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March 1, 1985 LBL-19122 

QUANTUM FLUCTUATIONS AND THE 
EFFECTIVE ENERGY FUNCTIONAL 

IN THE SKYRME MODELl 

Randall Ingermanson 

Lawrence Berkeley Laboratory 

University of California 

Berkeley, California 94720, U.S.A. 

ABSTRACT 

We review the motivation for computing quantum corrections in 

the Skyrme model. We explicitly compute an approximate non­

perturbative quantum energy functional for the Skyrmion. The 

result is quite similar in structure to the semi-classical formula 

of Adkins, Nappi and Witten. We show that certain weaknesses 

of the standard Skyrme model may be resolved by quantum cor­

rections. 

1 This work was supported by the Director, Office of Energy Research, Office of High Energy 
Physics and Nuclear Physics, Division of High Energy Physics of the U.S. Department. of 

Enerr;y under Contract DE·AC03·76SF00098. 
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1 Intr()duction 

Recently, the old Skyrme model [I] has enjoyed a dramatic revival in 

populari,ty. The elegant paper by Adkins, Nappi and Witten (ANW) [2] still 

reflects very well the current status of the model. By this statement, we 

mean that the strengths of ANW's model are strengths of current versions 

of the model; conversely, weaknesses of ANW's model generally recur as 

weaknesses in the more recent work. 

Since the strengths of ANW's model are well-known, we will focus here 

on the weaknesses, with an eye toward improving,them: 

1. The value of the axial coupling constant gA is the most obvious defect 

of the Skyrme model. Most calculations are far too low. The existence 

of chiral anomalies in fleld theories suggests that an honest quantum 

calculation is needed here, rather than the semi-classical estimates that 

have been made to date. 

2. Generally, the Skyrmion is too heavy. ANW skirted this problem by 

lowering F" (i.e., the mass scale) by some 30 per cent. This problem is 

typical of soliton physics; see, e.g., Coleman's lectures [3] for a demon­

stration that the classical mass is an upper bound to the exact mass 

in a wide class of two-dimensional models. Quantum mass corrections 

can be quite substantial, as the exact results of the Sine-Gordon model 

show [4]. 

3. The Skyrme model has an infinite sequence of spin states with spin = 
1/2,3/2 . .. Experimentally, this sequence ends at N e12, where Ne = 3 

is the number of colors in the underlying QCD theory. 

The Skyrme Lagrangian is supposed to represent the low energy part 

of the leading order in the liNe expansion of QCD. Thus, it is not 

surprising that the sequence of spin states continues past N e12: in a 

tree-level calculation, Ne is invisible. (More accurately, the only N e-

dependent quantity, F'II' scales out of the equations.) In a quantum 

calculation, higher orders in liNe would appear [51. It is to be hoped 

that these extra terms would conspire to cut oft'the spin sequence. 

4. Recently, there has been some discussion about the apparent inade­

quacy of the semi-classical energy functional in ANW's model [6,71. 
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This particular problem provides the main motivation for this paper. 

To discuss the problem, we first need to briefly review the model. 

Consider the Lagrangian of the nonlinear O'-model 

lo = ;F;Tr[(oI'U)(ol'ut)] + tF;m:[(TrU) - 2]. 

U(r,t) is an SU(2) matrix-valued field. U = exp(2iIIjAjIF,,), where 

nj are the pion fields, F" ~ 93MeV, and Tr(AiAj) = t~ij. We assume 

the existence of a rotating classical solution 

U(r, t) = A(t)Uo(f)At(t), 

and take Skyrme's ansatz 

Uo = exp[iF(r)r. r], 

where F(O) = 11' and F(oo) = O. F(r) is to be chosen to minimize the 

energy of the soliton. A(t) is parametrized by 

A = ao + iii· T 

with the constraint a~ + ii· ii = 1. 

Quantizing the "collective coordinates" al'(t) in the same way as ANW 

did, we eventually obtain the solitonic energy, as a functional of F(r). 

l(l + 2) 
Et[F] = M[F] + 8AIF] , 

where ll2 = spin = isospin, and 

(1.1) 

M[F] 100 [1 ( 2 sin' F) ] = 411'F; 0 dr r' 2 (F')2 + -r-'- + m~(l- cosF) 

A[F] = --" dr r2 sin' F. 81r~ 100 

3 0 
(1.2) 

(M[F] is the classical mass of a static soliton; AIF] is the corresponding 

moment of inertia.) 

ANW computed F(r) by minimising M[F]: 

5M 
5F(r) = O. 

In this approach, F(r) is unstable to collapse. Following Skyrme, 

ANW added an extra piece, (the "Skyrme term"), to lo, having four 
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derivatives. This changed the scaling properties of M[F], stabilizing 

F(r). ANW then went on to compute many baryonic parameters semi­

classically. 

This approach has been criticized [6], on the grounds that one should 

minimize Ef[F], rather than M[F]. One then finds that F(r) is stabi­

lized by the scaling properties of the term l(l + 2)/8A[F], so that the 

Skyrme term is unneeded (for the physical case l i- 0.) This procedure 

seems less artificial than ANW's approach. It is plausible that this 

method would solve the problem of the infinite sequence of spin states. 

l enters explicitly into the equation of motion; for large enough l, it 

might transpire that no solutions exist. 

