel estimates com-
pared with the ML training-based estimation.Note that in low SNRs, the EM algorithm with
channel priors defined in (5.14) outperforms the EM algorithm with Gaussian prior given
in (5.12). In low SNRs, the EM algorithm with Gaussian prior outperforms the heuristic
semi-blind scheme and the EM algorithm with GMM prior. However, as SNR increases, the
heuristic semi-blind estimation and the EM algorithm with GMM prior provide better channel
estimates and become closer to the genie-aided ML estimator. To explain this behavior, we
point out that the constellation demapping in the heuristic algorithm and the EM algorithm
with GMM prior adds to the estimation error when the estimates of p,, are uncertain in low

SNRs. This phenomenon works in favor of these two algorithms in the high SNR regime by
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Figure 5.1: Scaled MSE versus SNR with M =8, K =4, L = 16,and N = 512.

mapping p,, to its true value.

In Figures 5.2 and 5.3, the scaled MSE of EM algorithm with Gaussian prior versus
number of iterations is plotted for SNR = 15dB and SNR = 30dB respectively. It can be ob-
served that the EM algorithm with Gaussian prior converges after a few iterations. Therefore,
its complexity with small number of iterations () is comparable to that of the ML estimator
with full data (see Section 5.3.2).

In the next three experiments we consider a massive MIMO system in which the num-
ber of antennas at the BS is much larger than the number of users (M > K).

Experiment 2: In this experiment, we compare MSE and symbol error rate of the ML estima-
tors described in Subsection 5.2.3 and the EM algorithm with Gaussian prior given in (5.12)
for M = 64, K = 8, L = 16, and N = 512. We consider symbol error rate of a LMMSE
receiver in uplink transmission. The LMMSE receiver is based on the channel estimates ob-

tained by each algorithm. Scaled MSE of the EM algorithm with Gaussian prior given in
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Figure 5.2: Scaled MSE versus number of iterations with M = 8, K =4, L. = 16, N = 512,

and SNR = 15dB.
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Figure 5.3: Scaled MSE versus number of iterations with M =8, K =4, L = 16, N = 512,

and SNR = 30dB.
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Figure 5.4: Scaled MSE versus SNR with M = 64, K = 8, and N = 512.

(5.12) and the ML estimators are plotted in Figure 5.4. One can see that the EM algorithm
with Gaussian prior outperforms ML estimator based on pilot sequences significantly. Scaled
MSE of the ML estimator with training sequence of length L = 128 is also plotted in this
figure. It can be seen that with eight times smaller training sequence, MSE of the EM algo-
rithm with Gaussian prior is very close to the MSE of the ML estimator with L = 128 training
sequences, indicating a significant benefit from the semi-blind scheme. The deterministic and
stochastic CRBs of the semi-blind channel estimation are also plotted in Figure 5.4. Note that
the deterministic and stochastic CRBs of semi-blind estimation are defined for any unbiased
estimator. In [83], it has been shown that the EM estimator for channel coefficients is biased.
For this reason, in Figure 5.4 the EM estimator is not necessarily lower bounded by CRB.
Figure 5.5 shows the symbol error rate of the LMMSE receiver versus SNR. It can be
seen that performance of the EM algorithm with Gaussian prior becomes closer to the ML with
full data as SNR increases. In the EM algorithm with Gaussian prior, the hidden parameters

are more likely to be estimated accurately as SNR increases. Therefore, symbol error rate of
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Figure 5.5: Symbol error rate versus SNR with M = 64, K =8, L = 16, and N = 512.
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Figure 5.6: Scaled MSE versus number of iterations with M = 64, K =8, L = 16,

N =512, and SNR = 20dB.

the EM algorithm with Gaussian prior is closer to that of the ML estimator with full data in

high SNRs.
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Figure 5.7: %MSE versus M with K =8, L = 16, N = 512, and SNR= 15dB.

In Figure 5.6, we plot the scaled MSE of the semi-blind algorithms versus number
of iterations for M = 64, K = 8, L = 16, N = 512, and SNR = 20dB. One can see
that all semi-blind algorithms converge after a few iterations and that the heuristic semi-blind
algorithm and the EM algorithm with GMM prior show faster convergence compared to the
EM algorithm with Gaussian prior.

