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EPIGRAPH

Research is what I’m doing when

I don’t know what I’m doing.

Wernher von Braun

Your assumptions are your windows on the world.

Scrub them off every once in a while, or the light won’t come in.

Isaac Asimov
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)
for different channel estimation

schemes with M = 64, K = 8, L = 16, N = 512, and SNR= 30dB. . . . 134

ix



LIST OF TABLES

Table 2.1: 5%-outage and median per-user rates of cell-free and small-cell schemes
with different number of APs and users. . . . . . . . . . . . . . . . . . . 45

Table 3.1: Parameter definitions in Theorem 3.1 (Part I). . . . . . . . . . . . . . . . 60
Table 3.2: Parameter definitions in Theorem 3.1 (Part II). . . . . . . . . . . . . . . . 61

Table 5.1: Computational complexities of channel estimation using ML training-based
estimation and full data. The mathematical operations in each step, e.g.,
matrix inversion, matrix multiplication, etc., determine the complexity of
the corresponding step. . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Table 5.2: Computational complexity of the EM algorithm with Gaussian prior using
different multiplication orders. The mathematical operations in each step,
e.g., matrix inversion, matrix multiplication, etc., determine the complexity
of the corresponding step. . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Table 5.3: Computational complexity of the EM algorithm with GMM prior. The
mathematical operations in each step, e.g., matrix inversion, matrix multi-
plication, etc., determine the complexity of the corresponding step. . . . . 119

x



ACKNOWLEDGEMENTS

It is my pleasure to acknowledge the roles of several individuals who were instrumen-

tal for completion of my Ph.D. research. First, I would like to express my sincere gratitude

to Professor Bhaskar D. Rao, who expertly guided me through my graduate education and

who shared the excitement of five years of discovery. I vividly remember the birth of my

interest in wireless communication from the first time I attended his class back in year 2013.

He introduced me to the nature of research and taught me how to find and pursue the impact-

ful research directions. He always encouraged me to keep close relations with industry and

learn about the challenges in today’s engineering world, which ultimately gave birth to my

research topics. He continually and convincingly conveyed a spirit of adventure in regard to

research and scholarship without which this dissertation would have not been possible. I am

also thankful to my committee members, Professor Robert R. Bitmead, Professor William S.

Hodgkiss, Professor Laurence B. Milstein, and Professor Paul H. Siegel for their invaluable

recommendations on my research. I am also thankful for the lessons and skills I learned from

many courses taught by these inspiring teachers.

My appreciation also extends to Bell Labs for letting me fulfill my dream of working

there by offering internship opportunities for two consecutive summers at early stages of my

graduate studies. The foundation of this dissertation is partially based on the experiences I

have gained while working on Massive MIMO project at Bell Labs. I am really fortunate

that I had the kind supervision of Dr. Alexei Ashikhmin. His exemplary guidance, constant

encouragements, and careful monitoring throughout the internships were so great that even my

most profound gratitude is not enough. I also salute Dr. Thomas L. Marzetta for his tenacity of

purpose, outstanding leadership qualities, and for sharing his vision on the future of wireless

communication, which opened my eyes to many new opportunities. I am also thankful to my

xi



other mentor at Bell Labs, Dr. Hong Yang for his continued care and support.

I am also indebted to the Department of Electrical and Computer Engineering at UC

San Diego for offering me the first-year fellowship along with the program admission, which

gave me freedom to search and find the research field whom I have the most passion for. I want

to give my thanks to my former and current colleagues at UCSD Digital Signal Processing Lab,

Dr. Bang Nguyen, Dr. Ritwik Giri, Dr. Yonghee Han, Yacong Ding, David Ho, Soon-En Chiu,

Govind Gopal, Igor Fedorov, Tharun Srikrishnan, Richard Bell, and Furkan Kovasoglu. I am

thankful to them for attending my presentations, their helpful feedbacks, and most importantly,

their moral support over the years.

I would also like to thank my family, my parents and my sister, for their unconditional

love and support. They have always been there for me and motivated me throughout this

journey, without which I would have not made it this far.

Chapter 2 contains material as it appears in [1], E. Nayebi, A. Ashikhmin, T. L.

Marzetta, H. Yang, and B. D. Rao, “Precoding and Power Optimization in Cell-Free Mas-

sive MIMO Systems," IEEE Transactions on Wireless Communications, vol. 16, no. 7, pp.

4445-4459, July 2017, and is also based on the material as it appears in [2], E. Nayebi, A.

Ashikhmin, T. L. Marzetta, and H. Yang, “Cell-Free Massive MIMO Systems," in Proc. 49th

Asilomar Conference on Signals, Systems and Computers, Nov. 2015, pp. 695-699. The

dissertation author was the primary investigator and author of these papers.

Chapter 3 contains material as it appears in [3], E. Nayebi, A. Ashikhmin, T. L.

Marzetta, B. D. Rao, “Performance of Cell-Free Massive MIMO Systems with MMSE and

LSFD Receivers," in Proc. 50th Asilomar Conference on Signals, Systems and Computers,

Nov. 2016, pp. 203-207. The dissertation author was the primary investigator and author of

this paper.

Chapter 4, in part is currently being prepared for submission for publication of the

xii



material. The dissertation author is the primary investigator and author of this material and B.

D. Rao supervised the research.

Chapter 5, in part, is a reprint of the material as it appears in [4], E. Nayebi, and B. D.

Rao, “Semi-blind Channel Estimation for Multiuser Massive MIMO Systems," IEEE Trans-

actions on Signal Processing, vol. 66, no.2, pp. 540-553, Jan. 2018, and is also based on

the material as it appears in [5], E. Nayebi, and B. D. Rao, “Semi-blind Channel Estimation

in Massive MIMO Systems with Different Priors on Data Symbols” in Proc. IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing (ICASSP) 2018, to appear. The

dissertation author was the primary investigator and author of these papers.

xiii



VITA

2012 Bachelor of Science in Electrical Engineering, University of Tehran,
Iran

2014 Master of Science in Electrical Engineering (Communication Theory
and Systems), University of California, San Diego

2012-2017 Research Assistant, University of California, San Diego

2018 Doctor of Philosophy in Electrical Engineering (Communication The-
ory and Systems), University of California, San Diego

PUBLICATIONS

E. Nayebi, A. Ashikhmin, T. L. Marzetta, and H. Yang, “Cell-Free Massive MIMO Systems,"
in Proc. 49th Asilomar Conference on Signals, Systems and Computers, Nov. 2015, pp. 695-
699.

E. Nayebi, A. Ashikhmin, T. L. Marzetta, B. D. Rao, “Performance of Cell-Free Massive
MIMO Systems with MMSE and LSFD Receivers," in Proc. 50th Asilomar Conference on
Signals, Systems and Computers, Nov. 2016, pp. 203-207.

E. Nayebi, A. Ashikhmin, T. L. Marzetta, H. Yang, and B. D. Rao, “Precoding and Power
Optimization in Cell-Free Massive MIMO Systems," IEEE Transactions on Wireless Commu-
nications, vol. 16, no. 7, pp. 4445-4459, July 2017.

E. Nayebi and B. D. Rao, “Semi-blind Channel Estimation for Multiuser Massive MIMO
Systems," IEEE Transactions on Signal Processing, vol. 66, no.2, pp. 540-553, Jan. 2018.

E. Nayebi and B. D. Rao, “Semi-blind Channel Estimation in Massive MIMO Systems with
Different Priors on Data Symbols” in Proc. IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP) 2018, to appear.

FIELDS OF STUDY

Major Field: Electrical Engineering

Studies in Communication Theory and Systems

Advisor: Bhaskar D. Rao

xiv



ABSTRACT OF THE DISSERTATION

TDD Massive MIMO Systems: Channel Estimation, Power Optimization,
and Access Point Location Design

by

Elina Nayebi

Doctor of Philosophy in Electrical Engineering (Communication Theory and Systems)

University of California, San Diego, 2018

Professor Bhaskar D. Rao, Chair

With an ever-increasing demand for higher wireless throughput, there has been grow-

ing interest in massive multiple-input multiple-output (MIMO) as a key technology for future

wireless networks. This dissertation addresses some of the key aspects of this technology that

include: 1. precoding, power optimization, and access point (AP) location design in cell-free

massive MIMO systems with distributed APs; 2. semi-blind channel estimation in massive

MIMO systems.

Cell-free massive MIMO is a special deployment of massive MIMO systems with a

large number of distributed low-cost low-power single antenna APs serving a much smaller

xv



number of users. The cell-free system is not partitioned into cells and each user is served by

all APs simultaneously. The downlink capacity lower bounds for conjugate beamforming and

zero forcing precoders in cell-free systems are derived in this dissertation. To further increase

the achievable throughput, max-min power optimization algorithms are formulated, and low

complexity max-min power allocation algorithms are developed. We also introduce a tech-

nique that employs `1-norm sparsity penalty in the max-min power optimization for conjugate

beamforming that helps us decrease the number of APs that serve a user in a practical system.

The uplink capacity lower bounds for minimum mean squared error (MMSE) and large

scale fading decoding receivers in cell-free systems are provided. A deterministic approxima-

tion for signal-to-interference-plus-noise ratio of MMSE receiver is obtained with an unlimited

number of APs and user devices.

Next, AP location design problem is investigated to maximize the sum-throughput and

the minimum-throughput in uplink transmission of cell-free systems with an arbitrary user

distribution. Utilizing compressed sensing techniques, the AP placement problems are formu-

lated as convex optimization problems. An AP location design algorithm is also presented in

an alternative small-cell system in which each user is served by only one AP.

Finally, semi-blind channel estimation for multiuser massive MIMO systems is in-

vestigated. Multiple semi-blind channel estimation techniques based on the expectation-

maximization algorithm are developed by considering different priors on data symbols. Cramer

Rao Bounds (CRBs) for semi blind channel estimation are derived for deterministic and

stochastic (Gaussian) data symbol models to give us an analytical understanding of the semi

blind scheme’s performance. To get insight into the behavior of a massive MIMO system,

the asymptotic behavior of the CRBs as the number of antennas at the base station grows is

analyzed.
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1.1 Background on Massive MIMO Systems

Multiple-input multiple-output (MIMO) technology is one of the key components to

increase spectral efficiency of a wireless network [6–8], which can be categorized into three

main groups: 1. point-to-point MIMO, 2. multiuser MIMO, 3. massive MIMO. Point-to-point

MIMO is the simplest variant of a MIMO system, which refers to communication between

an access point (AP) and a user that are equipped with multiple antennas. Point-to-point

MIMO system improves reliability of communication via spatial diversity. Under favorable

channel conditions, having multiple transmit and receive antennas provides us with the spatial

degrees of freedom, which can be exploited to transmit multiple data streams over the MIMO

channel and increase the channel capacity [8]. Define by G ∈ CM×K the channel matrix

between the transmitter and receiver equipped with M and K antennas respectively. The

spectral efficiency (in bits per second per hertz) of a point-to-point MIMO for a deterministic

and constant channel with additive white Gaussian noise and perfect channel state information

(CSI) at receiver is expressed as [9]

C = log2 det
(
IK +

ρ

M
GHG

)
, (1.1)

where ρ is the signal-to-noise ratio (SNR). Let λ1, · · · , λmin(M,K) be singular values of G.

Then the spectral efficiency (1.1) can be rewritten as

C =

min(M,K)∑
i=1

log2

(
1 +

ρ

M
λ2
i

)
. (1.2)

From (1.2), it is observed that the capacity grows linear in min (M,K) without increasing

transmit power or bandwidth. The upper and lower bounds on (1.2), when the channel matrix

is normalized as tr
(
GHG

)
≈MK, are given by [10]

log2 (1 + ρK) ≤ C ≤ min (M,K) log2

(
1 +

ρmax (M,K)

M

)
. (1.3)
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The distribution of singular values ofG has an important role on achievable rate of the system.

In the rich scattering propagation environments and a high SNR regime, the achievable rate

of a point-to point MIMO is proportional to the rank of the channel matrix, i.e, min (M,K).

In other words, the upper bound in (1.3) is achieved when the singular values of G are all

equal [10], [11] . However, line-of-site conditions cause rank deficiency in channel matrix

and degrade performance of the point-to point MIMO systems. The lower bound in (1.3) is

obtained when only one singular value of channel matrix is non-zero [10], [11].

In multiuser MIMO technology, a single transmitter serves multiple receivers that uti-

lize the same time and frequency resources in a communication system. These systems provide

advantages over point-to point MIMO: they are less sensitive to the propagation properties

of the environment, and a single antenna suffices at each user device making them relatively

cheap devices. Therefore, multiuser MIMO has been largely deployed in communication stan-

dards, such as 802.11 (WiFi), 802.16 (WiMAX), and long-term evolution (LTE). However, in

the downlink transmission of multiuser MIMO, both AP and users must know the propagation

channel. Thus, considerable amount of known pilot sequences should be used to learn the

channel coefficients. Advantages and challenges associated with the multiuser MIMO sys-

tems and their performance analysis can be found in [12], [13], [14], and references therein.

The sum spectral efficiency of multiuser MIMO with K single-antenna user devices in uplink

and downlink transmissions is given by [9]

Cul = log2 det
(
IM + ρuGG

H
)
, (1.4)

Cdl = max
P, tr(P )≤1

log2 det
(
IM + ρdGPG

H
)
, (1.5)

where ρu and ρd are the uplink and downlink SNRs respectively. In uplink spectral efficiency

(1.4), the CSI is only required at base station. However, in the downlink spectral efficiency

(1.5), the CSI is required at both base station and user devices.
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Massive MIMO is a scalable form of multiuser MIMO, where APs are equipped with

large number of antenna elements [15], [16]. One of the key distinctions between multiuser

and massive MIMO systems is that the number of AP antennas is much larger than the num-

ber of users in massive MIMO (see Figure 1.1). With the growing demand for throughput in

wireless networks, massive MIMO is a promising technology that achieves much better perfor-

mance compared with the multiuser MIMO. With excessively large number of AP antennas,

massive MIMO serves many users in the same time-frequency resources. Adding more anten-

nas to the AP results in higher system throughput, and narrower beams (see [10, Figure 2]).

Moreover, one can utilize large number of low-cost low-power antenna elements as opposed

to expensive amplifiers that are used in conventional multiuser MIMO systems.

Figure 1.1: Massive MIMO.

In time-division duplex (TDD) protocol, the uplink and downlink physical channels are

reciprocal [17]. Thus, propagation channel can be measured in uplink and used for both uplink

data detection and downlink bemaforming. Most emphasis in massive MIMO systems is in

TDD protocol rather than frequency-division duplex (FDD) due to the fact that the amount of

pilot overhead to estimate the uplink channel coefficients is independent of the number of AP

antennas, and the users are not required to feed the channel coefficients back to the AP. While
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the focus of this dissertation is on massive MIMO systems with TDD protocol, it is important

to note that in environments with enough special structure in the propagation, sparse properties

of channel matrix in a particular domain can be exploited to use smaller number of downlink

training pilots and uplink feedback to estimate the channel and hence one can utilize FDD

operation in massive MIMO systems as well [18], [19].

TDD massive MIMO technology has many advantages over multiuser MIMO. It re-

quires only AP to know the propagation channel. The number of training pilots depends only

on the number of users and hence massive MIMO is scalable with respect to the number of

AP antennas.

We denote the channel matrix between M antennas at the base station and K single

antenna users in massive MIMO by G ∈ CM×K , which can be modeled as the product of

small scale fading factor H ∈ CM×K and a diagonal large scale fading factor B ∈ RK×K as

follows

G = HB1/2. (1.6)

In massive MIMO, with independent small scale fading coefficients , columns of the channel

matrix become asymptotically orthogonal, as the number of base station antennas increases

[15], i.e.,

1

M
GHG

a.s.

−−→
M→∞

B. (1.7)

This feature, which is a result of law of large numbers, is referred to as the channel hardening

effect in massive MIMO. The achievable rates in (1.4) and (1.5) with infinite number of base
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station antennas and favorable propagation conditions (1.7) given in [10] are as follows

Cul M�K≈
K∑
i=1

log2 (1 +Mρuβi) (1.8)

Cdl M�K≈ max
p1,··· ,pK≥0
K∑
k=1

pk=1

K∑
i=1

log2 (1 +Mρdpiβi) . (1.9)

In [11], it has been shown that conjugate beamforming, a simple linear precoding

scheme, can achieve the achievable rate in (1.9) when the number of base station antennas

grows to infinity. A similar result is also obtained in uplink: the simple linear matched-

filtering (MF) processing at the base station achieves the multiuser uplink capacity defined in

(1.8). This result shows that simple linear precoding and decoding schemes such as conjugate

beamforing (CB) and zero-forcing (ZF) precoders can be used in massive MIMO. In [9] and

[15], it is shown that the effects of uncorrelated noise, small scale fading, and non-coherent

interference are eliminated when the number of base station antennas increases under the

favorable propagation conditions (1.7). Therefore, simple power control algorithms can be

deployed that no longer depend on the frequency.

One of the challenges in massive MIMO systems, is pilot contamination problem [15],

[20], which emerges in multi-cell scenarios when the number of users is larger than the length

of pilot sequences. Due to the limitation on channel coherence interval, the length of training

pilots is limited. Therefore, training pilots of users in neighboring cells will be non-orthogonal.

This leads to channel estimates that are contaminated by pilots transmitted by users in other

cells and results in coherent interference that unlike non-coherent interference grows with the

number of AP antennas. Pilot Contamination effect is a severe limiting factor for achievable

data rate that degrades system performance considerably. Several channel estimation, precod-

ing, and postcoding techniques have been introduced to mitigate the pilot contamination effect.

For example, in [20], a multi-cell minimum mean squared error (MMSE) based precoding is
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proposed. In [21] and [22], large scale fading decoding (also known as pilot contamination

postcoding) for cellular massive MIMO is proposed, in which the base station of neighboring

cells cooperate by sharing between themselves the large scale fading coefficients. In [23], the

authors propose an eigenvalue decomposition-based approach to estimate channel coefficients

that mitigates the pilot contamination problem to some extent.

1.2 Dissertation Contributions and Organization

Performance of massive MIMO systems with co-located antenna arrays are well stud-

ied in the literature, e.g., see [24], [11] and references therein. Another deployment of massive

MIMO systems is a network comprising a large number of distributed single-antenna APs,

where each user served simultaneously by all of the APs (see Figure 2.1). We call such a

system Cell-Free Massive MIMO and investigate its performance in chapter 2. Since APs are

spread out over a designated area in the cell-free systems, each user is close to a few APs, and

thus can benefit from diversity against shadow fading. Hence, cell-free massive MIMO offers

more coverage probability and power efficiency compared with the co-located systems. We

derive capacity lower bounds for cell-free systems utilizing CB and ZF precoders and formu-

late max-min power control algorithms to provide equal throughput to all users. A number

of low complexity power allocation algorithms for conjugate bramforming and zero-forcing

precoders are also proposed that have significantly smaller computational complexity and yet

achieve near-optimal performances. We quantitatively compare the performance of cell-free

massive MIMO to that of a small-cell system in which each user is served by only on AP. We

present a technique to reduce the number of APs serving each user for CB by utilizing `1-norm

sparsity penalty term in the max-min optimization problem.

Chapter 3, provides uplink performance study of cell-free systems with MMSE and
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large scale fading decoding (LSFD) receivers. The LSFD receiver maximizes the achievable

throughput using only large scale fading coefficients between APs and users. Capacity lower

bounds for MMSE and LSFD receivers are derived and a deterministic approximation for

signal-to-interference-plus-noise ratio (SINR) of MMSE receiver is obtained when the number

of APs and users grow infinitely large, which is an accurate approximation even for a small

number of APs and users.

Performance of cell-free systems are largely influenced by AP locations, which needs

to be optimized according to the user distribution in the system. In chapter 4, using compressed

sensing techniques, two AP location design algorithms are obtained to maximize the sum-

throughput and the minimum-throughput in uplink transmission of cell-free systems. We also

introduce another AP location design algorithm in a small-cell system in which each user is

served by only one AP.

In massive MIMO systems, the downlink linear precoding and uplink decoding oper-

ations require channel state information at the base station, and hence the actual propagation

channels are required to be measured [16]. In chapter 5, we investigate semi-blind channel

estimation for multiuser TDD massive MIMO systems with co-located antenna arrays. We

derive a number of channel estimation algorithms using both uplink training pilots and data

symbols. We derive a tractable expectation-maximization (EM) algorithm using a Gaussian

prior for the unknown data symbols. An alternate EM algorithm is also derived by employ-

ing suitable priors on the channel coefficients, which outperform the EM algorithm with no

channel priors in the low SNR regime. We further derive another semi-blind channel estima-

tion algorithm based on the EM algorithm by using Gaussian mixture model (GMM) for the

unknown data symbols that outperforms the EM algorithm with Gaussian prior as the SNR or

as the number of antennas at the base station increases. Cramer Rao Bounds (CRBs) for semi

blind channel estimation are derived for deterministic and stochastic (Gaussian) data symbol
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models to give us an analytical understanding of the semi blind scheme performance. To get

insight into the behavior of a massive MIMO system, the asymptotic behavior of the CRBs as

the number of antennas at the base station grows is analyzed. In summary, semi-blind channel

estimation methods become closer to the genie-aided maximum likelihood estimator based

on known data symbols as the number of base station antennas increases, making semi-blind

estimation more attractive for massive MIMO systems.
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Chapter 2

Precoding and Power Optimization in

Cell-Free Massive MIMO Systems
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Cell-free massive multiple-input multiple-output (MIMO) comprises a large number

of distributed low-cost low-power single antenna access points (APs) connected to a network

controller. The number of AP antennas is significantly larger than the number of users. The

system is not partitioned into cells and each user is served by all APs simultaneously. The sim-

plest linear precoding schemes are conjugate beamforming and zero-forcing. Max-min power

control provides equal throughput to all users and is considered in this chapter. Surprisingly,

under max-min power control, most APs are found to transmit at less than full power. A power

allocation algorithm is proposed for conjugate beamforming to reduce the number of effec-

tive APs that serve a particular user in cell-free massive MIMO. The zero-forcing precoder

significantly outperforms conjugate beamforming. For zero-forcing, a near-optimal power

control algorithm is developed that is considerably simpler than exact max-min power con-

trol. An alternative to cell-free systems is small-cell operation in which each user is served by

only one AP for which power optimization algorithms are also developed. Cell-free massive

MIMO is shown to provide five- to ten-fold improvement in 95%-likely per-user throughput

over small-cell operation.

2.1 Introduction

A comprehensive wireless system should provide uniformly good service throughout

a designated area. To that end, massive multiple-input multiple-output (MIMO) has attracted

considerable attention as a candidate for the fifth generation physical layer technology [15],

[10], [25].

Massive MIMO is a scalable form of multiuser MIMO. In [13], [14], [26] MIMO

systems, with the assumptions that both ends of the link know the propagation channel and

dirty paper coding is used, were studied. It was shown that such systems have very large
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capacity that grows along with the number of base station antennas. The above assumptions,

however, would forever limit the practical size of the wireless system. Instead massive MIMO

systems proposed in [15] assume that only the base stations know the propagation channels

and simple linear precoding is used instead of dirty paper coding. These assumptions make

massive MIMO systems fully scalable with respect to the number of base station antennas.

Multi-cell massive MIMO systems, in which each cell is served by an array of co-

located antennas, are well understood, e.g., see [24], [11] and references therein. A diametri-

cally opposite massive MIMO deployment that would serve the same designated area, which

could be an isolated village, a college campus, or an entire metropolitan area, is a network

comprising a large number of randomly-located single-antenna access points (APs), with each

user served simultaneously by all of the APs. We call such a system Cell-Free Massive MIMO.

Some of the limitations and advantages of the networks with distributed APs have been

already studied under different names and settings, e.g., see [27–37]. In [31], the authors stud-

ied distributed algorithms for multi-cell beamforming and power allocation without data shar-

ing among base stations. By contrast, in our work, all APs transmit data symbols to the users.

In [32], performance of cooperative multi-cell zero-forcing (ZF) beamforming with a user se-

lection scheme has been studied. The system performance is investigated in terms of sum-rate.

In [33], downlink performance of multi-cell system with ZF beamforming in frequency divi-

sion duplexing (FDD) system is studied in terms of sum-rate. In [34], the average sum-rate

performance of distributed antennas for massive MIMO systems in uplink transmission is in-

vestigated, while all users transmit with the same power. In contrast, in this work, we consider

time-division duplex operation (TDD) and analyze downlink performance of cell-free systems

with emphasis on per-user throughput, rather than sum-throughput, by using max-min power

allocation algorithms. In [35], capacity lower bounds of a multi-cell massive MIMO system

has been derived for uplink and downlink transmission. In [36], asymptotic rate performance
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of downlink multiuser systems with distributed antennas and perfect channel state information

(CSI) was studied. By contrast, we take into account the effects of imperfect CSI with finite

number of APs and users. In [37], the authors study uplink performance of large-scale dis-

tributed antenna settings with matched filtering (MF) receiver. They exploit low-rankness of

users’ channel covariance matrices to improve channel estimation and interference rejection

under the assumption that all users share the same pilot sequence. However, further research

is required in order to thoroughly understand these systems from the massive MIMO point of

view with the goal of providing uniformly good service for all, or almost all, users.

In [38], [39], performance of conjugate beamforming (CB) in cell-free systems has

been investigated with emphasis on pilot assignment algorithms to mitigate pilot contami-

nation effect. The max-min power allocation in CB is used to increase the system perfor-

mance. This power allocation algorithm involves a non-convex optimization problem with

high computational complexity. In this work for CB precoder we propose low complexity

power allocations algorithms (see section 2.3.2, 2.3.3, and 2.3.4) that have only moderate loss

in terms of the system performance, but have significantly smaller complexity than the algo-

rithm in [38], [39]. We further consider ZF precoder in cell-free systems with max-min power

allocation, and introduce a simple near-optimal power control algorithm. We assume low mo-

bility users. Since users move slowly the number of available orthogonal pilots is significantly

larger than the number of users (see section 2.2.2), and therefore the pilot contamination is

negligible in our systems.

Similar to [38], [39] we assume that all APs are connected to a network controller

(NC) via an unspecified backhaul network. The controller conducts linear precoding and

optimizes the transmit powers to improve the system performance. We propose several power

allocation algorithms, with different levels of complexity. We further derive capacity lower

bounds for cell-free systems utilizing CB and ZF precoders. These bounds take into account
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the channel estimation error, the effective channel uncertainty at users, and other important

parameters, that many papers ignore. The performance of cell-free systems in [38] is compared

to that of small-cell systems using MF receiver. As a counterpart we also consider a small-cell

system in which a user is served only by a single AP which is typically the closest one. For

small-cell system we also consider MF receiver and ZF precoder, propose power optimization

algorithms, and derive capacity lower bounds.

For performance criteria we use the minimum rate among all users and 5%-outage

rate, which is the smallest rate among 95% of the best users. In future wireless systems all,

or almost all, users will have to be served with large rates. So we believe that these criteria

are more meaningful compared with the often used sum throughput. We formulate a number

of max-min optimization problems to optimize the above criteria. The max-min optimization

does not necessarily give the optimal 5%-outage rate. We still use the max-min optimization as

an engineering tool for optimization of this criterion, and it leads to good system performance.

The main results of this work are the following. We show that cell-free systems give

a very significant gain (5− 10 fold) over small-cell systems, i.e., a system where each user is

served by a single AP. The ZF precoder, significantly outperforms CB. We present a counter-

intuitive result that the optimal max-min power control for CB requires that most APs would

transmit with powers that are visibly smaller than the transmit power limit. Motivated by

this result, we propose low complexity power allocation algorithms for CB precoder. In a

real life cell-free system, each user will be served not by all APs, but by a subset of them

located around the user, which can be viewed as an intermediate case between cell-free and

small-cell systems. To this end, we further propose a max-min power allocation algorithm for

CB precoding based on `1-norm penalty that decreases the number of APs that serve a user.

For ZF precoder we propose a suboptimal power allocation algorithm scheme. We show that

this algorithm has near-optimal performance while its complexity is very low. For small-cell
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systems we also consider MF receiver and ZF precoder and power allocation algorithms. We

conclude that cell-free systems, with ZF precoder in particular, outperform small-cell systems

(about 10 times) in terms of 5%-outage rate. To the best of our knowledge, the above technical

problems with our system settings have not been addressed in the literature yet.

The chapter is organized as follows. Section 2.2 describes the system model and chan-

nel estimation. In sections 2.3 and 2.4, we investigate CB and ZF precoders for cell-free

massive MIMO system with max-min power control. In section 2.5, we consider small-cell

systems. Finally, simulation results are presented in section 2.6.

Throughout the chapter superscripts T ,∗ , and H denote transpose, complex conjugate

and hermitian operations respectively. Uppercase and bold symbols are utilized to denote

matrices and vectors respectively, and E() is the expectation operator. Operator diag{A}

denotes the column vector of the main diagonal elements of matrix A.

2.2 System Model and Channel Estimation

2.2.1 Cell-Free System Model

Unlike cellular wireless networks, in a cell-free system we do not partition the network

into cells and do not assign users to particular base stations. Instead we assume that a geo-

graphical area is covered by M randomly distributed single antenna APs. We assume that in

this area there areK single antenna users, and thatM � K. An example of a cell-free system

is shown in Figure 2.1. In contrast to a standard cellular network, in a cell-free system each

user is served not by one base station, but by all APs simultaneously. All APs are connected

to a NC (not shown in Figure 2.1).