Unfortunately, this new scheme has a major drawback [6]. Linearizing 

the differential equation 
5El 

5F(r) = 0, 

in the limit of r -+ 00, we find 

~(r' F') = k'r' F, 
dr 

where k2 is to be determined self-consistently by 

k'[F] = , _ l(l + 2) 
- m" 6A2[F]' 

(1.3) 

(1.4) 

(1.5) 

Equation (1.5) is the source of the problem to which we alluded earlier. 

A priori, k2 can be positive, negative or zero. We examine these three 

possibilities in the light of (1.5): 

Suppose k' < O. Then the solution to (1.4) is F ~ sin(lkl r + e)/r , 
where e is some phase. One then finds that A[F] is divergent, which 

means k2 [F] = m~ > O. This contradiction implies that k' can never 

be negative. 

If k2 = 0, then the asymptotic equation of motion is, instead of (1.4), 

d _(r2 F') = 2F. 
dr 

Then F ~ 1/r' and AIF] is finite. However, (1.5) is hard to satisfy. 

In particular, when m" = 0, (1.5) has no solution at all (for f. > 0). 

This means that (1.3) is inconsistent, for non-zero l; our new scheme 

has caused the sequence of odd half-spin states to vanish altogether. 
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The situation is a little better, when mw =F o. In this case, however, it 

is unnatural to expect that k2 [F] will vanish in (1.5). 

Suppose, therefore, that k2 > o. Then F(r) ~ e- kr Ir with 0 < k ::; m~. 
A[F] is finite and rough numerical work shows that k ~ tm". 

We see that (1.3) is at least consistent, when m~ =F o. However, we 

now face phenomenological difficulties; the model cannot· be made to 

fit the data. Braaten and Ralston [6,7] have pointed out several pl~ces 
at which the model fails. These are of two main types: 1) To get the 

right nucleon-nucleon interaction, we need to have F ~ e-m
•

r Ir. Our 

exponent k is substantially less than m~. 2) Our model satisfies several 

inequalities based on 
A2[F] ~ l(l + 2) 

6m: ' 
(1.6) 

which we deduce from (1.5). One example of such an inequality is 

Mt. - MN ::; 3( v'5 - 1 )m" I IS = 1.31m,,; this inequality fails by some 

40 per cent. 

These problems become more acute if we allow m .. to approach zero. 

The model is not smooth in the chiral limit. 

These difficulties arise from (1.5). They indicate that our energy func­

tional (1.1) needs modification to improve the large-distance behaviour 

of F(r). This is an infrared problem. It resists all ultraviolet-type cures, 

such as adding a Skyrme term to lo, or coupling the omega boson to 

the system [8]. 

Recently, Carlson [9] has studied quantum corrections arising from the 

dilatational mode. He showed that the above infrared problem is re­

laxed, but not eliminated. More precisely, he proved that F( r) gets an 

r- 3/ 2 tail, when m" = o. Thus, the equation of motion has a consistent 

solution. However, A[F] diverges (albeit rather mildly). The method 

of proof does not work for non-zero m", so we cannot check whether 

Braaten and Ralston's inequalities remain (or become less sensitive to 

the chiral limit). However, it seems likely that adding more vibra­

tional modes to the picture should further improve the large-distance 

behaviour of F(r). 

Motivated by the above four weaknesses in the usual Skyrme model, we 

believe it is worthwhile to attempt a serious quantum calculation, involving 
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all of the vibrational ~~d~s: Note that we do not have to rewrite all of 

Skyrmion physics. We expect that quantum fluctuations will play an im­

portant role in only two quantities: the energy and gAo It is fair to expect 

ANW's semi-classical method to continue to give good e~timates for the other 

baryonic parameters. 

This paper will be concerned only with the energy functional Ef[F]. The 

main result of this paper is the (approximate) formula for Ef[F] given in eq. 

(4.10). Given this, F[r] can, in principle, be determined numerically. Fol­

lowing ANW, one could then estimate the other parameters semi-classically 

to decide which ones need a fuller quantum treatment. 

This paper is organized as follows. In Section 2, we sketch the strategy 

to be used in calculating quantum effects. Section 3 is devoted to renor­

malization of the model and calculation of the energy of a static Skyrmion. 

In Section 4, we introduce collective coordinates and use Dirac's method of 

constrained quantization to compute the effective energy functional of a ro­

tating Skyrmion. In Section 5, we discuss how our result may solve some of 

the above weaknesses of the usual Skyrme model. 

2 A Quantum Strategy 

The following four-step procedure would yield the full quantum effective 

energy exactly. (Unfortunately, this procedure is wildly impractical.) 

1. Obtain the Hamiltonian H[U] from the Lagrangian density lo. 

2. For an arbitrary normalized quantum state (denoted by the Schrodinger 

wave-funtional ilf[U]), calculate the effective energy functional 

E[ilf] = (ilfl H lilf) 

= ![dU]ilf*[U]H[U]ilf[U]. 

3. Denote by )( the set of all normalized wave-functionals. Compute the 

vacuum energy 

Evac ;", min E[III] . 
• E)/ 

Renormalize the parameters of the model in some appropriate scheme. 
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4. Denote by S the subset of )( corresponding to rotating Skyrmions. 

Compute the soliton energy 

E.ol = min E[III]. 
tiES 

This strategy is difficult to follow, for two reasons. First, the path in­

tegrals involved cannot be done exactly. Second, the nonlinear u-model is 

non-renormalizable. As a compromise with reality, we revise the strategy as 

follows. 

