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NONSTATIONARY SPATIAL PREDICTION OF SOIL ORGANIC 
CARBON: IMPLICATIONS FOR STOCK ASSESSMENT DECISION 
MAKING1

MARK D. RISSER*, CATHERINE A. CALDER†,2, VERONICA J. BERROCAL‡, CANDACE 
BERRETT§

* Lawrence Berkeley National Laboratory

† Ohio State University

‡ University of Michigan

§ Brigham Young University

Abstract

The Rapid Carbon Assessment (RaCA) project was conducted by the US Department of 

Agriculture’s National Resources Conservation Service between 2010–2012 in order to provide 

contemporaneous measurements of soil organic carbon (SOC) across the US. Despite the broad 

extent of the RaCA data collection effort, direct observations of SOC are not available at the high 

spatial resolution needed for studying carbon storage in soil and its implications for important 

problems in climate science and agriculture. As a result, there is a need for predicting SOC at 

spatial locations not included as part of the RaCA project. In this paper, we compare spatial 

prediction of SOC using a subset of the RaCA data for a variety of statistical methods. We 

investigate the performance of methods with off-the-shelf software available (both stationary and 

nonstationary) as well as a novel nonstationary approach based on partitioning relevant spatially-

varying covariate processes. Our new method addresses open questions regarding (1) how to 

partition the spatial domain for segmentation-based nonstationary methods, (2) incorporating 

partially observed covariates into a spatial model, and (3) accounting for uncertainty in the 

partitioning. In applying the various statistical methods we find that there are minimal differences 

in out-of-sample criteria for this particular data set, however, there are major differences in maps 

of uncertainty in SOC predictions. We argue that the spatially-varying measures of prediction 

uncertainty produced by our new approach are valuable to decision makers, as they can be used to 

better benchmark mechanistic models, identify target areas for soil restoration projects, and inform 

carbon sequestration projects.

1Supported in part by the Statistical Methods for Atmospheric and Oceanic Sciences (STATMOS) research network (NSF DMS 
awards 1106862, 1106974, and 1107046).
2Supported in part by NSF DMS award 1209161.
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1. Introduction.

Oceans, terrestrial systems, and the atmosphere form the three primary carbon reservoirs 

on the earth (Batjes (1996)). The amount of carbon in terrestrial ecosystems is nearly three 

times that of the atmosphere, and while its size is dwarfed by the ocean’s carbon storage, 

terrestrial carbon is much more dynamic (Batjes (1996)). Soil organic carbon (SOC), 

a generic term for the carbon found in soil’s organic matter, constitutes approximately 

two-thirds of the carbon in terrestrial ecosystems and is an important component in the 

earth’s carbon cycle (Post et al. (1982)). The carbon in soil is in continuous interaction 

with the atmosphere via processes such as plant growth and decomposition (Bliss et al. 

(2014)), and SOC helps mitigate the negative consequences of global changes in climate by 

sequestering carbon released into the atmosphere by fossil fuel combustion (Jobbágy and 

Jackson (2000); Post et al. (1982)). In addition to its relevance to the earth’s climate, SOC is 

important in forestry and agriculture, as organic matter contributes to soil fertility by helping 

retain moisture and supply plant nutrients (Bliss et al. (2014); Post and Kwon (2000)). 

Furthermore, SOC is one of the soil properties used by hydrologists to better understand 

how precipitation is processed by different land surfaces and contributes to surface and 

ground water quality (Bliss et al. (2014)).

Because of the broad relevance of SOC to climate and agriculture, the National Resources 

Conservation Service (NRCS) initiated the Rapid Carbon Assessment (RaCA) project in 

2010 (Wills et al. (2013)). The goal of the RaCA project was to collect measurements of 

the carbon content of soil across the conterminous United States at a single point in time. 

Specifically, the project emphasized collecting spatially-referenced SOC measurements or 

“stocks,” that is, the amount of SOC in a volume (area and depth of soil) to produce 

“statistically reliable quantitative estimates of amounts and distribution of carbon stocks for 

U.S. soils under various land covers” (Wills et al. (2013)). Since the collection of SOC 

data is highly limited by time and cost constraints (Sleutel et al. (2003); Goidts and van 

Wesemael (2007)), SOC is measured only at limited locations. Thus, there is a need for 

statistical methods to predict SOC concentration at unobserved locations using the RaCA 

data.

In this paper, we consider the problem of spatial prediction of SOC concentration based 

on RaCA measurements. While geostatistical methods have previously been used for this 

purpose (albeit not for the RaCA data set; see Simbahan et al. (2006)), these analyses 

have relied on an assumption of second-order stationarity in SOC over space. As we 

demonstrate in Section 2, this assumption is inappropriate because SOC shows evidence 

of second-order nonstationary behavior on regional scales. However, existing methods 

(both stationary and nonstationary) with off-the-shelf software are inadequate for spatial 

prediction of SOC, as they yield either unrealistic prediction maps or a noninformative 

characterization of prediction error. Since it is well documented that SOC is influenced by 
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covariate information such as land use (Jobbágy and Jackson (2000)) and soil properties 

(Mishra et al. (2009)), we propose a novel approach for spatial prediction of SOC that uses 

these spatially-referenced covariates to describe the second-order nonstationarity in SOC. 