Experiment 3: In this experiment, we study effect of increasing the number of antennas at BS
with K = 8, L = 16, and N = 512. Figure 5.7 shows the scaled MSE of the ML estimators
described in Subsection 5.2.3 and the semi-blind algorithms in (5.12), (5.15), and (5.18) versus
number of antennas M for SNR = 15dB. The CRBs given in Section 5.4 are also plotted in
the figure. It can be observed that as the number of antennas increases, the performance of
the semi-blind algorithms becomes closer to the ML estimate with full data which depicts the
effectiveness of using the information carried in unknown data to estimate channel coefficients
in massive MIMO systems. The figure also confirms results obtained in Theorems 5.1 and 5.2.

Figure 5.8 shows the same results for SNR = 30dB.
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Figure 5.8: ﬁMSE versus M with K =&, L = 16, N = 512, and SNR= 30dB.

Experiment 4: Finally, we consider the effect of semi-blind channel estimation in downlink
beamforming. Figure 5.9 shows the cumulative distribution function (CDF) of log, () de-
fined in (5.25) for all users with ML estimators and the EM algorithm with Gaussian prior for
SNR = 15dB. Parameter log,(+y) represents the loss in capacity (in high SNR regime) due to
channel estimation error. It can be seen that the CDF of log, () with semi-blind channel esti-
mation defined in (5.12) is closer to that of the perfect CSI compared to the ML training-based
estimation defined in (5.4). The horizontal line corresponds to the 10th percentile. The loss
in capacity in terms of the 10th percentile (due to channel estimation error) for ML training-
based estimation and the EM algorithm with Gaussian prior is 1.84 bits per channel use and
0.48 bits per channel use respectively. Thus, the semi-blind channel estimation provides 1.36
bits per channel use improvement in the 10th percentile of the achievable rate over the ML
training-based estimation. Figure 5.10 presents the CDF of log, (7) for SNR = 30dB. In
this scenario, semi-blind estimation defined in (5.12) provides 0.1 bits per channel use im-

provement in the 10th percentile of the achievable rate over ML training-based estimation.
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Figure 5.9: CDF of log, (v) = log, (%) for different channel estimation schemes

with M =64, K =8, L = 16, N = 512, and SNR= 15dB.

In high SNR regime, the quality of channel estimation with ML training-based estimator in
(5.4) is close to the perfect CSI case. Hence, in this case, using semi-blind channel estimation
slightly improves the performance in terms of the 10th percentile of the achievable rate over

training-based estimator.

5.6 Conclusion

Motivated by TDD massive MIMO systems, we developed EM based algorithms for
semi-blind channel estimation by employing Gaussian and GMM priors on data symbols and
a suitable prior on channel coefficients. To understand the limits of estimation accuracy, we
obtained CRBs for semi-blind channel estimation under two sets of commonly used assump-
tions. The behavior of CRBs for massive MIMO systems when the number of antennas at the

BS grows without bound is investigated leading to conclusions that provide theoretical support
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with M =64, K =8, L = 16, N = 512, and SNR= 30dB.

for the use of semi-blind algorithms for TDD based massive MIMO systems. We compared
semi-blind estimation with known ML estimators. Numerical results indicate effectiveness of
semi-blind channel estimation (compared to the estimation based on pilot sequences only) for
both uplink and downlink transmissions in MIMO and specially in massive MIMO systems.
In particular, the performance of the semi-blind channel estimation algorithms becomes closer
to the genie aided ML estimator based on full data as the number of BS antennas increases.
Numerical results show that the EM algorithm with Gaussian prior has superior performance
compared with the EM algorithm with GMM prior in the low SNR regime. However, as the
SNR or as the number BS antennas increases, the performance of the EM algorithm with
GMM prior improves compared to the EM algorithm with Gaussian prior and becomes closer

to the genie aided ML estimator.
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5.8 Appendices

