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Interaction of a dual-wavelength laser system with cutaneous  
blood vessels 

Boris Majaron*a,b, Matija Milaniča, J. Stuart Nelsonb,c

aJožef Stefan Institute, Jamova 39, SI–1000 Ljubljana, Slovenia 
bBeckman Laser Institute and Medical Clinic, University of California at Irvine 

cDepartment of Biomedical Engineering, University of California at Irvine 

ABSTRACT 

Our working hypothesis is that a dual-wavelength Nd:YAG laser, emitting simultaneously at 1064 and 532 nm, may 
induce stronger heating of PWS blood vessels relative to the epidermis than the customary KTP laser, due to 
conversion of hemoglobin to met-hemoglobin in the target blood vessels and the associated increase in NIR 
absorption. We apply pulsed photothermal radiometry to determine temperature depth profiles induced in PWS 
lesions by a dual-wavelength laser at sub-therapeutic radiant exposures. The results indicate no effect at 1 ms pulse 
duration and low radiant exposures (1–2 J/cm2). Increased radiant exposure (3–4 J/cm2) and extended pulse duration 
(20–25 ms) result in increased energy deposition. In addition, two PWS lesions and one healthy skin site were 
irradiated at incrementally increasing radiant exposures, up to 9 J/cm2. Analysis of the laser-induced temperature 
profiles clearly revealed irreversible changes of tissue properties. Formation of met-hemoglobin and consequent 
increase of IR absorption was however not reliably detected.  

Keywords: laser therapy, port wine stain, pulsed photo-thermal radiometry, temperature depth profiling, dual-
wavelength laser, met-hemoglobin  

1. INTRODUCTION

Port wine stain birthmarks (PWS) consist of normal epidermis overlying an abnormal plexus of dilated blood vessels 
within the most superficial millimeter of the dermis.  Depth and size distribution of PWS blood vessels is variable, 
but on average, the highest fractional blood content is found 0.2−0.4 mm below the epidermal-dermal junction.1 
Laser therapy of PWS currently utilizes selective photocoagulation of blood vessels using pulsed green or yellow 
lasers.  However, non-specific absorption by epidermal melanin reduces the amount of incident radiation that reaches 
target chromophores - hemoglobin in PWS blood vessels. Moreover, overheating of epidermis can induce blistering, 
dyspigmentation, or scarring of skin.  This limits the radiant exposure that can be safely applied in therapy, thus 
impairing treatment efficacy in many patients, despite recent implementation of dynamic cooling.2,3  

Because melanin absorption decreases with increasing wavelength,4 the hypothesis is that additional irradiation at 
1064 nm may help induce a higher temperature rise in PWS vessels relative to the epidermis, as compared to 
irradiation at 532 nm alone. Moreover, Barton et al have recently reported and studied chemical transformations of 
native hemoglobin species to met-hemoglobin upon laser irradiation at 532 nm,5,6 which should lead to significant 
increase of near-IR absorption in blood vessels. From their data, first sings of transformation begin after deposition 
of ∼3–5 J/cm2 (delivered over 3–5 ms). Such effects could play an important role in vascular treatments using near-
IR7,8  and dual-wavelength lasers.9 

In present study, we measure temperature depth profiles induced in PWS skin in vivo by a dual-wavelength laser 
system, emitting simultaneously at 1064 nm and 532 nm. By comparing the results with those obtained using a 
customary KTP/Nd:YAG vascular laser (emitting at 532 nm only) and analyzing the temperature profiles as a 
function of radiant exposure, we try to demonstrate and characterize formation of met-hemoglobin in PWS in vivo. 