We use a flat fading channel model for each OFDM subcarrier. The OFDM subcarrier
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Figure 2.1: Cell-free system. All APs serve all users.

index is omitted for simplicity. Size of the overall area is considered small enough that the

largest difference between propagation time from any two APs to a user is smaller than the

duration of the OFDM cyclic prefix. The channel coefficient between AP m and user k is

given by

gmk =
√
βmkhmk, (2.1)

where βmk is the large scale fading coefficient which accounts for path loss and shadowing

effects. This coefficient changes slowly and hence can be accurately estimated and tracked.

Throughout the text we assume the NC knows the coefficients βmk,∀m, k. The second factor

hmk ∼ CN (0, 1) is the small scale fading coefficient. We assume that these coefficients are

i.i.d. random variables that stay constant during a coherent interval and are independent in

different coherent intervals. For a wide-band OFDM system βmk is independent of frequency,

while hmk has frequency dependence and a Nyquist sampling interval in frequency that is

equal to the reciprocal of the channel delay-spread. We denote by G ∈ CM×K , [G]mk = gmk

the channel matrix between all APs and users. We further assume channel reciprocity, i.e.,

that the uplink and downlink channel coefficients are the same.

We focus on the scenario of users with mobility less than 10km/h. In other words we
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assume that most of our users are pedestrians, which is typically the case in real life scenarios.

2.2.2 Channel Estimation

The main idea of cell-free systems is that each user is served by all APs. In order

to reduce interference between signals intended for different users the APs should form their

transmitted signals by taking into account the channel coefficients. Thus, estimation of these

coefficients is an important part of the communication protocol.

In this work we assume that the TDD protocol described in [40, Figure 3], is used.

At the first step of this protocol all users simultaneously and synchronously transmit pilot

sequences ψ1, · · · ,ψK ∈ Cτ , which propagate to all M APs. At the second step all APs get

estimates ĝmk of gmk and use these estimates to beamform data to all users.

We assume that pilot sequencesψi, i = 1, · · · , K, assigned to the corresponding users

are orthonormal, i.e., ψH
i ψj = δij . As we mentioned before we assume the mobility of users

less than 10km/h. For such speeds and carrier frequency of 1.9 GHz, the coherence interval is

large, which enables using a large number of orthogonal pilots for channel estimation. Hence

it is reasonable to assume that these pilots are assigned to users in such way that users with

the same pilot are located far away from each other and the pilot contamination (coherent

interference resulting from two or more users sharing the same pilot sequence) is negligible.

Remark 2.1. In the case of cell-free systems with users of high mobility, the number of orthog-

onal pilots is significantly smaller and the pilot contamination caused by reuse of the same

pilots may result in additional interference, see [39]. The main goal of this chapter, however,

is to understand the phenomenology associated with precoding techniques (CB and ZF) and

power allocation algorithms in cell-free systems. We believe that the obtained power alloca-

tion algorithms will be applicable in cell-free system where some users have high mobility.
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The received signal sequence in the training step at the m-th AP is

ym =
√
ρrτ

K∑
i=1

gmiψi +wm, (2.2)

where ρr is the uplink power andwm ∼ CN (0, Iτ ) is additive noise and τ is the length of pilot

sequences. AP m computes the MMSE estimate of gmk as

ĝmk =

√
ρrτβmk

1 + ρrτβmk
ψH
k ym. (2.3)

Let g̃mk = gmk − ĝmk be the channel estimation error. It is well known that ĝmk and g̃mk are

uncorrelated and (see [41, Chapter 11])

ĝmk ∼ CN (0, αmk) , g̃mk ∼ CN (0, βmk − αmk) , (2.4)

where αmk =
ρrτβ2

mk

1+ρrτβmk
.

In the following sections we analyze two main linear precoding schemes in downlink

transmission: conjugate beamforming precoding and zero-forcing precoding. As mentioned

in section 2.1, throughout this chapter we consider the max-min optimization problems.

2.3 Conjugate Beamforming

In this section, we consider CB precoding combined with transmit power optimization.

Conjugate Beamforming with Power Optimization

• AP m estimates βmk, k = 1, · · · , K and sends them to the NC.

• NC computes power coefficients ηmk, ∀m, ∀k (defined later in this section) as a function

of large scale fading coefficients (βmk) and sends them to corresponding APs.

• Users synchronously transmit pilot sequences ψi, i = 1, · · · , K.

• AP m gets estimates ĝmk, k = 1, · · · , K.
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• With conjugate beamforming precoding, the m-th AP transmits the signal

xm =
√
ρf

K∑
i=1

√
ηmiĝ

∗
misi, (2.5)

where si is data signal intended to user i, with E (|si|2) = 1, and ρf is the transmit

power limit of each AP. The quantity ηmi is the power coefficient used by AP m for

transmission to user i. By optimizing coefficients ηmi we hope to significantly increase

the system performance.

The signal received by the k-th user is

yk =
M∑
m=1

gmkxm + wk, (2.6)

wherewk ∼ CN (0, 1) is additive noise. We assume that user k is only aware of the statistics of

the estimated channel coefficients E (|ĝmk|2) = αmk, ∀m, which is a result of channel harden-

ing in massive MIMO systems [15]. A general capacity lower bound for massive MIMO sys-

tems has been derived in [35] and a more specific bound for cell-free systems is given in [39].

With our notations, the downlink achievable rate of user k for CB is Rk = log2(1 + SINRk),

where

SINRk =
ρf

(∑M
m=1

√
ηmkαmk

)2

1 + ρf
∑K

i=1

∑M
m=1 ηmiβmkαmi

. (2.7)

For the sake of completeness, we present a proof of this bound in appendix 2.9.A.

Note that the achievable rate using the SINR expression in (2.7) is obtained under the

assumption that users are only aware of statistics of channel coefficients. In [39, Figure 2] it is

shown that in massive MIMO systems the achievable rate (Rk) obtained by this assumption is

close to the achievable rate in the case where the users know the instantaneous channel gain.

Also note that the achievable rate using (2.7) is a function of only the large scale fading coeffi-

cients and not of the small scale fading coefficients. Therefore, for conducting transmit power
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optimization it is enough for APs to transmit (by backhaul network) only coefficients βmk to

the NC. Using these coefficients, the NC finds optimal, or near optimal, power coefficients

ηmk and conveys them to the corresponding APs. Note that coefficients βmk do not depend

on OFDM subcarrier index and change slowly (about 40 times slower than small scale fading

coefficients [42]). Thus, the overall needed backhaul traffic is quite small. In a wide-band

system the SINR has no frequency dependence, and power coefficients are independent of

frequency as well.

In the following subsections we present optimal and suboptimal power optimization

algorithms.

2.3.1 Optimal Power Allocation

We would like to find power coefficients ηmk, ∀m, ∀k, that maximize the minimum

SINRk, ∀k, under the constraint that the transmit power of each AP is limited by ρf . Using

(2.5), we obtain that the expected transmitted power of the m-th AP is equal to

E
(
|xm|2

)
= ρf

K∑
i=1

ηmiαmi.

Denoting η = (ηmk : m = 1, · · · ,M, k = 1, · · · , K), we formulate the following

max-min power allocation problem:

max
η

min
k

SINRk(η) =
ρf

(∑M
m=1

√
ηmkαmk

)2

1 + ρf
∑K

i=1

∑M
m=1 ηmiβmkαmi

(2.8a)

s.t.
K∑
i=1

ηmiαmi ≤ 1, m = 1, · · · ,M. (2.8b)

The problem in (2.8) is quasiconcave (see [39, Proposition 1]), which allows us to use

the bisection method (see [43, chapter 4.2.5]). In order to employ the bisection method, we
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first formulate the following equivalent problem

max
η,t

t

s.t. SINRk(η) ≥ t, k = 1, · · · , K, and (2.9a)

K∑
i=1

ηmiαmi ≤ 1, m = 1, · · · ,M. (2.9b)

Since SINRk(η) is quasiconcave, SINRk(η) ≥ t, k = 1, · · · , K, is a convex set. Thus, for a

fixed t, the domain of constraints in (2.9) is convex and it is easy to determine whether a given

t is feasible or not. Hence we can apply the bisection method as follows. First, we choose

an interval (tl, tu) that contains the optimal value topt. Next, we check the feasibility of the

midpoint t = (tl+tu)
2

. If t is feasible, the search interval is updated to (t, tu), otherwise it is

updated to (tl, t). We continue until the search interval is small enough.

The complexity of the bisection method is quite high. In next three subsections we

consider algorithms for suboptimal power allocations with significantly smaller complexities.

2.3.2 Full Power Transmission

A simpler power control strategy, is to permit every AP to transmit with full power,

i.e.,
∑K

i=1 ηmiαmi = 1. In this case the denominator of SINR in (2.7) becomes a constant (not

a function of ηmk) and the max-min power allocation problem can be formulated as follows

max
η

min
k

SINRk(η) =
ρf

(∑M
m=1

√
ηmkαmk

)2

1 + ρf
∑M

m=1 βmk
(2.10a)

s.t.
K∑
i=1

ηmiαmi = 1, m = 1, · · · ,M. (2.10b)

Proposition 2.1. The objective function mink SINRk(η) in (2.10a) is a concave function of η

and the problem (2.10) is convex.

Proof. See Appendix 2.9.B.
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Numerical algorithms for solving convex optimization problems are well known, e.g.,

see [43], and have significantly smaller complexity than the bisection method.

Rather surprisingly, our numerical results presented in Figure 3.1 in section 2.6 show

that the full power transmission results in more than 100% degradation in terms of 5%-outage

rate compared to the optimal max-min power allocation.1 This indicates that the optimal max-

min power control requires that some of the APs transmit at less than full power.

To explain why the optimal mink SINRk in (2.8) is not achieved with full power, we

point out that the problem is quadratic and hence, the optimal point is likely in the interior of

the admissible set. This is in contrast to linear optimization, where the optimal value is always

achieved on the boundary, i.e., full power transmission.

This observation prompted us to check how the optimal transmit power of AP m (at

the optimal solution of (2.8)) formulated by

popt
m = ρf

K∑
i=1

ηmiαmi,

depends on the maximal large scale fading coefficient βmax
m = maxk βmk associated with this

AP. In Figure 2.3 in section 2.6, we present the scatter plot of popt
m versus βmax

m . One can

observe that if the number of APs (M) is large, the optimal powers of most of the APs are

quite small and that popt
m and βmax

m are strongly correlated.

Motivated by this nontrivial observation, we propose below two heuristic algorithms

that significantly improve the performance of full power transmission and have moderate com-

plexity.

1Parameters of the numerical experiments are presented in full detail in section 2.6.
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2.3.3 Heuristic Fixed-Power Transmission

With heuristic fixed-power transmission we assume that AP m transmits with fixed

total power pm(βmax
m ) = e(−λβmax

m ), where the exponent factor λ is chosen to fit the best expo-

nential function to the power scatter plot in Figure 2.3 for a given M and K. Note that both

the power scatter plot and λ are obtained offline “once and forever” and therefore they do not

contribute to the complexity of the power optimization.

With this assumption, the max-min power allocation is given by

max
η

min
k

SINRk(η) =
ρf

(∑M
m=1

√
ηmkαmk

)2

1 + ρf
∑M

m=1 pmβmk
(2.11a)

s.t.
K∑
i=1

ηmiαmi = pm, m = 1, · · · ,M. (2.11b)

This algorithm has the same online complexity as the optimization problem in (2.10).

However we get a significant, about 140%, improvement in terms of 5%-outage rate (see

Figure 3.1).

2.3.4 Heuristic Uniform Power Coefficients

Now we would like to drastically reduce the complexity of finding power coefficients

ηmk without loosing much of the performance.

We again assume that AP m transmits with fixed power pm(βmax
m ) = e(−λβmax

m ) and

that power coefficients are only functions of m. Thus, ηmk is the same for all users, i.e.,

ηmk = ηm, ∀k, and the power coefficients can be calculated directly from the per antenna

power constraints (2.11b) as

ηm =
pm (βmax

m )∑K
i=1 αmi

. (2.12)

From online computational complexity point of view, the optimal power allocation

algorithm in section 2.3.1 is the heaviest amongst all methods. The full power transmission
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and the heuristic fixed-power transmission in sections 2.3.2 and 2.3.3 have similar complexity,

while for large M the performance of the heuristic fixed-power transmission is closer to that

of the optimal power allocation algorithm (see section 2.6). At each step of the optimal power

allocation algorithm, we need to solve the convex feasibility problem (2.9). Whereas in the

heuristic fixed-power transmission, we only need to solve one convex problem (2.11). More-

over, the constraints in (2.11b) are active, which can reduce the complexity of the search in

the convex optimization problem. The heuristic uniform power control (2.12) is the simplest

method with almost zero online complexity. In addition, this power control can be performed

at each AP independently rather than at the NC, and therefore does not require a backhaul

link, which could be a crucially important feature for building practical communication sys-

tems. Moreover, according to the results of section 2.6, the performance of this scheme is

quite close to the performance of the scheme with heuristic fixed-power transmission. Note

that the heuristic power control methods require obtaining the power scatter plot and the fitting

of the exponential function which are done offline only one time.

Remark 2.2. Note that the exponential behavior of power scatter plot in Figure 2.3 holds

only for large M . Therefore, the performance of the heuristic power control methods is closer

to the optimal one if M is considerably larger than K, which is the case in massive MIMO

systems.

2.3.5 Access Point Selection Scheme

In practical cell-free systems, each user will be served by only a portion of APs. In

numerical results for optimal max-min power allocation algorithm, we show that in fact this

is the case and only a fraction of APs serve each user in cell-free systems (see Figure 2.8). In

this section, we propose a power allocation algorithm for CB precoder to further reduce the
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number of APs that serve each user in cell-free massive MIMO. We achieve this by imposing

an `1-norm penalty of the square root of power coefficients in max-min power allocation and

enforcing the power coefficients to be sparse. Let topt be the optimal mink SINRk at the

optimal solution of (2.9). For a constant parameter 0 < c < 1, we formulate the max-min

optimization problem by adding a sparsity penalty to the objective function as follows

min
η

K∑
i=1

M∑
m=1

√
ηmi (2.13a)

s.t. SINRk(η) ≥ c× topt, k = 1, · · · , K, and (2.13b)

K∑
i=1

ηmiαmi ≤ 1, m = 1, · · · ,M.

We can turn problem (2.13) into a convex optimization problem by a simple change of variable

κmi =
√
ηmi. Note that in order to solve problem (2.13), one needs to first obtain the optimal

mink SINRk in (2.9) that is denoted by topt. The `1-norm penalty in (2.13), simply enforces

the power coefficients to be sparse. In other words, ηmk will be close to zero for most values of

mmeaning that the corresponding APs will not be transmitting to the k-th user. Therefore, the

effective number of APs serving each user will be smaller than M . At the optimal solution of

(2.13), SINR of all users will be equal to c×topt < topt, where c is a predetermined constant that

controls the sparsity level of the power coefficients. When c is small, the power coefficients

will be more sparse. However, it comes at the expense of lower achievable rates (see Figure

2.8).

2.4 Zero-Forcing

In this section, we investigate the downlink performance of a cell-free system with ZF

precoder.

Zero-Forcing Precoder with Power Optimization
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• AP m estimates βmk, k = 1, · · · , K and sends them to the NC.

• Users synchronously transmit pilot sequences ψi, i = 1, · · · , K.

• AP m gets estimates ĝmk, k = 1, · · · , K and sends them to the NC.

• NC computes power coefficients as a function of large scale fading coefficients (βmk).

• NC forms ZF precoding vectors using channel estimates (ĝmk) and power coefficients

(ηmk), and then sends precoding vectors to the corresponding APs.

The idea behind ZF linear precoder is that signal transmitted to a user does not create

interference to other users [8]. Usually ZF precoder is defined by the pseudo inverse matrix

A = Ĝ∗
(
ĜT Ĝ∗

)−1

, where [Ĝ]mk = ĝmk is an estimate of channel matrix G. With this A we

have ĜTA = IK , i.e., the interference is completely canceled. In [44], it was pointed out that

this ZF precoder is in general suboptimal for the power control problem subject to per antenna

power constraints and finding an optimal precoder involves numerical algorithms. However,

for simplicity, we will use the above ZF precoding matrix. Let H ∈ RM×K be a matrix with

entries [H]mk =
√
ηmk. We define precoding matrix for the cell-free power allocation problem

as AZF = A�H , where � is the Hadamard or entry-wise product. Elements of AZF are

[AZF ]mk = aZFmk =
√
ηmkamk, m = 1, · · · ,M, k = 1, · · · , K. (2.14)

In order for ĜTAZF to be diagonal, to avoid interference, it is necessary to have η1k = · · · =

ηMk for any k. Thus power coefficients should be only functions of k, i.e., ηmk = ηk, and

therefore

AZF = Ĝ∗(ĜT Ĝ∗)−1P, (2.15)
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where P is a diagonal matrix with
√
η1, . . . ,

√
ηK on its diagonal. The k-th user receives

yk =
√
ρfg

T
kAZFs+ wk =

√
ρf (ĝk + g̃k)

T Ĝ∗(ĜT Ĝ∗)−1Ps+ wk

=
√
ρfηksk︸ ︷︷ ︸
J0

+
√
ρf g̃

T
k Ĝ
∗(ĜT Ĝ∗)−1Ps︸ ︷︷ ︸
J1

+wk, (2.16)

where gk = (g1k, . . . , gMk)
T , s = (s1, . . . , sK)T , J0 is the signal part, and J1 results from the

channel estimation error. The achievable rate expression with ZF precoder is presented below.

Theorem 2.1. An achievable rate of user k with ZF precoder is log2 (1 + SINRk,ZF ), with

SINRk,ZF =
ρfηk

1 + ρf
∑K

i=1 ηiγki
, (2.17)

where γki is the i-th element of the following vector

γk = diag
{
E
(

(ĜT Ĝ∗)−1ĜTE
(
g̃∗kg̃

T
k

)
Ĝ∗(ĜT Ĝ∗)−1

)}
, (2.18)

and E
(
g̃∗kg̃

T
k

)
is a diagonal matrix with (βmk − αmk) on its m-th diagonal element.

Proof. See Appendix 2.9.C.

2.4.1 Optimal Power Allocation

Let aT[1], · · · ,aT[M ] and ĝT[1], · · · , ĝT[M ] be the rows of matrices AZF and Ĝ respectively.

We define vector

δm = diag
{
E
(

(ĜT Ĝ∗)−1ĝ[m]ĝ
H
[m](Ĝ

T Ĝ∗)−1
)}

. (2.19)

The transmitted power from AP m is given by

ρfE
(
aT[m]a

∗
[m]

)
= ρfE

((
ĝH[m](Ĝ

T Ĝ∗)−1P
)(
ĝH[m](Ĝ

T Ĝ∗)−1P
)H )

= ρf trace
(
P 2E

(
(ĜT Ĝ∗)−1ĝ[m]ĝ

H
[m](Ĝ

T Ĝ∗)−1
))

= ρf

K∑
i=1

ηiδmi. (2.20)
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We formulated the max-min power allocation problem with per antenna power con-

straints as follows

max
η

min
k

SINRk,ZF (η) =
ρfηk

1 + ρf
∑K

i=1 ηiγki
(2.21a)

s.t.
K∑
i=1

ηiδmi ≤ 1, m = 1, ...,M. (2.21b)

As we mentioned earlier, the power coefficients must be functions of k only in order to cancel

the interference to other users. Despite this fact, the transmitted power from AP m to user k,

ρf |aZFmk |2 = ρfηk|amk|2, is function of both m and k.

The numerator and denominator of SINRk,ZF (η) in (2.21a) are linear functions of η.

Thus SINRk,ZF (η) is a quasilinear function and we can again use the bisection method to

solve (2.21). The feasibility problem at each step of bisection method can be expressed as

find η

s.t. SINRk,ZF (η) ≥ t, k = 1, · · · , K, (2.22a)

K∑
i=1

ηiδmi ≤ 1, m = 1, ...,M. (2.22b)

The following Lemma is very useful since it allows us to significantly reduce the com-

plexity of problem (2.22) and further problems (2.21), (2.32), (2.37), and (2.38). Despite the

claim in Lemma 2.1 being simple, the proof turned out to be nontrivial (see Appendix 2.9.D).

Lemma 2.1. Suppose η and η′ > 0 are two vectors such that

SINRk,ZF (η) = t and SINRk,ZF (η′) ≥ t, for k = 1, · · · , K.

Then we have 0 ≤ η ≤ η′, where the vector inequality is applied element-wise.

Proof. See Appendix 2.9.D.
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Corollary 2.1. If SINRk,ZF (η) = t, ∀k, doesn’t have a feasible solution satisfying constraints

in (2.22b), then SINRk,ZF (η) ≥ t, ∀k, doesn’t have a feasible solution either.

Proof. See Appendix 2.9.D.

According to Corollary 2.1, to check the feasibility of SINRk,ZF (η) ≥ t, it suffices to

only check the feasibility of SINRk,ZF (η) = t, which is equivalent to solving a system of K

linear equations. This allows us to avoid solving the convex feasibility problem (2.22).

Note that γk in (2.18) and δm in (2.19) are functions of only the large scale fading

coefficients and the expectation is taken over small scale fading coefficients. The NC can

estimate them in two ways:

1. Every time the large scale fading coefficients change, NC generates multiple dummy ran-

dom variables ĝdummy
mk ∼ CN (0, αmk) that have the same statistics as the channel coefficients

defined in (2.4). These random variables are then used to compute γk and δm.

2. An alternative way is to update δm using exponential smoothing. Denote the current esti-

mate by δ̂m. Every time the NC obtains new estimates of channel coefficients Ĝ, it updates

δ̂m = αδ̂m + (1 − α)δm,curr, where δm,curr = diag
{

(ĜT Ĝ∗)−1ĝ[m]ĝ
H
[m](Ĝ

T Ĝ∗)−1
}

and

0 < α < 1 is a constant. Parameter γk can be estimated using a similar procedure.

Note that if we use method 1 to compute γk and δm, the NC needs to perform the optimal

power control algorithm in (2.21) only when the large scale fading coefficients change.

2.4.2 Low Complexity Power Allocation Algorithm

The computational complexity of power allocation can be further reduced by obtaining

an accurate approximation of the optimal solution of (2.21) instead of finding the true solution.

When the channel estimation error is zero, i.e., g̃mk = 0, the max-min power control for ZF
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precoder has a closed form solution which we use to obtain simple heuristic power coefficients

(ηapx) as an approximate solution to problem (2.21). If we assume that g̃mk is zero, then the

optimization problem takes the form

max
ηpc

min
k

SINRpc
k,ZF (ηpc) = ρfη

pc
k (2.23a)

s.t.
K∑
i=1

ηpc
i δ

pc
mi ≤ 1, m = 1, ...,M, (2.23b)

where the superscript pc denotes perfect CSI and δpc
mi is the i-th element of the following vector

δpc
m = diag

{
E
(

(GTG∗)−1g[m]g
H
[m](G

TG∗)−1
)}

, (2.24)

which is equivalent to the vector δm in (2.19) with g̃mk = 0.

Lemma 2.2. Suppose ηpc is the optimal solution of the optimization problem (2.23), then there

exists m′ ∈ {1, · · · ,M} such that AP m′ transmits with full power, i.e.,
∑K

i=1 η
pc
i δ

pc
m′i = 1.

Furthermore, the optimal power coefficients are given by ηpc
i = 1/

∑K
i=1 δ

pc
m′i, ∀ i = 1, · · · , K.

Proof. See Appendix 2.9.E.

This Lemma prompts us to use the heuristic solution

ηapx
1 = · · · = ηapx

K = 1/

(
max
m

K∑
i=1

δmi

)
, (2.25)

as an approximation of the optimal solution of (2.21). Note that δmi in (2.25) is defined in

(2.19) and contains the effect of channel estimation error.

Results presented in Figures 3.1 and 3.2 in section 2.6, show that the rates obtained by

this approximation, i.e., log2 (1 + SINRk,ZF (ηapx)), are virtually optimal, while the computa-

tional complexity of (2.25) is drastically smaller than the one of (2.21).

An intuitive explanation of the virtual optimality of (2.25) is the following. Lemma

2.2 is based on the assumption that channel estimation error is zero, i.e., g̃mk = 0. In real life
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scenario with enough uplink pilot transmit power, we are close to this regime. According to

(2.4), Var(g̃mk)/Var(ĝmk) = 1/ρrτβmk. If AP m is close to user k, then the above ratio is

typically small, which can be interpreted as that g̃mk is negligible. The APs that are far from

user k may have larger estimation error, however, their contribution in transmission to user k

is not significant, and hence the estimation error does not degrade the performance.

The following proposition rigorously shows that with enough uplink power, approxi-

mate power control results in near-optimal SINR values.

Proposition 2.2. Let ηopt and ηapx respectively denote the optimal solution of the max-min

power control problem (2.21) and the power coefficients defined by (2.25). For every ε > 0

there exists a threshold ρr(ε) such that whenever the uplink pilot transmit power ρr > ρr(ε),

∥∥SINRk,ZF (ηopt)− SINRk,ZF (ηapx)
∥∥ < ε, k = 1, · · · , K. (2.26)

Proof. See Appendix 2.9.F.

Note that since all norms, e.g., 1-norm, Frobenius norm, and infinity-norm, on a finite-

dimensional Banach space are equivalent, any norm can be used in Proposition 2.2.

We now evaluate the complexity of computing power coefficients ηapx in (2.25), which

is equivalent to computing δm, ∀m. The dominant factor in computing δm in both methods

discussed in section 2.4.1, is computing δm,curr = diag
{

(ĜT Ĝ∗)−1ĝ[m]ĝ
H
[m](Ĝ

T Ĝ∗)−1
}

(either

using true channel estimates or dummy random variables). Calculation of δm,curr consists

of multiplying matrices of size K × M and M × K, a matrix inversion of size K × K,

multiplication of matrix of size K × K by vector of size K × 1 for M times, and MK

multiplications. Thus, under the assumption of M � K, the dominant factor is of order

O(MK2), which is the same as the computational complexity of ZF precoding matrix A =

Ĝ∗(ĜT Ĝ∗)−1. Therefore, the power control method defined in (2.25) is not the limiting factor

in terms of complexity.
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2.5 Small-Cell

Small-cell systems are often considered as a candidate for future generations of wire-

less systems. Challenges and potentials of small-cell systems are addressed, for example,

in [45], [39]. Below we estimate the performance of small-cell systems and compare it with

the performance of cell-free systems. We use the same description of small-cell systems as

in [39].

We assume that M APs and K users are randomly located within the same area as

in the case of cell-free systems. Each AP serves at most one user at a time and M − K

access points remain silent as shown in Figure 2.2. This can be viewed as M small cells, each

equipped with a single antenna AP. Optimal assignment of K out of M access points to K

users is a hard combinatorial problem. A simple greedy solution is to assign to user k the AP

mk with the largest slow fading coefficient (βmkk) among available APs, i.e.,

mk = argmax
n: AP n is available

βnk. (2.27)

Figure 2.2: Small-cell system. Each user is served by one AP.

Since each user is served by only one AP, channel does not harden and we assume that

user k knows ĝmk,k either via a downlink training sequence or error-free feedback from AP

32



mk. AP mk does not conduct any precoding, but simply transmits data symbol sk and user k

receives

yk =
√
ρfηk gmk,k sk +

K∑
i=1,i 6=k

√
ρfηi gmi,k si + wk, (2.28)

where wk ∼ CN (0, 1) is additive Gaussian noise and ηk ∈ [0, 1] is power coefficient of AP

mk. User k uses MF receiver, i.e., ŝk =
ĝ∗mk,k
|ĝmk,k|

yk, to recover data signal sk. Achievable rate of

the k-th user with MF is given by [39]

E (log2 (1 + SINRk)) =
1

ln 2
eµkEi(µk), (2.29)

where

SINRk =
ρf ηk|ĝmk,k|2

1 + ρf
∑K

i=1 ηi βmi,k − ρfηkαmk,k
, (2.30)

and

µk =
1 + ρf

∑K
i=1 ηi βmi,k − ρfηkαmk,k
ρf ηkαmk,k

, (2.31)

and Ei(x) =
∫∞
x

e−t

t
dt is the exponential integral. Similar to the cell-free system, we also

apply the max-min power allocation with per antenna power constraints

max
η

min
k

SINRk(η)

s.t. 0 ≤ ηk ≤ 1, k = 1, · · · , K. (2.32)

Similar to (2.21) this optimization problem is quasiconcave and therefore can be solved by

using the bisection method. A lemma and corollary similar to Lemma 2.1 and Corollary 2.1

can be proved for the above optimization problem. Therefore for the feasibility check it is

enough to solve a system of K linear equations.

Simulation results in section 2.6 show that ZF precoder in cell-free systems signifi-

cantly outperforms CB precoder. Hence it is natural to ask whether small-cell systems with
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ZF precoder would have better performance compared to MF receiver. Below we formulate

the corresponding power allocation problem for ZF precoder in small-cell systems and answer

this question negatively.