Existing approaches for covariate-driven nonstationary spatial modeling (Calder (2008); 

Schmidt, Guttorp and O’Hagan (2011); Reich et al. (2011); Vianna Neto, Schmidt and 

Guttorp (2014); Ingebrigtsen, Lindgren and Steinsland (2014); Risser and Calder (2015)) 

require fully-observed spatial covariates, however, in this case the relevant covariates are 

not observed everywhere a prediction is desired. To address this limitation, we propose 

a covariate-partitioning approach to nonstationary spatial modeling that uses spatially-

referenced covariate information to divide the spatial domain into distinct “segments.” Once 

defined, these segments partition the domain such that every location is contained in exactly 

one of these segments, and the SOC process within each segment is assumed to be locally 

stationary conditional on a particular segmentation. Since it is the segment membership that 

will be used in our statistical model, not the value of the covariate, spatial prediction does 

not require covariates to be observed at the prediction location.

In spite of the fact that the SOC data display meaningful nonstationarities on regional scales, 

we acknowledge that quantitative evaluation criteria do not indicate a strong preference for 

our nonstationary statistical model, relative to approaches with off-the-shelf software. This 

is not surprising (see, e.g., Fuglstad et al. (2015)); in any case, another important feature 

of our approach is that we are able to capture spatial variation in the uncertainty associated 

with SOC concentration predictions. Unlike traditional geostatistical methods where, for a 

fixed set of monitoring sites, spatial variation in prediction uncertainty is driven primarily by 

variation in the geographical distribution of the data (e.g., uncertainty is greatest at locations 

far from the observations), our approach readily captures how covariates such as land use 

and soil properties impact the strength of spatial dependence in SOC, which directly informs 

the assessment of soil carbon stocks.

The paper proceeds as follows: in Section 2, we introduce the RaCA data in more detail and 

conduct exploratory analyses, and in Section 3 we introduce relevant explanatory variables 

and their subsequent partitioning. Section 4 outlines our covariate-partitioning approach for 

nonstationary spatial prediction of SOC, and in Section 5 we present the results of our fitted 

model, predictions, and implications for carbon stock assessment. Section 6 concludes the 

paper.

2. RaCA data and exploratory analyses.

The RaCA data and additional variables such as land use-land cover (LULC) classes, soil 

series, and soil moisture are available through the soilDB package in R (Beaudette and 

Skovlin (2015)), and a summary report of the sampling methods and data description is 

provided in Wills et al. (2013). While measurements of SOC stocks are available for each 

site to depths of five, 10, 20, 30, 50, and 100 centimeters (in Mg C ha−1), we use the one 

hundred centimeter depth measurement since our focus is on estimating total SOC, not a 

soil depth profile (e.g., Minasny et al. (2006); Mishra et al. (2009)). Our study focuses 

on a subset of the RaCA SOC measurements collected in the Great Lakes region of the 

midwestern United States, shown in Figure 1, which contains 790 observations.
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2.1. Variogram analysis.

As discussed in Section 1, accurate estimation of the spatial distribution of SOC is hindered 

by costly and time-consuming data collection, and we are thus motivated to consider spatial 

statistical methods to predict SOC concentration at unobserved locations. Focusing on the 

Great Lakes region, we begin with a simple variogram analysis of the SOC data, first 

calculating the empirical semivariogram and corresponding fitted exponential semivariogram 

for the entire region. Here and throughout the remainder of the paper, the SOC data is 

transformed to the log scale; for the variogram analyses, we use the ordinary least squares 

(OLS) residuals from a regression of log SOC on latitude, longitude, and the longitude/

latitude interaction. Exploratory analysis indicates that the exponential correlation model 

fits the data well; the fitted exponential semivariogram is shown in Figure 2(b) with 95% 

confidence band (using the parametric bootstrap).

A simple way to assess the presence of second-order nonstationary behavior in a spatial 

data set is to split up the spatial domain into subregions and conduct a variogram analysis 

separately for each subregion. Arbitrarily dividing the Great Lakes region into four parts, 

we fit an exponential semivariogram to the OLS residuals in each subregion. The subregion-

specific semivariograms with 95% confidence bands (again using the parametric bootstrap) 

are shown in Figure 2(d): the fitted semivariograms indicate that the subregions display quite 

different spatial dependence patterns. These differences are significant, as indicated by the 

nonoverlapping uncertainty bands, which motivates a nonstationary spatial model for the 

SOC data where the spatial dependence properties vary over the spatial domain.