* boris.majaron@ijs.si;  phone: +386 1 477-3208,  fax: +386 1 423-5400;  http://complex.ijs.si/index.html
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The laser-induced temperature profiles were measured by means of pulsed photothermal radiometry (PPTR). PPTR 
is based on time-resolved acquisition of IR emission from the sample surface after pulsed laser exposure. With 
known optical and thermal properties of the sample, the temperature depth profiles can be reconstructed from 
acquired transient radiometric signals by solving the inverse problem of heat diffusion and blackbody emission.10,11 
This technique allows depth profiling in optically scattering samples, including biological tissues,12,13,14 and has been 
suggested earlier for characterization of PWS lesions.15,16,17  

2. METHODOLOGY

2.1 PWS lesion preparation and laser irradiation 
Measurement sites involved in this report include two PWS lesion sites on forearms of two volunteer patients (W and 
K), one on hand (W) and one on face (E). For comparison purposes, we have taken PPTR measurements also on the 
inner side of a forearm of a volunteer with normal, healthy skin (B). Prior to irradiation, selected areas were shaved 
(if necessary), and the stratum corneum (thin, dehydrated outer layer of skin) was removed by tape stripping. The 
remnants of stratum corneum and glue were subsequently washed off using medical grade ethanol. After re-
moistening the skin with saline pads and wiping off excess liquid with paper tissue or gauze, the prepared site was 
positioned against a 1 cm aperture in the object plane of the IR camera optics (see Fig. 1).  

The Dualis Tandem laser system prototype (by Fotona, Ljubljana, Slovenia) emits 1–50 ms long pulses at 532 and 
1064 nm simultaneously.  Approximately 36% of the total pulse energy is emitted at 532 nm, the remaining 64% at 
1064 nm. The system has obtained a 510k approval for treatment of vascular lesions from the US Food and Drugs 
Administration (FDA).  

In the first set of presented PPTR measurements, radiant exposure at the skin surface was strictly sub-therapeutic. 
The 532 nm component amounted to H0 = 0.5 J/cm2 in 1 ms laser pulses, and 1.4 J/cm2 at 25 ms. For comparison 
measurements, we used a standard KTP/Nd:YAG dermatologic laser system emitting at 532 nm (VersaPulse by 
Lumenis, Santa Clara, CA). The radiant exposure with 2 ms and 20 ms pulses was 1.9 and 3.2 J/cm2, respectively. In 
one example, we have employed also a pulsed dye laser (PDL; SPTL1b by Candela, Wayland, MA) with pulse 
duration of 1.5 ms and radiant exposure of 2.2 J/cm2. 

Figure 1:  Experimental setup for pulsed photothermal 
radiometry (PPTR) of human skin. Light pulses from the 
therapeutic laser system (far right) are delivered to the 
handpiece (stripped of the plastic casing and cryogen spray 
nozzle) via an optical fiber. Emitted pulses are directed into 
the center of a 1 cm aperture which enables accurate 
positioning of the test site in the object plane of the IR 
camera’s macro objective. 

The above radiant exposure values were determined by measuring laser pulse energy transmitted through a 0.72 mm 
diameter pinhole in the object plane. Lateral scanning of the aperture across the field of view of the IR camera has 
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verified homogeneity of the radiant exposure. The pyroelectric detector (J25LP-1, Molectron, Portland, OR) was 
customized by the manufacturer to allow measurements of such relatively long laser pulses.  

In the second set of experiments, the green radiant exposure of the dual-wavelength laser was increased 
incrementally from around 1–2 J/cm2 toward the therapeutic threshold values (6–9 J/cm2), using the laser’s control 
panel. The reported radiant exposure values rely on laser system’s self-calibration feature and the ratio between the 
nominal spot size (instrument setting: 5 mm diameter) and actual area of the laser spot on the irradiated skin. Due to 
oblique incidence of the laser beam onto the test site (see Fig. 1), the latter is approximately an ellipse with the 
primary axes ranging from 3.5 by 4 mm (patient E, irradiation at a 30 degree angle) to 4 by 6 mm (volunteer B, 
irradiation at 45 degrees). 

2.2 Pulsed photothermal radiometry – basics 
Detailed discussion of PPTR depth profiling in semi-infinite media can be found elsewhere.16,18,19 In short, one-
dimensional approximation is valid as long as the laser irradiated spot is much larger than the involved optical 
penetration depths and thermal diffusion lengths. Planck’s law of radiation, which describes the locally emitted 
power density at wavelength λ, is linearized around the initial skin temperature, T0: Bλ(T) ≈ Bλ(T0) + Bλ

′(T0) ∆T.  Due 
to the finite absorption coefficient of the emitted IR radiation (µIR), radiometric signal from a non-uniformly heated 
object is composed of appropriately attenuated contributions from different depths z. The radiometric signal S(t) is 
thus expressed as 