1. Rewrite the Lagrangian as a linear u-model (the 0(4) vector model, 

with field variables ,p"( z), po = 0, 1,2,3.) Obtain the corresponding 

Hamiltonian H[,p]. 

2. Let 9 denote that subset of)( consisting of Gaussian wave-functionals 

1II[,p;~, I] = N, exp [-t i,v (,p: - ~:)g;(,p~ - ~~)] . (2.1) 

N, is a normalization constant. We will usually write 111 in a schematic 

functional notation 

111 = N exp I-H</I - ~)/(,p - ~)]. 

Calculate the Gaussian effective energy functional 

3. Approximate 

E[III] = (III[ H [111). 

Evac = minEIIII], 
tlE~ 

and renormalize the model. 

4. Approximate 

E.oI = min EIIII]. 
tlESn~ 

The idea of computing the effective energy via Gaussian wave-functionals 

has been used by several authors. A detailed examination of this procedure 

in quantum mechanical systems was made by Stevenson [10], who included 

many references. Barnes and Ghandour [11] showed that field theories could 

be renormalized in this scheme, using the effective potential methods deyel­

oped about a decade ago [12]. We can hardly expect this method to yield 

exact results. However, it is reasonable to expect qualitative correctness. 
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3 The Vacuum State and Renormalization 

Our first task is to transform lo to the O( 4) vector model. We write 

U (r, t) = Uo + iii· T 

with the constraint u~ + iI· iI = 1. Defining 

,pI' == F.u", 

the constraint becomes ,p",p" =~. lo is then formally equivalent to the 

.\ --+ 00 limit of 

where 

l = t(8v ,p,,)2 + F"m:(,p° - F .. ) - .\(,p",p" - v2)2 

m' v2 == F2 _-1!. 
" 4,\ 

Identifying ,po with the sigma and ,pi with the pion triplet, we find that 

the pion has mass m" and the sigma has mass m: = m~ + 8'\F;. For finite 

.\ the model is renormalizable (see, e.g., Abers and Lee [12]), and is called 

the linear u-model. 

Classically, the system has a minimum energy when ,po = F" and ,pi = o. 
Before computing the quantum energy, we introduce bare parameters into 

the action, anticipating the need for renormalization. The bare Lagrangian 

is therefore 

where 

l = H~p)2 - VB(,p) 

VB (</I) = t(8i </lP)2 - FBm~W - FB) + .\(,pP,p" - V~)2 

m' 
v~ == F~ - .-l!.. 

4,\ 

(3.1) 

.\ will be understood to be bare. Since no experimental value exists for .\, 

it is pointless to renormalize it. We will consider .\ to be a free parameter; it 

can be adjusted to fit the numerical Skyrmion parameters to the experimental 

data. 

We do not include a wave-function renormalization ,p" ..... ..[Z,p". (By the 

Ward identity 112], Z would be the same for all four components of </I".) The 

reason is that Z turns out to be 1, in our scheme. 
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From (3.1), we easily find the Hamiltonian 

where 

H = 1 [tWW + VB (r/»] 

TIl' = _i_O_ 
s - or/>~ 

Now let ~: == ~I' (i) be any classical static field configuration. Then we 

will be interested in Gaussian wave-functionals of the form (2.1). We can 

assume that I:; is symmetric, i.e., that 

1:; = 1;:. 

Note that (til r/>: lti) = ~:. 
Our problem is to find the best possible /:;, the one which minimizes 

the energy 

E[~; II == (til H lti) . 

Naturally, the best choice of 1:; depends on ~:, so we will regard ~: as 

some fixed function until further notice. 

For convenience in doing the path integral, we shift r/>: by ~:: 

e: == r/>: - ~:. 

Note that [del = [dr/>I'I and that 

o 0 
oe: = or/>~' 

Schematically, we write 

ti[e; II = N e-eJe/2
• 

It is easy to work out 

t 1 WWti = T[e]ti, 

where 

T[el == 1 t [g: - (Iv g:e~r]· 
Defining the "effective Hamiltonian" 

Hell[e] == T[e] + 1 VB[~ + e], 

8 
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E[~; I] = N2 j[de]Ht/J[e]e-m 

= H./J[0/oJ]N 2 j[de]e-meJ~!J:O 

= H./J[0/OJ]eJr ' J/4!J:o 

where we have used standard path integral tricks. 

The result of this simple calculation can be split into a "classical energy" 

Ee, plus a "quantum energy" Eq: 

E[~; II = Ee[~1 + Eq[~; II 

where 

Ee[~1 == 1 VB(~) (3.2) 

Eq[~;/] -/, [1/1'1' 110 V2(/-l)1'1' =z""zz-".,zrz Z$' 

+ p,(J-l ):~ (!(J-l)~~ + 4(~2 - v~)WV + 2(rl):~ + 8~I'~V)]. 

(In this paper, ~2 is always to be understood as ~I'~I', not as the 2nd 

component of ~I'.) 

We want to choose 1:; so as to minimize Eq in (3.2). In practice, it is 

convenient to vary Eq with respect to (J-l)::. The variational equation, 

explicitly, is 

_ oEq 

o - O(J-l)~~ (3.3) 

= -lJ,(fI'PfP") - l.V20 01''' , zz zr 4 z Zit 

• 
+ POsp ([2(r1

):: + 4(~~ - r{)W" + 4(rl):~ + 8~:~~). 