2.2. Off-the-shelf spatial prediction.

Various packages in R are readily available for the analysis of spatial data, some developed 

for stationary processes and some accommodating nonstationary ones. Here, we summarize 

and report on the prediction results obtained by applying different models with off-the-shelf 

software to our SOC data. All models were fitted using 20,000 MCMC iterations with the 

first 10,000 discarded as burn-in and with no thinning of the chain. All the spatial models 

use an exponential correlation structure, as this was deemed to provide a good representation 

of the dependence structure in the data, and all use uninformative, most times uniform, 

priors on model parameters.

Bayesian additive regression trees.—Bayesian additive regression trees (BART; 

Chipman, George and McCulloch (2010)) is a Bayesian sum-of-trees model that has been 

shown to perform well in a variety of settings, particularly for prediction (see, e.g., Bonato 

et al. (2011), Ding et al. (2012), Green and Kern (2012)). Because of its predictive skill, we 

spatially predict (log) SOC using BART as implemented in the BayesTree package for R. 

In applying BART to the SOC data, we use latitude and longitude as covariates for the mean 

function.

Treed Gaussian process.—Related to BART is the nonstationary treed Gaussian process 

(TGP) model of Gramacy and Lee (2008) in which tree partitions are defined by segmenting 

the coordinate axes, and partitioning uncertainty is accounted for through a model averaging 

approach (Hoeting et al. (1999)). The TGP model is implemented in the tgp package for R 
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(Gramacy (2007)), which we use with all the defaults on (log) SOC. As in BART, latitude 

and longitude are used as main effects in the mean function.

Gaussian predictive process.—Given the moderately large dimension of the RaCA 

dataset, we also consider an off-the-shelf implementation of the Gaussian predictive process 

(PP) model of Banerjee et al. (2008), which is specifically designed to account for large 

spatial data sets. The PP works by constructing an approximation to a Gaussian process 

by projecting realizations of the process of interest onto a lower dimensional space 

spanned by the predictive process knots, thereby reducing the computational burden. By 

construction, the PP is technically nonstationary, and the PP model provides a nonstationary 

approximation to any stationary covariance function. We fit a PP model to our SOC data 

using the spBayes package for R (Finley, Banerjee and Carlin (2007); Finley, Banerjee and 

Gelfand (2013)) specifying 103 knots and a constant mean.

Bayesian stationary Gaussian process.—The PP model reduces to a Bayesian 

stationary Gaussian process model if the predictive process knots are taken to be exactly 

the observation locations. Using the spBayes package and the spLM function with default 

prior settings, we generate spatial predictions of log SOC using a traditional Bayesian 

stationary (isotropic) spatial Gaussian process model with mean (log) SOC specified as a 

linear function of longitude and latitude.

Rows 2–5 in Table 1 summarize the different models applied to the (log) SOC data, with 

details on the mean function specification, the R package used to implement the model, 

and the computational time that it takes to fit each model. Surfaces of (log) SOC obtained 

by generating predictions on a fine grid covering the entire spatial domain using each of 

the aforementioned methods are presented in Figure 3. Specifically, from left to right, the 

panels show the posterior mean (top) and standard deviation (bottom) of the predictions 

using BART, TGP, SGP, and PP. Clearly, none of these models appear to be appropriate 

for the data: BART does not yield scientifically meaningful predictions with the artificial 

horizontal and vertical lines, and while the three other spatial models produce prediction 

maps that are generally smooth they are characterized by uncertainty prediction maps that 

are either unrealistic for an environmental process like log SOC (see TGP), or uninformative 

since they are almost constant in space.

To address the limitations of these off-the-shelf methods, and to model the globally 

nonstationary but locally stationary nature of the SOC data highlighted in Section 2, 

in Sections 3 and 4 we move on to introduce a novel segmentation-based model for 

nonstationary spatial processes with partitions informed by covariates.

3. Covariate-driven partitioning.

Returning to the exploratory analysis in Section 2, it is clear that partitioning the domain 

captures the nonstationary behavior in SOC for the Great Lakes region. However, there are 

three problems associated with the subregion-specific variogram analyses. First, the arbitrary 

partitioning of our domain as in Figure 2 is not scientifically meaningful: in other words, 

it provides no way of understanding why the different subregions exhibit nonstationarities. 
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Second, generating predictions of SOC based only on separately or independently fitted 

variograms for each subregion does not comprise an appropriate spatial model, because no 

information is shared across the subregions. Third, the fitted semivariogram estimates are 

likely sensitive to the specific partition used in Figure 2; in other words, we might want to 

account for uncertainty in the partition itself.