0 0
0

( ) ( ) ( ) ( , ) IRz
IR

z

S t C B T C B T T z t e dzµ
λ λ µ

∞
−

=

′= + ∆∫ , (1) 

where constant C accounts for optical properties of the sample surface and collection optics, and detector specifics. 
Temperature field evolution in the sample, ∆T(z,t), is a convolution of the laser-induced temperature rise, ∆T(z,t=0), 
and the thermal point-spread function of the sample. Since the latter is known explicitly,16 convolution with the 
exponential attenuation function in (1) can be performed, yielding a simple integral expression for the transient part 
of the radiometric signal, ∆S(t): 

0

( ) ( , ) ( ,0)
z

S t K z t T z dz
∞

=

∆ = ∆∫ . (2) 

In the following, we apply kernel function K(z,t) as derived by Milner et al.16, with thermal diffusivity of skin 
D = 1.1 × 10-7 m2s-1 and reduced heat transfer coefficient at the surface equal to h = 0.02 mm-1.  

2.3 Experimental setup 
In the first experimental setup, light pulse emitted from the laser handpiece is reflected onto the target skin site by a 
micro-prism (not shown in Fig. 1). A unity magnification IR optics (f/2) images the central 1.9 × 1.9 mm2 area of the 
irradiated site onto a liquid-nitrogen cooled InSb focal-plane array (FPA) detector of the IR camera (Galileo, 
Raytheon, Dallas, TX). By reading out only a 64 × 64 subset of all FPA elements, the signal acquisition rate is 
700 frames per second (at 0.9 ms integration time for each frame). The acquired data are digitized with a 12-bit A/D 
converter and transferred to personal computer’s memory.  

In the second set of measurements, the transient increase in IR emission is imaged by a macro lens with 
magnification of 0.5 (patients E and K) or 1 (volunteer B) and recorded with a thermo-electrically cooled InSb IR 
camera (Phoenix, Indigo, Santa Barbara, CA). By using a 128 × 64 sub-window on the FPA, and detector integration 
time set to 0.577 ms, we can acquire 1000 IR emission images per second. The transient IR signal is acquired 1–2 s 
post irradiation and digitized with a 14-bit A/D converter. 

Because µIR of skin varies by two orders of magnitude within the 3−5 µm detection band of the InSb detector, a 
custom filter is applied to narrow the acquisition spectral band to 4.5–5.0 µm. In this way, the customary 
monochromatic approximation applied in subsequent signal analysis adequately represents IR properties of human 
skin.19,20,21  
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2.4 Signal analysis 
PPTR signals ∆S(t) are computed from the recorded IR emission images by calibrating the system response with a 
computer-controlled blackbody (BB701, Omega Engineering, Stamford, CT), averaging laterally over the FPA 
subwindow, and subtracting the background signal level. Only one laser pulse needs to be applied for each PPTR 
measurement. However, in view of the moderate signal-to-noise ratios and severe ill-posednes of the ensuing 
mathematical analysis, we sometimes average 2–3 experimental signals acquired on the same skin site and under the 
same conditions. 

Finally, the initial temperature profiles ∆T(z,0) are reconstructed by solving the inverse problem of heat diffusion and 
blackbody emission. The effective IR absorption coefficient value (µIR = 24.2 mm-1) was calculated from model 
composition of human skin (75% water, 25% collagen)22 using a dedicated algorithm,23 which will be described in 
detail elsewhere. We apply a conjugate-gradient minimization algorithm with non-negativity constraint, and 
regularize by early termination via consultation of the so-called L-curve.16 In analysis of the second measurement 
set, we solve the minimization problem using a novel optimization algorithm, which combines the minimal-error 
conjugate gradients scheme with non-negativity constraint and includes automatic adaptive regularization according 
to discrepancy principle.20 Reconstruction of temperature profile, represented by 150 values over a depth range of 1.5 
mm, is typically accomplished on a personal computer in less than a second.  