5.8.A E-Step of the EM Algorithm with Discrete Constellation

Suppose data symbols are chosen from a discrete constellation such as QPSK. Denote
by p(x) the probability mass function of discrete random variable = and let S be a set of size
|S| = 4%, which contains constellation points for all users. Then the conditional mean of data
symbols, E(s[n]|G,,Y), in the E-step of the EM algorithm based on the estimates at the (th

iteration can be computed as follows

> ujes slnlp (wlnl| i), Ge ) p (s[n))
S s (lnl|slnl, Ge) p (sln)

L ||ytn)~Gesinl ||

E (s[n])@,y> —

_ Zs[n]GS 8[”]6_3 p(s[n]) (5.38)
-2 ||yl ~Gestn || ' '
Supes I (sfa)
Similarly E(s[n]s[n]”|Gy,Y) in the E-step is given by
1 A 2
. L el
E <s[n]s[n}H‘Gg, Y) _ 2slnies Slnlslr] E p(slnl) (5.39)

n]—~Gesln]
D sjes € 7 Y ‘ p(s[n])
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In (5.38) and (5.39), term Hy[n] — G’gs[n] H2 needs to be computed for all constellation points
in §. Therefore, complexity of the E-step with a discrete model for data symbols grows

exponentially with the number of users K.

5.8.B Derivation of the EM Algorithm with Gaussian Prior

Proof. Let g%fn] € CY¥ denote the mth row of channel matrix GG. The expected value of the

log likelihood in (5.10) can be written as

L-1 M 9
£ = const — ZZ %;ﬂs[nJH
n=0 m= U
N-1 M 9
DI IE I (Hym atstil). 540

n=L m=

where y,,,[n] is the mth element of y[n]. The likelihood function in (5.40) is a concave function
of g, and its maximum at the (¢ + 1)th iteration is obtained by taking the complex gradient

of it with respect to gy,,, [84], and setting the result to zero as follows
L1 N-1 A H
- (Z Ym|n)s[n]? + Z Ym|[n|E (s[n]’Gg, Y) )
n=0 n=L
N—-1 -1
X (SpSf + Z E (s[n]s[n]H’GZ, Y)) : (5.41)
n=L

Substituting all values in GAQH = [gm, e ,Q[M]}T gives us the M-step in (5.12b). To com-
pute the E-step, data symbols are assumed to be Gaussian, i.e., s[n] ~ CN (0,Ix), n =
L,--- N—1.Given G, Sy and Y are jointly Gaussian with conditional mean and covariance
matrix that are given below [85]:

E (sfnl| G, ) = E (shly[)”|G:) E (ylnly[n)”

n o~ —1
1 (GGl + 02) - ylnl
H
l

o)

-1
(o) Gilyl), (5.42)
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and

Cov (s[n]’@g,Y)

=E (s[n]s[n]H‘ég) —E (s[n]y[n]H
= I~ GF (GG + ngM)‘l G

. —1
© 012) <G£{Gz + 05[K> ) (5:43)

where (a) and (b) follow from matrix inversion lemma [55, Eq. C.7]. O

5.8.C Derivation of the EM Algorithm with Channel Priors

Proof. Let g[Tm] € C™K denote the mth row of channel matrix (. The expected value of

likelihood function with the Gaussian channel priors in (5.13) can be written as

L-1 M

2
L(G, B) —const—zzg2 Ym[n] = Gls []H
n=0 m=1
N-1 M )
Z E p(SalY.G) <H3/m g[Tmls["] )
n:Lm:l

M M K
Z g[T,’n Bflgfm] — Z Z log f3;. (5.44)

m=1 m=1 i=1
It can be observed that, again, terms E(s[n]|Gy,Y) and E(s[n]s[n]” |Gy, Y) appear in (5.44).
Therefore, the E-step remains the same as in (5.12a). In the M-step, for simplicity, we max-
imize £(G, B) with respect to G and B separately, which doesn’t necessarily maximize the
likelihood function £(G, B) but increases it. Holding B constant and taking the complex

gradient of £(G, B) with respect to g and setting it to zero gives us
L-1
(St + 3t ) )
n=0