We assume that K selected APs denoted by m1, · · · ,mK , are connected via a back-

haul network and jointly form the precoding matrix A to serve K users. Denote by Ĝ =

[ĝmi,k]1≤i,k≤K the estimated channel matrix between all selected APs and all users in the small-

cell system. With full rank assumption of Ĝ, the precoding matrix is A =
(
ĜT
)−1

P , where

P is a diagonal matrix with
√
η1, · · · ,

√
ηK on its diagonal. The received signal at the k-th

user is given by

yk =
√
ρfηksk︸ ︷︷ ︸
J0

+
√
ρf g̃

T
k (ĜT )−1Ps︸ ︷︷ ︸
J1

+wk, (2.33)

where g̃k = [g̃m1,k, · · · , g̃mK ,k]
T is the estimation error of channel coefficients between all

selected APs and user k and wk ∼ CN (0, 1) is additive Gaussian noise.

Theorem 2.2. An achievable rate of the k-th user in small-cell scheme with ZF precoding is

log(1 + SINRk,ZF ), where SINRk,ZF is given by

SINRk,ZF =
ρfηk

1 + ρf
∑K

i=1 ηiνki
, (2.34)

where νki is the i-th element of the following vector

νk = diag
{
E
(

(Ĝ∗)−1E
(
g̃∗kg̃

T
k

)
(ĜT )−1

)}
, (2.35)

and E
(
g̃∗kg̃

T
k

)
is a diagonal matrix with βmi,k −

ρrτβ2
mi,k

1+ρrτβmi,k
on its i-th diagonal element.

Proof. See Appendix 2.9.G.

Let αT[m1], · · · ,αT[mK ] be the rows of matrix
(
ĜT
)−1

and define vector σmk by

σmk = diag
{
α∗[mk]α

T
[mk]

}
. (2.36)

34



Then the instantaneous transmitted power from AP mk is ρf
∑K

i=1 ηiσmk,i. The power alloca-

tion problem with ZF precoder and instantaneous transmit power constraints can be expressed

as

max
η

min
k

SINRk,ZF (η) =
ρfηk

1 + ρf
∑K

i=1 ηiνki

s.t.
K∑
i=1

ηiσmk,i ≤ 1, k = 1, ..., K. (2.37)

Let ζmk = E (σmk), where the expectation is taken over small scale fading coeffi-

cients. The max-min power allocation problem with average per antenna power constraints is

given by

max
η

min
k

SINRk,ZF (η) =
ρfηk

1 + ρf
∑K

i=1 ηiνki

s.t.
K∑
i=1

ηiζmk,i ≤ 1, k = 1, ..., K. (2.38)

Both problems in (2.37) and (2.38) are quasilinear and similar to (2.21) bisection

method can be used to solve them. Corollary 2.1 reduces the complexity by solving a system

ofK linear equations to check the feasibility of the problem instead of solving an optimization

problem.

2.6 Numerical Results

We consider a square dense urban area of 2× 2 km2 which is wrapped around to avoid

boundary effects. We also consider M randomly placed APs and K randomly placed users.

For large scale fading coefficients we use the COST Hata model

10 log10(βmk) = −136− 35 log10(dmk) +Xmk, (2.39)
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Figure 2.3: Scatter plot of popt
m /ρf versus βmax

m of all APs for CB under optimal power

allocation with different number of APs and K = 4.

where dmk is the distance between APm and user k in kilometers andXmk ∼ N (0, σ2
shad) with

σshad = 8 dB. The noise variance at the receiver is assumed to be σ2
w = 290 × κ × B × NF ,

where κ, B, and NF are Boltzmann constant, bandwidth (20 MHz), and noise figure (9 dB)

respectively. The maximum transmitted power of each AP antenna and user, ρf and ρr, is 200

mW, unless stated otherwise. Length of all pilot sequences is τ = K.

Experiment 1: We would like to show that in the case of CB the max-min optimization

(2.8) requires that most of APs must transmit with low powers as we indicated in section 2.3.2.

Let popt
m = ρf

∑K
i=1 ηmiαmi denote the optimal transmit power of AP m defined by

(2.8). By βmax
m we denote the largest slow fading coefficient between AP m and users, i.e,

βmax
m = maxk βmk. Figure 2.3, shows the scatter plot of popt

m /ρf versus βmax
m for m =

1, · · · ,M , over 100 iterations for three values of M , and K = 4. It can be observed that

for M = 8, almost all APs transmit with full power which shows that when M is small, the

full power transmission scheme given in (2.10), whose complexity is relatively small, is near
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Figure 2.4: Scatter plot of popt
m /ρf versus βmax

m of all APs for ZF under optimal power

allocation with different number of APs and K = 4.

optimal. However, for larger values of M , the APs that have large βmax
m should transmit with

low power. Typically a large βmax
m indicates that the distance between AP m and at least one

of the users is small. So we conclude that in systems with a large number of APs (M ), the

APs that are closer to users usually transmit with smaller power. Comparing cases M = 32

and M = 128 we see that this behavior becomes more and more pronounced as M grows. We

conduct the same experiment for ZF precoding. The results are presented in Figure 2.4. Note

that for ZF precoding, we have also observed that optimal power control strategy does not use

full power for most of the APs.

Experiment 2: In this experiment, we compare achievable per-user rates of cell-free

and small-cell systems with CB and ZF precoding and the power optimization algorithms

considered in the previous sections. For small-cell system we consider two possible scenarios.

In the first scenario, we assume that each AP antenna has the same maximum transmit power

as in the cell-free system, i.e., 200mW. Thus, the hardware cost of APs for both small-cell and
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cell-free systems is about the same. In this scenario, however, the total transmit power limit of

cell-free system, in which all M APs are active, is larger than small-cell system, when only K

APs are active. For this reason, we also consider the second scenario in which the maximum

transmit power of each small-cell AP is equal to M/K · 200mW. In this case the total transmit

power limit for both systems is about the same. However, in the latter case more powerful

amplifiers are needed for each AP antenna in the small-cell system. Also note that according

to Figure 2.3 in the cell-free system, the total transmit power of CB with optimal and heuristic

power allocation algorithms is much less than the total power limit when M is large.

The empirical CDFs of per-user rates for all scenarios with M = 128 and K = 16 are

plotted in Figure 3.1. The horizontal line corresponds to 5%-outage rates. The curve “Small-

Cell MF Full Power" corresponds to the small-cell system with equal power coefficients

(η1 = · · · = ηK = 1), i.e., each AP transmits at full power. The CDF “Cell-Free ZF Low Com-

plexity Power Allocation" (dashed red) corresponds to Rsubopt
k = log2(1 + SINRk,ZF (ηapx)),

where ηapx is the approximate power coefficients defined in (2.25) and SINRk,ZF is given

in (2.17). The curve “Cell-Free ZF Optimal Power Allocation" (solid red) corresponds to

Ropt
k = log2(1 + SINRk,ZF (η)), where η is the optimal solution of (2.21).

First, we note that the performance of cell-free ZF system with low complexity ap-

proximate power allocation defined in (2.25) is virtually indistinguishable from the system

with optimal powers, which coincides with the results of Proposition 2.2. Second, we see

that the cell-free system with ZF precoder significantly outperforms cell-free system with CB,

and all small-cell systems. Third, the small-cell system with MF and full power transmission

provides superior 5%-outage rate compared to the small-cell system with ZF precoder and

max-min power allocation. Finally, we note that in the small-cell system, ZF precoding with

instantaneous power constraints significantly outperforms ZF precoding with average power

constraints.
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Next, we observe that cell-free systems are visibly better than small-cell systems. The

optimal power allocation in cell-free CB and cell-free ZF systems respectively give 5.36 and

10.02 fold improvements in terms of 5%-outage rate over the small-cell system with full power

transmission (η1 = · · · = ηK = 1) and maximum antenna transmit power 200mW. In the

scenario when the maximum antenna transmit power of small-cell system is equal 128/16 ·

200mW, we get 5.26 and 9.83 fold improvements respectively.

Furthermore, it is important to note that 5%-outage rate of cell-free CB with optimal

max-min power allocation is close to 5%-outage rates of the cell-free with heuristic power

allocations.

It is also interesting to note that small-cell with max-min power allocation produces

inferior performance in terms of 5%-outage rate compared to the small-cell system with full

power transmission. This indicates that max-min optimization is not the near optimal tool to

maximize 5%-outage rates in small-cell system.

Figure 3.2 presents similar results but for worst rate (minimum rate) among K users

for given realization of large-scale coefficients βmk. One can see that again cell-free systems

significantly outperform small-cell systems. Note that with max-min power control, rates of

all users are the same for each realization.

Experiment 3: We further investigate the performance of small-cell systems in which

the total number of APs (M ) is reduced but their individual transmit power is increased. The

results are shown in Figure 3.3. In all curves K = 32. One can see that as we decrease the

number of APs from 256 to 128 and further to 64 the performance of small-cell system in terms

of 5%-outage rate significantly degrades despite the fact that the maximum transmit power is

growing by a factor of 4 and 8 respectively. In the small-cell scheme, each user selects the

largest of a multiplicity of (heavy-tailed log-normal) large scale fading coefficients. Therefore,

the small-cell system benefits from super-diversity gain for large values of M . This fact also
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Figure 2.5: CDFs of the achievable per-user rates for cell-free and small-cell schemes under

different power allocations with M = 128 and K = 16.

explains why in small-cell scheme some users may have rates several times greater than the

typical rate of users in cell-free system, as evident by studying Figure 3.3.

Experiment 4: In this experiment, we study the effective number of APs that are con-

tributing in transmission to a particular user. The effective number of APs serving users is

defined as the minimum number of APs that provide 95% of the total transmitted power to a

particular user. Figure 2.8 shows the CDF of the effective number of APs serving each user

with CB and ZF precoders using the optimal max-min power allocation and the AP selection

algorithm in Section 2.3.5 forM = 128 andK = 16. In problem (2.13), we set c = (1+topt)α−1
topt ,

where topt is the optimal mink SINRk in (2.9), and 0 ≤ α ≤ 1 is the ratio between achievable

rate obtained by problems (2.13) and (2.9). For example, with α = 0.9, the achievable rate

obtained by problem (2.13) is 90% of the optimal achievable rate obtained by (2.9). In Figure

2.8, the effective number of APs obtained by problem (2.13) is plotted for different values of

α. One can see that only a fraction of APs are contributing in transmission to a user. It can

be observed that the effective number of APs transmitting to a particular user is much smaller

with the power allocation algorithm (2.13). More specifically, with only 1% smaller achiev-
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Figure 2.6: CDFs of the worst achievable rate for cell-free and small-cell schemes under

different power allocations with M = 128 and K = 16.

able rate (α = 0.99), the median of effective number of APs obtained by (2.13) is about 36%

less than that of the the problem (2.9). Figure 2.9 shows the CDF of per-user achievable rates

obtained by power allocation algorithm (2.13) for different values of α. Note that the number

of APs needed for achieving a good performance depends on many factors, such as channel

model, density of APs and users, correlation between channel coefficients, etc.

Experiment 5: In this experiment, we compare performance of cell-free and small-cell

systems as the number of APs and users increase with constant ratio. Table 2.1 contains per-

user 5%-outage and median rates of cell-free system with max-min optimal power allocation

and small-cell system with full power transmission. The ratio between number of APs and

users is 8 in all cases. We observe that the 5%-outage rate of the small-cell scheme with full

power transmission remains almost unchanged as the number of APs and users increase (with

constant ratio). On the other hand, such an increase in the network size directly translates to a

superior performance for the cell-free scheme with CB and ZF precoders.

Finally, we note that CDFs of the cell-free system with the optimal power allocation in

all figures are nearly vertical. This means that the performance of the system stays almost the
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Figure 2.7: CDFs of the achievable per-user rates for cell-free and small-cell schemes with

different M and transmit powers.

same for different channel realizations, which is a desired feature for wireless communication

systems.

2.7 Conclusion

We studied downlink performance of cell-free massive MIMO systems in terms of the

minimum rate among all users and 5%-outage rate. In cell-free massive MIMO, all distributed

APs serve all users simultaneously providing uniformly good services to all users. We consid-

ered power optimization algorithms using max-min criterion for cell-free massive MIMO and

small-cell systems with CB and ZF precoders. For cell-free systems with CB, we proposed

low complexity heuristic power allocation algorithms. Numerical results indicate that these

heuristic algorithms have only moderate loss in terms of 5%-outage rate, but have significantly

lower computational complexity compared with the optimal power allocation. We proposed a

technique to reduce the effective number of APs that serve a user for CB precoder by employ-

ing an `1-norm sparsity penalty in the max-min power optimization. For cell-free systems with
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Figure 2.8: CDF of effective number of APs serving each user for cell-free CB and ZF

precoders with M = 128 and K = 16.

ZF precoder, we proposed methods for finding optimal and suboptimal powers. The method

for finding suboptimal powers is based on a perfect CSI model; it has very small complexity

and its performance happened to be virtually optimal. We compared our results with a small-

cell scheme in which each user is served by a single AP. Even though, in a small-cell scheme

users are aware of CSI and power allocation algorithms are applied more frequently (about 40

times more than in a cell-free system), the simulation results show that we can achieve higher

rates (in terms of 5%-outage and minimum rate) with the cell-free massive MIMO scheme.
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2.9 Appendices

2.9.A Derivation of the Capacity Lower Bound

Proof. The received signal in (2.6) can be written as

yk =
M∑
m=1

√
ρfηmkE

(
|ĝmk|2

)
sk︸ ︷︷ ︸

T0: useful signal

+
M∑
m=1

K∑
i 6=k

√
ρfηmiĝmkĝ

∗
misi︸ ︷︷ ︸

T1: interference

+
M∑
m=1

√
ρfηmk

(
|ĝmk|2 − E

(
|ĝmk|2

))
sk︸ ︷︷ ︸

T2: lack of channel knowledge at user

+
M∑
m=1

K∑
i=1

√
ρfηmig̃mkĝ

∗
misi︸ ︷︷ ︸

T3: channel estimation error

+wk. (2.40)
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Table 2.1: 5%-outage and median per-user rates of cell-free and small-cell schemes with

different number of APs and users.

Small-Cell MF Full Power
Cell-Free CB Optimal

Power Allocation

Cell-Free ZF Optimal

Power Allocation

M = 64 M = 128 M = 256 M = 64 M = 128 M = 256 M = 64 M = 128 M = 256

K= 8 K= 16 K= 32 K= 8 K= 16 K= 32 K= 8 K= 16 K= 32

5%-outage 0.5 0.51 0.51 2.38 2.82 3.05 3.16 5.28 7.17

Median 3.02 3.47 3.61 2.56 2.91 3.07 4.23 6.00 7.74

Since data signals intended to different users are uncorrelated and white additive noise is

independent from data symbols and the channel coefficients, it is easy to check that terms T0,

T1, T2, T3 and wk are mutually uncorrelated. According to the results from [46], the worst case

noise for mutual information is Gaussian additive noise with the variance equal to the variance

of T1 +T2 +T3 +wk. Hence the achievable rate is lower bounded by log2(1 + SINRk), where

SINRk =
E (|T0|2)

1 + E
(
|T1|2 + |T2|2 + |T3|2

) . (2.41)

Variances of T0, T1, T2, and T3 can be computed as

E(|T0|2) = ρf

(
M∑
m=1

√
ηmkαmk

)2

, E(|T1|2) = ρf

K∑
i 6=k

M∑
m=1

ηmiαmkαmi,

E(|T2|2) = ρf

M∑
m=1

ηmkα
2
mk, E

(
|T3|2

)
= ρf

K∑
i=1

M∑
m=1

ηmi (βmk − αmk)αmi.

(2.42)

By substituting the variances in (2.41) we complete the proof.
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2.9.B Proof of Proposition 2.1

Proof. Define cmk = αmk√
1/ρf+

∑M
m=1 βmk

. For 0 ≤ θ ≤ 1 we have

SINRk(θη + (1− θ)η′) =

(
M∑
m=1

cmk

√
θηmk + (1− θ)η′mk

)2

=
M∑
m=1

M∑
n=1

cmkcnk

[
θ2ηmkηnk + (1− θ)2η′mkη

′
nk + θ(1− θ)(ηmkη′nk + ηnkη

′
mk)
] 1

2

(a)

≥
M∑
m=1

M∑
n=1

cmkcnk

[ (
θ
√
ηmkηnk + (1− θ)

√
η′mkη

′
nk

)2 ] 1
2

= θSINRk(η) + (1− θ)SINRk(η
′), (2.43)

where (a) follows from the fact that Arithmetic mean is larger than the Geometric mean,

i.e., ηmkη′nk + ηnkη
′
mk ≥

√
ηmkη′nkηnkη

′
mk. The above inequality implies that SINRk(η) is a

concave function of η. Since the minimum of concave functions is a concave function, the

objective function (2.10a) is concave and constraints (2.10b) are linear. Thus, the problem

(2.10) is convex.

2.9.C Proof of Theorem 2.1

Proof. Since data symbols, additive noise, and channel coefficients are mutually independent,

it is easy to show that terms J0, J1, and wk are mutually uncorrelated. Based on the worst-case

uncorrelated additive noise [46], the achievable rate is lower bounded by log2(1 + SINRk,ZF ),

where

SINRk,ZF =
E (|J0|2)

1 + E (|J1|2)
. (2.44)
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Variances of J0 and J1 can be computed as E (|J0|2) = ρfηk and

E
(
|J1|2

)
= ρfE

(∣∣∣g̃Tk Ĝ∗(ĜT Ĝ∗)−1Ps
∣∣∣2)

= ρf trace
{
P 2E

(
(ĜT Ĝ∗)−1ĜTE

(
g̃∗kg̃

T
k

)
Ĝ∗(ĜT Ĝ∗)−1

)}
= ρf

K∑
i=1

ηiγki, (2.45)

where γki is defined in Theorem 2.1.

2.9.D Proof of Lemma 2.1

Before starting proof of Lemma 2.1, we remind the definition of M-matrices [47]:

Matrix A ∈ RK×K is an M-matrix if it can be expressed in the form A = sI − B, where

B = (bij) with bij ≥ 0, for all 1 ≤ i, j ≤ K, and s is greater than the maximum of the moduli

of the eigenvalues of B, and I is an identity matrix.

Proof of Lemma 2.1 . Suppose η is the solution of SINRk,ZF (η) = t, k = 1, · · · , K and vec-

tor η′ > 0 satisfies SINRk,ZF (η′) ≥ t, k = 1, · · · , K. Denote the maximum SINRk,ZF (η′) by

SINRj,ZF = maxi SINRi,ZF (η′). It is clear that SINRj,ZF is an increasing function of η′j and a

decreasing function of η′i for i 6= j. If we reduce η′j then SINRj,ZF decreases and SINRi,ZF (η′)

increases for all i 6= j. By continuing this procedure, we will achieve a vector η(2) > 0 such

that SINRk,ZF (η(2)) = t2, t2 ≥ t and η(2) ≤ η′. Let π1 = 1/t and π2 = 1/t2. Define matrix

B ∈ CK×K , [B]ij = γij for i 6= j and [B]ii = 0, and vector d =
[

1
ρf
, · · · , 1

ρf

]T
∈ RK . Then

we have the following system of K linear equations

(B − π1I)η + d = (B − π2I)η(2) + d = 0. (2.46)

Since B is a non-negative matrix, from Perron-Frobenius theorem we know that there

exists a left eigenvector v of B with corresponding eigenvalue r such that all components of v
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are non-negative and r is Perron-Frobenius eigenvalue with the largest absolute value among

all other eigenvalues of B. Since all elements of vector d are positive, it follows from (2.46)

that Bη(2) < π2η
(2). If we multiply both sides of Bη(2) < π2η

(2) by non-negative vector v,

we get

vTBη(2) = rvTη(2) < π2v
Tη(2). (2.47)

Since vTη(2) is positive, we can conclude that r < π2. Since π1 ≥ π2, from above equation

we have r < π2 ≤ π1, which yields that (π1I −B) and (π2I −B) are M-matrices. One of

the properties of an M-matrix is that it is invertible and its inverse is a non-negative matrix.

Therefore all entries of η = (π1I −B)−1 d ≥ 0 are non negative. After adding π2η to the

both sides in (2.46) and rearranging we get

η(2) = η + (π2I −B)−1 (π1 − π2)η, (2.48)

and since all elements of matrix (π2I −B)−1 and vector (π1 − π2)η are non negative, we can

conclude that 0 ≤ η ≤ η(2) ≤ η′ which completes the proof.

Proof of Corollary 2.1. Suppose η(1) is the solution of SINRk,ZF (η(1)) = t, k = 1, · · · , K,

which doesn’t satisfy feasibility constraints in (2.22b) and let η(2) be any vector that satisfies

SINRk,ZF (η(2)) ≥ t, k = 1, · · · , K. From Lemma 2.1 we know η(1) ≥ 0. Hence, the

infeasibility of η(1) means that there exists m′ ∈ {1, · · · ,M} such that
∑K

i=1 η
(1)
i δm′i ≥ 1.

Since η(2) ≥ η(1) (see Lemma 2.1), then η(2) is also infeasible, i.e,

1 <
K∑
i=1

η
(1)
i δm′i ≤

K∑
i=1

η
(2)
i δm′i. (2.49)
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2.9.E Proof of Lemma 2.2

Proof. Let ηpc be the optimal solution of the optimization problem (2.23). Denote the optimal

power transmitted from AP m by

pm =
K∑
i=1

ηpc
i δ

pc
mi, m = 1, · · · ,M. (2.50)

It is clear that there exists m′ ∈ {1, · · · ,M} such that pm′ = 1, otherwise one can replace

ηi with ηi/maxm pm, ∀i, which would improve the optimal value while still satisfying the

problem constraints. Next we define

ηpc
l = min

k
ηpc
k ≤ max

k
ηpc
k = ηpc

u . (2.51)

Now assume ηpc
l < ηpc

u . In the following we show the existence of a new set of feasible power

coefficients denoted by η̃pc such that mink SINRpc
k,ZF (η̃pc) > mink SINRpc

k,ZF (ηpc), which is

a contradiction to the optimality assumption. First we assume ηpc
l is the unique minimizer.

Define c = δpc
m′l/δ

pc
m′u and ε = min

{
η

pc
u −ηpc

l

1+c
, ζ
}

, where

ζ = min
m

{
1− pm

δpc
ml − c δ

pc
mu

∣∣∣ δpc
ml − c δ

pc
mu > 0, pm 6= 1

}
. (2.52)

The new power coefficients given by

η̃pc
k =



ηpc
l + ε, k = l,

ηpc
u − c× ε, k = u,

ηpc
k , otherwise,

(2.53)

yield in new set of feasible transmitted power constraints, which can be written as

K∑
i=1

η̃pc
i δ

pc
mi = pm + ε(δpc

ml − c δ
pc
mu)

≤

 pm, δpc
ml − c δpc

mu ≤ 0,

1, δpc
ml − c δpc

mu > 0,
(2.54)
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From the definition of ε it follows that

η̃pc
l = ηpc

l + ε ≤ ηpc
l +

ηpc
u − η

pc
l

1 + c
= ηpc

u − c
ηpc
u − η

pc
l

1 + c
≤ ηpc

u − cε = η̃pc
u . (2.55)

Therefore, mink SINRpc
k,ZF (η̃pc) = ρf η̃

pc
l > ρfη

pc
l = mink SINRpc

k,ZF (ηpc), which is a contra-

diction. This completes the proof for ηpc
1 = · · · = ηpc

K , which immediately translates to

ηpc
1 = · · · = ηpc

K = 1/

(∑
i=1

δpc
m′i

)
. (2.56)

Note that if ηpc
l is not the unique minimizer, similar proof follows by applying the same

procedure for multiple times until all such ηpc
l s are replaced with a larger value.

2.9.F Proof of Proposition 2.2

Proof. Let Γ =
[
γ1, · · · ,γK

]
and ∆ =

[
δ1, · · · , δM

]
be matrices containing vectors defined

in (2.18) and (2.19) respectively. By Lemma 2.1, ηopt (∆,Γ) is a continuous function of ∆

and Γ, i.e., for every e > 0 there exists e1, e2 > 0 such that

‖ηopt (∆,Γ)− ηopt (∆0,Γ0)‖ < e

2
, (2.57)

for all matrices ∆ and Γ where ‖∆−∆0‖ < e1 and ‖Γ− Γ0‖ < e2. The power coefficients

defined in (2.25) are also continuous functions of ∆, i.e., for every e > 0 there exists an e3 > 0

such that

‖ηapx (∆)− ηapx (∆0)‖ < e

2
, (2.58)

for all ∆ with ‖∆−∆0‖ < e3. Define matrix ∆pc =
[
δpc

1 , · · · , δ
pc
M

]
containing vectors

defined in (2.24). Let Γ0 = 0 and ∆0 = ∆pc in (2.57) and (2.58). For given e1, e2, e3 > 0, we

can find an uplink power ρr such that ‖∆−∆pc‖ < min {e1, e3} and ‖Γ‖ < e2. From (2.57)
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and (2.58) we conclude that

‖ηopt (∆,Γ)− ηopt (∆pc, 0)‖ < e

2
,

‖ηapx (∆)− ηapx (∆pc)‖ < e

2
. (2.59)

From Lemma 2.2 we have ηopt (∆pc, 0) = ηapx (∆pc). So we have

‖ηopt (∆,Γ)− ηapx (∆)‖ = ‖ηopt (∆,Γ)− ηapx (∆pc) + ηapx (∆pc)− ηapx (∆)‖

≤‖ηopt (∆,Γ)− ηapx (∆pc)‖+ ‖ηapx (∆)− ηapx (∆pc)‖

<
e

2
+
e

2
= e. (2.60)

Note that SINRk,ZF (η) is a continuous function of η. Therefore we can conclude that for

every ε > 0 there exists an uplink power ρr(ε) such that ‖ηopt (∆,Γ)− ηapx (∆)‖ ≤ e implies∥∥SINRk,ZF (ηopt)− SINRk,ZF (ηapx)
∥∥ < ε, k = 1, · · · , K. (2.61)

2.9.G Proof of Theorem 2.2

Proof. It is clear that terms J0, J1, and wk in (2.33) are mutually uncorrelated. Hence, from

(2.33) we can obtain SINR of the k-th user as follows

SINRk,ZF =
E (|J1|2)

1 + E (|J1|2)
(2.62)

where E (|J1|2) = ρfηk and variance of J1 is computed as

E
(
|J1|2

)
= ρf E

(∣∣∣g̃Tk (ĜT )−1Ps
∣∣∣2)

= ρf trace
{
P 2E

(
(Ĝ∗)−1E

(
g̃∗kg̃

T
k

)
(ĜT )−1

)}
= ρf

K∑
i=1

ηiνki, (2.63)

where νki is defined in (2.35).
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Chapter 3

Performance of Cell-Free Massive MIMO

Systems with MMSE and LSFD Receivers
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Cell-free massive multiple-input multiple-output (MIMO) comprises a large number

of distributed single-antenna access points (APs) serving a much smaller number of users.

There is no partitioning into cells and each user is served by all APs.

In this chapter, the uplink performance of cell-free systems with minimum mean squar-

ed error (MMSE) and large scale fading decoding (LSFD) receivers is investigated. The main

idea of LSFD receiver is to maximize achievable throughput using only large scale fading

coefficients between APs and users. In this chapter, capacity lower bounds for MMSE and

LSFD receivers are derived. An asymptotic approximation for signal-to-interference-plus-

noise ratio (SINR) of MMSE receiver is derived as a function of large scale fading coefficients

only. The obtained approximation is accurate even for a small number of AP antennas and

users. MMSE and LSFD receivers demonstrate five-fold and two-fold gains respectively over

matched filtering (MF) receiver in terms of 5%-outage rate.

3.1 Introduction

In recent years massive multiple-input multiple-output (MIMO) has attracted consid-

erable attention as a candidate for the fifth generation physical layer technology [15], [10].

Cell-free massive MIMO is a particular deployment of massive MIMO systems with a net-

work of randomly-located large number of single-antenna access points (APs), where the ge-

ographical area is not partitioned into cells and each user is served simultaneously by all of

the APs [2], [39].

Some of the advantages and limitations of the networks with distributed APs can be

found in [2,27,28,34,39]. In particular in [2], [39], the performance of downlink transmission

and uplink transmission with matched filtering (MF) receiver in cell-free massive MIMO sys-

tems have been studied. In this chapter, we first consider uplink minimum mean squared error
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(MMSE) receiver. We further propose a suboptimal MMSE receiver called partial MMSE

(PMMSE) and demonstrate that it has virtually optimal performance. In [34], the authors

study uplink performance of cellular massive MIMO systems with distributed antenna clus-

ters in each cell. They consider MMSE and MF receivers with coordination among distributed

antenna clusters in each cell. In contrast, we assume all distributed APs coordinate with each

other to form the postcoding vectors and detect the signals transmitted by users. In [48], ran-

dom matrix theory results are used to study performance of cellular massive MIMO systems.

Motivated by [48], we applied random matrix theory to derive a tight approximation of the

PMMSE in cell-free systems as a function of large scale fading coefficients with cooperation

among distributed APs. Since the performance gap between MMSE and PMMSE receivers is

negligible, our approximation is also very accurate for the optimal MMSE receiver, which is

confirmed by the numerical results even for a small number of APs/users.