3. RESULTS

3.1 Comparison of PWS temperature profiles 
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Figure 2:  Temperature profiles in PWS lesion on 
patient’s hand (W) after irradiation with: 
(a) a standard 532 nm laser at 2 ms pulse duration,
(b) the dual-wavelength Tandem laser at 1 ms ,
(c) pulsed dye laser at 585 nm and 1.5 ms,
(d) pulsed dye laser at 600 nm and 1.5 ms.
All temperature profiles are normalized to the visible
radiant exposure equal to H0 = 1 J/cm2.

Figure 2 presents reconstructed temperature profiles in PWS lesion on patient’s hand (W) after irradiation with a 
standard 532 nm KTP laser (Fig. 2a), the dual-wavelength laser (Fig. 2b), pulsed dye laser at 585 nm (Fig. 2c), and 
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pulsed dye laser at 600 nm (Fig. 2b). All pulse durations are between 1 and 2 ms and radiant exposures are between 
1.5 and 2.2 J/cm2. For the purpose of comparison, the presented temperature profiles are normalized to the same 
visible radiant exposure, H0 = 1 J/cm2. The solid lines and error bars represent, respectively, mean values and 
standard deviations of the temperatures at each depth, as computed from a few near-optimal iterative solutions.  

The results indicate little difference between the 532 and dual-wavelength irradiation at the same visible radiant 
exposure. Pulsed dye laser (PDL) at either wavelength induces less aggressive heating of the superficial PWS layer 
(0.1–0.3 µm), but has a significant effect deeper than 0.8 mm (and down to 1.5 mm), where the influence of both 
KTP and Tandem laser is absent. PDL at 600 nm causes weaker heating of PWS than at 585 nm, as expected from 
both theory and clinical evidence. Perhaps surprisingly, however, the depth of the effect is the same for both PDL 
wavelengths.  

From simple calorimetric reasoning, we can assess surface density of the deposited laser energy converted to heat, ε, 
from the area under the reconstructed temperature profile: 

0

( )c T z dzε ρ
∞

= ∆∫ . (3) 

The values, obtained from results in figure 2 using thermal properties of human dermis (mass density 
ρ = 1150 kg/m3, specific heat capacity c = 3500 J/kgK), are presented in Table 1. The fraction of delivered (visible)
radiant exposure deposited as heat is very similar between the dual-wavelength laser (Tandem) and the 532 nm KTP
laser. The “missing” fraction amounts to 33–36%, which corresponds to reflectivity of fair skin at 532 nm.24 The
deposition efficiency at 585 nm is slightly higher, likely due to somewhat lower melanin absorption coefficient and
dermal scattering coefficient as compared with 532 nm. The significant drop in ε at 600 nm can be attributed to
markedly reduced blood absorption, which results in increased diffuse reflection of skin in vivo.24

Table 1:  Surface density of deposited laser energy (ε) assessed from PWS temperature profiles in figure 2 (patient W, hand) 
at nominal radiant exposure H0 = 1 J/cm2.  

Laser KTP Tandem pulsed dye

Wavelength  [nm] 532 532 + 1064 585 600 

ε [J/cm2] 0.67 0.64 0.72 0.47
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Figure 3:  PWS temperature profiles in patient’s hand (W) after irradiation with (a) a standard 532 nm laser at pulse duration 
of 20 ms, and (b) the dual-wavelength laser at 25 ms. Both temperature profiles are normalized to the 532 nm radiant 
exposure of H0 = 1 J/cm2.  
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Figure 3 presents temperature profiles induced in the same PWS lesion (patient W, hand) with the 532 nm laser at 
pulse duration of 20 ms (Fig. 3a) and dual-wavelength laser at 25 ms (Fig. 3b). The respective radiant exposures 
were 3.2 J/cm2 and 3.9 J/cm2. With both temperature profiles normalized to the 532 nm radiant exposure of H0 = 
1 J/cm2, we can see that at these, somewhat higher radiant exposures and longer pulse durations, the dual-wavelength 
irradiation induces a higher peak temperature rise (4.6 °C) than the usual KTP laser (3.9 °C). The subsurface 
temperature peak is located a little shallower (120 vs. 130 µm) and the observable temperature rise extends less deep 
in comparison (approximately 0.7 vs. 0.9 mm), suggesting that absorption in blood is increased upon addition of the 
1064 nm radiation. However, the epidermal temperature rise increases by a similar ratio. 