A solution to the first problem is to partition the spatial domain based on covariate 

information. As discussed in Section 1, there are well documented relationships between 

SOC and a number of covariate variables, for example, land use-land cover (LULC) 

class and drainage class. Both of these categorical variables are available in the soilDB 

package in R (Beaudette and Skovlin (2015)). According to Wills et al. (2013), the LULC 

classes were developed specifically for the RaCA project to correspond to the classes and 

definitions of the Natural Resources Inventory. RaCA designated five specific LULC classes 

(four of which are represented in the Great Lakes region subset), namely cropland, farmland, 

pastureland, rangeland, and wetland, with one additional category for any cropland site that 

was also known to correspond to a Conservation Reserve Program (CRP). The drainage 

class variable refers to “the frequency and duration of wet periods under conditions similar 

to those under which the soil developed. Alteration of the water regime by man, either 

through drainage or irrigation, is not a consideration unless the alterations have significantly 

changed the morphology of the soil” (NRCS Soil Survey Manual, Chapter 3). Plots of the 

subsetted LULC and drainage class variables are shown in Figure 4.

Given the known relationships between SOC and these variables as well as the rich literature 

on covariate-driven nonstationary modeling, we are motivated to use these covariates to 

describe the second-order nonstationary behavior exhibited by SOC over the Great Lakes 

region. In other words, our hypothesis is that both the first- and second-order properties 

of SOC might be similar in areas where the covariates are homogeneous. However, 

measurements of LULC and drainage class are not available for every prediction location of 

interest, which render the nonstationary models of Reich et al. (2011), Vianna Neto, Schmidt 

and Guttorp (2014), Ingebrigtsen, Lindgren and Steinsland (2014), and Risser and Calder 

(2015) unusable in this situation.

Hence, here we propose to partition the spatial domain based on the multivariate 

spatial distribution of LULC and drainage class. This provides scientifically meaningful 

partitioning, and also accounts for the fact that we are dealing with incompletely observed 

covariates. Having defined a partitioning of the spatial domain, we can use an approach 

similar to one outlined in Fuentes (2001) (see Section 4) to define a globally nonstationary, 

locally-stationary spatial process. Finally, to both account for uncertainty in the partitioning 

and introduce spatial dependence in SOC across subregions, we propose to use a Bayesian 

model averaging framework (Hoeting et al. (1999)).

There are a variety of methods in the statistics literature for obtaining partitions of a 

multivariate space (here, geographic space, i.e., latitude and longitude) based on multivariate 

inputs (here, LULC and drainage class). For this paper, we use multivariate cluster-

wise regression, also called multivariate latent class regression (see, e.g., Leisch (2004); 

Müller, Quintana and Rosner (2011)). Before describing this approach, we establish some 
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terminology: we define a partition of the spatial domain D as the assignment of each 

location in the geographical space to a particular subregion. In a partition, each location is 

assigned to exactly one subregion and collectively the subregions comprise the entire spatial 

domain. Also, we define a segment as an individual subregion: therefore, a partition is made 

up of a set of segments. We use P to denote a generic partition, made up of segments 

S1, …, SK . By definition, P = ∪k Sk and Sk ∩ Sk′ = ∅ for k ≠ k′.

It is trivial to note that determining the segments of a partition P of the spatial domain D
is equivalent to clustering the geographical coordinates of points within D. In particular, if 

the segments of the partition are to be characterized by the fact that the covariate processes 

are similar within each segment, then the clustering mechanism ought to be informed by 

the covariates. Leisch (2004) and Müller, Quintana and Rosner (2011) propose two different 

approaches to achieve covariate-informed clustering: the first approach falls in the model-

based clustering category, and the second falls in the class of product partition models (thus, 

specified in a Bayesian nonparametric framework). For computational simplicity, we follow 

Leisch (2004) and use a model-based clustering approach. Working with a two-dimensional 

spatial domain (i.e., latitude and longitude of locations) we model the bivariate vector 

of coordinates (s1, s2) for each point s ∈ D as arising from a mixture of bivariate normal 

distributions where the mean and the covariance matrix are mixture-component specific. In 

other words, given a pre-specified and finite number K of clusters, we assume

s = s1, s2 ∼ ∑
k = 1

K
πk(s) ⋅ N2 s; mk, Dk ,

(3.1)

where Nd(x; m, V ) is the d-variate Gaussian density with mean m and covariance V  evaluated 

at x. The flexmix package in R allows us to fit this class of models for fixed K using the 

EM algorithm. Taking the observation locations of the two spatial covariates (LULC and 

drainage class) as data for model (3.1) and using the flexmix package with K ranging from 

2 to 6, we obtain multiple potential partitions of the observation locations of the covariate 

processes, shown in Figure 5. The mixture for a specified number of segments is nonunique 

(in other words, the EM algorithm converges to several different local modes), and after 

re-starting the algorithm several times for each K we selected the best mixture(s) based on 

EM convergence and the log-likelihood.

However, note that Figure 5 only provides partitions for locations where we have a 

measurement of the spatial covariates. As will be seen in Section 4, we require partitions 

of the locations where we have SOC measurements (which differ from the covariate 

measurement locations) as well as all locations on a fine grid for generating predictions. 