N-1 -1
X (Spsjj Bi+ > (ph ()" + 1) B+ 051K> . (5.45)

n=L
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Substituting all values in CA?HI = [Q[I], g M]]T gives (5.14a) and results in a larger like-
lihood function, i.e., £(ég+1, B) > L(G,B). Holding Gg+1 constant we solve for B =
diag (5, - - - , Bk ) by taking the derivative of E(G‘gH, B) with respect to 3y, - - - , Sk and set-

ting it to zero as follows

=1+, K, (5.46)

which completes the M step. This step ensures that £(Gyi1, Bey1) > £(Gey1, B), and hence
the overall likelihood function increases in the M-step, i.e., E(G‘ 041, B’gﬂ) > L(G, B). There-

fore, this procedure results in a generalized EM algorithm [55]. [

5.8.D Derivation of the EM Algorithm with GMM Prior

Proof. The expected value of likelihood function in (5.17) can be written as

L-1 M
—const—g E —
104

n=

-1 M
K

Ym[n] — [m]H

=

1 2
Z 02E (SalY,6¢) <Hym g[j;n]s[n]“ )

1

i
h

m

=

1
Z EEP S4|Y,6,) ()Sk [n] — Cnk

L k=1

2
) , (5.47)

3
Il

where g[Tm] € C™K denotes the mth row of G, and c¢,,;, is the kth element of ¢,. Similar
to Appendix 5.8.B, the channel estimate at the (¢ + 1)th iteration is obtained by taking the

derivative of the log likelihood £ and setting it to zero, which gives us
L1 N-1 ) "
it = (St + Sl (s0.7) )
n=0 n=L
N-1 -1
x <5ps;jf +Y E (s[n]s[n]H‘@g, Y)) . (5.48)
n=L
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By stacking vectors Q[Tl], e ,g[j;w] in é€+1 we get (5.18b). Let C be a set containing constel-

lation points. The optimal ¢, in (5.47) is obtained as follows

2
ct+! = argmin E,s,1v.60) ( se[n] — cuk )
cnk€C
= argmén lcr]” — 2Re {Ep(SdlY,ée) (sk[n]) c,’;k} (5.49)
Cnk€

which is equivalent to demapping E (sk [n] ‘K ég) to the closest constellation point:

= F <]E (sk[n] Y, ée>> . (5.50)
In the vector form, ¢,, can be written as
el = (IE (s[n] Y, ég>) . (5.51)

Given ©, S, and Y are jointly Gaussian. Similar to Appendix 5.8.B, E(s[n]|©;,Y) and
E(s[n]s[n)|©,Y) that appear in the likelihood function (5.47) can be computed from the

conditional density of circularly symmetric Gaussian random vectors as follows [85]

E (s[n)| 7, V) = B (slolyln)”|6,) B (ylnlyln)6) "yl

~ ~ ~ -1
— (eh(e) + 02x) GIF (G (e(&0) + 20) GE + o2 Ly) ]

—

(GG + 0 (&) +020x) ) Gyl (5.52)
and
Cov (s[n] ’ég, Y)

—E (s[n}s[n]H‘ég) ) (s[n]y[n]H

= (éfl(éf;)H + UfIK)

— (€€l + o20) GE (G (eh(e) + o21x) G + 021 ) G () + o)

Q52 (Gf Go+ ool (e(e5)" + ang)‘l) o (5.53)
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where (a) and (b) are the result of matrix inversion lemma [55, Eq. C.7].

5.8.E Proof of Lemma 5.2

Proof. Define ., = |jms|> with probability distribution function f(x,,) form = 1,--- , M.

Then, the cumulative distribution function of y; = for 0 < a < 11s given by

x+ +:):

Pr{y, <a}=Pr {xl <

a:g—‘rmg—i- +93M)
/ / / - flep)day - - dayy. (5.54)

A change of variables between x; and =5 gives us

m1+x3+ +mM)
Pri{y; <a} = / / /  flep)dzy - - day

($2+ZL’3+ ‘f‘f/UM)}

= Pr{y; <a}, (5.55)
which indicates that yy, - - -,y are identically distributed and hence have the same mean.
The fact that 3 _, 4, = 1, results in E (y,) = &, m = 1,---, M. O