Finally, we compare PWS temperature profiles after irradiation with the dual-wavelength laser at pulse durations of 1 
ms (lighter lines) and 25 ms (darker lines). The results are presented for the forearm (Fig. 4a) and hand (Fig. 4b) of 
the same PWS patient (W). All temperature profiles are normalized to the same 532 nm radiant exposure of H0 = 
1 J/cm2.  
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Figure 4:  Temperature profiles in PWS on volunteer patient’s (a) forearm and (b) hand, immediately after irradiation with 
the dual-wavelength laser at pulse duration of 1 ms (lighter line) and 25 ms (darker line). All temperature profiles are 
normalized to the same 532 nm radiant exposure (H0 = 1 J/cm2). The lines and error bars represent, respectively, the mean 
value and standard deviation of the temperature at each depth, as computed from a few near-optimal iterative solutions 
according to L-curve analysis. 

In both test sites, the temperature profiles induced with the longer pulse duration are smoother and the surface 
temperature is significantly reduced. The PWS temperature is in general somewhat higher (Fig. 4a) or practically the 
same (Fig. 4b) as with 1 ms irradiation. However, in both test sites is the associated surface density of deposited laser 
energy ε (3) higher with the longer laser pulses and accordingly higher radiant exposure (see Table 2).  

Table 2:  Surface density of deposited laser energy (ε) assessed from PWS temperature profiles in figure 4 at nominal radiant 
exposure H0 = 1 J/cm2. (Patient W) 

PWS site forearm hand 

pulse duration [ms] 1 ms 25 ms 1 ms 25 ms 

ε  [J/cm2] 0.59 0.70 0.64 0.72
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3.2  Influence of radiant exposure 
Figure 5 presents IR emission images acquired 1 ms and 200 ms after irradiation with a 25 ms dual-wavelength laser 
pulse (Figs. 5a and 5b, respectively). In this example (healthy skin on forearm of volunteer B), the imaged area is 
2 × 4 mm2. The early image reflects microscopic superficial structure of human skin and non-homogeneous melanin 
distribution, while the latter is dominated by chromophore distribution in deeper skin layers. The corresponding 
PPTR signal is computed from the indicated central part of the irradiated site (dashed square, 0.5 × 0.5 mm2). 

   (a)   (b) 

Figure 5:  Example IR emission images acquired from healthy skin on forearm (volunteer B), 1 ms (a) and 200 ms (b) after 
irradiation with a 25 ms dual-wavelength laser pulse. In this example, the imaged area is 2 × 4 mm2. The corresponding 
PPTR signal is computed from the indicated central part of the irradiated site (dashed square, 0.5 × 0.5 mm2). 

Figure 6a presents PPTR signals acquired from PWS on volunteer patient’s (E) face after pulsed irradiation with the 
dual-wavelength laser and 532 nm radiant exposure H0 increasing in equal increments from 1.8 to 9 J/cm2. PPTR 
signals in Figure 6b were acquired from the same lesion site and with same laser at H0 = 1.8 J/cm2 and 9 J/cm2, 
immediately after completion of the previous irradiation sequence (delivering 34 J/cm2 distributed between 8 laser 
pulses in approximately 5 minutes). The altered signal shape clearly reveals a change in optical properties of some 
lesion component(s). 
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Figure 6: (a) PPTR signals acquired from PWS on volunteer patient’s (E) face after pulsed irradiation with the dual-
wavelength laser at radiant exposure (H0) of 1.8, 3.6, 5.4, 7.2, and 9.0 J/cm2. (b) PPTR signals acquired from the same lesion 
site with same laser at H0 = 1.8 J/cm2 and 9.0 J/cm2, after completion of the previous irradiation sequence.  

Figure 7 shows PWS temperature profiles reconstructed from the above PPTR measurements. The PWS peak 
temperature (~0.2 mm below the surface) initially increases in proportion with the radiant exposure, up to 6  J/cm2 
(Fig. 7a). At higher radiant exposures, temperature rise at this depth increases sub-linearly with H0 and peak of the 
PWS temperature profile moves significantly deeper into the lesion. The peak epidermal temperature increases 
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proportionally with radiant exposure up to H0 = 8 J/cm2. The super-linear increase with the last exposure increment is 
a plausible consequence of the reduced absorption at 0.1–0.3 mm, which raises the epidermal fluence.  