When fitting model (3.1) to the latitude and longitude coordinates of the covariate locations 

using the package flexmix, we obtain as a byproduct the bivariate Gaussian densities from 

(3.1), which can be defined for any location s ∈ D. Based on the K segment probabilities, 

we assign each location to a segment by taking the maximum of the bivariate Gaussian 

densities, that is, the segment for location s is defined as maxk N2 s; mk, Dk . Thus the 

RISSER et al. Page 7

Ann Appl Stat. Author manuscript; available in PMC 2024 August 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



eight mixtures in Figure 5 yield eight partitions of the spatial domain (not shown), denoted 

Pj: j = 1, …, 8 , with segments denoted Sjk:k = 1, …, Kj .

4. A partition-based nonstationary spatial Gaussian process model.

The covariate partitions Pj: j = 1, …, 8  defined in Section 3 can be used to model both first- 

and second-order nonstationarities in SOC as follows. Let Z( ⋅ ) represent observed log SOC, 

where we model Z( ⋅ ) as a spatial stochastic process defined for all s ∈ D (here, D denotes 

the Great Lakes region of the United States). For all s ∈ D, let

Z(s) = μ(s) + Y (s) + ε(s),

(4.1)

where E[Z(s)] = μ(s) is a deterministic mean function, Y ( ⋅ ) is a mean-zero latent spatial 

Gaussian process, and ε( ⋅ ) is an error process that is assumed to be independent of Y ( ⋅ ). 
We observe the value of at Z( ⋅ ) a fixed, finite set of locations s1, s2, …, sn ∈ D (see Figure 

1) and wish to use these observations to learn about the underlying processes and generate 

predictions at unobserved locations.

In Section 4.1, we outline a statistical model for log SOC conditional on a single partition 

Pj, and in Section 4.2 we outline the model fitting for each conditional model. Then, in 

Section 4.3 we describe a model-averaging approach to posterior prediction that incorporates 

all candidate partitions.

4.1. Conditional model specification.

Conditional on the Kj segments Sjk:k = 1, …, Kj  of partition Pj, we first model Y ( ⋅ ) as a 

mixture of stationary processes (Fuentes (2001)), that is,

Y (s) = ∑
k = 1

Kj
wjk(s)Y jk(s),

(4.2)

where the Y jk( ⋅ ) are orthogonal and stationary, and wjk( ⋅ ) is a positive kernel weight 

function such that wjk(s) ≥ 0 and ∑k = 1
Kj wjk(s) 2 = 1 for all s ∈ D (following Reich et al. 

(2011)). Define the covariance function of each Y jk( ⋅ ) to be Cjk; then, the covariance 

function of Y ( ⋅ ) is

Cov Y (s), Y s′ ≡ C s, s′ = ∑
k = 1

Kj
wjk(s)wjk s′ Cjk s−s′ ,

(4.3)

which is a valid nonstationary covariance function. For each Cjk, we use an anisotropic 

version of the parametric Matérn model
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Cjk s−s′; θjk = σjk
2

Γ vjk 2vjk − 1 Qjk s−s′ vjkℬvjk Qjk s−s′ .

(4.4)

In (4.4), ℬvjk( ⋅ ) denotes the modified Bessel function of the third kind of order vjk, 

Qjk s−s′ = ∥ Σjk
−1/2 s−s′ ∥2 is a squared Mahalanobis distance with anisotropy matrix Σjk

parameterized according to its spectral decomposition, that is (for d = 2),

Σjk =
cos ηjk −sin ηjk

sin ηjk cos ηjk

ϕjk
(1) 0
0 ϕjk

(2)

cos ηjk sin ηjk

−sin ηjk cos ηjk
,

(4.5)

and θjk = σjk
2 , vjk, ϕjk

(1), ϕjk
(2), ηjk  is a vector of parameters that control the variance, smoothness, 

and anisotropy of Y jk( ⋅ ). In the anisotropy matrices (4.5), ϕjk
(1) and ϕjk

(2) represent directional 

“ranges” (i.e., inverse decay parameters) and ηjk represents an angle of rotation; these 

parameters allow for locally elliptical correlation patterns.

In general, we might propose a similar model for the mean behavior μ( · ), that is 

μ(s) = ∑k = 1
Kj wjk(s)μjk(s), where μjk(s) can accommodate any mean structure, including (in 

the case of a linear mean) fully observed covariates and segment-specific intercepts. For 

log SOC, we considered a variety of segment-specific mean functions involving latitude 

and longitude, but found that using a constant mean across all segments performed as well 

as a model with a global mean latitude and longitude coefficients. Furthermore, a model 

with constant spatial mean performed as well as a model with a different intercept in each 

segment. Thus, we set μjk(s) ≡ μj for all k.

To complete the specification of our model (4.1), we suppose that the error process ε(s) is 

spatially independent and Gaussian. Similar to (4.2), we model ε(s) = ∑k = 1
Kj wjk(s)εjk(s), where 

each εjk(s) ∼i.i.d. N 0, τjk
2 . Thus, we expand the θjk vector to include the variance τjk

2 ; collect all 

of the variance/covariance parameters across segments into a single vector

θ(j) = θj1, …, θjKj .