This equation is exactly soluble if ~: happens to be a constant function; 

for slowly varying ~:, it is sometimes approximately soluble. Before deriving 

these solutions, we obtain an extremely valuable identity. 

Multiplying the variational equation (3.3) by (J-l):~ and integrating over 

ii, we find 

_V;(J-I)~~ = g;: - ).(J-l)~~( [2(r1
):: + 4(~~ - v~)W" 

+ 4(rl):~ + 8~:~~). (3.4) 
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This identity is valid for the exact solution I:: of our variational equation. 

Without knowing anything about If:, this "Magic Identity" enables us to 

simplify (3.2) drastically: 

Eq = i rtf:: - p. (IU- 1)::]2 + 2IU-I):~]2)]. (3.5) 

Now we can look for solutions 1:;' The variational equation (3.3) is 

rather imposing, so we look first to a simpler field theory for insight. Barnes 

and Ghandour Ill] considered the well-known >"4>4 scalar field theory, in four 

dimensions. Setting ~ = 0, they chose a wave-functional 

~ = Ne-4JN/2. 

Their exact solution for the corresponding variational equation took the form 

j d'-
I,., = (2~S cos[p· (i - il)]w(P), 

where 

W(P) = ViP + .M2 

and M was some constant to be determined self-consistently. 

Let us assume that our own variational equation has an analogous solu­

tion. (For the moment, we also assume that ~: = constant.) 

We choose the ansatz 

I~=r~(~)-~ ~ , (3.6) 

where g:: is diagonal and R is some orthogonal matrix. By analogy to the 

simpler case, we expect 

where 

~ - f:P"j d'p 10: (- -)] (-) II,.,. - u (211")S cosw' Z - Y w" P 

w,,(p) == ViP + .M!. 

(3.7) 

.M" is to be determined by substituting this ansatz into the variational equa­

tion. By isospin invariance, we expect that .MI = .M2 = .Ms. 
The requirement that g~; be diagonal is a strong constraint. Substit.uting 

the f!:: ansatz (3.6) into the variational equation (3.3), we find that g;~ is 

diagonal (and isospin invariant) only if (RT)I'V~V = 1~lbPo. In words, R 
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rotates the north pole to ~p. This leaves a lot of freedom in our choice of R. 

A convenient choice is 

1 [~O _~n ] RPV -
- i ~m I~bmn - :::] 

(3.8) 

where, from now on, we write the norm of ~P as 

~== I~PI· 

The variational equation (3.3) now imposes a consistency condition on 

.M,,: 
.M! = 4>..[~2 - 1I~ + 2~2bPo + t ~)g-I )~~ + (g-I )::] 

P 

where no sum on p. is intended. 

Note that 
(g-I)~:=bptJ'j d'p coslp·(i-ii)] 

(211")S wp(P) 

which is also diagonal. 

It is convenient to define some (divergent) integrals: 

j d'p (_) 1 = --WI'P 
I' - (211")3 

d'- 1 j p-
J" == (211")S wp(p) 

d'- 1 j p-
Kp == (211")S wp(P)S 

(3.9) 

We will regulate these by a cutoff Ae , which is a free parameter in the theory 

(presumably several hundred MeV). 

The consistency condition (3.9) now simplifies to 

.M! = 4>..[~2 - 1I~ + 2~2bPo + Jp + t L: Jv ] (3.10). 
v 

(Note that we can consistently satisfy the isospin invariance requirement 

.MI = .M2 = .Ms. This implies that If: is invariant under the isospin trans­

formation defined by R --+ RM, where M is any orthogonal matrix that 

leaves the north pole fixed.) 

The preceding analysis proves that our ansatz (3.6) exactly satisfies the 

variational equation (3.3) when ~: is constant. The situation is much differ­

ent when ~: is not a constant function. Generally, the above type of solution 

is unworkable. The reason is that .Mp is supposed to be independent of i. 

II 
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But the consistency condition (3.10) on .M" shows that this is impossible, 

except when ~~ happens to be independent of x. 
Fortunately for us, Skyrmions correspond to precisely this special condi­

tion. In our current notation, a static Skyrmion is represented by 

~~ = F"c 

~~ = F7I 8Zi 

C == cosF 

8 == sinF. 

(3.11) 

Thus, ~~ = F;, and so we have some hope of extending our previous solution 

(3.6) to the Skyrmion problem. A natural generalization of (3.6) is 

, ,,v = R"P-.P6(RT)l7v 
,,~ " IJ,,~ ~ (3.12) 

U- 1
):; = R:p(g-I)~(RT):v 

where R", is defined by ~~ exactly as R was previously defined by ~"in (3.8). 

This choice for f:; fails to satisfy the variational equation (3.3) exactly. 

The failure stems from two terms involving derivatives of R",. If ~~ i~ a 

slowly varying function, then (3.12) is an approximate solution. 

IA technical comment: if ~~ -+ constant for Ixl -+ 00, then the "restricted 

variational equations" 
iJE 

a(.M!) = 0 

yield our consistency conditions (3.10) for .M,..] 

Substituting (3.12) into (3.5) we find that (3.2) becomes 

EI~"] = i[ Hai~")2 - FBm~(~O - FB) + >.(~2 - V~)2 

+ t :E I " - p(:E J,,)2 - t>. :E(J;)). 
" II II 

(3.13) 

It is obvious now that no wave-function renormalization is needed, as we 

claimed earlier. This is due to our approximations. A better calculation 

would (presumably) add corrections involving derivatives of ~~. 