5.8.F Derivation of the Deterministic CRB

Define 7 = Re {x} and # £ Im {x}. The log likelihood function of the received signal

is given by
N-T )
L = const — Z_; > y[n] — Gsn| (5.56)
The CRB of both channel coefficients and unknown data symbols (Sy) is given by
CRB (54, G) = E (T77) ", (5.57)
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where
7= a‘C’/a [g[L]T7 g[L]Ta o 7§[N - 1]T7 g[N - 1]T7§{’g{7 U 75?(797;(}71' (558)

Define A = %GH G. Following similar steps as in the proof of [75, Theorem 4.1], for n =

L,--- ,N—1,andk=1,---, K, we can show that

oL 2 oL 2
930] za—gRe {G"v[n]}, o3l — U—glm {G"v[n]},
9 N-1 9 N—-1
g—gﬁk =2 ; Re {v[n]s.[n]"}, g—i =3 ZO Im {v[n]s;[n]*} . (5.59)

Using E (v[n]v[p]”) = 621)/6(n — p) and R3 in [75, Theorem 4.1, forn,p = L, ,N — 1

and k=1, ---, K, we get

E(@Eﬁﬂ@jﬁo}ﬁ (a0 Gag) ) ~ 4300
L/ OLN\T )

() s

= (30 <a_gk>T> Gl )TW’“[”]’
(5 ) e (5 ) -
() -2 () -

(0. ) ) == (35 (55) ) =t (5.60)

Substituting (5.60) in (5.57), gives us

A-A
[A A ] 0 L
CRB (Sy,G) ' = ' L L (5.61)
0 [A A ] Oy
| of oL, | A |
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where A and €2,,, n = L,--- , N — 1 are defined in (5.29). The CRB of channel matrix G is
the 2M K x 2M K submatrix formed of intersection of the last 2M K rows and 2M K columns

of CRB (S, G). By results on the inverse of a block matrix, we can show that
-1
T|C -
CRB (G (A Z Qf [ ¢ } n) . (5.62)

5.8.G Proof of Theorem 5.1

We will need the following preparatory lemma to prove Theorem 5.1.

Lemma 5.3. Denote by ggn] € CY™K the mth row of channel matrix G € CM*X defined in

(5.1). Then, for any m,m’' € {1,--- , M}, we have

—1 % a.s.
Iim) (G"'G) " Gl — 0. (5.63)

Proof. Let h[Tm] be the mth row of small scale fading matrix H in (5.1) and define ¥,y =
(;HYH — Al ]hT )_ with elements [V, } = 1;;. Note that (,,,y and hy,,) are statis-
tically independent. For any A € CM**M and B € CM*M by Cauchy-Schwarz inequality, we

have

ltr (AB)| < \/tr (AARytr (BBH) < M || Al || BIl, - (5.64)

By applying matrix inversion lemma [53, Lemma 6.2], for m = m’, we obtain

h Vi h
T H\"1 « [m] [m }
I (G"G) ™ Gl = (5.65)
Lt 3o ¥ omy A
In order to prove (5.63), for m = m/, we will show that E(‘%h[{’ﬂ]\ﬂ(m)hfm} {2> < 5 for
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some constant ¢ as follows

1
N
i,d'=1j,j'=1
1 . p JsJ
+ W Z Z E (hmih;knj) E (h;u'/hmj’) E (%j%ﬁ'j')
ii'=1j,j'=1
1 1
= 3B (Yo ¥n)) + 758 (’tf (Pmy) |2>
K K
< SE (2 ];) + 75 (1elly) (5.66)

where the last inequality follows from (5.64). Since ﬁH H H is non-singular with probability
one for all large M [53], the maximum eigenvalue of matrix W, is bounded for all large M
almost surely. By dominated convergence theorem [86], (” VU (im) H ) is uniformly bounded.
Therefore, E <| %h% Wy R ) is of order O(M ~2) and by Borel-Cantelli lemma it follows

that

[m

M
By matrix inversion lemma, for m # m/, term g (GH G)~ g’[*m,] is equal to

S— (5.68)