In [21] and [22], large scale fading decoding (LSFD), also known as pilot contamina-

tion postcoding, was proposed to reduce interference in cellular massive MIMO systems. In

LSFD, base stations cooperate by using only the large scale fading coefficients. In this work,

we propose generalization of the LSFD receiver for cell-free massive MIMO systems and de-

rive its signal-to-interference-plus-noise ratio (SINR) expression as a function of large scale

fading coefficients.

We further derive an expression for SINR of cell-free systems with MF receiver in the

regime when the number of users is constant and the number of APs grows without limit. Our

result shows that in this regime, the system performance is limited by the coherent interference

resulting from two or more users sharing the same pilot sequence.

In numerical experiments, we evaluate the system performance under independent and

correlated shadow fading models. Results show that MMSE and LSFD receivers provide

significant gain over MF receiver. MMSE receiver outperforms LSFD receiver while the latter
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has smaller complexity.

The chapter is organized as follows. Section 3.2 describes the system model and chan-

nel estimation. In section 3.3, we investigate MMSE, partial MMSE, and LSFD receivers in

uplink transmission. Finally, numerical results are presented in section 3.4.

Throughout the chapter diag (ai)1≤i≤n denotes diagonal matrix with a1, · · · , an on its

diagonal. If S1 = {α1, · · · , αn} ∈ Nn×1 and S2 = {σ1, · · · , σm} ∈ Nm×1, where αi and σis

are in the increasing order, then operator [vi]i∈S1 denotes the column vector [vα1 , · · · , vαn ]T ;

and operator [[vij]]i∈S1,j∈S2 denotes the n×m matrix
[ vα1σ1 , ··· , vα1σm...

. . .
...

vαnσ1 , ··· , vαnσm

]
.

3.2 System Model and Channel Estimation

We consider a geographical area with M randomly distributed single-antenna APs and

K single-antenna users, assuming thatK �M . All APs are connected to a network controller

(NC) via an unspecified backhaul network. All APs and users are perfectly synchronized in

time. The channel coefficient between AP m and user k is given by

gmk =
√
βmkhmk, (3.1)

where βmk is the large scale fading coefficient which accounts for path loss and shadow fading

and hmk ∼ CN (0, 1) is the small scale fading coefficient. The large scale fading coefficients

change slowly over time and are assumed to be known at the NC. The small scale fading

coefficients are i.i.d. random variables that stay constant over a channel coherence interval.

We assume time-division duplex (TDD) protocol, i.e., all users synchronously send

randomly assigned orthonormal pilot sequences (ψ1, · · · ,ψτ ∈ Cτ×1, where ψH
i ψj = δ(i −

j)) to allow APs to estimate channel coefficients, which they further send to the NC.

We consider short channel coherence interval (due to high user mobility) and therefore

τ is small and K > τ . Hence each pilot is reused by several users, which results in the pilot

55



contamination, [21], [22]. In [39], a greedy pilot assignment scheme in cell-free systems has

been introduced, which is shown to improve the performance of cell-free system compared

with the random pilot assignment scheme. However, for simplicity we consider the random

pilot assignment in the cell-free systems.

All users are partitioned into τ sets S1, · · · ,Sτ in a way that users in Sj use pilot ψj .

Let bi be the index of the pilot sequence transmitted by the i-th user. The received signal in

the first step of the TDD protocol at the m-th AP is given by

ym =
√
ρτ

K∑
i=1

gmiψbi
+wm, (3.2)

where ρ is the uplink transmit power of each user and wm ∈ Cτ×1 ∼ CN (0, 1) is additive

Gaussian noise. The m-th AP computes the MMSE estimate of gmk as

ĝmk =

√
ρτβmk

1 + ρτ
∑

i∈Sbk
βmi

ψH
bk
ym. (3.3)

It can be verified that ĝmk and the channel estimation error g̃mk = gmk − ĝmk are uncorrelated

Gaussian random variables with distributions

ĝmk ∼ CN (0, αmk) , g̃mk ∼ CN (0, βmk − αmk) , (3.4)

where αmk =
ρτβ2

mk

1+ρτ
∑
i∈Sbk

βmi
. Note that ĝmi = βmi

βmk
ĝmk for every i, k ∈ Sbk . Therefore, it is

enough for AP m to choose one user uj ∈ Sj and send only the channel estimates ĝmuj , j =

1, · · · , τ to the NC.

Let ηi denote the power coefficient used by the i-th user to transmit uplink data. For

notation convenience we define

Ai , diag (αmi)1≤m≤M , Bi , diag (βmi)1≤m≤M ,

Ci , Bi − Ai, Di , ρ

K∑
i=1

ηiCi + I. (3.5)
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3.3 Uplink Data Transmission

At the second step of the TDD protocol, users send data symbols and the m-th AP

receives

ym =
√
ρ

K∑
i=1

√
ηigmisi + wm, (3.6)

where wm ∼ CN (0, 1) is additive noise and si is the data signal transmitted by the i-th user.

The NC uses estimates ĝmk to form postcoding vectors vk and obtains estimates of data signals

ŝk = vHk [y1, · · · , yM ]T , k = 1, · · · , K. Using the worst-case uncorrelated additive noise, the

uplink achievable rate of the k-th user is R = E (log2 (1 + SINRk)), with

SINRk (vk) =
ρηkv

H
k ĝkĝ

H
k vk

vHk

(
ρ
∑K

i 6=k ηiĝiĝ
H
i +D

)
vk
, (3.7)

where ĝi = [ĝ1i, · · · , ĝMi]
T . Note that the achievable SINR of the k-th user in (3.7) is obtained

by taking into account the channel estimation error and pilot contamination effect.

3.3.1 MMSE Receiver

First, we consider MMSE receiver, which maximizes SINR of each user. The MMSE

vector to decode the data symbol of the k-th user is given by

vMMSE
k =

√
ρηk

(
ρ

K∑
i=1

ηiĝiĝ
H
i +D

)−1

ĝk. (3.8)

Note that the MMSE vector in (3.8) contains channel estimates of all users in the network.

Thus, it is optimal in the sense that it maximizes SINR of each user. Whereas in cellular

systems, the MMSE vector at cell ` only contains the channel vectors of cell ` and the second-

order statistics of channel coefficients between base station at cell ` and all users in the network
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[34, 48]. The achievable SINR of the k-th user with MMSE receiver is given by

SINRMMSE
k = SINRk (vMMSE

k ) =
ĝk

H
(
ρ
∑K

i=1 ηiĝiĝ
H
i +D

)−1

ĝk

1
ρηk
− ĝkH

(
ρ
∑K

i=1 ηiĝiĝ
H
i +D

)−1

ĝk

. (3.9)

The Monte Carlo simulation of RMMSE
k = log2 (1 + SINRMMSE

k ) requires long averaging

over small scale fading coefficients hmk. Hence, it is desirable to have an approximation of

RMMSE
k as a function of large scale fading coefficients only. The correlation between the channel

estimates (i.e., ĝmi = βmi
βmk

ĝmk for i, k ∈ Sbk) does not allow us to use random matrix theory

tools ([49, Theorem 1,2], [48]) to achieve this goal. Below we propose partial MMSE receiver

whose performance is very close to the performance of the MMSE receiver and allows us to

overcome this problem.

3.3.2 Partial MMSE Receiver

Let Ik = Sbk ∪
{
u

(k)
1 , · · · , u(k)

τ

}
, where u(k)

j ∈ Sj is the index of a user from Sj , whose

selection rule is discussed later. The partial MMSE vector for user k is then defined by

vPMMSE
k =

√
ρηk

(
ρ
∑
i∈Ik

ηiĝiĝ
H
i + ρ

∑
i/∈Ik

E
(
ηiĝiĝ

H
i

)
+D

)−1

ĝk

=
√
ρηk

(
ρ
∑
i∈Ik

ηiĝiĝ
H
i +Q

)−1

ĝk, (3.10)

where

Q = ρ
∑
i/∈Ik

ηiBi + ρ
∑
i∈Ik

ηiCi + I.

Note that Ik contains one user from each non-coherent interference group Sj, j 6= k, and

all users that cause coherence interference to user k. Recall that in massive MIMO systems,

the coherent interference is the dominant impairment which limits the system performance

when the number of antennas increases without bound [15]. Therefore, in the partial MMSE

receiver we include channel vectors of all users that use the same pilot sequence as user k.
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The users u(k)
1 , · · · , u(k)

τ should be chosen such that vectors ĝi, i ∈ Ik in (3.10) have the major

contribution in (3.8) and hence (3.10) becomes close to (3.8). Numerical results show that a

random selection of users u(k)
1 , · · · , u(k)

τ from the corresponding sets S1, · · · ,Sτ leads to poor

performance (see Figure 3.1). A method for smart choice of these users can be formulated as

following

u
(k)
j = arg max

i∈Sj
βTkβi, j = 1, · · · , τ, (3.11)

where βi = [β1i, · · · , βMi]
T . In other words, we choose user u(k)

j ∈ Sj that is in the close

vicinity of the k-th user. The SINRPMMSE
k can be obtained by substituting vPMMSE

k in (3.7).

In the following theorem we apply random matrix theory to obtain an asymptotic ap-

proximation of RPMMSE
k = log2 (1 + SINRPMMSE

k ) when M and K grow infinitely large while the

ratio M/K is finite. This asymptotic result is used as an approximation for finite values of M

and K similar to [49] and [48], in which the approximations are derived for multiple-input

single-output broadcast channel and cellular systems respectively.

Theorem 3.1. Assume matrices Ai, Ci, i = 1, · · · , K have uniformly bounded spectral

norms. For the partial MMSE receiver defined in (3.10), when M and K grow infinitely

large such that 0 < lim infM
M
K
≤ lim supM

M
K
<∞, we have

RPMMSE
k − log2 (1 + ̂SINRPMMSE

k )
a.s.
−−−→
M,K→∞

0, (3.12)

where

̂SINRPMMSE
k =

ρηkλ
2
k

θ (D) + ρ
∑

i∈Sbk\{k}
ηiλ2

i + ρ
∑
i/∈Ik

ηiθ (Ai) + ρ
∑

i∈Ik\Sbk

ηiθ(Ai)

(1+ρ
ηi
M

tr(AiT ′′i ))
2

, (3.13)

and all parameters in ̂SINRPMMSE
k are summarized in Tables 3.1 and 3.2.

Proof. See Appendix 3.7.A
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Table 3.1: Parameter definitions in Theorem 3.1 (Part I).

δ
(t)
i

ρηi
M

trAi

(
ρ
M

∑
j∈Ik\Sbk

ηjAj

1+δ
(t−1)
j

+ 1
M
Q

)−1

δi lim
t→∞

δ
(t)
i , with δ(0)

i = M

T

(
ρ
M

∑
j∈Ik\Sbk

ηjAj
1+δj

+ 1
M
Q

)−1

[J ]jl

ρ2

M
tr (ηjηlAjTAlT )

M (1 + δl)
2 , j, l ∈ Ik \ Sbk

δ′ (H)
[
δ′j (H)

]
j∈Ik\Sbk

= (I − J)−1 [ρηj
M

tr (AjTHT )
]
j∈Ik\Sbk

T ′ (H) THT + T ρ
M

∑
j∈Ik\Sbk

ηjAjδ
′
j(H)

(1+δj)
2 T

δ′′
(t)
ni

ρηi
M

trAi

(
ρ
M

∑
j∈Ik\{n}

ηjAj

1+δ′′
(t−1)
nj

+ 1
M
Q

)−1

δ′′ni lim
t→∞

δ′′ni
(t), with δ′′ni

(0) = M

T ′′n

(
ρ
M

∑
j∈Ik\{n}

ηjAj
1+δ′′nj

+ 1
M
Q

)−1
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Table 3.2: Parameter definitions in Theorem 3.1 (Part II).

γi
√
ρ

M

[√
ηjtr

(
A

1/2
i A

1/2
j T

)]
j∈Sbi

Γ I + ρ
M

[[√
ηiηjtr

(
A

1/2
i A

1/2
j T

)]]
i∈Sbk ,j∈Sbk

νi (H)
√
ρ

M2

[√
ηjtr

(
A

1/2
j A

1/2
i T ′ (H)

)]
j∈Sbk

N (H) ρ
M2

[[√
ηiηjtr

(
A

1/2
j A

1/2
i T ′ (H)

)]]
i∈Sbk ,j∈Sbk

λi
1
M

tr
(
A

1/2
i A

1/2
k T

)
− γTk Γ−1γi

θ (H)

1
M2 tr (AkT

′ (H))− 2Re
(
νk (H)T Γ−1γk

)
+ γTk Γ−1N (H) Γ−1γk
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Note that the approximation ̂SINRPMMSE
k in (3.13) is a function of large scale fading

coefficients only, and although it has a long formulation, it can be easily calculated numerically

for large values of M and K.

3.3.3 Large Scale Fading Decoding

Next, we propose the LSFD receiver for cell-free systems. The main idea of LSFD

receiver is that postcoding vector and power coefficients depend only on the large scale fading

coefficients. Since these coefficients are independent of frequency and change (about 40 times)

slower than small scale fading coefficients, LSFD allows one to reduce the computational

complexity in NC, which is very desirable in real life systems.

The m-th AP sends ym to the NC. Utilizing MF, the NC computes s̃mi = ĝ∗miym and

estimates data symbol sk by using linear combination of all received signals as following

ŝk =
M∑
m=1

K∑
i=1

v∗mkis̃mi. (3.14)

The NC computes postcoding coefficients vkmi and power coefficients ηk as a function of large

scale fading coefficients only.

Lemma 3.1. The estimate of data symbol ŝk in (3.14) can be simplified as

ŝk = vHk s̃k, (3.15)

where vk = [v1k, · · · , vMk]
T and s̃ = [s̃1k, · · · , s̃Mk]

T .

Proof follows directly from the two facts. First, sk and s̃mi, i 6∈ Sbk are uncorrelated

and hence assignment vmki = 0, i 6∈ Sbk in (3.14) does not result in any performance loss, and

the second fact is that s̃mi = βmi
βmk

s̃mk, i ∈ Sbk .
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Theorem 3.2. Achievable SINR of the k-th user with LSFD receiver is given by

SINRk (vk) =
ρηkv

H
k µkµ

H
k vk

ρ
∑

i∈Sbk\{k}
ηivHk µiµ

H
i vk + vHk Λvk

, (3.16)

where Λ = diag
(
ρ
∑K

i=1 ηiαmkβmi + αmk

)
1≤m≤M

and µi =

[
ρτβmkβmi

1+ρτ
∑
j∈Sbi

βmj

]
1≤m≤M

.

Proof. See Appendix 3.7.B

Based on Rayleigh quotient theorem [50], the optimal vLSFD
k which maximizes SINR of

each user in (3.16) is given by

vLSFD
k =

ρ ∑
i∈Sbk\{k}

ηiµiµ
H
i + Λ

−1

µk. (3.17)

The optimal SINR of the k-th user is then given by

SINRLSFD
k = ρηkµ

H
k

ρ ∑
i∈Sbk\{k}

ηiµiµ
H
i + Λ

−1

µk. (3.18)

The power coefficients η = [η1, · · · , ηK ]T in (3.18) can be obtained through solving the max-

min power allocation problem with per user transmit power constraints, which is formulated

as

max
η

min
k
RLSFD
k = log2 (1 + SINRLSFD

k ) , (3.19a)

s.t. 0 ≤ ηi ≤ 1, i = 1, · · · , K. (3.19b)

In order to solve the max-min optimization problem (3.19), we reformulate it as the following

power optimization problem

max
η,t

t

s.t. SINRLSFD
k (η) ≥ t, k = 1, · · · , K, (3.20a)

0 ≤ ηi ≤ 1, i = 1, · · · , K. (3.20b)
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Let topt denote the optimal value of t in (3.20). Next, we define the vector function I t (η),

which helps to determine if t ≤ topt or not. The k-th element of I t (η) is defined as follows

I
(k)
t (η) ,

t

ρµHk

(
ρ
∑

i∈Sbk\{k}
ηiµiµ

H
i + Λ

)−1

µk

, k = 1, · · · , K. (3.21)

It is easy to observe that the constraint in (3.20a) can be written as η ≥ I t (η). We recall the

definition of standard interference function from [51], which refers to any function I t (η) that

satisfies the following properties for all η ≥ 0:

1. I t (η) ≥ 0 is positive.

2. If η ≥ η′, then I t (η) ≥ I t (η′).

3. For all α > 0, αI t (η) ≥ I t (αη).

Lemma 3.2. For any fixed value t > 0, the function I t (η) defined in (3.21) is a standard

interference function.

The proof follows from the definition in (3.21) and hence is left to the reader.

Denote by η̂ the fixed point solution of

η = min {1, I t (η)} . (3.22)

It has been shown in [51] that the fixed point solution η̂ for any standard function I t (η) has

the following property that

η̂ ≥ I t (η̂) if and only if ∃0 ≤ η ≤ 1 such that η ≥ I t (η) . (3.23)

We refer to this evaluation as the feasibility check on t. This fact provides us a tool to develop

bisection method to solve max-min optimization (3.20), which starts with two values of tl and

tu for which the constraints (3.20a), (3.20b) are respectively feasible (tl) and not feasible (tu).

The bisection method then recursively narrows down the interval (tl, tu) as summarized in

Algorithm 1 until the interval is small enough.
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Algorithm 1 LSFD max-min optimization problem.

1) Choose an interval (tl, tu) that contains the optimal topt, i.e., tl < topt < tu.

2) For midpoint t = tl+tu
2

, find the fixed point solution η̂ using the following iteration

η(j+1) = min
{

1, I t
(
η(j)
)}
. (3.24)

3) If t is feasible meaning that the fixed point solution η̂ satisfies η̂ ≥ I t (η̂), then set

3) tl ← t, otherwise set tu ← t.

4) Continue steps 2 and 3 until the search interval is small enough, i.e., tu − tl < ε.

3.3.4 Asymptotic Analysis of MF Receiver

In this subsection, we provide the SINR expression for MF receiver when the number

of APs grows without limit.

Theorem 3.3. Achievable uplink SINR of the k-th user for MF receiver, i.e., vMF
k = [1, · · · , 1]T ,

with unlimited number of APs (M → ∞ and K = constant) and independent large scale

fading coefficients is given by

SINRk (vMF
k )

a.s.
−−→
M→∞

ηkµ̄
2
k∑

i∈Sbk\{k}
ηiµ̄2

i

, (3.25)

where µ̄i is defined as

µ̄i , lim
M→∞

1

M

M∑
m=1

µmi

with µmi = ρτβmkβmi
1+ρτ

∑
j∈Sbi

βmj
.

Proof. See Appendix 3.7.C.

Note that the denominator in (3.25) corresponds to power of the pilot contamination

related interference. Similar to the cellular massive MIMO systems, SINR of the k-th user

using MF receiver is limited by the effect of pilot contamination. However, we observe that
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by increasing M , the SINR of cell-free system becomes a deterministic constant whereas the

SINR in cellular systems remains dependent on the large scale fading coefficients.

3.4 Numerical Results

We consider a square dense urban area of 2 × 2 km2 with M randomly located APs

and K randomly located users. The area is wrapped around to avoid boundary effects. For

large scale fading coefficients, we consider a three-slope path loss model [52] as follows

βmk =



c0 dk ≤ 0.01 km

c1

d2
mk

0.01km < dk ≤ 0.05 km

c2zmk
d3.5
mk

dk > 0.05 km

, (3.26)

where dmk is the distance in kilometers between user k and the AP m, and zmk is the log-

normal shadow fading, i.e., 10 log10 zmk ∼ N (0, σ2
shad) with σshad = 8 dB. For dk > 0.05 km

we use COST-231 Hata propagation model

10 log10 c2 =− 46.3− 33.9 log10 f + 13.82 log10 hB

+ (1.1 log10 f − 0.7)hR − (1.56 log10 f − 0.8), (3.27)

where f = 1900 MHz is the carrier frequency, hB = 15 m is the AP antenna hight, and

hR = 1.65 m is the user antenna hight. Parameters c1 and c2 in (3.26) are chosen in a way that

path loss remains continuous at boundary points.

To model the correlation between large scale fading coefficients caused by closely

located users and/or APs, we use the same correlation model as [39, Equations (53) and (54)]

for shadow fading with parameters δ = 0.5 and ddecorr = 0.1 km. The noise variance is

σ2
v = 290×κ×B×NF , where κ, B, and NF are Boltzmann constant, bandwidth (20 MHz)
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and noise figure (9 dB) respectively. We assume users transmit with equal power ηi = 1, i =

1, · · · , K and ρ = 200 mW.

Figure 3.1 depicts CDFs of RMMSE, RPMMSE with the heuristic user selection approach

given in (3.11), RPMMSE with random user selection, R̂PMMSE = log2 (1 + ̂SINRPMMSE), and RLSFD

with independent large scale fading coefficients. The CDF of per-user throughput achieved by

MF receiver [39] is also included in the figure for comparison. The horizontal line corresponds

to 5%-outage rate which represents the smallest rate among 95% of the best users. One can

observe that the asymptotic approximation of MMSE receiver is very tight. MMSE and LSFD

receivers respectively provide 5.1-fold and 2.6-fold gain over the MF receiver in terms of

5%-outage rate. Performance of the LSFD receiver lies between the simple MF receiver and

MMSE receivers. Compared to the MMSE receiver, LSFD reduces the overall complexity of

the system.
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Figure 3.1: CDFs of the achievable per-user rates for LSFD and MMSE receivers with

M = 1000, K = 50, and τ = 10.

Figure 3.2 shows 5%-outage and mean values of RMMSE, RPMMSE, R̂PMMSE versus the num-

ber of APs under independent and correlated shadow fading. We point out that in all con-
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Figure 3.2: 5%-Outage and mean rates versus M for correlated and independent large scale

fading with K = 16 and τ = 4.

sidered scenarios, the partial MMSE is virtually optimal and our approximation R̂partial
MMSE is very

accurate. It is to be noted that the shadow fading correlation significantly affects the system

performance.

The CDFs of per-user rates for different number of APs and users are plotted in Figure

3.3. The ratio between number of APs and users is constant in all cases, i.e., M/K = 8 and

K/τ = 4. We observe that the 5%-outage rate of MMSE and partial MMSE receivers increase

as the network size increases.

3.5 Conclusion

In this chapter we studied the uplink performance of cell-free systems with MMSE

and LSFD receivers. To study the asymptotic behavior of the cell-free systems, a more

tractable (and hence suboptimal) MMSE receiver is introduced. The achievable rates of

MMSE, PMMSE, and asymptotic approximation are shown to be very close. The numerical
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Figure 3.3: CDFs of the achievable per-user rates for MMSE receivers with different number

of APs and users.

results confirm that the asymptotic approximation is very accurate even for small number of

APs and users. A generalization of LSFD receiver for cell-free systems is introduced, which

depends on the large scale fading coefficients only. While MMSE and LSFD demonstrate

significant gains over MF, there is a considerable gap between MMSE and LSFD receivers.
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3.7 Appendices

3.7.A Proof of Theorem 3.1

For notational simplicity, we define the following matrices

U = Q+ ρ
∑

i∈Ik\Sbk

ηiĝiĝ
H
i , R = I + ρ

[[√
ηiηjĝ

H
i U

−1ĝj
]]
i∈Sbk ,j∈Sbk

Z = [[
√
ρηiĝmi]]1≤m≤M,i∈Sbk

, W = ρ
K∑
i∈Ik

ηiĝiĝ
H
i +Q. (3.28)

We will need the following preparatory lemma to prove Theorem 3.1.

Lemma 3.3. Let ĝi ∼ CN (0, Ai) be the channel estimates defined in (3.3). Assume H ∈

CM×M is a Hermitian non-negative definite matrix with uniformly bounded spectral norm

with respect to M . Then, for i ∈ Sbk , we have

ĝkU
−1ĝi −

1

M
tr
(
A

1/2
k A

1/2
i T

) a.s.
−−−→
M,K→∞

0, and

ĝHk U
−1HU−1ĝi −

1

M2
tr
(
A

1/2
i A

1/2
k T ′ (H)

) a.s.
−−−→
M,K→∞

0, (3.29)

where T and T ′ (H) are defined in Table 3.1.

Proof. Channel estimate ĝi, for every i ∈ Sbk , can be written as ĝi = A
1/2
i ĥk, where ĥk ∼

CN (0, I) is complex normal random vector. For i ∈ Sbk , we have

ĝHk U
−1ĝi =

1

M
ĥk

HA
1/2
k

( 1

M
U
)−1

A
1/2
i ĥk,

ĝHk U
−1HU−1ĝi =

1

M2
ĥHk A

1/2
k

( 1

M
U
)−1

H
( 1

M
U
)−1

A
1/2
i ĥk. (3.30)

By [53, Theorem 3.4], we have

1

M
ĥk

HA
1/2
k

( 1

M
U
)−1

A
1/2
i ĥk −

1

M
tr
(
A

1/2
i A

1/2
k

( 1

M
U
)−1
)

a.s.
−−−→
M,K→∞

0,

1

M2
ĥHk A

1/2
k

( 1

M
U
)−1

H
( 1

M
U
)−1

A
1/2
i ĥk −

1

M2
tr
(
A

1/2
i A

1/2
k

( 1

M
U
)−1

H
( 1

M
U
)−1
)

a.s.
−−−→
M,K→∞

0.

(3.31)
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From [54, Theorem 1], we obtain

1

M
tr
(
A

1/2
i A

1/2
k

( 1

M
U
)−1
)
− 1

M
tr
(
A

1/2
i A

1/2
k T

) a.s.
−−−→
M,K→∞

0. (3.32)

By using [54, Theorem 2], we get

1

M2
tr
(
A

1/2
i A

1/2
k

( 1

M
U
)−1

H
( 1

M
U
)−1
)
− 1

M
tr
(
A

1/2
i A

1/2
k T ′ (H)

) a.s.
−−−→
M,K→∞

0, (3.33)

which completes the proof.

First, we divide the numerator and the denominator of SINRPMMSE
k by 1

ρηk
. Then, the

useful signal power is given by

1

ρηk

∣∣vHk ĝk∣∣2 = ρηk
∣∣ĝHk W−1ĝk

∣∣2︸ ︷︷ ︸
T0

. (3.34)

The denominator of SINRPMMSE
k can be rewritten comprising of four components

1

ρηk
vHk

(
ρ

K∑
i 6=k

ηiĝiĝ
H
i +D

)
vk = ĝHk W

−1DW−1ĝk︸ ︷︷ ︸
T1

+ ĝHk W
−1ρ

K∑
i∈Sbk\{k}

ηiĝiĝ
H
i W

−1ĝk︸ ︷︷ ︸
T2

+ ĝHk W
−1ρ

K∑
i/∈Ik

ηiĝiĝ
H
i W

−1ĝk︸ ︷︷ ︸
T3

+ ĝHk W
−1ρ

K∑
i∈Ik\Sbk

ηiĝiĝ
H
i W

−1ĝk︸ ︷︷ ︸
T4

. (3.35)

Consider terms T0 = ρηk
∣∣ĝHk W−1ĝk

∣∣2 and T2 =
∑K

i∈Sbk\{k}
ρηi
∣∣ĝHi W−1ĝk

∣∣2. Using matrix

inversion lemma [55, Eq. C.7], term ĝiW
−1ĝk can be written as

ĝHi W
−1ĝk =

√
ρηkĝ

H
i U

−1ĝk −
√
ρηkĝ

H
i U

−1ZR−1ZHU−1ĝk. (3.36)

By applying Lemma 3.3 and the continuous mapping theorem [56], for i ∈ Sbk , we obtain

ĝHi U
−1Z − γTi

a.s.
−−−→
M,K→∞

0, and R−1 − Γ−1
a.s.
−−−→
M,K→∞

0, (3.37)
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Combining (3.36) and (3.37), and using the continuous mapping theorem [56] yields

T0 − ρηkλ2
k

a.s.
−−−→
M,K→∞

0, and T2 −
∑

i∈Sbk\{k}

ρηiλ
2
i

a.s.
−−−→
M,K→∞

0. (3.38)

By matrix inversion lemma [55, Eq. C.7], term T1 is given by

T1 = ĝHk U
−1DU−1ĝk − 2Re

(
ĝkU

−1DU−1ZR−1ZHU−1ĝk
)

+ ĝHk U
−1ZR−1ZHU−1DU−1ZR−1ZHU−1ĝk. (3.39)

By Lemma 3.3, it follows that

ĝHk U
−1DU−1ĝk −

1

M2
tr (AkT

′ (D))
a.s.
−−−→
M,K→∞

0,

ĝHk U
−1DU−1Z − νk (D)T

a.s.
−−−→
M,K→∞

0

ZHU−1DU−1Z −N (D)
a.s.
−−−→
M,K→∞

0. (3.40)

From (3.37) and (3.40), it follows that

T1 − θ (D)
a.s.
−−−→
M,K→∞

0. (3.41)

Now consider term ĝHk W
−1ĝiĝ

H
i W

−1ĝk in T3. From [53, Theorem 3.4], for i /∈ Ik, we obtain

ĝHk W
−1ĝiĝ

H
i W

−1ĝk − ĝHk W−1AiW
−1ĝk

a.s.
−−−→
M,K→∞

0. (3.42)

Similar to (3.41), it is clear that ĝHk W
−1AiW

−1ĝk − θ (Ai)
a.s.
−−−→
M,K→∞

0. Thus, we have

T3 −
∑
i/∈Ik

ρηiθ (Ai)
a.s.
−−−→
M,K→∞

0. (3.43)

Define W(i) = W − ρηiĝiĝHi . Note that where W(i) and ĝi are independent. By applying the

matrix inversion lemma [53, Lemma 6.2], term ρηiĝ
H
k W

−1ĝiĝ
H
i W

−1ĝk in T4 is written as

ρηiĝ
H
k W

−1ĝiĝ
H
i W

−1ĝk = ρηi
ĝHk W

−1
(i) ĝiĝ

H
i W

−1
(i) ĝk(

1 + ρηiĝHi W
−1
(i) ĝi

)2 . (3.44)
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Similar to the derivations in Lemma 3.3, we can show that

ĝHi W
−1
(i) ĝi −

1

M
tr (AiT

′′
i )

a.s.
−−−→
M,K→∞

0, (3.45)

where T ′′ is defined in Table 3.1. By [53, Theorem 3.4], for i ∈ Ik \ Sbk , we have

ĝHk W
−1
(i) ĝiĝ

H
i W

−1
(i) ĝk − ĝ

H
k W

−1
(i) AiW

−1
(i) ĝk

a.s.
−−−→
M,K→∞

0. (3.46)

By (3.41) and [57, Rank-1 perturbation lemma], it follows that

ĝHk W
−1
(i) AiW

−1
(i) ĝk − θ (Ai)

a.s.
−−−→
M,K→∞

0. (3.47)

Thus, by the continuous mapping theorem [56], it yields

T4 −
∑

i∈Ik\Sbk

ρηi
θ (Ai)(

1 + ρ ηi
M

tr (AiT ′′i )
)2

a.s.
−−−→
M,K→∞

0. (3.48)

We complete the proof by combining (3.38), (3.41), (3.43), and (3.48).