Let t (~") denote the energy density of a constant field ~". We introduce 

some new notation here. A bar over any quantity means to evaluate that 

quantity at the field value ~o = F1(, ~i = O. In this notation, we can write a 

renonnalization prescription [11,12] very simply: 

ar 
a~o = 0 

iJ2 t 
a~la~1 

2 
=m" 

12 

a2 [ ___ 2 

a~oa~o - m 17 

-c:.... ~ 

These define F", m" and m17 , in that order. Note that t depends on ~o 

and ~2 (and on .M" through I" and J,,). Also, .M" depends on ~2 and on the 

other .Mv's through the consistency condition (3.10). We calculate 

at _ F 2 ~"o 2l'1." at 
a~" - - BmBU + ,.,. a(~2) 

~ - 2 [OlAV 2~"~V_a_] ~ a~"a~v - + a(~2) a(~2)" 
Applying these to the renormalization prescription, we find instantly that 

0 
iJt 2 ----ar-= iJ~O 

= -FBmB +2F"iJ(~2) 

m! iJ2t ----ar-
= = 2 iJ( ~2) a~la~1 

Combining these, we find the important result 

FBmi =F"m!. 

(This is the analog of the QCD result that the quantity mq (qq) is unchanged 

by renormalization 113].) 
Restricting attention now to fields ~~ such that the norm ~ = F", we 

obtain 

EI~"] 

Eva. 

= Eva. + 1 [Hai~")2 - F"m!(~O - F,,)) 

= 1 [F2m2 - F 2m2 + >.(F2 - V 2 )2 B B "" "B 
" 

+ t :E I " - !>'(:E J,,)2 - t>.:E J;] 
" " " 

Eva. is a meaningless infinite quantity, which we ignore from now on. 

(3.14) 

,When ~~ represents the static Skyrmion, the energy can be computed: 

ElF] = Eva. + M[F]. (3.15) 

This is the classical static energy. Note the agreement with the observation 

we made earlier, that the classical energy is generally an upper bound to 

the true energy. (An upper bound, because we have done a Rayleigh-Ritz 

variational calculation). 

Naively, this is all we need to know about renormalization. For future 

reference, we note some useful facts. One can explicitly compute 

at (2 2) " a(~2) = 2>' ~ - VB + 2>.Jo + >. 7 J" 
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Combining this with (3.10) and our equation for m!, we find 

M~ = m! + 8>.F: (3.16) 
- 2 --Mi = m" + 4>.(Jl - Jo). 

Given>. and a cutoff A., these two equations determine Mo and Ml . 

A very intricate calculation is required to show that 

, = m2 8>.F' [(1 + 2>.K;) - 6>.1<0(1 + 4>.K;)] 
m.. " + "(1 + 5>'Kd + 3>'Ko(1 + 4>.Kd ' 

(3.17) 

which should be compared to the tree-level result. (Note that the K" are 

log-divergent.) This equation puts a constraint on the allowed range of >. 

and A.., because m .. is supposed to be much larger than m". 

4 Quantum Energy of Rotating Solitons 

So far, we have invested a lot of work to obtain very meager results. The 

only thing we have really proved is that the true mass of the static Skyrmion 

is no greater than the classical mass MIF], a fact which we already suspected. 

In this section, we improve our trial wave-functional by introducing ANW's 

collective coordinates a"(t). The new wave-functional will be Gaussian in all 

directions in function space orthogonal to rigid rotations of the Skyrmion. 

The rotations will be quantized following ANW. 

(The result of following this program is the effective energy functional 

(4.10) given at the end of this Section. This result uses only notation intro­

duced in Sections 1-3; it can be understood without reading the laborious 

calculations of the current Section.) 

In executing our program, we face a well-known technical problem: after 

adding the collective coordinates, we will have four more coordinates than 

degrees of freedom. We solve this problem by using Dirac's method of con­

strained quantization 114]. The four collective coordinates will be added at 

the expense of introducing four constraints on the fluctuations of 4>". 
An extra subtlety arises from the fact that the four collective coordi­

nates are constrained to lie on a 3-sphere. Thus, the constraints on ¢" are 

themselves constrained! This is not a deep problem; we will point out the 

potential pitfalls along the way. 
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Mathematically, the problem of one soliton with four collective coordi­

nates is very similar to the problem of four solitons with one collective coor­

dinate apiece. The problem of N solitons has been treated v~ry clearly by 

Tomboulis and Woo (TW) 115]. The following is a condensed and adapted 

version of TW's derivation of the Hamiltonian, canonical coordinates and 
Dirac-Poisson brackets. 

Recall that the bare Lagrangian is 

e = H~")2 - VB (4)). 

We would like to consider quantum fluctuations about a rotating classical 
soliton 

~"(i, t) = M"V(t)~~(i) 
where ~s is the static Skyrmion field given by (3.11), and M"V(t) is a rota­

tion matrix. In terms of the collective coordinates defined in Section 1, we 
compute 

"V [1 0 ] () M = 2 _ _ 4.1. 
o I(ao - a· a)Om .. + 2ama .. + 2aoaettmn] 

(Because of the constraint a"a" = 1, this formula for M"V is not unique.) 
We again shift 4>" by ~": 

4>"(i, t) = ~"(i, t) + e"(i, t). 