In this paper, the weight functions wjk( ⋅ ) for partition Pj are chosen to be indicator functions 

for segment Sjk, that is, wjk(s) = 1 s ∈ Sjk  (following, e.g., Gramacy and Lee (2008)). In this 

case, for partition Pj, the process Y ( ⋅ ) and therefore Z( ⋅ ) is now locally stationary within 

each Sjk and independent across the Sjk, conditional on Pj. For the random observed vector 

Z ≡ Z s1 , …, Z sn
⊤, the indicator weight function implies a conditional likelihood for Z,

p Z ∣ μj, θ(j), Pj ∝ ∏
Kj

k = 1
Vjk + Ωjk

−1/2
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(4.6)

× exp − 1
2 Zjk − μj1jk

⊤ Vjk + Ωjk
−1 Zjk − μj1jk ,

which is the product of segment-specific multivariate Gaussian likelihoods. In (4.6), the 

“jk” subscript partitions each term into its partition- and segment-specific components, for 

example, Zjk = Z si : si ∈ Sjk ; Vjk = τjk
2 I captures a partition-/segment-specific measurement 

error variance; the elements of Ωjk come from Cjk. Note that the likelihood for Z in (4.6) is 

conditional on Pj. As a result, the partition controls the second-order properties of Z( ⋅ ) by 

determining independent regions of local stationarity. As mentioned previously, the partition 

could also specify first-order properties, although for SOC we have not used this property.

Still conditional on Pj, we factor the prior distribution as 

p μj, θ(j) ∣ Pj = p μj ∣ Pj × p θ(j) ∣ Pj . The prior on μj is proper but noninformative and 

conjugate for the likelihood (4.6), that is, p μj ∣ Pj = N 0, 1002 . The prior for θ(j) is 

conditional on the partition since Pj controls the dimension of θ(j). Based on the variogram 

analysis in Section 2, we choose to use a smoothness ν  which is constant across segments 

and fixed to be ν = 0.5 (true for all partitions), corresponding to an exponential correlation 

structure in (4.4). Otherwise,

p θ(j) ∣ Pj = ∏
k = 1

Kj
p τjk

2 p σjk
2 p ϕjk

(1) p ϕjk
(2) p ηjk

(4.7)

(the conditioning on Pj on the right-hand side is suppressed). Each component of (4.7) is 

noninformative and proper: for k = 1, ..., Kj,

p τjk
2 = Uniform(0, 100), p σjk

2 = Uniform(0, 100),

p ϕjk
(1) = Uniform(0, 2), p ϕjk

(2) = Uniform(0, 2),

p ηjk =  Uniform [0, π/2]. 

Uniform priors for the variance parameters τ2 and σ2 are used in place of more traditional 

conjugate inverse-Gamma priors to avoid prior bias in the case where an individual segment 

contains a small number of observations (following Gelman (2006)). For this analysis, 

the longitude/latitude coordinates of locations within each cluster were rescaled to lie in 

[0,1] × [0,1] to improve mixing of the MCMC; therefore, the upper limits for the priors 

on the anisotropy matrix eigenvalues, ϕjk
(1) and ϕjk

(2) (which correspond to squared ranges of 
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dependence) are set to 2, which is the maximum distance on [0,1] × [0,1]. The reasoning 

behind this choice is that the squared spatial range of the process within a segment is not 

expected to exceed the size of the segment. The limits on the prior for ηjk are set to ensure 

identifiability (following, e.g., Katzfuss (2013)).

4.2. Model fitting and MCMC.

Conditional on partition Pj, the posterior distribution is

p μj, θ(j) ∣ Pj, Z = z ∝ p Z ∣ μj, θ(j), Pj ⋅ p μj ∣ Pj ⋅ p θ(j) ∣ Pj ,

(4.8)

which combines (4.6) and priors defined in Section 4.1. As usual, (4.8) is not available in 

closed form, and we must resort to Markov chain Monte Carlo (MCMC) methods. Posterior 

samples from (4.8) are generated using the nimble package for R (de Valpine et al. (2017)): 

the MCMC for Pj is run for 20,000 total iterations with 10,000 iterations discarded as 

burn-in. A univariate Metropolis Hastings sampling step is conducted for the overall mean 

μj , and adaptive random walk samplers are conducted for the segment-specific variance/

covariance parameters ([τjk
2 , σjk

2 , ϕjk
(1), ϕjk

(2), ηjk], sampled as a block).