3.7.B Proof of Theorem 3.2

The estimate of data symbol in (3.15) can be written as

ŝkl =
M∑
m=1

v∗mks̃mk =
M∑
m=1

√
ρηkv

∗
mkE (ĝ∗mkgmk) sk︸ ︷︷ ︸

T0: useful signal

+
M∑
m=1

∑
i∈Sbk\{k}

√
ρηiv

∗
mkE (ĝ∗mkgmi) si︸ ︷︷ ︸

T1: pilot contamination

+
M∑
m=1

∑
i∈Sbk

√
ρηivmk∗

(
ĝ∗mkgmi − E (ĝ∗mkgmi)

)
si︸ ︷︷ ︸

T2: lack of channel knowledge

+
M∑
m=1

∑
i/∈Sbk

√
ρηiv

∗
mkĝ

∗
mkgmisi︸ ︷︷ ︸

T3: interference

+
M∑
m=1

v∗mkĝ
∗
mkwm︸ ︷︷ ︸

T4: noise

. (3.49)

Since data symbols of different users and additive Gaussian noise are mutually independent,

terms T0, T1, T2, T3, and T4 are mutually uncorrelated and have zero mean. According to [46],
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the worst case noise in terms of mutual information is Gaussian noise with variance equal to

the variance of T1 +T2 +T3 +T4. Hence achievable rate is lower bounded by log (1 + SINRk),

where

SINRk =
E (|T0|2)

E (|T1|2 + |T2|2 + |T3|2 + |T4|2)
. (3.50)

Variances of terms T0, T1, T2, T3, and T4 are given by

E
(
|T0|2

)
= ρηk

(
vHk µk

)2
, E

(
|T1|2

)
=

∑
i∈Sbk\{k}

ρηi
(
vHk µi

)2
,

E
(
|T2|2

)
=
∑
i∈Sbk

ρηi

M∑
m=1

|vmk|2αmkβmi, E
(
|T3|2

)
=
∑
i/∈Sbk

ρηi

M∑
m=1

|vmk|2αmkβmi,

E
(
|T4|2

)
=

M∑
m=1

|vmk|2αmk. (3.51)

where µi is defined in Theorem 3.2. Substituting the variance in (3.50) completes the proof.

3.7.C Proof of Theorem 3.3

The achievable uplink SINR of the k-th user with MF receiver is given by

SINRk

(
vk = [1, · · · , 1]T

)
=

ρηk

(
M∑
m=1

µmk

)2

ρ
∑

i∈Sbk\{k}
ηi

(
M∑
m=1

µmi

)2

+
M∑
m=1

αmk

(
1 + ρ

K∑
i=1

ηiβmi

) ,
(3.52)

From the central limit theorem and the continuous mapping theorem [56], we have(
1

M

M∑
m=1

µik

)2

− µ̄2
k

a.s.
−−→
M→∞

0. (3.53)

For constant K, we have

1

M2

M∑
m=1

αmk

(
1 + ρ

K∑
i=1

ηiβmi

)
a.s.
−−→
M→∞

0. (3.54)

By substituting (3.53) and (3.54) in (3.52), we complete the proof.
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Chapter 4

Access Point Location Design
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4.1 Introduction

Wireless networks with distributed access points (APs) have attracted a lot of attention

due to their capability in providing enhanced network coverage, capacity, and power effi-

ciency [34], [58], [59]. The advantages associated with distributed systems highly depend

on the AP locations. In this chapter we investigate AP location design problem in cell-free

massive multiple-input multiple-output (MIMO) and small-cell systems that were introduced

in Chapter 2. We propose new algorithms to obtain optimal location of APs that are based on

distribution of users in the network.

Cell-free massive MIMO is a particular deployment of massive MIMO with distributed

APs, in which there are no cell boundaries and each user is served with all distributed APs

(see Chapter 2). This system combines the notion of massive MIMO systems with distributed

MIMO providing uniformly good service for all users in the network [1], [39].

An alternative wireless network with distributed APs is small-cell system in which

the APs do not cooperate and each user is served by only one AP. Compared with the cell-

free massive MIMO, small-cell systems are simpler as they require much less backhaul and

coordination among APs at the cost of reduced per-user throughput as observed in Chapter 2

and [39]. However, these two systems are the extreme scenarios in distributed MIMO systems.

In real-life systems with distributed APs, each user will be served by a few APs.

In order to maximize the average ergodic capacity, the authors in [60] propose a

squared distance criterion for designing antenna locations in generalized distributed antenna

systems. They minimize the expectation of the squared distance between a randomly located

user and the nearest antenna port, which is equivalent to codebook design problem in vector

quantization for which the Lloyd algorithm is a popular approach. In [61], the authors inves-

tigate the optimal deployment of APs and base stations (BSs) in a two-tiered wireless sensor
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network to minimize the average sensor and AP powers. For a uniformly distributed one-

dimensional network, they determine the optimal deployment of APs and BSs. They propose

one- and two-tiered Lloyd algorithms to numerically optimize node deployment for general

scenarios. In [62], the authors study uplink performance of a distributed massive MIMO sys-

tem in a single cell scenario. They obtain optimal radius of the circular BS antenna array that

maximizes the average rate and then numerically show that the circularly distributed massive

MIMO can significantly outperform massive MIMO systems with co-located antenna arrays.

In this chapter, in contrast to other works, first we consider cell-free systems with

zero-forcing (ZF) detector. For performance criteria, we use sum-throughput and 95%-likely

per-user throughput, which is the smallest rate among 95% of the best users. To that end we

develop two AP placement algorithms to maximize the sum-throughput and min-throughput

of the users in the system. We call them max-sum and max-min algorithms respectively.

The max-min optimization does not necessarily provide the optimal 95%-likely throughput.

However, we use it as an engineering tool for optimization of this criterion. We formulate the

AP location optimization problems in a way that resemble the general sparsity problems, and

we leverage this structure to solve the AP placement problems efficiently. In this chapter, we

consider uplink transmission. However, similar algorithms can be deployed in the downlink

as well. Numerical results show that the proposed max-sum algorithm provides the highest

sum-throughput compared with the Lloyd algorithm and random AP locations. However, the

simple Lloyd algorithm results in the highest 95%-likely per-user throughput compared with

the proposed max-min algorithm and random AP locations.

Next, we consider AP location design problem in small-cell systems. Since the APs

do not cooperate in a small-cell system, we consider matched-filtering (MF) detection and

propose an iterative algorithm to find optimal location of APs by taking into account the effect

of interference in the system. The proposed algorithm is based on the k-means algorithm in
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vector quantization that involves assignment and update steps. In [60], authors used the Lloyd

algorithm to find the location of APs. In contrast to the Lloyd algorithm, which minimizes the

average squared distance between a user and the nearest AP, our proposed method minimizes

the average distance between a user and the serving AP as well as the average interference

that the user experiences in the system. Numerical results show that we obtain about 1.4-fold

improvement in 95%-likely per-user throughput over Lloyd algorithm. However, simplicity of

the Lloyd algorithm and its good performance still makes it an attractive approach in selecting

the location of distributed APs.

The chapter is organized as follows. Section 4.2 describes the system model and uplink

transmission in cell-free massive MIMO. In section 4.3, the problem of AP location design in

cell-free massive MIMO is discussed and two AP placement algorithms are proposed. Section

4.4 provides system model and achievable rate analysis in small-cell systems. In Section 4.5,

the AP location optimization problem in small-cell systems is investigated. Numerical results

are presented in section 4.6. Section 4.7 concludes the chapter.

Throughout this chapter, we use superscripts ∗, T , and H to denote complex conjugate,

transpose, and hermitian operations respectively. Uppercase symbols denote matrices and bold

symbols denote vectors. E(.) is the expectation operator.

4.2 Cell-Free Massive MIMO System Model and Achiev-

able Uplink Rate Analysis

4.2.1 System Model

Consider uplink transmission in a geographical area that is covered by M single an-

tenna APs and K single antenna users, where M � K. An example of a cell-free system is
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depicted in Figure 2.1 in Chapter 2. All APs are connected to a network controller (NC) via

a perfect backhaul network that is error-free. Each user is served by all APs simultaneously.

We assume a flat fading channel model for each orthogonal frequency-division multiplexing

(OFDM) subcarrier. The channel coefficient between AP m and user k is given by

gmk =
√
βmkhmk, (4.1)

where βmk and hmk ∼ CN (0, 1) are the large scale and small scale fading coefficients re-

spectively that are mutually independent. The OFDM subcarrier index is omitted in (4.1) for

simplicity. Large scale fading coefficient βmk, which includes both path loss and shadow fad-

ing effects, changes slowly and can be accurately estimated and tracked. We assume small

scale fading coefficients hmk, m = 1, · · · ,M, k = 1, · · · , K are i.i.d random variables that

stay constant during a coherent interval and change to independent values at the next coherent

interval. For simplicity, we assume that perfect channel state information is available at the

NC.

4.2.2 Achievable Uplink Rate Analysis

In the uplink transmission, users transmit data symbols and the mth AP receives

ym =
K∑
i=1

√
ρrgmisi + wm, (4.2)

where wm ∼ CN (0, 1) is additive noise, ρr is the uplink transmit power, and si is the data

symbol of user i with unit power E
(
|si|2

)
= 1. We assume data symbols of users are mutually

independent and all users transmit with equal power E
(∣∣√ρrsi∣∣2) = ρr. In Chapter 2, we

showed that in downlink transmission of cell-fee massive MIMO the ZF precoder, which

has a reasonably low complexity, significantly outperforms conjugate beamforming precoder.

Hence, here we consider linear ZF detector at the NC to null out interference from other users
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and we assume perfect channel state information (CSI) is available at the NC. The mth AP

sends ym to the NC and the NC forms the ZF detector using the pseudo inverse of channel

matrix AZF =
(
GHG

)−1
GH (see [8]) as follows

r = AZFy =
√
ρrs+

(
GHG

)−1
GHw, (4.3)

where y = [y1, · · · , yM ]T , s = [s1, · · · , sK ]T , and w = [w1, · · · , wM ]T . Considering the

fact that worst case noise is Gaussian noise [46], the achievable uplink rate of user k is lower

bounded by Rk = log (1 + SNRk), where the signal-to-noise ratio (SNR) is given by

SNRk =
ρr

E
([

(GHG)−1]
kk

) . (4.4)

The asymptotic achievable SNR of the kth user, with unlimited number of APs (M →∞) and

finite number of users K is given by [62]

1

M
SNRk

a.s.−→
M→∞

ρrβ̄k, (4.5)

where β̄k is defined as

β̄k , lim
M→∞

1

M

M∑
m=1

βmk. (4.6)

To simplify the AP location optimization problems in the next section, we will use the SNR

expression in (4.5) as an approximation of the achievable SNR in (4.4).

4.3 Access Point Location Optimization in Cell-Free Mas-

sive MIMO

In this section, we propose two algorithms to obtain the optimal location of APs in

cell-free systems.
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Figure 4.1: APs on grid points.

The optimization of the AP locations with arbitrary AP locations can result in a com-

putationally complex optimization problem. Therefore, to simplify the AP location design

problem, we assume APs can only be placed on predefined grid points as shown in Figure 4.1.

Let N denote the number of grid points in the area and let us enumerate them in some arbi-

trary order n = 1, · · · , N and suppose N � M . As N increases and the grid gets finer, the

accuracy of finding optimal AP locations increases. Now the problem of finding AP locations

becomes a combinatorial problem of choosing M out of N locations. Define x ∈ {0, 1}N ,

where xn = 1 indicates that there is an AP at gird point n. Using the approximation (4.5), the
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achievable SNR of users with large number of APs can be expressed as



SNR1

SNR2

...

SNRK



︸ ︷︷ ︸
b

≈ ρr



β11 β21 · · · βN1

β12 β22 · · · βN2

...
... . . . ...

β1K β2K · · · βNK



︸ ︷︷ ︸
A

×

0

1

0

0

0

1

0
...

1

0︸︷︷︸
x

, (4.7)

where the (n, k)th element of matrix A ∈ RK×N , i.e., [A]nk = βnk, denotes the large scale

fading coefficient between the nth grid point and the kth user. Vector b ∈ RK in 4.7 denotes

the approximate achievable SNR of all users.

In the next two subsections, we will optimize the AP locations based on two criteria:

1. Max-min criterion, in which we maximize the minimum rate among all users; 2. Max-sum

criterion, in which we maximize the sum-throughput of the users. For each criterion, our goal

is to find the optimal location of APs by finding location of the M non-zero elements of x in

(4.7).

4.3.1 Max-Min Algorithm

Max-min criterion provides equal throughput to all users in the network. Given a target

per-user SNR of t, we set b = t [1, · · · , 1]T and formulate the problem of finding AP locations
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on the grid points as follows

min
x
‖x‖`0

s.t. Ax ≥ b,

x ∈ {0, 1}N , (4.8)

where ‖x‖`0 = |{n : xn 6= 0}| is the number of non-zero elements of x. The problem in

(4.8), with the assumptions of K < N and N � M , resembles a general sparsity problem

in which the aim is to reconstruct the sparse signal x from measurement vector b [63]. In

other words, we would like to find locations of M non-zero elements in x for a target SNR

vector b. The optimization problem (4.8) is non-convex and usually requires combinatorial

optimization. Using common compressed sensing techniques, we simplify the problem by

replacing `0-norm with `1-norm and relaxing the constraints as follows

min
x
‖x‖`1

s.t. Ax ≥ b,

0 ≤ x ≤ 1, (4.9)

where ‖x‖`1 =
∑N

n=1 |xn| denote that `1-norm of x. The problem (4.9) is a linear program-

ming optimization and can be efficiently solved (see [43, chapter 3.3]). After obtaining the

optimal solution of (4.9), we choose theM largest non-zero elements of xopt as the locations of

APs. To capture randomness of the user locations, we place a large number of users (K �M )

in the area when solving (4.9). However, in a cell-free massive MIMO system, the number

of served users at each given time is much smaller than the number of APs. Therefore, in the

data transmission phase, when we compute the actual achievable rate obtained by the system

we choose small values for K �M .

Note that in (4.9), finding the optimal target per-user SNR t doesn’t change the location
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of non-zero elements in x. In other words, if we replace b with αb, the optimal solution will

be αx. Thus, finding the optimal b is not necessary as long as xopt contains M non-zero

elements.

4.3.2 Max-Sum Algorithm

In this section, our criterion for choosing AP locations is to maximize the sum-through-

put. To this end, we will use the following inequity

1

K

K∑
i=1

log2 (1 + SNRi)
(a)

≤ log2

(
1 +

1

K

K∑
i=1

SNRi

)
(4.10)

to maximize the sum-SNR, which is an upper bound for the actual problem. Note that (a) in

(4.10) directly follows from Jensen’s inequality. Denote by aTk the kth row of matrix A. Then

the average achievable SNR of users can be expressed as

1

K

K∑
i=1

SNRi =
1

K

K∑
k=1

aTkx. (4.11)

The AP placement problem with the goal of maximizing the average achievable SNR of users

is formulates as

max
x

1

K

K∑
k=1

aTkx

s.t. ‖x‖`0 = M,

x ∈ {0, 1}N . (4.12)

Following the similar procedure as in Section 4.3.1, we relax the AP location optimization

problem (4.12) as

max
x

1

K

K∑
k=1

aTkx

s.t. M − 1 < ‖x‖`1 ≤M,

0 ≤ x ≤ 1, (4.13)
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which is a linear programming optimization and can be efficiently solved. In order to solve

(4.13) and to capture the full randomness in simulations, we generate a large number of users

(K �M ) according to the density of users in the area, which is similar to Section 4.3.1.

Note that after solving problems (4.9) and (4.13), one can redefine the grid points

according to the solution and solve the problems again to further tune the location of APs on

a finer grid.

4.4 Small-Cell System Model and Achievable Uplink Rate

Analysis

In this section, we provide the small-cell system model and achievable uplink rate of

the system. The channel model is the same as (4.1). For large scale fading coefficient between

AP m and user k we consider the following model

βmk =


c0 ‖pk − qm‖ ≤ r0

c1zmk
‖pk − qm‖

γ ‖pk − qm‖ > r0

, (4.14)

where ‖.‖ denotes the `2-norm, qm ∈ R2 and pk ∈ R2 denote the position vectors of APm and

user k respectively, and zmk is the log-normal shadow fading, i.e., 10 log10 zmk ∼ N (0, σ2
shad).

In the small-cell system, there is a cell around each AP in which only one user is served

by the corresponding AP. This can be viewed as M small cells, each equipped with a single

antenna AP. Let km be the index of the user that is served by AP m in cell m. In the uplink

transmission, users send data symbols and the mth AP receives

ym =
M∑

m′=1

√
ρrgmkm′skm′ + wm, (4.15)

where wm ∼ CN (0, 1) is additive noise, ρr is the uplink transmit power, and si is the data

symbol of user i with unit power E
(
|si|2

)
= 1. The mth AP uses MF detector to estimate data
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symbol skm as

ŝkm =
g∗mkm
|gmkm|

ym =
√
ρr |gmkm| skm︸ ︷︷ ︸
T0: desired signal

+
M∑

m′=1,m′ 6=m

√
ρr
g∗mkm
|gmkm|

gmkm′skm′︸ ︷︷ ︸
T1: interference

+vm, (4.16)

where vm ∼ CN (0, 1) is additive Gaussian noise that has the same distribution as wm. Uplink

achievable rate of the user km with perfect CSI and MF detector is given by [39]

E (log2 (1 + SINRkm)) =
1

ln 2
eµkEi(µk), (4.17)

where

SINRkm =
ρrβmkm |hmkm|2

1 + ρr
∑M

m′ 6=m βmkm′
,

and

µk =
1 + ρr

∑M
m′ 6=m βmkm′

ρrβmkm
,

and Ei(x) =
∫∞
x

e−t

t
dt is the exponential integral. Note that the achievable rate (4.17) is

conditioned on the large scale coefficients and depends on the location of APs and users.

4.5 Access Point Location Optimization in Small-Cell Sys-

tems

In this section, first, we review the Lloyd algorithm to solve the AP location optimiza-

tion problem in small-cell systems. Then, we propose an algorithm for AP location design

that considers the effect of interference as well.

4.5.1 Lloyd Algorithm

Below, we follow the similar steps as in [60] to show that the location of APs in a

small-cell system can be chosen using the Lloyd algorithm. Consider a single user scenario
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(K = 1) in which the user is served by the closest AP denoted by index mmin, i.e.,

mmin = argmin
n

‖p− qn‖
2 , (4.18)

where p is the position vector of the user. In the large scale fading model (4.14), r0 is much

smaller than the dimensions of the area. Hence, the large scale fading coefficient between user

and AP mmin can be approximated as

βmmin
≈ c1zmmin∥∥p− qmmin

∥∥γ . (4.19)

The average ergodic rate of the user by averaging over the user position is given by

C = Eh, z,p

(
log2

(
1 +

ρrc1 |hmmin
|2 zmmin∥∥p− qmmin

∥∥γ
))

, (4.20)

where the expected value is taken over small scale fading hmmin
, shadow fading zmmin

, and

user location p. Using Jensen’s inequality, the ergodic rate C is lower bounded by

C ≥ Eh, z

log2

1 +
ρrc1 |hmmin

|2 zmmin

Ep
(∥∥p− qmmin

∥∥2
)γ/2


 . (4.21)

The AP locations q1, · · · , qM are found by maximizing the lower bound (4.21), which corre-

sponds to minimizing the average minimum distance as follows

min
q1,··· ,qM

Ep
(∥∥p− qmmin

∥∥2
)
. (4.22)

The average minimum distance in (4.22) is give by

Ep
(∥∥p− qmmin

∥∥2
)

=
M∑
m=1

∫
p∈Rm

‖p− qm‖
2 f (p) , (4.23)

where f(p) is the probability density function of user location, and regionRm is defined as

Rm =
{
p
∣∣ ‖p− qm‖ < ‖p− qn‖ , ∀n 6= m

}
. (4.24)
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As pointed out in [60], (4.23) is similar to the distortion function in codebook design in vector

quantization and Lloyd algorithm is a common approach to solve it [64]. In [65], it has been

shown that with infinite number of quantized points, which corresponds to the number APs

in our problem M → ∞, the distribution of the quantized points (location of APs) in an r

dimensional space is

λr(p) =
f r/(r+2)(p)∫
f r/(r+2)(p′)dp′

, (4.25)

where r = 2 in our problem.

4.5.2 Proposed Algorithm

As shown in the previous section, Lloyd algorithm is an approach to obtain AP loca-

tions in a single user system or in scenarios that interference is negligible. Our goal in this

section is to modify the Lloyd algorithm to include the effect of interference. To this end we

use the k-means clustering algorithm, which is an iterative clustering algorithm in vector quan-

tization consisting of an assignment (classification) step and an update step [66]. An initial set

of random locations is considered for APs and a set of user locations is generated based on the

user density function. In the assignment step, the area is partitioned into M cells denoted by

Sm, m = 1, · · · ,M by the nearest neighbor rule such that cell Sm contains the users whose

distance to AP m, which is defined later, is less than or equal to its distance to any other AP.

At the update step, the centroid of each cell is computed which will be the new location of

AP at that cell. This procedure is continued until the cell assignments no longer change. In

contrast to the Lloyd algorithm, we define a distance function based on the average distance

of a user and APs and the average interference that a user experiences. We formulate the AP
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location optimization problem in small-cell systems as follows

min
q1,··· ,qM
S1,··· ,SM

M∑
m=1

∫
p∈Sm

d(p, qm)f(p)dp, (4.26)

where d(p, qm) is the distance function between AP m and user at location p, f(p) is the

probability density function of user locations, and cell Sm is defined as

Sm = {p|d (p, qm) < d (p, qn) , ∀n 6= m} . (4.27)

We define the heuristic distance function d(p, qm) as follows

d (p, qm) ,
α1

Es, h, z
(
|T0|2

) + α2 Es, h, z,p
(
|T1|2

)
, (4.28)

where T0 and T1 are, respectively, the desired signal and interference terms given in (4.16).

The first term in (4.28) is the inverse of the average desired signal power, where the average is

taken over data symbol, small scale fading, and shadow fading coefficients. The second term

in (4.28) is the average interference power, where the expectation is taken over small scale

fading, shadow fading, data symbols, and location of interfering users p. The ratio α , α2

α1
is

a factor that determines importance of interference over desired signal power. When α is set to

zero, (4.26) is the same as Lloyd algorithm. For large values of α, i.e., α → ∞, optimization

problem (4.26) only minimizes interference without considering the desired signal power.

Thus, α is parameter to be optimized. In the model for large scale fading coefficients (4.14),

r0 is much smaller than the dimensions of the area. Therefore, we can approximate large scale

fading coefficient βmk as

βmk ≈
c1zmk

‖pk − qm‖
γ . (4.29)

After carrying out the expectation operations in (4.28), for α1 = ρrc1E (zmk), the distance

function can be written as

d (p, qm) = ‖p− qm‖
γ + α

M∑
n=1,n6=m

∫
p′∈Sn

1

‖p′ − qm‖
γ f (p′) dp′. (4.30)
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Algorithm 1 AP location design in small-cell systems.
Initialization Step:

Generate N user locations p1, · · · ,pN according to the user distribution f (p),

where N � M and initialize AP locations qm, m = 1, · · · ,M using Lloyd al-

gorithm.

Assignment Step:

For all i = 1, · · · , N , assign user i to region Smi with the least distance, i.e.,

mi = argmin
n

d (pi, qn) ,

where d (pi, qn) is given in (4.31).

Update Step:

Compute new AP locations q1, · · · , qM as follows

q(i+1)
m =q(i)

m −
δ γ

|Sm|
∑
pi∈Sm

(qm − pi) ‖pi − qm‖
γ−2 + α

M∑
n 6=m

δ γ

|Sn|
∑
pj∈Sn

(
qm − pj

)∥∥pj − qm∥∥γ+2 .

Termination: Repeat assignment and update steps until convergence or until a maximum

number of iterations is reached.

For tractability of the AP location optimization problem, we calculate the integrals in (4.30)

numerically. To this end, we generate large number of users with locations denoted by

pi, i = 1, · · · , N according to the probability distribution f (p) and approximate the dis-

tortion function (4.30) as

d (p, qm) ≈ ‖p− qm‖
γ + α

M∑
n=1,n6=m

1

|Sn|
∑
pj∈Sn

1∥∥pj − qm∥∥γ . (4.31)

The optimization problem (4.26) is solved in the following iterative manner. First,

we initialize the AP locations q1, · · · , qM using Lloyd algorithm. In the second step of the

algorithm, we keep AP locations q1, · · · , qM constant and assign users to cells Sm, m =
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, 1 · · · ,M based on the distance function defined in (4.31) such that cell Sm contains all the

users whose distance to AP m is smaller than or equal to its distance to any other AP. In the

third step of the algorithm, we hold S1, · · · ,SM constant and find AP locations that minimize

(4.26) for which we employ the steepest descent method as follows

q(i+1)
m = q(i)

m − δ
∂

∂qm

∫
p∈Sm

d(p, qm)f(p)dp, (4.32)

where δ is the step size and i denotes the iteration index in the steepest descent algorithm. In

order to numerically solve for qm, m = 1, · · · ,M , we approximate the integral in (4.32) as

∂

∂qm

∫
p∈Sm

d(p, qm)f(p)dp ≈ γ

|Sm|
∑
pi∈Sm

(qm − pi) ‖pi − qm‖
γ−2

+ α
M∑
n 6=m

γ

|Sn|
∑
pj∈Sn

(
pj − qm

)∥∥pj − qm∥∥γ+2 . (4.33)

The steps of finding AP locations are summarized in Algorithm 1.

4.6 Numerical Results

4.6.1 Cell-Free Massive MIMO

We consider a square area of size 2 × 2 km2 with M APs and K users. The area is

wrapped around to avoid boundary effects. We select equally spaced grid points in the area.

In cell-free massive MIMO, we use three-slope path loss model [52] for these coefficients as

follows

βmk =


1 dmk ≤ r0

c1

d2
mk

r0 ≤ dmk ≤ r1

c2

d3.5
mk

dmk ≥ r1

, (4.34)
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where dmk is the distance between AP m and user k in kilometers. We choose d0 = 0.01km

and d1 = 0.05km. 1 Path loss parameters c1 and c0 in (4.34) are chosen such that path loss

remains continuous at boundary points: c1 = r2
0, c2 = r2

0r
1.5
1 . We use Gaussian mixture model

for user locations as

f (p) =
3∑
i=1

piN (p|µi, σiI) , (4.35)

with equal weights pi = 1/3 and mean locations µ1 = [−0.5, 0]T km, µ2 = [0, 0.5]T km, and

µ3 = [0.5,−0.5]T km, and variances σi = 200, i = 1, 2, 3. A realization of this distribution

is depicted in Figure 4.2.

Figure 4.2: A realization of user locations for Gaussian mixture distribution in (4.35).

Note that each run of the AP location optimization algorithms (in cell-free and small-

cell systems) results in different AP locations. Therefore, in all experiments, we run each

algorithm multiple times and choose the solution that give us the best performance.