Temperature profile in the same lesion site induced with H0 = 1.8 J/cm2 immediately after completion of the 
discussed irradiation/measurement sequence (Fig. 7b, solid line) demonstrate that the effects mentioned above – 
reduced blood absorption at 0.1–0.3 mm with consequent increase in epidermal temperature rise and deeper reach of 
laser heating - were irreversible.  
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Figure 7:  Reconstructed temperature profiles in PWS on volunteer patient’s face (E) after pulsed irradiation with the dual-
wavelength laser at (a) radiant exposure H0 incrementally increasing from 1.8 to 9.0 J/cm2. (b) Temperature profile in the 
same lesion site induced with H0 = 1.8 J/cm2 after completion of the previous irradiation/measurement sequence (solid line). 
Two extreme results from the previous graph are plotted for comparison (dashed lines). 

Figure 8 presents temperature profiles obtained form healthy skin site (volunteer B, forearm). After performing 
PPTR depth profiling with the dual-wavelength laser and radiant exposure increasing from 1 J/cm2 to 5 J/cm2 (in 
increments of 1 J/cm2 and two measurements at each H0 value), the same measurement sequence was repeated on the 
same test site in reverse order. The results indicate an irreversible modification at the test site, manifesting itself in 
slightly reduced surface temperature, increased heating from ~30 µm to 0.5 mm, and reduced heating effect beyond 
that depth (Fig. 8b, solid lines).  
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Figure 8: Temperature profiles induced by pulsed irradiation of healthy skin on forearm (volunteer B) with the dual-
wavelength laser at (a) radiant exposure H0 of 1, 3, and 5 J/cm2. (b) Temperature profile at the same test location site induced 
using same radiant exposures after completion of the previous irradiation/measurement sequence (solid lines). Two results 
from the previous graph are plotted for comparison (dashed lines). 
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4. DISCUSSION

Temperature profiles in Fig. 2 indicate little difference between the temperature profiles induced in PWS lesion with 
532 nm or dual-wavelength irradiation at the same visible radiant exposure. This is not so surprising because the 
applied radiant exposures were very low; 0.5 J/cm2 at 532 nm and 0.9 J/cm2 at 1064 nm delivered in 1 ms pulse from 
the Tandem laser. Hemoglobin absorption at 1064 nm is namely 100–250 times lower than at 532 nm (assuming 80% 
oxygen saturation) and conversion to met-hemoglobin reportedly occurs only after deposition of 3–5 J/cm2 of 532 
nm light, delivered over 3–5 ms.5,6 Meanwhile, Nd:YAG lasers for vascular therapy and hair removal typically 
employ pulse energies approaching 100 J/cm2.  

Weak near-IR absorption of both hemoglobin and melanin on one hand leads to high diffuse reflectivity of skin 
(exceeding 50% at λ = 800 nm24). Accentuated by the low reduced scattering coefficient, it results also in large 
optical penetration depth at 1064 nm (on the order of mm). We thereby allow that the complete absence of detectable 
heating due to IR component of the dual-wavelength laser may be in part due to energy deposition at depths out of 
reach for PPTR profiling, in addition to the high skin reflectivity at 1064 nm. 

It is interesting that the pulsed dye laser (PDL) at both 585 and 600 nm wavelength induced a much lesser heating of 
the superficial, cosmetically relevant PWS layer (depth 0.1–0.3 µm), but caused much deeper heating of the dermal 
vasculature (Fig. 2). With PDL, heating of skin could be observed up to 1.5 mm deep, while the influence of both 
KTP and dual-wavelength laser was limited to ~0.8 mm. This difference could result from combined effect of 
somewhat lower melanin absorption coefficient and reduced scattering coefficient at 585 nm as compared to 532 nm.  