4.3. Model-averaged posterior prediction.

Recall from Section 1 that our primary goal for using this model is prediction. Define a 

collection of locations s1
∗, …, sm

∗ ⊂ D for which we would like to obtain predictions of the 

corresponding (log) SOC values Z∗ = Z s1
∗ , …, Z sm

∗ . While the statistical model outlined 

in Section 4.1 is conditional on a single partition Pj, using a Bayesian framework we 

can average over the partitions Pj: j = 1, …, 8  from Section 3 to obtain the full posterior 

predictive distribution for Z∗ conditional on observed Z=z:

p Z∗ ∣ Z = z = ∑
j = 1

8 ∬ p Z∗, μj, θ(j), Pj ∣ Z = z dμjdθ(j) .

(4.9)

The properties of conditional probabilities allow us to re-write (4.9) as

p Z∗ ∣ Z = z = ∑
j = 1

8 ∬ p Z∗ ∣ μj, θ(j), Pj, Z = z

(4.10)

× p μj, θ(j) ∣ Pj, Z = z × p Pj ∣ Z = z dμjdθ(j) .
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This factorization of (4.9) greatly simplifies posterior prediction, as follows. Since we are 

using a Gaussian process model, p Z∗ ∣ μj, θ(j), Pj, Z = z  is multivariate Gaussian: with

Z

Z∗ μj, θ(j), Pj ∼ Nn + m μj1n + m,
Vj + Ωj Ωj

ZZ∗

Ωj
Z∗Z Vj

∗ + Ωj
∗

,

where Ωj
Z∗Z ≡ Covj Z∗, Z , it follows that

p Z∗ ∣ μj, θ(j), Pj, Z = z = Nm μZ∗ ∣ Z
(j) , ΣZ∗ ∣ Z

(j) ,

(4.11)

where

μZ∗ ∣ Z
(j) = μj1m + Ωj

Z∗Z Vj + Ωj
−1 z−μj1n ,

ΣZ∗ ∣ Z
(j) = Vj

∗ + Ωj
∗ − Ωj

Z∗Z Vj + Ωj
−1Ωj

ZZ∗
.

The next component in (4.10) is the conditional posterior distribution (4.8), while the final 

component of (4.10) is the posterior probability of each partition Pj conditional on the data. 

From Bayes’ Theorem, the latter is

p Pj ∣ Z = z = p Z ∣ Pj p Pj

∑i = 1
8 p Z ∣ Pi p Pi

= p Z ∣ Pj

∑i = 1
8 p Z ∣ Pi

.

(4.12)

The last equality follows from our use of a uniform prior over the different partitions, that is, 

p Pj = 1/8, j = 1, …, 8, which is appropriate in this setting because the partitions are defined 

by the covariates and not SOC. In any case, the important quantity here is the marginal 

likelihood

p Z ∣ Pj = ∬ p Z ∣ μj, θ(j), Pj p μj, θ(j) ∣ Pj dμjdθ(j) .

(4.13)

Estimation of the marginal likelihood is a well-known problem in Bayesian analysis (for 

more details on our approach, see the Supplementary Material, Risser et al. (2019)).

Combining all of the above, (4.10) suggests the following algorithm to sample from 

p Z∗ ∣ Z = z  :

1. Draw Pj according to the p Pj ∣ Z = z , j = 1, …, 8.
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2. Draw μj
∗, θ∗

(j)  from p μj, θ(j) ∣ P = Pj, Z = z , which is the posterior distribution 

for the mean and covariance parameters conditional on Pj (the sampling of 

which is described in Section 4.2).

3. Draw Z* from p Z∗ ∣ μj = μj
∗, θ(j) = θ∗

(j), P = Pj, Z = z  as defined in (4.11).

5. Results.

5.1. Posterior prediction maps.

Before showing the prediction maps, recall that the sampling algorithm requires estimates of 

the marginal likelihood. A variety of methods for estimating the marginal likelihoods (4.13), 

outlined in the Supplementary Material (Risser et al. (2019)), were applied to the eight 

partitions. The resulting log marginal likelihood estimates (scaled to have mean zero and 

variance one) and normalized probabilities (4.12) are shown in the Supplementary Material 

(Risser et al. (2019)). The scaled log marginal likelihood estimates show agreement between 

all of the estimators except BICM, which we henceforth exclude from consideration. 

Otherwise, on the probability scale, the estimators collectively give nonzero weight to the 

same three or four partitions (4, 6, 7, and 8) and none of the methods suggest that the model 

probabilities should be evenly distributed across all eight partitions. Given this relative 

agreement and for simplicity, we decided to use the HM estimator for generating posterior 

predictions of log SOC.

The resulting model-averaged posterior prediction maps and corresponding standard 

deviations for the Great Lakes region are shown in Figure 6. By averaging over the 

partitions, which individually consist of independent segments, we are able to obtain a 

relatively “smooth” posterior mean surface, although artifacts of the individual segments are 

visible in the posterior standard deviation map. While the standard deviation map is not 

smooth, we note that this nonsmoothness is what the SOC data select as the best model 

fits (based on the marginal likelihood estimates), and other marginal likelihood estimators 

give qualitatively similar results (see Figure 1 in Risser et al. (2019)). Regardless, the 

standard deviation map characterizes how the variability in predictions of log SOC varies 

over space; see Section 5.3 for further discussion. Comparing both the predicted (log) SOC 

surface obtained using our nonstationary Gaussian process model (Figure 6) as well as its 

standard deviation map to those obtained using other off-the-shelf methods (Figure 3) we 

can conclude that SOC is much more flexibly modeled with our proposed nonstationary 

model, as the prediction variances are better described by our model.