-1
whmeqqmmq::(ﬁJJHfl SRty = Pl ) Note that hjn, i, and W )

are independent for m # m/. Similarly, we can show that E(| h[m]\I/ (mm) R 2) is of
order O(M ~?) and hence
RN T S (5.69)
M YIS
Combining all the results yields
95y (G7G) ™ gl — 0. (5.70)
O]
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Proof of Theorem 5.1. For notational simplicity, we define Dy;[n] = Wi [n]?CW,[n]. After

some manipulation, submatrices in Q7 [g _éé] Q2,, can be simplified as follows

Wiln)" Win)" Cj - Vj/z[n] —Wiln] _ Duln] - =Diln] . (5.71)

Denote by gf,,; € C** the mth row of channel matrix G defined in (5.1). The (m,m/)th
component of Dy,[n] is then given by

-1 (a)
gim (G"G) " gly — 0, (5.72)

M—o0

(Dulnll,,,, = 22xrednl

&
where (a) follows from Lemma 5.3, which shows that each element of matrix Q7 [g _c_fj] Q,

converges to zero almost surely. Therefore, by continuous mapping theorem [56] we have

CRB(G) M—> AL (5.73)
O

5.8.H Derivation of the Stochastic CRB

The log likelihood function of the received signal with Gaussian data symbols is given

by
L1 , N-1
L = const — Z U—gHy[n] - Gs[n]“ - Z: \(y[n]HR_ly[i] — log det R)J. (5.74)
P £l

Terms £1[0],- -+, L41[L — 1], L5[L], - - - , L2[ N — 1] are independent. Thus, the CRB of covari-

ance matrix is given by
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From (5.32), forn =0,--- , L — 1, we have

. (35_1[n] 8£1[n]) . ((9[;1[71] &Ci[n]) _ 2 e (selnl* st} 8(m — 1),

agmk ag” agmk agrl (o
OLi[n] OLi[n]\ 2 .
E( Do Do ) Uglm {sk[n]*si[n]} o(m —r). (5.76)

Suppose pilot sequences are orthogonal, i.e., ZTLL;S) sk[n]*si[n] = Lo (k — ). We then have

() s e

’U

From (5.32), it follows that

E = .
( O 8ocj w A Oy R (904] (5.78)

Substituting (5.77) and (5.78) in (5.75) yields

Ok aR) . (5.79)

-1 _% S N -1 -1 Y
[CRB LJ.-UQ(S(Z +(N —-Lua (R (9042-R P

v

5.8.1 Proof of Theorem 5.2

We first provide the following preparatory results which are used in proving Theorem

5.2.

Lemma 5.4. Let R = GG + 021y, where G € CM*E s the channel matrix defined in
(5.1). Assume columns of matrix G, denoted by g, ~ CN (0, BrIy), are independent and

P € CM*M s a deterministic matrix with uniformly bounded spectral norm. Then,

w(P) oy, (5.80)

0‘3 M —o0

tr (R7'P) —

Proof. When M and K grow large such that 0 < liminf,, % < limsup,, % < 00, We

have [54, Theorem 1]

1 1 _1 1 a.s.
~tr <(—R) P) — S (TP) — 0, (5.81)
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where

M
T — Iy (5.82)
K B; ’
ijl Trenr, + 012;
and ey 1, - - , ey i form the unique solution of
M ;
em;i = b . (5.83)

K B 2
2jm1 Tren; T 00
Suppose M — oo such that % — 0. We can show that e, is of order O(M ) and conse-

quently 7" — %l - Therefore,

1 _ tr (P) a.s.
tr (R~'P) R 0. (5.84)
[
Corollary 5.1. Let e,, = [le(m—1)7 1, OlX(M_m)}T, where 01y (m—1) is a zero vector of
length (m — 1). We then have
a.s. ¢ _
R e, - ) (5.85)
M—o0 Uv
Proof. Substituting P = e, e’ in Lemma 5.4 completes the proof. [

Corollary 5.2. Let R,y = GGH + %Iy — g,gi, where G is the channel matrix defined in

(5.1), and suppose g, ~ CN (0, Br1yr) is the kth column of G. Then,

1 Br

79V R k)gk (5.86)

M—oco O 12;
Proof. Let h; denote the kth column of small scale fading matrix H in (5.1). Note that hy
and Ry are independent, and matrix R_kl has uniformly bounded spectral norm for all large