Experiment 1: In this experiment, we provide a comparison between achievable rates

of cell-free massive MIMO obtained by randomly placed APs, the Lloyd algorithm, and the

proposed algorithms in Sections 4.3.1 and 4.3.2. Figures 4.3 and 4.4, respectively, show the
1Shadow fading is ignored in large scale fading model for simplicity.
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Figure 4.3: Sum-rate versus transmit power ρr in cell-free massive MIMO for M = 32,

K = 4, and N = 50× 50.
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Figure 4.4: 95%-likely per-user rate versus transmit power ρr in cell-free massive MIMO for

M = 32, K = 4, and N = 50× 50.
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Figure 4.5: AP locations obtained by different AP placement algorithms in cell-free massive

MIMO for M = 32, K = 4, ρr = 20dB, and N = 50× 50.

Figure 4.6: A realization of user locations for Gaussian mixture distribution with mixture

weights of 0.2, 0.2, 0.6.

sum-throughput and 95%-likely per-user throughput versus transmit power in cell-free mas-

sive MIMO for M = 32, K = 4, N = 50 × 50. The 95%-likely throughput is the smallest

rate among 95% of the best users. In the figures, the curve “Distribution Centers” is obtained
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by placing APs at the centers of the mixture model µ1, µ2, and µ3. The curve “Random Lo-

cations” denotes a cell-free system with randomly placed APs. Rates achieved by the Lloyd

algorithm are also plotted in the figures. It is to be noted that the max-sum algorithm provides

the best sum-rate among all algorithms in Figure 4.3. Max-min algorithm in Figure 4.4, pro-

vides higher 95%-likely rate compared with random AP locations and the case where APs are

located at distribution centers. However, the Lloyd algorithm outperforms max-min algorithm

even though it is designed for a small-cell system with single user. Part of this loss is due to

the fact that in the Lloyd algorithm, APs can be placed in any location in the area, whereas in

the max-min algorithm, APs can only be placed on the grid points. It is expected that as the

number of grid points N increases, the gap between the two curves decreases.

Figure 4.5 shows the AP locations obtained by max-min and max-sum algorithms

in Sections 4.3.1 and 4.3.2 for M = 32, K = 4, N = 50 × 50, and ρr = 20dB. It can

be observed that with the sum-rate criterion, the APs are located closer to the distribution

centers. Whereas, with the min-rate criterion, the APs are more dispersed over the area. This

observation is consistent with intuitive reasoning that the systems with co-located APs, in

general, can provide higher sum-throughput compared with the systems with distributed APs,

while the distributed APs provide larger 95%-likely and minimum rates.

4.6.2 Small-Cell

We consider a wrapped around square area of size 2 × 2 km2 with M APs. Each AP

serves only one randomly selected user in its cell. Therefore, at any given time, M APs serve

M users. For large scale fading coefficient we use model (4.14) with path loss exponent γ = 2.

However, for simplicity, we ignore shadow fading zmk in (4.14). For ‖pk − qm‖ ≤ r0 we use
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Figure 4.7: AP locations obtained by the proposed and Lloyd algorithms in small-cell

system for M = K = 16, α = 1.6× 108.

COST-231 Hata propagation model

10 log10 c1 =− 46.3− 33.9 log10 f + 13.82 log10 hB

+ (1.1 log10 f − 0.7)hR − (1.56 log10 f − 0.8), (4.36)

where f = 1900 MHz is the carrier frequency, hB = 15 m is the BS antenna height, and

hR = 1.65 m is the user antenna height. Path loss parameter c0 in (4.14) is given by

10 log10 c0 = 10 log10 c1 − 20 log10(d0). (4.37)

We choose d0 = 0.01km. We use Gaussian mixture model for user locations given in (4.35)

with weights p1 = 0.2, p2 = 0.2, p3 = 0.6, and mean locations µ1 = [−0.5, 0]T km, µ2 =

[0, 0.5]T km, and µ3 = [0.5,−0.5]T km, and variances σi = 150, i = 1, 2, 3. A realization of

this distribution is shown in Figure 4.6. User transmit power is set to ρr = 200 mW. The noise

variance at the receiver is σ2
w = 290 × κ × B × NF , where κ, B, and NF are Boltzmann

constant, bandwidth (20 MHz), and noise figure (9 dB) respectively. The maximum number
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Figure 4.8: CDF of achievable per-user rates in small-cell system for M = K = 16,

α = 1.6× 108.
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Figure 4.9: CDF of the worst rate in small-cell system for M = K = 16, α = 1.6× 108.
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Figure 4.10: AP locations obtained by the proposed and Lloyd algorithms in small-cell

system for M = K = 16, α = 5× 108.

of iterations in the proposed algorithm is set to 50.

Experiment 2: In this experiment, we compare achievable rates obtained by our pro-

posed method and the Lloyd algorithm in small-cell systems. Figure 4.7 shows the AP lo-

cations obtained by the Lloyd algorithm and the proposed algorithm for M = K = 16 and

α = 1.6 × 108. It is to be noted that the distance between APs obtained by the proposed

algorithm is more than that of the Lloyd algorithm, which is due to effect of interference in

the proposed algorithm.

Figure 4.8 shows the CDF of per-user rates given in (4.17) for M = K = 16 and

α = 1.6× 108 obtained by the proposed method and the Lloyd algorithm. The achievable rate

of a system with randomly located APs is also plotted in the figure. Figure 4.9 presents the

similar results for the worst rate (minimum rate) among users for given realization of large-

scale coefficients. It can be observed that the proposed algorithm provides about 1.4-fold in

95%-likely rate and improves the worst rate of the system over the Lloyd algorithm and that
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Figure 4.11: CDF of achievable per-user rates in small-cell system for M = K = 16,

α = 5× 108.
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Figure 4.12: CDF of the worst rate in small-cell system for M = K = 16, α = 5× 108.
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both algorithms outperform the system with randomly located APs.

Figures 4.10, 4.11, and 4.12 show the similar results forM = K = 16 and α = 5×108.

For smaller values of α, location of APs obtained by our algorithm is similar to that of the

Lloyd algorithm. However, when we increase α, interference becomes the dominant term in

(4.28) and the distance between APs increases. Therefore, α is a parameter that needs to be

optimized in the proposed algorithm.

4.7 Conclusion

In this chapter, we investigated AP placement problem in cell-free massive MIMO and

small-cell systems. For each system, we provided AP location design algorithms to improve

the system throughput. In cell-free massive MIMO, two algorithms are proposed based on

two criteria: maximizing the sum-throughput and minimum-throughput. The AP location op-

timization problems in the cell-free massive MIMO are transformed into linear programming

problems that can be solved efficiently. For the sum-throughput criterion in cell-free mas-

sive MIMO, the proposed algorithm provides significant improvement over a cell-free system

with randomly located users. However, in cell-free system, the Lloyd algorithm can provide

higher 95%-likely per-user rates. In small-cell system the proposed algorithm is based on the

k-means clustering algorithm with a cost function that is based on the distance between APs

and the served users as well as the average interference from other small cells. The proposed

algorithm improves 95%-likely and minimum rates over the Lloyd algorithm. However, sim-

plicity and good performance of the Lloyd algorithm makes it an attractive approach to design

AP locations in small-cell systems.
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Chapter 5

Semi-blind Channel Estimation
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Motivated by recent developments in time-division duplex massive multiple-input mult-

iple-output (MIMO) systems, this chapter investigates semi-blind channel estimation for mul-

tiuser MIMO systems. A tractable expectation-maximization (EM) algorithm is derived for

semi-blind channel estimation by assuming a Gaussian distribution for the unknown data sym-

bols, which improves channel estimates even when the data symbols are drawn from a finite

constellation, such as quadrature phase-shift keying. An alternate EM algorithm is also de-

rived by employing suitable priors on the channel coefficients and it is shown to outperform

the EM algorithm with no priors in the low signal-to-noise ratio (SNR) regime. To improve

the estimation performance for discrete constellations, another EM based channel estimation

algorithm is developed based on a Gaussian mixture model (GMM) for the unknown data

symbols.

To analytically understand the performance of the semi-blind scheme, Cramer-Rao

bounds (CRBs) for semi-blind channel estimation are derived for deterministic and stochastic

(Gaussian) data symbol models. To get insight into the behavior of a massive MIMO system,

the asymptotic behavior of the CRBs as the number of antennas at the base station (BS) grows

is analyzed. The numerical results show the benefits of semi-blind estimation algorithms

as measured by the mean squared error. The EM algorithm with a Gaussian prior provides

superior channel estimates compared to the EM algorithm with a GMM prior in low SNR

regime. However, the latter one outperforms the EM algorithm with Gaussian prior as the

SNR or as the number antennas at the BS increases. Furthermore, the performance of the

semi-blind estimators become closer to the genie aided maximum likelihood estimator based

on known data symbols as the number of antennas increases. This result is consistent with

the asymptotic analysis of the two CRBs indicating that semi-blind channel estimation for

massive MIMO systems is very promising.
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5.1 Introduction

To achieve the expected high capacity gains in multiple-input multiple-output (MIMO)

systems, channel state information (CSI) is an important factor and in practical systems is de-

termined by the accuracy of the channel estimates. A simple method to estimate channel

coefficients is via training or pilot sequences [40]. As the number of users in time-division

duplex (TDD) systems increases, the length of the pilot sequences required to estimate the

channel accurately increases, which results in lower spectral efficiency. An approach for im-

proving the quality of the estimates of the channel coefficients is to use the information in the

unknown data symbols instead of only using the pilot sequences [67–73]. With this approach,

one has the option of obtaining more accurate channel estimates or utilizing smaller number

of pilot symbols to estimate the channel coefficients with the same accuracy. In frequency-

division duplex (FDD) systems, more accurate channel estimates results in better detection of

unknown data symbols at the receiver. In TDD systems, where uplink and downlink phys-

ical channels are assumed to be reciprocal [17], better channel estimation not only leads to

better uplink detection but it also helps the base station (BS) to form more accurate downlink

precoders. In massive MIMO systems the emphasis in transmission protocol is mostly on

TDD rather than FDD [15], [10]. Therefore, massive MIMO systems benefit from semi-blind

channel estimation in both uplink and downlink transmissions making semi-blind estimation

more attractive for next generation wireless systems. This motivates our re-examination of

semi-blind channel estimation with an eye towards massive MIMO systems.

Another data aided channel estimation scheme is blind channel estimation based on

the received data signal only. With the blind estimation, the channel can only be identified

within some ambiguities, whereas in the semi-blind estimation the channel coefficients can

be completely identified under certain conditions [67]. In addition, adding a few training
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sequences significantly improves channel estimation quality over the blind estimation [69,

Figure 1]. Therefore, in this work, we focus on the semi-blind channel estimation using both

training and data symbols to estimate the channel.

Semi-blind channel estimation has been investigated in several papers, e.g., [67–72]

and references therein. In [67], the authors study the conditions under which the chan-

nel and the data signals are blindly and semi-blindly identifiable for an underdetermined

MIMO system. They obtain blind and semi-blind channel estimates based on an expectation-

maximization (EM) algorithm in the frequency domain and utilize a discrete random variable

model for the unknown data. In [68], two iterative channel estimators based on the EM algo-

rithm are proposed. In [69], Cramer-Rao bounds (CRBs) for semi-blind, blind and training se-

quence based channel estimation for single-input multiple-output (SIMO) systems are studied

and compared. In [70], the authors study two semi-blind channel estimators for SIMO sys-

tems based on maximum likelihood (ML) estimation with deterministic and Gaussian models.

The asymptotic performances of the estimators in [69], [70] are studied when the length of the

training sequences and data sequences grow infinitely large. In [72], a semi-blind estimation

technique for MIMO systems is introduced, which uses an iterative two-level optimization

loop to jointly estimate channel coefficients and data symbols.

In contrast to the previous works, we investigate four different semi-blind channel

estimation schemes based on the EM algorithm. In the first algorithm, we use Gaussian dis-

tribution for the unknown data symbols which leads to a simple closed form solution in the

E-step of the EM algorithm. Fortunately, numerical results illustrate that the performance of

the algorithm with symbols drawn from a finite constellation such as quadrature phase-shift

keying (QPSK) and Gaussian priors are similar making the assumption practically relevant.

An alternate EM algorithm is derived based on utilizing additional channel priors and this

leads to enhancement in performance. To improve the performance of channel estimation for
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the case when data symbols are drawn from a discrete constellation, we consider a heuristic

algorithm by demapping the conditional mean of the data symbols to the nearest constella-

tion point in the EM algorithm. Numerical results illustrate that in the high signal-to-noise

ratio (SNR) regime, this heuristic algorithm considerably outperforms the EM algorithm with

Gaussian prior. Motivated by this observation, to provide support for the procedure, we pursue

deriving an analytically rigorous EM algorithm assuming a Gaussian mixture model (GMM)

for data symbols which achieves a performance similar to the heuristic algorithm. We study

effects of semi-blind channel estimation in regular MIMO and massive MIMO systems and

compare the performance of the semi-blind algorithms with two ML estimators; one based on

only the pilot sequences and the other one assuming all the data symbols are known at the

receiver. For performance criteria we use mean squared error (MSE) and symbol error rate.

Numerical results indicate that the semi-blind estimation schemes provide better channel es-

timates compared with channel estimation based on training sequences only. To analytically

understand the performance of the methods, we derive the CRBs, deterministic and stochastic,

with two common assumptions on the transmitted data symbols [74–76]. In the deterministic

CRB, we assume the data symbols are unknown deterministic values. Whereas in the stochas-

tic CRB, we assume the data symbols are drawn from a Gaussian distribution. In previous

works, asymptotic behavior of CRB or estimators is studied when number of data symbols

grows infinitely large [69], [70], [74]. In this chapter, we study behavior of CRBs in mas-

sive MIMO systems with unlimited number of antennas at the BS. Results indicate that as

the number of antennas increases, the deterministic CRB converges to the CRB of a system

with known data symbols and the stochastic CRB converges to the CRB of a system with

orthogonal pilot sequences of size equal to the whole transmission block (training plus data).

Numerical experiments are presented to support the analysis. For TDD systems, the uplink

channel estimation also impacts the downlink beamforming performance. In the numerical
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experiments, we also demonstrate the benefits of semi-blind channel estimation for downlink

beamforming. Numerical results show that semi-blind channel estimation results in a signif-

icant improvement in downlink achievable rate compared to the ML training based on pilots

alone.

The chapter is organized as follows. In Section 5.2, we describe the system model and

two ML estimators. In Section 5.3, four semi-blind channel estimation algorithms based on

the EM algorithm are derived followed by a discussion on the effects of channel estimation

in downlink beamforming. In Section 5.4, CRBs under two sets of assumptions on the data

symbols are obtained and their asymptotic behavior with respect to the number of antennas is

analyzed. Finally, numerical results are presented in Section 5.5 and we conclude the chapter

in Section 5.6.

Throughout the chapter, we use superscript H to denote conjugate transpose, T to de-

note transpose, ∗ to denote complex conjugate, uppercase symbols to denote matrices, and

bold symbols to denote vectors. E(.) and tr(.) are the expectation and trace operators respec-

tively. The spectral norm of matrix A is denoted by ‖A‖2. We use diag(a) to denote the

diagonal matrix whose diagonal entries are entries from the vector a.

5.2 System Model and Channel Estimation

5.2.1 System Model

We consider a single cell with a BS equipped with M antennas and randomly located

K single antenna users, where M ≥ K. We study uplink transmission in a communication

system with TDD protocol. However, similar estimation techniques can also be applied to

a system with FDD protocol. We consider a flat fading channel model for each orthogonal
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frequency-division multiplexing (OFDM) subcarrier. The OFDM subcarrier index is omitted

for simplicity. The channel matrix between the BS and users is given by

G = HB1/2, (5.1)

where H ∈ CM×K is a matrix representing small scale fading and B ∈ RK×K is a diagonal

matrix that is given by

B =


β1 0

. . .

0 βK

 , (5.2)

where βk is the large scale fading coefficient between BS and user k that accounts for the

path loss and shadow fading. We assume columns of H are independent from B and are i.i.d

circularly-symmetric complex normal vectors hk ∼ CN (0, IM). We consider a time block

fading model, where channel vectors hk, k = 1, · · · , K are constant during a block of N

symbols and change to independent values at the next coherence block. The model can be

simplified down to a point-to-point MIMO system by assuming β1 = · · · = βK .

We further assume perfect channel reciprocity, i.e., the uplink and downlink channel

coefficients are the same. Although the propagation channel itself is reciprocal, the hardware

chains in the transmit and receive sides are not identical. Thus, in practice, channel calibration

is required to enable exploiting channel reciprocity. Since the parameters that result in the

mismatch between uplink and downlink channels change slowly, they can be estimated using

small overhead signaling [17], [77].

We consider uplink transmission in which users send L known pilot sequences fol-

lowed by (N−L) unknown data symbols. The uplink signal received by BS at time n is given

by

y[n] = Gs[n] + v[n], n = 0, · · · , N − 1, (5.3)
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where s[n] ∈ CK×1 for n = 0, · · · , L − 1 are known pilot sequences and s[n] ∈ CK×1

for n = L, · · · , N − 1 are the unknown data symbols with unit power E
(
s[n]s[n]H

)
= IK

and v[n] ∼ CN (0, σ2
vIM) is additive Gaussian noise. Let Sp = [s[0], · · · , s[L− 1]] and

Sd = [s[L], · · · , s[N − 1]] denote, respectively, the known pilot sequences and data symbols

in a channel coherence time. Similarly, let Yp and Yd represent the row stacked received

training output and received data signals respectively. The complete transmit and received

symbols are given by S = [Sp Sd] and Y = [Yp Yd] respectively.

5.2.2 Performance Metric

Since we are estimating a vector, one of the scalar performance criteria we use to

demonstrate the improvement in channel estimation, is MSE, i.e., trace of the error covariance

matrix. The following Lemma motivates the use of this criterion as our performance measure.

Lemma 5.1 ( [71, Lemma 1]). Let A,B ∈ Cn×n be positive definite matrices and let A ≥ B,

i.e., uHAu ≥ uHBu,∀u ∈ Cn×1. Then tr (A) = tr (B) ⇐⇒ A = B.

Assume A and B are the error covariance matrix and the CRB matrix respectively. As

the MSE of channel matrix becomes closer to the trace of CRB, then the error covariance ma-

trix approaches the CRB. Thus, we will use MSE in most of the numerical results to illustrate

the accuracy of the channel estimates.

5.2.3 ML Estimators

In this section, we provide reviews of a commonly used ML estimator utilizing only

the training symbols as well as a full data ML estimator with the assumption of perfect data

estimation which will serve as an upper bound on the performance of semi-blind estimator.

109



Training Pilot Sequences

A simple conventional method to estimate channel coefficients is with the aid of known

training sequences. The ML estimate of the channel matrix G based on the pilot sequences

(Sp) is given by

Ĝtr
ML =

(
YpS

H
p

) (
SpS

H
p

)−1
. (5.4)

In [78], it has been indicated that the training sequences that minimize the MSE subject to the

total transmit power, are orthogonal sequences, i.e., SpSHp = LIK . The corresponding MSE

is given by

E
(
‖G− Ĝtr

ML‖2
F

)
=
MKσ2

v

L
. (5.5)

To obtain a reliable channel estimate with this method, large number of training se-

quences is required which reduces the achievable throughput of the system.

Full Data

The upper bound on the performance of semi-blind channel estimation is the case when

all data symbols are known, i.e., genie aided. In this case, all N symbols (S) are assumed to

be known at the BS which provides a lower bound on the achievable MSE. This will serve as

an estimator that the semi-blind procedure can aspire to imitate. The channel estimate based

on all data symbols is denoted by Ĝfull
ML and is given by

Ĝfull
ML =

(
Y SH

) (
SSH

)−1
, (5.6)

and the corresponding MSE can be computed as

E
(
‖G− Ĝfull

ML‖2
F

)
= Mσ2

v tr
(
E
((
SSH

)−1
))

. (5.7)
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Remark 5.1. Note that in multi-cell massive MIMO systems, usually, the length of the train-

ing sequences is not long enough to separate the channels of all users which results in pilot

contamination effect [20]. The main goal of this chapter, however, is to first understand the

phenomenology of semi-blind estimation in single cell scenarios with large scale antenna ar-

rays. Therefore, in numerical results, we consider orthogonal pilot sequences and leave the

pilot contamination effect in multi-cell scenarios for future work.

5.3 Semi-blind Channel Estimation and Downlink Beam-

forming

In this section, we develop four semi-blind channel estimation schemes based on the

EM algorithm. Computational complexities of these estimators are compared with that of the

ML estimators in Section 5.2.3. The effect of semi-blind estimation in downlink beamforming

is also presented.

5.3.1 Uplink Semi-blind Channel Estimation

The ML estimate of G based on both received training and data signals is given by

ĜML = argmax
G

log p (Y |G) . (5.8)

Obtaining a closed form solution to this incomplete data problem is known to be hard [79].

In [71], an iterative algorithm has been proposed to solve the problem.

EM Algorithm with Gaussian Prior

An alternative way to solve the problem in (5.8) is to use the EM algorithm. The EM

algorithm is an iterative algorithm where the channel estimate is updated (Ĝ`+1) based on the
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old estimate (Ĝ`) in the following manner:

Ĝ`+1 = argmax
G

Ep(Sd|Y,Ĝ`) (log p (Y, Sd|G)) , (5.9)

where (Y, Sd) is the complete data. As can be seen from (5.9), the computation involves an

expectation evaluation (E-step) and a maximization (M-step). At each iteration of the EM

algorithm, the likelihood function increases until a local maximum is achieved [55]. In the

E-step, the expectation utilizes p(Sd|Y, Ĝ`), the conditional density of Sd given Y and the old

estimates of the unknown parameters. The expected value of the log likelihood function of the

received signal, i.e., Ep(Sd|Y,Ĝ`) (log p (Y, Sd|G)), is given by

L = const−
L−1∑
n=0

1

σ2
v

∥∥∥y[n]−Gs[n]
∥∥∥2

−
N−1∑
n=L

1

σ2
v

Ep(Sd|Y,Ĝ`)

(∥∥∥y[n]−Gs[n]
∥∥∥2
)
. (5.10)

Carrying out the maximization (M-step), one can show that the channel estimation at the

(`+ 1)th iteration is given by [67]

Ĝ`+1 =

(
YpS

H
p + Yd E

(
Sd

∣∣∣Ĝ`, Y
)H)(

SpS
H
p + E

(
SdS

H
d

∣∣∣Ĝ`, Y
))−1

. (5.11)

To compute the updated estimate (5.11), there are a few expectations that are needed, and the

details of the expectation computation needed to complete the E-step of the algorithm has not

been mentioned explicitly in [67]. Using a discrete random variable model such as QPSK

modulation for data symbols leads to excessively complex E-step which grows exponentially

with K (see Appendix 5.8.A for details). Thus, for tractability of the problem, we assume that

the data symbols are Gaussian, i.e., s[n] ∼ CN (0, IK) , n = L, · · · , N − 1. Given G, Sd and

Y are jointly Gaussian. Thus, E(Sd|Ĝ`, Y ) and E(SdS
H
d |Ĝ`, Y ) in (5.11), can be computed

from the conditional density of circularly symmetric Gaussian random vectors. The E-step of

the EM algorithm based on the estimates at the `th iteration is given by

µ`n =
(
ĜH
` Ĝ` + σ2

vIK

)−1

ĜH
` y[n],

Σ` = σ2
v

(
ĜH
` Ĝ` + σ2

vIK

)−1

, (5.12a)
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and the M-step at (`+ 1)th iteration is given by

Ĝ`+1 =

(
YpS

H
p +

N−1∑
n=L

y[n](µ`n)H

)(
SpS

H
p +

N−1∑
n=L

(
µ`n(µ`n)H + Σ`

))−1

. (5.12b)

Derivation of the E- and M-steps are presented in Appendix 5.8.B.

EM Algorithm with Channel Priors

We now present a variant by using priors on the channel coefficients. Given the large

scale fading coefficients B, channel matrix G is Gaussian. We can add Gaussian priors for the

channel coefficients to the likelihood function as follows

L = Ep(Sd|Y,Ĝ`) (log p (Y, Sd|G)) + log p (G|B) . (5.13)

In Appendix 5.8.C, it is shown that the E-step of the EM algorithm with channel priors is the

same as in (5.12a) and the M-step is modified, in which the likelihood function is maximized

for G and B separately at each iteration. This results in the following update procedure.

Ĝ`+1 =

(
YpS

H
p +

N−1∑
n=L

y[n](µ`n)H

)
B̂`

(
SpS

H
p B̂` +

N−1∑
n=L

(
µ`n(µ`n)H + Σ`

)
B̂` + σ2

vIK

)−1

,

(5.14a)

B̂`+1 = diag

(∥∥ĝ`+1
1

∥∥2

M
, · · · ,

∥∥ĝ`+1
K

∥∥2

M

)
, (5.14b)

where ĝ`k is the k-th column of Ĝ`. Note that the resulting algorithm in fact is a generalized EM

algorithm [55], in which the likelihood function is increased in the M-step and not necessarily

maximized.

In general, the large scale fading coefficients change slower than the small scale fading

coefficients and are easier to estimate over a longer period of time and can be fixed beforehand.

In that case, B is fixed in (5.14a) from the beginning and (5.14b) is removed from the M-step.
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Heuristic Semi-blind Algorithm

We now modify the EM algorithm to improve the estimation performance when data

symbols s[n], n = L, · · · , N−1, are drawn from a discrete constellation. A heuristic approach

is to assign the conditional mean of data symbols E(s[n]|Y, Ĝ`), n = L, · · · , N − 1, to the

closest constellation point, which results in the following E-step:

µ`n = F

((
ĜH
` Ĝ` + σ2

vIK

)−1

ĜH
` y[n]

)
,

Σ` = σ2
v

(
ĜH
` Ĝ` + σ2

vIK

)−1

, (5.15a)

where F (.) is the element-wise constellation demmaping function. Note that the M-step re-

mains the same as (5.12b):

Ĝ`+1 =

(
YpS

H
p +

N−1∑
n=L

y[n](µ`n)H

)(
SpS

H
p +

N−1∑
n=L

(
µ`n(µ`n)H + Σ`

))−1

. (5.15b)

EM Algorithm with GMM Prior

Numerical results in Section 5.5 suggest that the modification of the EM algorithm in

(5.15) improves the estimation performance for discrete constellations. To provide analytical

support for this heuristic approach, we derive a mathematically rigorous algorithm in the fol-

lowing by assuming a GMM distribution for data symbols which has a similar flavor. This

algorithm is also based on the EM algorithm and hence its convergence to a local maximum

is assured. Suppose data symbols have GMM distribution, i.e.,

s[n] ∼ CN
(
cn, σ

2
sIK
)
, n = L, · · · , N − 1, (5.16)

where cn ∈ CK×1 is the the transmitted constellation vector at time n that will be treated as

the unknown parameter in the EM algorithm. The hyperparameter σ2
s in (5.16) is the variance

of each data symbol around the corresponding constellation point. As σ2
s becomes smaller,
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the GMM distribution in (5.16) becomes closer to the actual discrete distribution of the data

symbols.

Let Θ = [G, cL, · · · , cN−1] denote the unknown variables in the EM algorithm. The

expected value of the log likelihood of the received signal, i.e., Ep(Sd|Y,Θ̂`) (log p(Y, Sd|Θ)), is

given by

L = const −
L−1∑
n=0

1

σ2
v

‖y[n]−Gs[n]‖2 −
N−1∑
n=L

1

σ2
v

Ep(Sd|Y,Θ̂`)
(
‖y[n]−Gs[n]‖2)

−
N−1∑
n=L

1

σ2
s

Ep(Sd|Y,Θ̂`)
(
‖s[n]− cn‖2) . (5.17)

The E-step of the EM algorithm with GMM is are given by

µ`n =
(
ĜH
` Ĝ` + σ2

v

(
ĉ`n(ĉ`n)H + σ2

sIK
)−1
)−1

ĜH
` y[n],

Σ`
n = σ2

v

(
ĜH
` Ĝ` + σ2

v

(
ĉ`n(ĉ`n)H + σ2

sIK
)−1
)−1

. (5.18a)

Maximizing the log likelihood function yields in the following M-step:

Ĝ`+1 =

(
YpS

H
p +

N−1∑
n=L

y[n](µ`n)H

)(
SpS

H
p +

N−1∑
n=L

(
µ`n(µ`n)H + Σ`

n

))−1

,

ĉ`+1
n = F

(
µ`n
)
, (5.18b)

where F (.) is the element-wise constellation demmaping function.The derivation of the algo-

rithm is presented in Appendix 5.8.D.

Note that all semi-blind algorithms introduce a time delay in estimating channel and

uplink data symbols as we need to collect all data symbols before carrying out the estimation,

which needs to be accounted for in implementing practical systems.
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Table 5.1: Computational complexities of channel estimation using ML training-based

estimation and full data. The mathematical operations in each step, e.g., matrix inversion,

matrix multiplication, etc., determine the complexity of the corresponding step.