Then ~~ = aVC~" + e:, where the coefficients C~P are chosen to satisfy 

~: = avC~p. 

Substituting 4> = ~ + e into e, we find 

L(t) = 1 e(i, t) 

= taVanaP+ l!aVCv"e" + He,,)2 - VB] 

where we defined 

aVP == L c~pC:P " 

The momenta conjugate to a" and e: are 

pp = BL = a"o"" + 1 C""tV 

- BaP z z "z 

TI" == o~ = a"C"P + ep Zoe: Z z 
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These momenta satisfy the constraints 

til' == PI' - l c~vrr~ = o. (4.2) 

Note that the ambiguities inherent in Ml'v are also present in C~I', aVP 

and pI', but not in t/JI'. All this ambiguity is certainly irrelevant to the 

physics. We are free to choose Ml'v so as to simplify our computations. The 

best choice seems to be the one displayed in (4.1); it results in a "covariant" 

looking form for aI''': 

aI''' = 4A[F](6I'V + tajJa") 

(a- I )jJV = U~F] (61'V - tal'a~), 

where A[F] is the classical moment of inertia (1.2). For future reference, we 

write an intermediate result required to verify the above formulae: 

c": = O. (4.3) 

c~m = 2F"s.,zi(a06im + aJ'tiim) 

C:m = 2F"szZi(6nmai + 6inam - 6iman + aof;nm) 

The Hamiltonian is easily computed: 

H = pl'iJjJ + l rr:e: - L 

= l [HW)2 + VB] 
Following TW, we decompose rr: as 

rr: = IT: + P"(a-l)"vC~jJ. 

In terms of these new variables, the constraints (4.2) take the "linearized" 

form 

Vl == l C:"IT~ = 0 (4.4) 

and the Hamiltonian becomes 

H = Hrot + HtJi6 

where 

H = l.PI'(a- 1 )I'VpV rot - 2 (4.5) 

HtJi6 == 1 [HW)2 + YB]' 
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As discussed by TW, we need to impose "gauge conditions" on e:. A 

suitable set of "gauge conditions" for our model is (analogolls to (4.4) ) 

xl' == l c~v e~ = o. (4.6) 

Differentiating this with respect to time yields 

l C:v e~ = - f3l'PiJP 

where we define 

f31'P[ e~. == 1 off: e: . 
This allows us to prove the important result 

pl'iJjJ + l rr:e: = pl'iJjJ + 1 IT:e: 
where 

pI' == P"W,jJ - [a- 1 f3]"I'). 

Hence, pI', aI', IT: and e: form a canonical set. In matrix form, 

00 

pT = P (1 - a-1f3t 1 = P E (a- 1 f3)m. 
m=O 

Noting that a-I and 13 are symmetric matrices, we can rewrite (4.5) 

purely in terms of the canonical variables: 

. 00 

Hrot = tP E(k + l)(a-1 f3)"a- I P. (4.7) 
"=0 

Now we need to study the Poisson brackets of the system. The "naive" 

brackets are 
U:, IT;} = 6jJv 6.,u 

{aI', P"} = 61'v _ al'a". 

All others vanish. The second bracket looks rather abnormal; it reflects the 

constraint ajJajJ = 1. 

It is easy to compute 

fv?,~} = 0 = {Xl', X"} {~jJ,X"} = _aI''' 

Under these conditions, TW showed that Dirac's "star"-brackets can be sim­

plified to 

{J,g}" == {J,g} - [{~I',xvWll{J,xl'}{~,g} - {J."¢I'}{X",g}]. 
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With this definition of brackets, the constraints can be imposed as operator 

equations in the quantum theory (if no ordering problems arise). 

Because {a", ¢V} = 0 = {aI', XV}, we find at once that 

{al',g}· = {al',g}. 

Similarly, <e:, XV} = 0 = {IT:, ¢V} implies that 

{e:, e;}· = 0 
-p -V}. {n .. ,n. = o. 

A short computation is needed to show that 

{ tl' IT'}. - Ll'v 
'i.z' V - SII' 

where 

L: == 6I'V6". - (a- 1 )P"C:I'C;v. (4.8) 

The star-brackets {pI', g}. are somewhat more complicated, but we really 

don't need them in this paper. 

Now we are ready to quantize the model. The recipe we will follow is 

based on the picture of a slowly rotating classical soliton. First, we compute 

the effects of quantum fluctuations in e:, regarding the coordinates al'(t) as 

classical. Second, we quantize the al' in the same way as ANW did. 

This recipe depends on the approximation that fluctuations in al' are 

much slower than fluctuations in e:. The effect of this approximation is to 

make the commutators [pI', e;] = 0 = [pI', II:] in the quantized theory. This 

simplifies calculations involving H,ol somewhat, and has no effect on those 

involving Hvi6 • 

[Note: How good is this approximation? From ANW, we estimate the 

rotational frequency w ~ Jl(l + 2)(M~ - MN )/3. This is roughly 170 MeV 
for the nucleon and 380 MeV for the delta. This is to be compared to the 

vibrational frequencies which range roughly between m" and A •• Thus, our 

approximation is rather crude. Our motivation for using this approximation 

stems from a desire to remain close to ANW's semi-classical picture. If our 

results ultimately prove unsatisfactory, then we can always improve them by 

using Dirac's procedure to compute the correct commutators [1''', e~] and 

[p",TI:]. This will lead to some extra terms in H,oc.! 
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The only non-vanishing commutators are therefore taken to be: 

[tl' -nV]_ 'Ll'v 
.... ' r - I zr 

[aI', FV] = i(6"V - a"aV). 