M, ie., limsupy, || R ||, < 57 < 0. Thus, we have

@ 8 ® 8
H k — k

390 R = gl B s S (RG)) o 87

where (a) and (b) follow from [53, Theorem 3.4] and Lemma 5.4 respectively. O
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Lemma 5.5. Define €, = [01x(m_1), 1, O1uqaromy] and Ry = GG + 021y — g,g¥,
where G is the channel matrix defined in (5.1) and g, ~ CN (0, Biln) is the kth column of

G. Then,

]' H

Proof. Define A = R(’kl) with elements [A];; = a;; and let Ay, m = 1,--- M, k =
1,---, K denote the elements of small scale fading matrix H in (5.1). It is clear that A and g,
are independent. In order to prove (5.88), we will show that E( ‘ﬁeﬁAy i ‘4 ) < ;f for some

constant ¢ as follows

1 ! 5
E(‘M €n A9y )ZE g

9 M
_ % ST E (Guniy @iy s @i, ) [E (Riskher) B (higehly) +E (Roshig) E (hikhl) }

11,42
23,24

2o (St < Lo o 07

o) 9R2
< g (1a3). (5.89)

2

M 4
E Apmilvik

=1

where (a) comes from (5.64).
Matrix A has uniformly bounded spectral norm, i.., limsup,, [|A], < % < oo.
By dominated convergence theorem [86], E( 1Al ) is also uniformly bounded and hence

= E( ||A||;1) is of order O(M~2). Therefore, E( ‘ﬁeﬁAng) is summable and by Borel-

Cantelli lemma it follows that

1 a.s.
i f,ﬁR(k)gk — 0. (5.90)
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Proof of Theorem 5.2. Define the following quantities:
Ry = R - gugy, Ruay = Ry — 9.91",
T
ka = [OMx(m—l)a 9 OMX(M—m)} y €n = [le(m_l), 1, OIX(M—m)} , (591)

where 0y (m—1) 18 a zero matrix of size M x (m — 1). Note that, for [ # k, quantities g,, g,
R, and Ry are mutually independent. The second term in (5.33) for different values of «;

and «; can be rewritten as follows

(5 l(ff) R i (T ) 2R ()
mk nl

= —2Re {tr (R™'T},, R"'Tpy) } + 2Re {tr (R™'T,,, R7'TH) }
agmk agnl

= 2Im {tr (R T, R 'T) } + 2Im {tr (R T,,, R'TY) } .

o)
) = 2Im {tr (BT, R T,0) } — 2Im {tr (R"\T,, R-'TH) ) |
)

(
(

agmk agnl
(5.92)
By matrix inversion lemma [53, Lemma 6.2], we have
tr (R TR ') = (e R™'g,) (ellR7'g))
efR g elR lg
(k) Tk (U (5.93)

- 1+ 9fRyg. 1 +gf'Rilg)

By Corollary 5.2, Mgk R nIk — B’;, and Mgl R 09— é, almost surely. By Lemma 5.5,

it follows that - Le R gk — 0 and R n91 — 0. We therefore have
tr (R T R Th) — 0. (5.94)
M—ro0

By applying matrix inversion lemma to term tr (R, R~*T} ) in (5.92), we obtain

TR\g l=k
el Rle 9k 1) 9k
tr (R ' RITH) = —»— Hp-1 (5.95)
( ! 1+gi/Ry9: | 9 Ry 9 Ik
1+ g/ Ry 9
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It follows from Corollaries 5.1 and 5.2 that, for | = k, tr (R™'T,,,, R™'TH) — @ almost
surely. From [53, Theorem 3.7], for [ # k, we know that %ng R(_k%)gk — 0 almost surely.

Thus, for | # k, tr (R T, R™'TH) — 0 almost surely. Therefore,

as. §(n —m)o(k —1)

-1 —1mH

tr (R T R ) — = : (5.96)

Substituting (5.94) and (5.96) in (5.92) yields

LOR [ ORY\ s 2§(i—7)
t ! ! . : 5.97
! <R 3042-R 80@-) M—oo 02 (>97)
Thus, [CRB—le Ma—s> i@v (1 — j). By the continuous mapping theorem [56], we therefore
—o0 ‘v
have
a.s. 0'12)

CRB s ﬁIQMK. (5.98)
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