Ĝtr
ML = Yp S

H
p

(
SpS

H
p︸ ︷︷ ︸

O(K2L)

)−1

︸ ︷︷ ︸
O(K3)︸ ︷︷ ︸

O(K2L)︸ ︷︷ ︸
O(MLK)

Ĝfull
ML = Y SH

(
SSH︸︷︷︸
O(K2N)

)−1

︸ ︷︷ ︸
O(K3)︸ ︷︷ ︸

O(K2N)︸ ︷︷ ︸
O(MNK)

Dominant term (M ≥ K, N ≥ L ≥ K): O(MLK) Dominant term (M ≥ K, N ≥ L ≥ K): O(MNK)

5.3.2 Computational Complexity

We now compare the computational complexity of semi-blind estimation with ML

estimators in Section 5.2.3 under the assumption that

M ≥ K, N ≥ L ≥ K. (5.19)

Calculation of ML training-based channel estimation in (5.4) consists of matrix multiplications

with dominant factor of order O(MLK) and a matrix inversion with complexity O(K3).

Therefore, the dominant factor in calculation of (5.4) is of order O(MLK). Similarly, we

can show that the computational complexity of channel estimation with full data in (5.6) is of

order O(MNK). The calculation steps of the ML estimators based on pilots only and full

data are presented in Table 5.1.

Now we evaluate the computational complexity of semi-blind channel estimation in

(5.12). There are multiple ways to compute terms
∑N−1

n=L y[n](µ`n)H and
∑N−1

n=L µ
`
n(µ`n)H in

(5.12b) and depending on the order that multiplications are carried out, some of the already

computed expressions can be later reused. Each of these cases will lead to a different overall

computational complexity. Let Q denote the number of iterations required for EM algorithm
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with Gaussian prior in (5.12) to converge. After investigating all possible orders to carry out

the computational steps in the EM algorithm, we arrive at the following complexity order

under the assumptions in (5.19).

min
{
O((N−L+K)MKQ) ,O

(
(N−L+KQ)M2

)}
. (5.20)

The first term in (5.2) corresponds to the computational complexities of calculating Σ` and

multiplying y[n] by (µ`n)H for Q times. The second term in (5.2) corresponds to the case

when we separately calculate Ĝ`(Ĝ
H
` Ĝ` + σ2

vIK)−1 and
∑N−1

n=L y[n]y[n]H and then multiply

them together for Q times. The computational steps of these cases are presented in Table 5.2.

Suppose L = K and Q is small constant as observed in the numerical results. The

computational complexity of the EM algorithm with Gaussian prior is then in the order of

O(MNKQ), which is Q times the complexity of channel estimation with full data. On the

contrary, the assumption of Q� M
K

makes the computational complexity given in (5.2) to be

in the order of O((N − L+KQ)M2).

The complexity of EM algorithm with channel priors in (5.14) and the complexity

of the heuristic semi-blind algorithm in (5.15) are of the same order as the EM algorithm

with Gaussian prior. Thus, compared with the conventional training-based estimation in (5.4),

semi-blind estimation provides better channel estimates (see Section 5.5) but at the expense of

higher computational complexity.

The computational complexity of the EM algorithm with GMM prior in (5.18) also

depends on the order that multiplications in terms
∑N−1

n=L y[n](µ`n)H and
∑N−1

n=L µ
`
n(µ`n)H are

carried out. Each scenario, will lead to a different complexity order. After considering all

possible scenarios, we present the case that has the smallest complexity in Table 5.3. Thus,

the computational complexity of the EM algorithm with GMM prior under the assumptions in
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Table 5.2: Computational complexity of the EM algorithm with Gaussian prior using

different multiplication orders. The mathematical operations in each step, e.g., matrix

inversion, matrix multiplication, etc., determine the complexity of the corresponding step.

Scenario 1
N−1∑
n=L

y[n]
(
µ`n
)H

=
N−1∑
n=L

y[n]y[n]H Ĝ`

(
ĜH
` Ĝ`︸ ︷︷ ︸

O(MK2Q)

+σ2
vIK
)−1

︸ ︷︷ ︸
O(K3Q)︸ ︷︷ ︸

O(MK2Q)︸ ︷︷ ︸
O((N−L)MKQ)︸ ︷︷ ︸

O((N−L)MKQ)

N−1∑
n=L

µ`n
(
µ`n
)H

=
(
ĜH
` Ĝ` + σ2

vIK
)−1

ĜH
`︸ ︷︷ ︸

already computed

N−1∑
n=L

y[n]y[n]HĜ`

(
ĜH
` Ĝ` + σ2

vIK
)−1

︸ ︷︷ ︸
already computed︸ ︷︷ ︸

O(MK2Q)

Dominant term (M ≥ K, N ≥ L ≥ K): O((N − L)MKQ+MK2Q)

Scenario 2
N−1∑
n=L

y[n]
(
µ`n
)H

=
N−1∑
n=L

y[n]y[n]H︸ ︷︷ ︸
O((N−L)M2)

Ĝ`

(
ĜH
` Ĝ`︸ ︷︷ ︸

O(MK2Q)

+σ2
vIK
)−1

︸ ︷︷ ︸
O(K3Q)︸ ︷︷ ︸

O(MK2Q)︸ ︷︷ ︸
O(M2KQ)

N−1∑
n=L

µ`n
(
µ`n
)H

=
(
ĜH
` Ĝ` + σ2

vIK
)−1

ĜH
`︸ ︷︷ ︸

already computed

N−1∑
n=L

y[n]y[n]HĜ`

(
ĜH
` Ĝ` + σ2

vIK
)−1

︸ ︷︷ ︸
already computed︸ ︷︷ ︸

O(MK2Q)

Dominant term (M ≥ K, N ≥ L ≥ K): O((N − L)M2 +M2KQ)

Overall complexity: min
{
O((N − L+K)MKQ) ,O

(
(N − L+KQ)M2

)}
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Table 5.3: Computational complexity of the EM algorithm with GMM prior. The

mathematical operations in each step, e.g., matrix inversion, matrix multiplication, etc.,

determine the complexity of the corresponding step.

N−1∑
n=L

y[n]
(
µ`n
)H

=
N−1∑
n=L

y[n] y[n]HĜ`︸ ︷︷ ︸
O((N−L)MKQ)

(
ĜH
` Ĝ`︸ ︷︷ ︸

O(MK2Q)

+σ2
v

(
ĉ`n(ĉ`n)H + σ2

sIK
)−1︸ ︷︷ ︸

O((N−L)K3Q)

)−1

︸ ︷︷ ︸
O((N−L)K3Q)︸ ︷︷ ︸

O((N−L)K2Q)︸ ︷︷ ︸
O((N−L)MKQ)

N−1∑
n=L

µ`n
(
µ`n
)H

=
N−1∑
n=L

(
ĜH
` Ĝ` + σ2

v

(
ĉ`n(ĉ`n)H + σ2

sIK
)−1 )−1

ĜH
` y[n]︸ ︷︷ ︸

already computed

×y[n]HĜ`

(
ĜH
` Ĝ` + σ2

v

(
ĉ`n(ĉ`n)H + σ2

sIK
)−1 )−1︸ ︷︷ ︸

already computed︸ ︷︷ ︸
O((N−L)K2Q)

Dominant term (M ≥ K, N ≥ L ≥ K): O((N − L)MKQ+ (N − L)K3Q+MK2Q)

(5.19) is given by

O((N − L)MKQ+ (N − L)K3Q+MK2Q). (5.21)

5.3.3 Downlink Beamforming

In this section, we consider the effect of channel estimation in downlink beamforming.

In TDD systems, due to channel reciprocity, the uplink channel estimates are used to form

the downlink precoders. The better we estimate the channel coefficients in uplink, the more

accurate the downlink precoders become. Thus, in TDD systems we benefit from semi-blind

channel estimation in both uplink and downlink transmissions. Note that due to the mismatch

in hardware chains of transmitter and receiver, the system needs to be calibrated before chan-
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nel reciprocity can be exploited [17], [77]. For simplicity, however, we assume uplink and

downlink channels are the same. With conjugate beamforming, the BS transmits the signal

x =
∑K

i=1

√
pi

ĝ∗i
‖ĝi‖

si, where pi and si are the transmit power and the data signal intended to

user i respectively, and ĝi is the ith column of channel estimate Ĝ. The time index is omitted

in this section to simplify the notations. The k-th user receives

yk = gTkx+ vk =
√
pk
gTk ĝ

∗
k

‖ĝk‖
sk︸ ︷︷ ︸

J0: desired signal

+
K∑
i=1
i 6=k

√
pi
gTk ĝ

∗
i

‖ĝi‖
si

︸ ︷︷ ︸
J1: interference

+ vk, (5.22)

where vk ∼ CN (0, σ2
v) is additive noise. Note that the gain of desired signal, i.e.,

√
pkg

T
k ĝ
∗
k

‖ĝk‖
, can

be estimated at user device by sending a few downlink pilots. Since data symbols of different

users and additive noise are mutually independent, terms J0, J1, and vk in (5.22) are mutually

uncorrelated. Suppose ĝmi and gmk are uncorrelated for any i 6= k. According to [46], the

worst case noise for mutual information is Gaussian additive noise with the variance equal to

the variance of J1+vk. Hence, the achievable rate is lower bounded byRk = log2(1+SINRk),

where

SINRk =
pk
|gTk ĝ∗k|

2

‖ĝk‖
2

K∑
i 6=k

pi
M∑
m=1

E
(
|gmk|2

)
E
(
|ĝmi|2

‖ĝi‖
2

)
+ σ2

v

. (5.23)

Let us assume channel estimates ĝmi, m = 1, · · · ,M are i.i.d random variables. The follow-

ing lemma is used to further simplify the formulation of SINR in (5.23).

Lemma 5.2. Suppose ĝmi, m = 1, · · · ,M are i.i.d random variables and let ym = |ĝmi|2

‖ĝi‖
2 , m =

1, · · · ,M . Then y1, · · · , yM are identically distributed with mean E (ym) = 1
M
, m = 1, · · · ,M .

Proof. See Appendix 5.8.E.

Based on Lemma 5.2, the achievable rate in high signal-to-noise ratio (SNR) regime
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can be written as

Rk ≈ log2 (SINRk) = log2 (γ) + log2

(
pk ‖gk‖

2∑K
i 6=k

pi
M
E
(
‖gk‖

2)+ σ2
v

)
, (5.24)

where

γ =

∣∣gTk ĝ∗k∣∣2
‖gk‖2‖ĝk‖2

. (5.25)

The second term in (5.24) is the achievable rate with perfect CSI in high SNR regime. Note

that log2(γ) in (5.24) represents the loss in capacity due to channel estimation error. As the

channel estimation accuracy increases, parameter γ becomes closer to 1 minimizing the rate

loss. Thus, in numerical results, parameter log2(γ) is used as our performance measure to

compare the estimation accuracy of semi-blind and ML estimators for downlink transmission.

5.4 Cramer-Rao Bound

In the following subsections we derive the CRB, covariance lower bound, for semi-

blind channel estimation. There are two common assumptions made to obtain the CRB [74],

[75], [76]: 1. deterministic model in which the data signal Sd is modeled as an unknown

deterministic quantity. 2. Stochastic model where the data signal Sd is modeled as a random

sequence. For each model, using results of large random matrix theory we further derive

the asymptotic behavior of CRB when M, the number of antennas, grows infinitely large

providing insight into the behavior of massive MIMO systems.

5.4.1 Deterministic CRB

Under the deterministic assumption for the data signal Sd, we have

y[n] ∼ CN
(
Gs[n], σ2

vIM
)
, n = 0, · · · , N − 1. (5.26)
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A general deterministic CRB of covariance matrix has been derived in [75]. Define x̄ ,

Re {x}, x̃ , Im {x}, C =
(

2
σ2
v
GHG

)−1 and

Wk[n] =
2

σ2
v

GHsk[n], λki =
2

σ2
v

N−1∑
n=0

sk[n]∗si[n]. (5.27)

The deterministic CRB of the covariance matrix of any unbiased semi-blind estimator of G is

given by

CRB =

(
Λ−

N−1∑
n=L

ΩT
n

[
C̄ −C̃
C̃ C̄

]
Ωn

)−1

, (5.28)

where

Λ =


[
λ̄11IM −λ̃11IM
λ̃11IM λ̄11IM

]
· · ·

[
λ̄1KIM −λ̃1KIM
λ̃1KIM λ̄1KIM

]
... . . . ...[

λ̄K1IM −λ̃K1IM
λ̃K1IM λ̄K1IM

]
· · ·

[
λ̄KKIM −λ̃KKIM
λ̃KKIM λ̄KKIM

]
 , (5.29a)

and for n = L, · · · , N − 1,

Ωn =

[[
W̄1[n] −W̃1[n]

W̃1[n] W̄1[n]

]
· · ·

[
W̄K [n] −W̃K [n]

W̃K [n] W̄K [n]

]]
. (5.29b)

The calculations are given in Appendix 5.8.F.

Theorem 5.1. The limit of the deterministic CRB as M →∞, i.e., the number of antennas at

the BS increases, is given by

CRB
a.s.

−−→
M→∞

Λ−1. (5.30)

Proof. See Appendix 5.8.G.

Remark 5.2. Based on the derivations in Appendix 5.8.F, matrix Λ−1 in (5.30) corresponds

to the CRB of channel matrix G when all data symbols Sd are known. Thus, as the number of

antennas at the BS increases, the CRB of the semi-blind estimation converges to the CRB of a

genie aided system with full data in which all N symbols (S) are known at the BS.
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5.4.2 Stochastic CRB

With Gaussian assumption for the data symbols Sd, we have

y[n] ∼ CN
(
Gs[n], σ2

vIM
)
, n = 0, · · · , L− 1,

y[n] ∼ CN (0, R) , n = L, · · · , N − 1, (5.31)

where R = GGH + σ2
vIM . For deriving the result, we use the fact that the CRB on the

covariance matrix of observed data vector z ∼ CN (µ(α),Σ(α)) for any unbiased estimate

of arbitrary α is given by [80]

[
CRB−1

]
ij

= tr
(

Σ−1 ∂Σ

∂αi
Σ−1 ∂Σ

∂αj

)
+ 2Re

{
∂µH

∂αi
Σ−1 ∂µ

∂αj

}
. (5.32)

Let α =
[
ḡT1 , g̃

T
1 , · · · , ḡTK , g̃TK

]T . The stochastic CRB of any unbiased estimator of G with

the stochastic model defined in (5.31) and orthogonal pilot sequences, i.e., SpSHp = LIK , is

given by

[
CRB−1

]
ij

=
2L

σ2
v

δ (i− j)+(N − L)tr
(
R−1 ∂R

∂αi
R−1 ∂R

∂αj

)
. (5.33)

The calculations are given in Appendix 5.8.H.

Theorem 5.2. The limit of the stochastic CRB with orthogonal pilot sequences (SpSHp = LIK)

as M →∞, i.e., the number of antennas at the BS increases, is given by

CRB
a.s.

−−→
M→∞

σ2
v

2N
I2MK . (5.34)

Proof. See Appendix 5.8.I.

Remark 5.3. Based on Theorem 5.2, the CRB of semi-blind channel estimation with unlimited

number of BS antennas is equivalent to the CRB of a system where the whole transmission

block of length N acts as orthogonal pilot sequences, i.e., SSH = NIK .
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Remark 5.4. In massive MIMO systems with an increasing number of users, pilot contamina-

tion, which originates from non-orthogonal pilot sequences or the reuse of pilot sequences for

neighboring cells, is a severe limiting factor in achievable data rates [15], [20]. Increasing

length of the pilot sequences reduces the pilot contamination effect. The asymptotic results of

CRB with both deterministic and stochastic assumptions indicate that with sufficiently large

number of antennas at BS, the effective pilot length of the system increases. In other words,

using information carried in unknown data is analogous to increasing the pilot length when

only pilot sequences are used for channel estimation (see Figures 5.4, 5.7, and 5.8) but with-

out the loss in throughput. This property makes semi-blind channel estimation an attractive

approach to alleviate the pilot contamination bottleneck in massive MIMO systems which is

our future topic of study.

5.5 Numerical Results

In the numerical experiments, we consider a single cell with radius 500m and a BS

located at the center of the cell and uniformly distributed users. We use a three-slope path loss

model [52] for large scale fading coefficients as follows

βk =



c0 dk ≤ d0

c1

d2
k

d0 < dk ≤ d1

c2zk
d3.5
k

dk > d1

, (5.35)

where dk is the distance in kilometers between user k and the BS, and zk is the log-normal

shadow fading, i.e., 10 log10 zk ∼ N (0, σ2
shad) with σshad = 8 dB. For dk > d1 we use COST-
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231 Hata propagation model

10 log10 c2 =− 46.3− 33.9 log10 f + 13.82 log10 hB

+ (1.1 log10 f−0.7)hR− (1.56 log10 f−0.8), (5.36)

where f = 1900 MHz is the carrier frequency, hB = 15m is the BS antenna height, and

hR = 1.65m is the user antenna height. Path loss parameters c1 and c0 in (5.35) are given by

10 log10 c1 = 10 log10 c2 − 15 log10(d1), 10 log10 c0 = 10 log10 c1 − 20 log10(d0). (5.37)

We choose d0 = 0.01km and d1 = 0.05km. Signal-to-noise ratio in the experiments is consid-

ered to be SNR = E(βk)
σ2
v

. Pilot sequences (Sp) and data symbols (Sd) are drawn from a QPSK

constellation and pilot sequences are chosen to be orthogonal. We initialize all semi-blind

algorithms using the ML training-based estimate in (5.4). In the EM algorithm with GMM

prior, we set σs = 0.001.

Experiment 1: In this experiment, it is shown that one can obtain more accurate channel

estimates by using semi-blind estimation. We compare MSE of the ML estimates given in

Subsection 5.2.3 and the semi-blind algorithms given in (5.12), (5.14), (5.15), and (5.18). In

this experiment, M = 8, K = 4, L = 16, and N = 512. Figure 5.1 shows the scaled MSE,

i.e., E(‖G−Ĝ‖2
F )/E(βk), of the channel estimates versus SNR for the two ML estimators and

the semi-blind algorithms. Scaled MSE of the EM algorithm defined in (5.12) with Gaussian

data symbols is also plotted in the Figure 5.1. Even though the EM algorithm with Gaus-

sian prior defined in (5.12) is obtained for the Gaussian data, one can observe that MSE of

the QPSK data is virtually indistinguishable from that of the experiment with Gaussian data

symbols. We provide the following observation to support the good performance observed.

In the Bayesian framework, the prior information is of limited importance and the posterior

density of the symbols given the received data, as required in the EM algorithm, is controlled
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by the received data [55]. In this case, the posterior is a Gaussian density with a mean close

to the actual symbol value. This can be understood by noting that (5.12a) is in fact the lin-

ear minimum mean squared error (LMMSE) estimate of symbols. In addition, if the prior

is being approximated, a non-informative prior is often used and suggested. Based on the

maximum-entropy principle, when only partial information is available on the prior distribu-

tion, the distribution with the largest entropy consistent with the partial information is a useful

non-informative prior [81], [82]. Based on the zero mean and variance of the symbols, the

Gaussian density has the maximum entropy among continuous real valued densities making

it a reasonable choice. Moreover, it is not necessary for improved channel estimation to have

exact symbol recovery. The quality of channel estimation improves as long as the estimates of

the data symbols are in the neighborhood of actual data symbols and are properly weighted by

the uncertainty in the estimate. Based on these observations, we believe the Gaussian density

is a useful approximation as a prior for data symbols and the EM algorithm obtained with the

Gaussian data assumption improves channel estimates even when the data symbols are drawn

from a discrete constellation.

One can observe that all semi-blind algorithms provide better channel estimates com-

pared with the ML training-based estimation.Note that in low SNRs, the EM algorithm with

channel priors defined in (5.14) outperforms the EM algorithm with Gaussian prior given

in (5.12). In low SNRs, the EM algorithm with Gaussian prior outperforms the heuristic

semi-blind scheme and the EM algorithm with GMM prior. However, as SNR increases, the

heuristic semi-blind estimation and the EM algorithm with GMM prior provide better channel

estimates and become closer to the genie-aided ML estimator. To explain this behavior, we

point out that the constellation demapping in the heuristic algorithm and the EM algorithm

with GMM prior adds to the estimation error when the estimates of µn are uncertain in low

SNRs. This phenomenon works in favor of these two algorithms in the high SNR regime by
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Figure 5.1: Scaled MSE versus SNR with M = 8, K = 4, L = 16, and N = 512.

mapping µn to its true value.

In Figures 5.2 and 5.3, the scaled MSE of EM algorithm with Gaussian prior versus

number of iterations is plotted for SNR = 15dB and SNR = 30dB respectively. It can be ob-

served that the EM algorithm with Gaussian prior converges after a few iterations. Therefore,

its complexity with small number of iterations (Q) is comparable to that of the ML estimator

with full data (see Section 5.3.2).

In the next three experiments we consider a massive MIMO system in which the num-

ber of antennas at the BS is much larger than the number of users (M � K).

Experiment 2: In this experiment, we compare MSE and symbol error rate of the ML estima-

tors described in Subsection 5.2.3 and the EM algorithm with Gaussian prior given in (5.12)

for M = 64, K = 8, L = 16, and N = 512. We consider symbol error rate of a LMMSE

receiver in uplink transmission. The LMMSE receiver is based on the channel estimates ob-

tained by each algorithm. Scaled MSE of the EM algorithm with Gaussian prior given in
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Figure 5.2: Scaled MSE versus number of iterations with M = 8, K = 4, L = 16, N = 512,

and SNR = 15dB.

1 2 3 4 5 6 7 8 9 10
Number of iterations

10-5

10-4

10-3

10-2

M
SE

 / 
E

(
)

ML Training
EM Gaussian Prior
ML Full Data

Figure 5.3: Scaled MSE versus number of iterations with M = 8, K = 4, L = 16, N = 512,

and SNR = 30dB.
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Figure 5.4: Scaled MSE versus SNR with M = 64, K = 8, and N = 512.

(5.12) and the ML estimators are plotted in Figure 5.4. One can see that the EM algorithm

with Gaussian prior outperforms ML estimator based on pilot sequences significantly. Scaled

MSE of the ML estimator with training sequence of length L = 128 is also plotted in this

figure. It can be seen that with eight times smaller training sequence, MSE of the EM algo-

rithm with Gaussian prior is very close to the MSE of the ML estimator with L = 128 training

sequences, indicating a significant benefit from the semi-blind scheme. The deterministic and

stochastic CRBs of the semi-blind channel estimation are also plotted in Figure 5.4. Note that

the deterministic and stochastic CRBs of semi-blind estimation are defined for any unbiased

estimator. In [83], it has been shown that the EM estimator for channel coefficients is biased.

For this reason, in Figure 5.4 the EM estimator is not necessarily lower bounded by CRB.

Figure 5.5 shows the symbol error rate of the LMMSE receiver versus SNR. It can be

seen that performance of the EM algorithm with Gaussian prior becomes closer to the ML with

full data as SNR increases. In the EM algorithm with Gaussian prior, the hidden parameters

are more likely to be estimated accurately as SNR increases. Therefore, symbol error rate of
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Figure 5.5: Symbol error rate versus SNR with M = 64, K = 8, L = 16, and N = 512.
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Figure 5.6: Scaled MSE versus number of iterations with M = 64, K = 8, L = 16,

N = 512, and SNR = 20dB.

the EM algorithm with Gaussian prior is closer to that of the ML estimator with full data in

high SNRs.
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M

MSE versus M with K = 8, L = 16, N = 512, and SNR= 15dB.

In Figure 5.6, we plot the scaled MSE of the semi-blind algorithms versus number

of iterations for M = 64, K = 8, L = 16, N = 512, and SNR = 20dB. One can see

that all semi-blind algorithms converge after a few iterations and that the heuristic semi-blind

algorithm and the EM algorithm with GMM prior show faster convergence compared to the

EM algorithm with Gaussian prior.

Experiment 3: In this experiment, we study effect of increasing the number of antennas at BS

with K = 8, L = 16, and N = 512. Figure 5.7 shows the scaled MSE of the ML estimators

described in Subsection 5.2.3 and the semi-blind algorithms in (5.12), (5.15), and (5.18) versus

number of antennas M for SNR = 15dB. The CRBs given in Section 5.4 are also plotted in

the figure. It can be observed that as the number of antennas increases, the performance of

the semi-blind algorithms becomes closer to the ML estimate with full data which depicts the

effectiveness of using the information carried in unknown data to estimate channel coefficients

in massive MIMO systems. The figure also confirms results obtained in Theorems 5.1 and 5.2.

Figure 5.8 shows the same results for SNR = 30dB.
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Figure 5.8: 1
M

MSE versus M with K = 8, L = 16, N = 512, and SNR= 30dB.

Experiment 4: Finally, we consider the effect of semi-blind channel estimation in downlink

beamforming. Figure 5.9 shows the cumulative distribution function (CDF) of log2 (γ) de-

fined in (5.25) for all users with ML estimators and the EM algorithm with Gaussian prior for

SNR = 15dB. Parameter log2(γ) represents the loss in capacity (in high SNR regime) due to

channel estimation error. It can be seen that the CDF of log2 (γ) with semi-blind channel esti-

mation defined in (5.12) is closer to that of the perfect CSI compared to the ML training-based

estimation defined in (5.4). The horizontal line corresponds to the 10th percentile. The loss

in capacity in terms of the 10th percentile (due to channel estimation error) for ML training-

based estimation and the EM algorithm with Gaussian prior is 1.84 bits per channel use and

0.48 bits per channel use respectively. Thus, the semi-blind channel estimation provides 1.36

bits per channel use improvement in the 10th percentile of the achievable rate over the ML

training-based estimation. Figure 5.10 presents the CDF of log2 (γ) for SNR = 30dB. In

this scenario, semi-blind estimation defined in (5.12) provides 0.1 bits per channel use im-

provement in the 10th percentile of the achievable rate over ML training-based estimation.
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Figure 5.9: CDF of log2 (γ) = log2

( |gTk ĝ∗k|2
‖gk‖2‖ĝk‖2

)
for different channel estimation schemes

with M = 64, K = 8, L = 16, N = 512, and SNR= 15dB.

In high SNR regime, the quality of channel estimation with ML training-based estimator in

(5.4) is close to the perfect CSI case. Hence, in this case, using semi-blind channel estimation

slightly improves the performance in terms of the 10th percentile of the achievable rate over

training-based estimator.

5.6 Conclusion

Motivated by TDD massive MIMO systems, we developed EM based algorithms for

semi-blind channel estimation by employing Gaussian and GMM priors on data symbols and

a suitable prior on channel coefficients. To understand the limits of estimation accuracy, we

obtained CRBs for semi-blind channel estimation under two sets of commonly used assump-

tions. The behavior of CRBs for massive MIMO systems when the number of antennas at the

BS grows without bound is investigated leading to conclusions that provide theoretical support
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Figure 5.10: CDF of log2 (γ) = log2

( |gTk ĝ∗k|2
‖gk‖2‖ĝk‖2

)
for different channel estimation schemes

with M = 64, K = 8, L = 16, N = 512, and SNR= 30dB.

for the use of semi-blind algorithms for TDD based massive MIMO systems. We compared

semi-blind estimation with known ML estimators. Numerical results indicate effectiveness of

semi-blind channel estimation (compared to the estimation based on pilot sequences only) for

both uplink and downlink transmissions in MIMO and specially in massive MIMO systems.

In particular, the performance of the semi-blind channel estimation algorithms becomes closer

to the genie aided ML estimator based on full data as the number of BS antennas increases.

Numerical results show that the EM algorithm with Gaussian prior has superior performance

compared with the EM algorithm with GMM prior in the low SNR regime. However, as the

SNR or as the number BS antennas increases, the performance of the EM algorithm with

GMM prior improves compared to the EM algorithm with Gaussian prior and becomes closer

to the genie aided ML estimator.
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5.8 Appendices

5.8.A E-Step of the EM Algorithm with Discrete Constellation

Suppose data symbols are chosen from a discrete constellation such as QPSK. Denote

by p(x) the probability mass function of discrete random variable x and let S be a set of size

|S| = 4K , which contains constellation points for all users. Then the conditional mean of data

symbols, E(s[n]|Ĝ`, Y ), in the E-step of the EM algorithm based on the estimates at the `th

iteration can be computed as follows

E
(
s[n]

∣∣∣Ĝ`, Y
)

=

∑
s[n]∈S s[n]p

(
y[n]

∣∣∣s[n], Ĝ`

)
p (s[n])∑

s[n]∈S p
(
y[n]

∣∣∣s[n], Ĝ`

)
p (s[n])

=

∑
s[n]∈S s[n]e

− 1

σ2v
‖y[n]−Ĝ`s[n]‖2

p (s[n])∑
s[n]∈S e

− 1

σ2v
‖y[n]−Ĝ`s[n]‖2

p (s[n])

. (5.38)

Similarly E(s[n]s[n]H |Ĝ`, Y ) in the E-step is given by

E
(
s[n]s[n]H

∣∣∣Ĝ`, Y
)

=

∑
s[n]∈S s[n]s[n]He

− 1

σ2v
‖y[n]−Ĝ`s[n]‖2

p (s[n])∑
s[n]∈S e

− 1

σ2v
‖y[n]−Ĝ`s[n]‖2

p (s[n])

. (5.39)

135



In (5.38) and (5.39), term
∥∥y[n]− Ĝ`s[n]

∥∥2 needs to be computed for all constellation points

in S. Therefore, complexity of the E-step with a discrete model for data symbols grows

exponentially with the number of users K.