For simplicity, we will truncate the series (4.7) after the first term (k = 0). 

(The second, fourth, .. '. vanish in the path integral anyway, for reasons to be 

seen shortly). H,ol is then independent of e:, so the path integral is trivial, 

and we only need to, be concerned with the wave-function of the collective 

coordinates. Note that al'pl' = 0 holds as an operator equation when acting 

on such a wave-function. Therefore, we can replace H,ot by 

, 1'1'1'1' 
H,ot = 8A[F] 

which is precisely ANW's expression for the rotational Hamiltonian. Taking 

over ANW's wave-functions, we have the rotational energy 

E:ot = i(l + 2) 
8A[F] . 

All that remains is to compute the expectation value of Hvi6 in a soliton 
state. First, we need to compute the vibrational energy about the rotated 

configuration ~I'(i) = M"V(A)~S(i). This will yield the effective potential 

for the collective coordinates. By isospin invariance, this effective potential 

must be independent of al'; we can choose any convenient value of al' for 

the calculation. (The most convenient choice is ao = 1, ai = O. This choice 

should be understood to be in effect throughout the remainder of this pa­

per.) Because of the isospin invariance, the second stage of computation 

(integration over the collective coordinates) can be skipped entirely. 

The problem is now reduced to evaluation of 

Evi6 == (iIIl H vi6 li11) 
_ fide! II" 6(XI'[e])iII·[e!Hvi6 [e]iII[e! 
- fide] IIv 6(xv[e])iII·[e]iII[e] 

This calculation is only slightly more difficult than the path integral done 

in Section 3. We again define a kinetic functional T[e] by 

t i IT:IT:iII = T[e]iII 

where 

T[e] == t 1 [1 (L:; f;: L~:) - (1 L:; 1:: e:)2] . 
Z J/,Z v,z 
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Thus, Hvi6ill = Hell[€]ill, where 

Helll€] == T[€] + 1 VB {!!> + €). 

We use the usual integral representations of the delta-functions 

f OO dp II 8(X") = II -2" exp(ip"X") 
" " -00 7f 

= (2~)' J d4
p exp(i~ p"X")· 

SUbstituting our particular choice for Xl'[e], (4.6), we can rewrite 

iLP"XI' = 1 O~€~ 
I' s 

where we define 

0" -.~ C"" • = l ~Pl' '" . 
I' 

The formal computation of the path integral is now easy: 

E . _ J d4p J[d€]Helll€]e- m e8e 

v.6 - J d4p J[d€]e-me8e 

J d4p Hell [8 /80]eW 'D/4 

= J d4peDI '8/4 

Since 01' is linear in p, the odd terms contained in Hell will not contribute. 

The above formula is slightly peculiar; we don't set (J = 0 after doing the 

functional derivatives. 

The resulting expression is best organized as follows: 

where 

Evi6 = Eo + J d4p[E,(p) + E4(p)]eW
'D/4 

J d'pe81 '8/' 

Eo = 1 [~1 (L~~f;; L~:) + VB(!!» - ~ 1 o.,~ V!(f-I )~; 
z v,; v 

+ p.(f-I)~: (l(rl)~~ + 4(!!>' - v~ )W" + 2(r1):: + 8!!>"!!>")] 

E 2(P) = -tl (1 L~~(J~)' + t 1 (rl)~~(J~O~[-tv~(rl)~~ 
z Sf %,1I,Z 

+ p{rl)~~ (l2(rl)~: + 4{!!>; - v~)WV + 4(rl)~~ + 8!!>~!!>~)] 
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E,(p) = 1 *[(rlll)~(f-IO)~]2. 
This can be greatly simplified. We assume that g: is given by (3.12). 

SUbstituting (4.8) into Eo, and comparing to (3.2), (3.14) and (3.15), we find 

Eo = E +M[F]-l(a-')OI~l CO<"j""C~" 
tl4C " Z zv " . "',r 

Also, it is easy to check that 

~ L~~O~ = o. 

This, along with the Magic Identity (3.4), allows us to simplify 

E,(p) = t 1 (J-I0)~(fO)~ 
= 11 0"01' 

• s '" s 

= -tal''' PI'P". 

We observe that E4(P) involves five integrals over position space and four 

integrals over momentum space. In addition, the ~integral over E,(p) will 

bring in two more non-local factors. We feel that such a highly non-local 

term should be ignored in our approximate treatment. 

Our vibrational energy therefore reduces to 

. J d4~ Dr'D/4 
E · - E +M[F]-l( -1) PI11 CPl'j,,"CI1" -1 "" pp"p"e (49) v.6 - vac • a '" s~ ~ sa J d4~ 81 '8/4 . . 

s,~ pe 

Note that 

or'(J == 1 (J:(rl)~:(J: = -p" (1 c:o«rl)~:c~~) p". 
z~ z~ 

Thus, the p..integral in (4.9) is Gaussian. Before doing this integral, we 

consider the somewhat forbidding terms involving Js,~ C:P J::C~11 (or f -> 

rl). C:" was displayed in (4.3); it is not very complicated when ao = 1 and 

0i = O. Substituting in C:" and the explicit form for (3.8) 

R"" = [ C
s 

-8s Zn 
] 

s 8/tm 18mn - (1 - C.,)zmzn] , 

we find that the angular integrations can be done first. The result. vanishes 

unless 11 = v. This factorizes the p..integral in (4.9) into a product of one­

dimensional Gaussian integrals. 
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A lengthy calculation is required to actually carry out the paragraph 

above. The details are straightforward, however, and we find that ANW's 

results are modified schematically to 

Ei[F] = Evoc + M[F] + l(l +8~[;r[F] - N[F]A[F] 

where 

. PIF] == I(F; f~' dpp2( wohHp) + wl[h~(p) + 3h~(P)]) 
and 

N[F]- 3 (1 3) = ~4F: ft'dpp2th~:) +·,,~(pll + r!-'dvv2hHp) . 