The much smaller deposited energy density (ε) at 600 nm as compared to 585 nm (Table 1) can be attributed to 
markedly reduced blood absorption. This enhances the effect of dermal backscatter and results in significant increase 
in diffuse reflection in this spectral range.24 The same effect is responsible also for the larger epidermal temperature 
rise at 600 nm in comparison with 585 nm (Fig. 2c, 2d), despite the fact that melanin absorption is monotonically 
decreasing with wavelength.4 We have observed the same effect in numerical modeling of optical transport in PWS.25 

Further insight into dynamics of dual-wavelength laser interaction with PWS lesion can be obtained from analysis of 
temperature profiles induced with incrementally increasing radiant exposure (Figs. 7, 8). As long as optical 
properties of the lesion are constant, the deposited energy density ε (3) should namely increase proportionally with 
radiant exposure. Contrariwise, a super-linear relation would reveal presence of additional chromophore (e.g. met-
hemoglobin, with 5 times higher absorption at 1064 than hemoglobin). 
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Figure 9:  (a) Deposited heat per surface area ε (3), and (b) effective deposition depth ζ (4) in PWS as a function of 532 nm 
radiant exposure. Dashed lines are linear fits – see text for explanation. (patient E, dual-wavelength irradiation) 

The results of such analysis are presented in Figure 9a. Evidently, the values for the two highest radiant exposures 
(open circles) are not above the straight line fitted to the first three data points (dashed line and solid circles, 
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respectively). Since the temperature profiles in Figs. 7a and 7b strongly suggest that irreversible modification of 
optical properties has taken place in the lesion upon exceeding a certain exposure threshold (tentatively around 5–6 
J/cm2), we have fitted the last two data points together with the one measured last (star in Fig. 9a). It turns out that 
the line fitted to these points has significantly lower inclination than the previous one (0.941±0.006 vs. 0.980±0.019). 
The presence of additional absorber, if present, is thus more than compensated by reduction of absorption due to 
onset of coagulation, which in turn increases epidermal fluence (and thereby heating) and increases the depth of laser 
heating (Figs. 7a, b).  

To analyze the latter effect, we define effective heating depth, ζ, as a normalized weighted sum 

i i
i

i
i

T z

z
ζ =

∑
∑

. (4) 

The dependence of ζ (4) on dual-wavelength radiant exposure in PWS (Fig. 9b) shows that effective heating depth is 
steadily increasing with H0 from 1.8 to 9 J/cm2 (dashed line). Moreover, on returning to the lowest radiant exposure 
value, ζ remains at the highest level reached, confirming irreversibility of the laser-induced transformation. 
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Figure 10: Deposited energy density ε (3) in normal skin 
as a function of 532 nm radiant exposure.  Dashed lines 
are linear fits to data points corresponding to initial 
irradiation with increasing radiant exposures (open 
squares and solid circles) and subsequent irradiation with 
decreasing radiant exposures (stars). 
(volunteer B, dual-wavelength irradiation) 

The results obtained from the same analysis on laser-induced profiles in heathy skin (Fig. 8) are somewhat different. 
Here, as well, the line fitted to the five pairs of ε values measured when increasing the radiant exposure (open 
squares and solid circles) differs from the line, fitted to the data points corresponding to the subsequent profile 
measurements (stars). Unlike in the previous example, however, the efficiency of energy deposition increases upon 
laser irradiation (from 0.65 to 0.72). This could be attributed to mild erythema or increased dermal scattering, which 
increase energy uptake in normal skin, while the coagulative effect on larger and deeper vessels in normal dermis is 
negligible at such low radiant exposures.  

5. CONCLUSIONS

Pulsed photothermal radiometry is a viable tool for analysis of interaction of PWS with various laser systems. The 
reconstructed profile shapes reveal modifications of optical properties and analysis of deposited energy density 
allows reliable detection of irreversible changes inside the lesion. The results indicate that the dual-wavelength laser 
system with 25 ms pulse duration and visible radiant exposure around 1.5 J/cm2 at 532 (and additional and 2.7 J/cm2 
(at 1064 nm) exhibits somewhat higher energy deposition than a customary KTP laser. Results obtained with 
incrementally increasing radiant exposure toward therapeutic values are inconclusive due to interplay between 
irreversible changes in absorption and scattering properties of several lesion constituents, which can not be resolved 
without appropriate modeling. 
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