5.8.B Derivation of the EM Algorithm with Gaussian Prior

Proof. Let gT[m] ∈ C1×K denote the mth row of channel matrix G. The expected value of the

log likelihood in (5.10) can be written as

L = const−
L−1∑
n=0

M∑
m=1

1

σ2
v

∥∥∥ym[n]− gT[m]s[n]
∥∥∥2

−
N−1∑
n=L

M∑
m=1

1

σ2
v

Ep(Sd|Y,Ĝ`)

(∥∥∥ym[n]− gT[m]s[n]
∥∥∥2
)
, (5.40)

where ym[n] is themth element of y[n]. The likelihood function in (5.40) is a concave function

of g[m] and its maximum at the (` + 1)th iteration is obtained by taking the complex gradient

of it with respect to g[m] [84], and setting the result to zero as follows

ĝT[m] =

(
L−1∑
n=0

ym[n]s[n]H +
N−1∑
n=L

ym[n]E
(
s[n]

∣∣∣Ĝ`, Y
)H)

×

(
SpS

H
p +

N−1∑
n=L

E
(
s[n]s[n]H

∣∣∣Ĝ`, Y
))−1

. (5.41)

Substituting all values in Ĝ`+1 =
[
ĝ[1], · · · , ĝ[M ]

]T gives us the M-step in (5.12b). To com-

pute the E-step, data symbols are assumed to be Gaussian, i.e., s[n] ∼ CN (0, IK) , n =

L, · · · , N − 1. Given G, Sd and Y are jointly Gaussian with conditional mean and covariance

matrix that are given below [85]:

E
(
s[n]

∣∣∣Ĝ`, Y
)

= E
(
s[n]y[n]H

∣∣∣Ĝ`

)
E
(
y[n]y[n]H

∣∣∣Ĝ`

)−1

y[n]

= ĜH
`

(
Ĝ`Ĝ

H
` + σ2

vIM

)−1

y[n]

(a)
=
(
ĜH
` Ĝ` + σ2

vIK

)−1

ĜH
` y[n], (5.42)
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and

Cov
(
s[n]

∣∣∣Ĝ`, Y
)

= E
(
s[n]s[n]H

∣∣∣Ĝ`

)
− E

(
s[n]y[n]H

∣∣∣Ĝ`

)
E
(
y[n]y[n]H

∣∣∣Ĝ`

)−1

E
(
y[n]s[n]H

∣∣∣Ĝ`

)
= IK − ĜH

`

(
Ĝ`Ĝ

H
` + σ2

vIM

)−1

Ĝ`

(b)
= σ2

v

(
ĜH
` Ĝ` + σ2

vIK

)−1

, (5.43)

where (a) and (b) follow from matrix inversion lemma [55, Eq. C.7].

5.8.C Derivation of the EM Algorithm with Channel Priors

Proof. Let gT[m] ∈ C1×K denote the mth row of channel matrix G. The expected value of

likelihood function with the Gaussian channel priors in (5.13) can be written as

L(G,B) = const−
L−1∑
n=0

M∑
m=1

1

σ2
v

∥∥∥ym[n]− gT[m]s[n]
∥∥∥2

−
N−1∑
n=L

M∑
m=1

1

σ2
v

Ep(Sd|Y,Ĝ`)

(∥∥∥ym[n]− gT[m]s[n]
∥∥∥2
)

−
M∑
m=1

gT[m]B
−1g∗[m] −

M∑
m=1

K∑
i=1

log βi. (5.44)

It can be observed that, again, terms E(s[n]|Ĝ`, Y ) and E(s[n]s[n]H |Ĝ`, Y ) appear in (5.44).

Therefore, the E-step remains the same as in (5.12a). In the M-step, for simplicity, we max-

imize L(G,B) with respect to G and B separately, which doesn’t necessarily maximize the

likelihood function L(G,B) but increases it. Holding B constant and taking the complex

gradient of L(G,B) with respect to g[m] and setting it to zero gives us

ĝT[m] =

(
L−1∑
n=0

ym[n]s[n]H +
N−1∑
n=L

ym[n]
(
µ`n
)H)× B̂`

×

(
SpS

H
p B̂` +

N−1∑
n=L

(
µ`n(µ`n)H + Σ`

)
B̂` + σ2

vIK

)−1

. (5.45)
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Substituting all values in Ĝ`+1 =
[
ĝ[1], · · · , ĝ[M ]

]T gives (5.14a) and results in a larger like-

lihood function, i.e., L(Ĝ`+1, B) ≥ L(G,B). Holding Ĝ`+1 constant we solve for B =

diag (β1, · · · , βK) by taking the derivative of L(Ĝ`+1, B) with respect to β1, · · · , βK and set-

ting it to zero as follows

β`+1
i =

∥∥g`+1
i

∥∥2

M
, i = 1, · · · , K, (5.46)

which completes the M step. This step ensures that L(Ĝ`+1, B̂`+1) ≥ L(Ĝ`+1, B), and hence

the overall likelihood function increases in the M-step, i.e., L(Ĝ`+1, B̂`+1) ≥ L(G,B). There-

fore, this procedure results in a generalized EM algorithm [55].

5.8.D Derivation of the EM Algorithm with GMM Prior

Proof. The expected value of likelihood function in (5.17) can be written as

L = const−
L−1∑
n=0

M∑
m=1

1

σ2
v

∥∥∥ym[n]− gT[m]s[n]
∥∥∥2

−
N−1∑
n=L

M∑
m=1

1

σ2
v

Ep(Sd|Y,Θ̂`)

(∥∥∥ym[n]− gT[m]s[n]
∥∥∥2
)

−
N−1∑
n=L

K∑
k=1

1

σ2
s

Ep(Sd|Y,Θ̂`)

(∣∣∣sk[n]− cnk
∣∣∣2) , (5.47)

where gT[m] ∈ C1×K denotes the mth row of G, and cnk is the kth element of cn. Similar

to Appendix 5.8.B, the channel estimate at the (` + 1)th iteration is obtained by taking the

derivative of the log likelihood L and setting it to zero, which gives us

ĝT[m] =

(
L−1∑
n=0

ym[n]s[n]H +
N−1∑
n=L

ym[n]E
(
s[n]

∣∣∣Θ̂`, Y
)H)

×

(
SpS

H
p +

N−1∑
n=L

E
(
s[n]s[n]H

∣∣∣Θ̂`, Y
))−1

. (5.48)
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By stacking vectors ĝT[1], · · · , ĝT[M ] in Ĝ`+1 we get (5.18b). Let C be a set containing constel-

lation points. The optimal cnk in (5.47) is obtained as follows

c`+1
nk = argmin

cnk∈C
Ep(Sd|Y,Θ̂`)

(∣∣∣sk[n]− cnk
∣∣∣2)

= argmin
cnk∈C

|cnk|2 − 2Re
{
Ep(Sd|Y,Θ̂`) (sk[n]) c∗nk

}
(5.49)

which is equivalent to demapping E
(
sk[n]

∣∣∣Y, Θ̂`

)
to the closest constellation point:

c`+1
nk = F

(
E
(
sk[n]

∣∣∣Y, Θ̂`

))
. (5.50)

In the vector form, cn can be written as

ĉ`+1
n = F

(
E
(
s[n]

∣∣∣Y, Θ̂`

))
. (5.51)

Given Θ, Sd and Y are jointly Gaussian. Similar to Appendix 5.8.B, E(s[n]|Θ̂`, Y ) and

E(s[n]s[n]H |Θ̂`, Y ) that appear in the likelihood function (5.47) can be computed from the

conditional density of circularly symmetric Gaussian random vectors as follows [85]

E
(
s[n]

∣∣∣Θ̂`, Y
)

= E
(
s[n]y[n]H

∣∣∣Θ̂`

)
E
(
y[n]y[n]H

∣∣∣Θ̂`

)−1

y[n]

=
(
ĉ`n(ĉ`n)H + σ2

sIK
)
ĜH
`

(
Ĝ`

(
ĉ`n(ĉ`n)H + σ2

sIK
)
ĜH
` + σ2

vIM

)−1

y[n]

(a)
=
(
ĜH
` Ĝ` + σ2

v

(
ĉ`n(ĉ`n)H + σ2

sIK
)−1
)−1

ĜH
` y[n], (5.52)

and

Cov
(
s[n]

∣∣∣Θ̂`, Y
)

= E
(
s[n]s[n]H

∣∣∣Θ̂`

)
− E

(
s[n]y[n]H

∣∣∣Θ̂`

)
E
(
y[n]y[n]H

∣∣∣Θ̂`

)−1

E
(
y[n]s[n]H

∣∣∣Θ̂`

)
=
(
ĉ`n(ĉ`n)H + σ2

sIK
)

−
(
ĉ`n(ĉ`n)H + σ2

sIK
)
ĜH
`

(
Ĝ`

(
ĉ`n(ĉ`n)H + σ2

sIK
)
ĜH
` + σ2

vIM

)−1

Ĝ`

(
ĉ`n(ĉ`n)H + σ2

sIK
)

(b)
= σ2

v

(
ĜH
` Ĝ` + σ2

vIK
(
ĉ`n(ĉ`n)H + σ2

sIK
)−1
)−1

, (5.53)
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where (a) and (b) are the result of matrix inversion lemma [55, Eq. C.7].

5.8.E Proof of Lemma 5.2

Proof. Define xm = |ĝmi|2 with probability distribution function f(xm) for m = 1, · · · ,M .

Then, the cumulative distribution function of y1 = x1
x1+···+xM

for 0 ≤ a < 1 is given by

Pr {y1 ≤ a} = Pr

{
x1 ≤

a

1− a
(x2 + x3 + · · ·+ xM)

}
=

∫ 1

0

· · ·
∫ 1

0

∫ a
1−a (x2+x3+···+xM )

0

f(x1) · · · f(xM)dx1 · · · dxM . (5.54)

A change of variables between x1 and x2 gives us

Pr {y1 ≤ a} =

∫ 1

0

· · ·
∫ 1

0

∫ a
1−a (x1+x3+···+xM )

0

f(x1) · · · f(xM)dx1 · · · dxM

= Pr {y2 ≤ a} , (5.55)

which indicates that y1, · · · , yM are identically distributed and hence have the same mean.

The fact that
∑M

m=1 ym = 1, results in E (ym) = 1
M
, m = 1, · · · ,M .

5.8.F Derivation of the Deterministic CRB

Define x̄ , Re {x} and x̃ , Im {x}. The log likelihood function of the received signal

is given by

L = const−
N−1∑
n=0

1

σ2
v

∥∥∥y[n]−Gs[n]
∥∥∥2

. (5.56)

The CRB of both channel coefficients and unknown data symbols (Sd) is given by

CRB (Sd, G) = E
(
IIT

)−1
, (5.57)
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where

I = ∂L
/
∂
[
s[L]T , s̃[L]T , · · · , s[N − 1]T , s̃[N − 1]T , gT1 , g̃

T
1 , · · · , gTK , g̃TK

]T
. (5.58)

Define A = 2
σ2
v
GHG. Following similar steps as in the proof of [75, Theorem 4.1], for n =

L, · · · , N − 1, and k = 1, · · · , K, we can show that

∂L
∂s̄[n]

=
2

σ2
v

Re
{
GHv[n]

}
,

∂L
∂s̃[n]

=
2

σ2
v

Im
{
GHv[n]

}
,

∂L
∂ḡk

=
2

σ2
v

N−1∑
n=0

Re {v[n]sk[n]∗} , ∂L
∂g̃k

=
2

σ2
v

N−1∑
n=0

Im {v[n]sk[n]∗} . (5.59)

Using E
(
v[n]v[p]H

)
= σ2

vIMδ(n− p) and R3 in [75, Theorem 4.1], for n, p = L, · · · , N − 1

and k = 1, · · · , K, we get

E
(

∂L
∂s̄[n]

( ∂L
∂s̄[p]

)T)
= E

(
∂L
∂s̃[n]

( ∂L
∂s̃[p]

)T)
= Ā δ(n− p),

E
(

∂L
∂s̄[n]

( ∂L
∂s̃[p]

)T)
= −Ã δ(n− p),

E
(

∂L
∂s̄[n]

( ∂L
∂ḡk

)T)
= E

(
∂L
∂s̃[n]

( ∂L
∂g̃k

)T)
= W̄k[n],

E
(

∂L
∂s̃[n]

( ∂L
∂ḡk

)T)
= −E

(
∂L
∂s̄[n]

( ∂L
∂g̃k

)T)
= W̃k[n],

E
(
∂L
∂ḡk

( ∂L
∂ḡi

)T)
= E

(
∂L
∂g̃k

( ∂L
∂g̃i

)T)
= λ̄kiIM ,

E
(
∂L
∂g̃k

( ∂L
∂ḡi

)T)
= −E

(
∂L
∂ḡk

( ∂L
∂g̃i

)T)
= λ̃kiIM . (5.60)

Substituting (5.60) in (5.57), gives us

CRB (Sd, G)−1 =



[
Ā −Ã
Ã Ā

]
0 ΩL

. . . ...

0
[
Ā −Ã
Ã Ā

]
ΩN−1

ΩT
L · · · ΩT

N−1 Λ


, (5.61)
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where Λ and Ωn, n = L, · · · , N − 1 are defined in (5.29). The CRB of channel matrix G is

the 2MK×2MK submatrix formed of intersection of the last 2MK rows and 2MK columns

of CRB (Sd, G). By results on the inverse of a block matrix, we can show that

CRB (G) =

(
Λ−

N−1∑
n=L

ΩT
n

[
C̄ −C̃
C̃ C̄

]
Ωn

)−1

. (5.62)

5.8.G Proof of Theorem 5.1

We will need the following preparatory lemma to prove Theorem 5.1.

Lemma 5.3. Denote by gT[m] ∈ C1×K the mth row of channel matrix G ∈ CM×K defined in

(5.1). Then, for any m,m′ ∈ {1, · · · ,M}, we have

gT[m]

(
GHG

)−1
g∗[m′]

a.s.

−−→
M→∞

0. (5.63)

Proof. Let hT[m] be the mth row of small scale fading matrix H in (5.1) and define Ψ(m) =(
1
M
HHH − 1

M
h∗[m]h

T
[m]

)−1 with elements
[
Ψ(m)

]
ij

= ψij . Note that Ψ(m) and h[m] are statis-

tically independent. For any A ∈ CM×M and B ∈ CM×M by Cauchy-Schwarz inequality, we

have

|tr (AB)| ≤
√

tr (AAH) tr (BBH) ≤M ‖A‖2 ‖B‖2 . (5.64)

By applying matrix inversion lemma [53, Lemma 6.2], for m = m′, we obtain

gT[m]

(
GHG

)−1
g∗[m′] =

1
M
hT[m]Ψ(m)h

∗
[m]

1 + 1
M
hT[m]Ψ(m)h

∗
[m]

. (5.65)

In order to prove (5.63), for m = m′, we will show that E
(∣∣ 1

M
hT[m]Ψ(m)h

∗
[m]

∣∣2) ≤ c
M2 for
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some constant c as follows

E

(∣∣∣∣ 1

M
hT[m]Ψ(m)h

∗
[m]

∣∣∣∣2
)

=
1

M2

K∑
i,i′=1

K∑
j,j′=1

E (hmih
∗
mi′)E

(
h∗mjhmj′

)
E
(
ψijψ

∗
i′j′

)
+

1

M2

K∑
i,i′=1

K∑
j,j′=1

E
(
hmih

∗
mj

)
E (h∗mi′hmj′)E

(
ψijψ

∗
i′j′

)
=

1

M2
E
(
tr
(
Ψ(m)Ψ

H
(m)

))
+

1

M2
E
(∣∣tr (Ψ(m)

)∣∣2)
≤ K

M2
E
(∥∥Ψ(m)

∥∥2

2

)
+
K2

M2
E
(∥∥Ψ(m)

∥∥2

2

)
, (5.66)

where the last inequality follows from (5.64). Since 1
M
HHH is non-singular with probability

one for all large M [53], the maximum eigenvalue of matrix Ψ(m) is bounded for all large M

almost surely. By dominated convergence theorem [86], E
(∥∥Ψ(m)

∥∥2

2

)
is uniformly bounded.

Therefore, E
(∣∣ 1

M
hT[m]Ψ(m)h

∗
[m]

∣∣2) is of orderO(M−2) and by Borel-Cantelli lemma it follows

that

1

M
hT[m]Ψ(m)h

∗
[m]

a.s.

−−→
M→∞

0. (5.67)

By matrix inversion lemma, for m 6= m′, term gT[m](G
HG)−1g∗[m′] is equal to

1
M
hT[m]Ψ(mm′)h

∗
[m′](

1 + 1
M
hT[m]Ψ(m)h

∗
[m]

) (
1 + 1

M
hT[m′]Ψ(mm′)h

∗
[m′]

) , (5.68)

where Ψ(mm′) =
(

1
M
HHH− 1

M
h∗[m]h

T
[m]− 1

M
h∗[m′]h

T
[m′]

)−1

. Note that h[m], h[m′], and Ψ(mm′)

are independent for m 6= m′. Similarly, we can show that E
(∣∣ 1

M
hT[m]Ψ(mm′)h

∗
[m′]

∣∣2) is of

order O(M−2) and hence

1

M
hT[m]Ψ(mm′)h

∗
[m′]

a.s.

−−→
M→∞

0. (5.69)

Combining all the results yields

gT[m]

(
GHG

)−1
g∗[m′]

a.s.

−−→
M→∞

0. (5.70)
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Proof of Theorem 5.1. For notational simplicity, we define Dkl[n] = Wk[n]HCWl[n]. After

some manipulation, submatrices in ΩT
n

[
C̄ −C̃
C̃ C̄

]
Ωn can be simplified as follows W̄k[n]T W̃k[n]T

−W̃k[n]T W̄k[n]T


C̄ −C̃

C̃ C̄


W̄l[n] −W̃l[n]

W̃l[n] W̄l[n]

 =

D̄kl[n] −D̃kl[n]

D̃kl[n] D̄kl[n]

 . (5.71)

Denote by gT[m] ∈ C1×K the mth row of channel matrix G defined in (5.1). The (m,m′)th

component of Dkl[n] is then given by

[Dkl[n]]mm′ =
2sk[n]sl[n]∗

σ2
v

gT[m]

(
GHG

)−1
g∗[m′]

(a)

−−→
M→∞

0, (5.72)

where (a) follows from Lemma 5.3, which shows that each element of matrix ΩT
n

[
C̄ −C̃
C̃ C̄

]
Ωn

converges to zero almost surely. Therefore, by continuous mapping theorem [56] we have

CRB(G)
a.s.

−−→
M→∞

Λ−1. (5.73)

5.8.H Derivation of the Stochastic CRB

The log likelihood function of the received signal with Gaussian data symbols is given

by

L = const−
L−1∑
n=0

1

σ2
v

∥∥∥y[n]−Gs[n]
∥∥∥2

︸ ︷︷ ︸
L1[n]

−
N−1∑
n=L

(
y[n]HR−1y[n]− log detR

)︸ ︷︷ ︸
L2[n]

. (5.74)

Terms L1[0], · · · ,L1[L−1],L2[L], · · · ,L2[N −1] are independent. Thus, the CRB of covari-

ance matrix is given by

[
CRB−1

]
ij

=
L−1∑
n=0

E
(
∂L1[n]

∂αi

∂L1[n]

∂αj

)
+

N−1∑
n=L

E
(
∂L2[n]

∂αi

∂L2[n]

∂αj

)
. (5.75)
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From (5.32), for n = 0, · · · , L− 1, we have

E
(
∂L1[n]

∂ḡmk

∂L1[n]

∂ḡrl

)
= E

(
∂L1[n]

∂g̃mk

∂L1[n]

∂g̃rl

)
=

2

σ2
v

Re {sk[n]∗sl[n]} δ(m− r),

E
(
∂L1[n]

∂ḡmk

∂L1[n]

∂g̃rl

)
= − 2

σ2
v

Im {sk[n]∗sl[n]} δ(m− r). (5.76)

Suppose pilot sequences are orthogonal, i.e.,
∑L−1

n=0 sk[n]∗sl[n] = Lδ (k − l). We then have

E
(
∂L1[n]

∂αi

∂L1[n]

∂αj

)
=

2L

σ2
v

δ(i− j). (5.77)

From (5.32), it follows that

E
(
∂L2[n]

∂αi

∂L2[n]

∂αj

)
= tr

(
R−1 ∂R

∂αi
R−1 ∂R

∂αj

)
. (5.78)

Substituting (5.77) and (5.78) in (5.75) yields

[
CRB−1

]
ij

=
2L

σ2
v

δ (i− j)+(N − L)tr
(
R−1 ∂R

∂αi
R−1 ∂R

∂αj

)
. (5.79)

5.8.I Proof of Theorem 5.2

We first provide the following preparatory results which are used in proving Theorem

5.2.

Lemma 5.4. Let R = GGH + σ2
vIM , where G ∈ CM×K is the channel matrix defined in

(5.1). Assume columns of matrix G, denoted by gk ∼ CN (0, βkIM), are independent and

P ∈ CM×M is a deterministic matrix with uniformly bounded spectral norm. Then,

tr
(
R−1P

)
− tr (P )

σ2
v

a.s.

−−→
M→∞

0. (5.80)

Proof. When M and K grow large such that 0 < lim infM
M
K
≤ lim supM

M
K

< ∞, we

have [54, Theorem 1]

1

M
tr
(

(
1

M
R)−1P

)
− 1

M
tr (TP )

a.s.

−−→
M→∞

0, (5.81)
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where

T =
M∑K

j=1
βj

1+eM,j
+ σ2

v

IM , (5.82)

and eM,1, · · · , eM,K form the unique solution of

eM,i =
Mβi∑K

j=1
βj

1+eM,j
+ σ2

v

. (5.83)

Suppose M → ∞ such that K
M
→ 0. We can show that eM,i is of order O(M) and conse-

quently T → M
σ2
v
IM . Therefore,

tr
(
R−1P

)
− tr (P )

σ2
v

a.s.

−−→
M→∞

0. (5.84)

Corollary 5.1. Let em =
[
01×(m−1), 1, 01×(M−m)

]T , where 01×(m−1) is a zero vector of

length (m− 1). We then have

eHmR
−1en

a.s.

−−→
M→∞

δ(m− n)

σ2
v

. (5.85)

Proof. Substituting P = ene
H
m in Lemma 5.4 completes the proof.

Corollary 5.2. Let R(k) = GGH + σ2
vIM − gkgHk , where G is the channel matrix defined in

(5.1), and suppose gk ∼ CN (0, βkIM) is the kth column of G. Then,

1

M
gHk R

−1
(k)gk

a.s.

−−→
M→∞

βk
σ2
v

. (5.86)

Proof. Let hk denote the kth column of small scale fading matrix H in (5.1). Note that hk

and R(k) are independent, and matrix R−1
(k) has uniformly bounded spectral norm for all large

M , i.e., lim supM
∥∥R−1

(k)

∥∥
2
≤ 1

σ2
v
<∞. Thus, we have

1

M
gHk R

−1
(k)gk =

1

M
βkh

H
k R

−1
(k)hk

(a)

−−→
M→∞

βk
M

tr
(
R−1

(k)

) (b)

−−→
M→∞

βk
σ2
v

, (5.87)

where (a) and (b) follow from [53, Theorem 3.4] and Lemma 5.4 respectively.
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Lemma 5.5. Define em =
[
01×(m−1), 1, 01×(M−m)

]T and R(k) = GGH + σ2
vIM − gkgHk ,

where G is the channel matrix defined in (5.1) and gk ∼ CN (0, βkIM) is the kth column of

G. Then,

1

M
eHmR

−1
(k)gk

a.s.

−−→
M→∞

0. (5.88)

Proof. Define A = R−1
(k) with elements [A]ij = aij and let hmk, m = 1, · · · ,M, k =

1, · · · , K denote the elements of small scale fading matrix H in (5.1). It is clear that A and gk

are independent. In order to prove (5.88), we will show that E
( ∣∣ 1

M
eHmAgk

∣∣4 ) ≤ c
M2 for some

constant c as follows

E

(∣∣∣∣ 1

M
eHmAgk

∣∣∣∣4
)

= E

 β2
k

M4

∣∣∣∣∣
M∑
i=1

amihik

∣∣∣∣∣
4


=
β2
k

M4

M∑
i1,i2
i3,i4

E
(
ami1a

∗
mi2
ami3a

∗
mi4

)[
E
(
hi1kh

∗
i2k

)
E
(
hi3kh

∗
i4k

)
+ E

(
hi1kh

∗
i4k

)
E
(
hi2kh

∗
i3k

) ]

=
2β2

k

M4
E

(( M∑
i=1

|ami|2
)2
)
≤ 2β2

k

M4
E
(

tr
(
AAH

)2
)

(a)

≤ 2β2
k

M2
E
(
‖A‖4

2

)
, (5.89)

where (a) comes from (5.64).

Matrix A has uniformly bounded spectral norm, i.e., lim supM ‖A‖2 ≤
1
σ2
v
< ∞.

By dominated convergence theorem [86], E
(
‖A‖4

2

)
is also uniformly bounded and hence

1
M2E

(
‖A‖4

2

)
is of order O(M−2). Therefore, E

( ∣∣ 1
M
eHmAgk

∣∣4 ) is summable and by Borel-

Cantelli lemma it follows that

1

M
eHmR

−1
(k)gk

a.s.

−−→
M→∞

0. (5.90)
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Proof of Theorem 5.2. Define the following quantities:

R(k) = R− gkgHk , R(kl) = R(k) − glgHl ,

Tmk =
[
0M×(m−1), gk, 0M×(M−m)

]
, em =

[
01×(m−1), 1, 01×(M−m)

]T
, (5.91)

where 0M×(m−1) is a zero matrix of size M × (m− 1). Note that, for l 6= k, quantities gk, gl,

R(k), and R(kl) are mutually independent. The second term in (5.33) for different values of αi

and αj can be rewritten as follows

tr
(
R−1 ∂R

∂ḡmk
R−1 ∂R

∂ḡnl

)
= 2Re

{
tr
(
R−1TmkR

−1Tnl
)}

+ 2Re
{

tr
(
R−1TmkR

−1THnl
)}
,

tr
(
R−1 ∂R

∂g̃mk
R−1 ∂R

∂g̃nl

)
= −2Re

{
tr
(
R−1TmkR

−1Tnl
)}

+ 2Re
{

tr
(
R−1TmkR

−1THnl
)}
,

tr
(
R−1 ∂R

∂ḡmk
R−1 ∂R

∂g̃nl

)
= 2Im

{
tr
(
R−1TmkR

−1Tnl
)}
− 2Im

{
tr
(
R−1TmkR

−1THnl
)}
,

tr
(
R−1 ∂R

∂g̃mk
R−1 ∂R

∂ḡnl

)
= 2Im

{
tr
(
R−1TmkR

−1Tnl
)}

+ 2Im
{

tr
(
R−1TmkR

−1THnl
)}
.

(5.92)

By matrix inversion lemma [53, Lemma 6.2], we have

tr
(
R−1TmkR

−1Tnl
)

=
(
eHn R

−1gk
) (
eHmR

−1gl
)

=
eHn R

−1
(k)gk

1 + gHk R
−1
(k)gk

eHmR
−1
(l) gl

1 + gHl R
−1
(l) gl

, (5.93)

By Corollary 5.2, 1
M
gHk R

−1
(k)gk →

βk
σ2
v
, and 1

M
gHl R

−1
(l) gl →

βl
σ2
v
, almost surely. By Lemma 5.5,

it follows that 1
M
eHn R

−1
(k)gk → 0 and 1

M
eHmR

−1
(l) gl → 0. We therefore have

tr
(
R−1TmkR

−1Tnl
) a.s.

−−→
M→∞

0. (5.94)

By applying matrix inversion lemma to term tr
(
R−1TmkR

−1THnl
)

in (5.92), we obtain

tr
(
R−1TmkR

−1THnl
)

=
eHmR

−1en

1 + gHk R
−1
(k)gk


gHk R

−1
(k)gk l = k

gHl R
−1
(kl)gk

1 + gHl R
−1
(kl)gl

l 6= k

(5.95)

148



It follows from Corollaries 5.1 and 5.2 that, for l = k, tr
(
R−1TmkR

−1THnl
)
→ δ(n−m)

σ2
v

almost

surely. From [53, Theorem 3.7], for l 6= k, we know that 1
M
gHl R

−1
(kl)gk → 0 almost surely.

Thus, for l 6= k, tr
(
R−1TmkR

−1THnl
)
→ 0 almost surely. Therefore,

tr
(
R−1TmkR

−1THnl
) a.s.

−−→
M→∞

δ(n−m)δ(k − l)
σ2
v

. (5.96)

Substituting (5.94) and (5.96) in (5.92) yields

tr
(
R−1 ∂R

∂αi
R−1 ∂R

∂αj

)
a.s.

−−→
M→∞

2δ(i− j)
σ2
v

. (5.97)

Thus,
[
CRB−1

]
ij

a.s.

−−→
M→∞

2N
σ2
v
δ (i− j). By the continuous mapping theorem [56], we therefore

have

CRB
a.s.

−−→
M→∞

σ2
v

2N
I2MK . (5.98)
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