The h;(p) are integral transforms of the Skyrme function: 

h1(p) = loo dzz2s:io(pz) 

h2(p) = loo dzz2 s"c"Mpz) 

hs(p) = 10"" dzz's"il(pz) 

where io and il are spherical Bessel functions 

io(a) = sinO' 
a 

Mil') ~ sinO' _ cosO' 
0'2 -a' 

(4.10) 

", We have dropped the bar-notation of Section 3. It should be understood 

that w!' is d~'fined in terms of Mil' 

5 Conclusion 

It is time to ask whether we have made any progress. A quantitative 

answer must wait for a numerical solution to the complicated equation of 

motion 
5Ei 

5F(r) = O. 

Qualitatively, we can check whether we have moved in the right direction, 

relative to the problems discussed in the introduction. 

The clearest point is that the Skyrmion is now lighter. Et[F] as given in 

(4.10) is just the semi-classical result (1.1), minus a positive quantity. 
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We might now fear that the energy could be unbounded from below. As 

a c:,ude . test of this possibility, we should examine th~ scaling properties of 

Ef[Fl:.. We would ~lso like to understand the asymptotic behavior of F (r). 
An exact analysis of these two issues is very difficult. As a first step, 

we approximate w!'(ii) ~ M!, in the expressions for P[F] and N[F] following 

(4.10). Sending Ac ~ 00, we can use the orthogonality relations 

(t'''dpp2i,.(pz)i,.(py) = 2"'2 5(Z - y) . 
J~ . z 

In this way, P[F] and N[Flsimplify to 

P[F] = I(F;[MoQI + M1 (Q2 + 3Qs)] 

N[F]=_3 [(9..!+ Q2)-1 +3(QS)-1] 
64F; Mo MI MI 

where 
QI [F] = t1l' (00 dr r2 sin4 F. Jo . 
Q2[F] = t1l' (00 dr r2 sin2 F cos2 F Jo . 
Qs [F] = t1l' loo dr r2 sin2 F. 

Note that, in this approximation, (4.9) reduces to (4.10) quite easily: 

Scaling analysis is now very simple. Rescale distances by a dilatation 

parameter a . Then the a ~ 0 limit of Ei[F] is just 

Et[F(ar)] ~ (+const) 
0'- • 

Also, the a ~ 00 limit of Et[F] is 

Et[F( ar)] ~ (+const )as. 

Therefore, Et[F(ar)] has a minimum for some intermediate value of a. 
The asymptotic form of F(r) is also straightforward to study. As in 

Section I, we find 

!!'(r2F') = k2r2F 
dr . 

k2[F] = 2 P[F]-l(l + 2) _ 4N[F] _ 7 MI (5 ) 
- m" + 6A2[F] 3 6A[F] .1 

3A[F] [(QdF ] Q2[Fl)-2 .. 6 (QsIF])-2] 
+ -- ... Mo + MI + MI . 
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If k2 < 0, then F ~ sin(lkl r + e)fr, and one finds that A, Q2 and Q3 

diverge, while Ql remains finite. (5.1) then reduces to k 2 = m;, a contradic­

tion. 

Just as in Section 1, it is unnatural to expect that k 2 will vanish exactly, 

because of the complicated consistency condition (5.1). 

We therefore assume that k2 > 0, and so F ~ e-kr fr. In this case, A 

and all the Qn's are finite. The situation is now very different from that in 

Section 1. We expect that (5.1) can be satisfied, even when m" = O. Thus, 

the inconsistencies we previously found for the massless case have vanished. 

For the physical value of m", it remains to be seen whether the model is 

still numerically inaccurate: 

1) To get. the right nucleon-nucleon interaction, we would like to have 

k ~ m". Some preliminary numerical work indicates that k2 [F] is quite 

sensiHve to F. It is possible to tune k over quite a large range by replacing 

F{r) by F{ar), where t < a < 2. The best we can say at present is that k 
is near m" for functions F near the one found by ANW. 

2) It is easy to show that (1.6) no longer automatically holds. This means 

that the inequalities found by Braaten and Ralston are no longer valid. Thus, 

we have some hope of matching the parameters of the model to the data. 

At the moment, we can say nothing about the problem of the infinite 

sequence of spin states in the model. This question must wait until numerical 

solutions are available. 

The author intends to make a detailed numerical investigation of the 

equation of motion in the near future. 

While this paper was being typed, Carlson completed a paper extending 

his previous work [16]. In addition to quantizing rotations and dilatations, 

he quantized the radial vibrational modes in a Gaussian approximation. He 

reports fairly good values for the mass of the nucleon (and excited states), 

somewhat high values for the mass of the delta (and excited states) and an 

excellent value for gA. 
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