Additionally, another major benefit of using our nonstationary method with covariate-

partitioning for the SOC data is the significant reduction in computational time relative 

to fitting a stationary Bayesian spatial model (as well as other related Bayesian models). 

Recall that the eight candidate partitions are generated ahead of time, and then, for each 

partition, the nonstationary models can be fit at the same time in parallel. For a dataset 

of size n ≈ 800 observations, the maximum time required for an individual partition was 

7 minutes (for 20,000 MCMC iterations), and the average time across all partitions was 

just 3.4 minutes (see Table 1). A traditional stationary model (e.g., SGP; see Section 2.2) 
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took approximately 20 minutes (computational times given are for an Intel Core i7 3.1 GHz 

machine with 16 GB memory). This major improvement in computational time is due to the 

fact that the likelihood conditional on a partition is the product of independent multivariate 

Gaussian likelihoods (see Section 4.1).

5.2. Model comparison.

Besides the qualitative comparison of the predictive SOC maps generated by our model-

averaged, covariate-partitioned nonstationary model (henceforth NSGP) and the other off-

the-shelf models, we also compare the predictive performance of the various models 

quantitatively. To this goal, we first use 10-fold cross validation in which the full data 

set (n = 790) is split into 10 equally sized test data sets with m = 79 observations. For each 

subset, we fit all models using the other nine subsets as training data and obtain predictions 

at the test locations. The continuous rank probability score (CRPS; Gneiting and Raftery 

(2007)) is used to evaluate the sharpness and calibration of predictions for the held-out 

data. Krüger et al. (2016) outline several methods for estimating the CRPS for individual 

predictions based on the output from MCMC algorithms (i.e., CRPSt for t = 1, …, m). Mean 

scores are calculated for the test set using CRPS = m−1∑t = 1
m CRPSt and compared across 

models. Since the conditional predictive cumulative distribution functions (conditional on 

the true parameter state, i.e., the likelihood) are not available for BART and TGP, we use 

what Krüger et al. (2016) call the empirical CDF method (ECDF) for calculating CRPS for 

each model. ECDF is based on samples drawn from the posterior predictive distribution and 

is a consistent approximation for the CRPS for every predictive distribution with finite mean 

(Krüger et al. (2016)). The ECDF estimate of CRPS is calculated using the scoringRules 

package for R (Jordan, Krüger and Lerch (2016)).

For the 10-fold cross validation, the CRPS for each fold is the average of univariate CRPS 

across the test data. Given that our approach targets second-order properties of log SOC, we 

would also like to evaluate the models with respect to a multivariate criteria, for example, 

the energy score. However, in other work we have found it difficult to implement the 

energy score, because deviations in the energy score are challenging to diagnose. Instead, 

we evaluate the models’ predictive capability for spatial averages of log SOC. We choose to 

work with spatial averages because while spatial averages are still univariate variables (and 

can thus be evaluated using the aforementioned methods), by being functionals of the joint 

predictive distribution, their second moment depends on the covariance structure of the (log) 

SOC process. Additionally, spatial averages are more compelling and useful quantities to 

examine from a soil management perspective. To this end, we fit all models to two additional 

groups of holdout sets, block and circular. Each block holdout set (12 total) creates a test 

data set out of a contiguous ≈ 3.3° longitude by ≈ 1.7° latitude box (the holdout sets range 

in size from 29 to 79 locations; see the Supplementary Material, Risser et al. (2019)). Each 

circular holdout set (10 total) creates a test data set using the 29 nearest neighbors of a 

randomly selected station (so that the holdout sets consist of 29 + 1 = 30 stations; again see 

the Supplementary Material, Risser et al. (2019)). For each holdout set (block and circular), 

the other sets are used as training data to predict the spatial average corresponding to the 

test data locations. Then, we calculate the univariate CRPS for the spatial average, again 

using the scoringRules package as described previously. We note that the areal evaluation 
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explores the posterior predictive distribution for the average log SOC value for all available 

measurement locations in the holdout set, as opposed to the true areal average (which of 

course is not available for evaluation).

The CRPS for each model in Table 1 and each group of holdout sets are summarized 

in Table 2. Our covariate segmentation nonstationary model yields the best CRPS when 

averaging the univariate CRPS over locations in each fold, but the improvement relative to 

the other models is modest. The two nonstationary models (NSGP and TGP) perform well 

for the block holdout sets, although TGP maintains a clear advantage over NSGP. This is 

not completely surprising, since TGP (which uses rectangular partitions of the domain) is 

expected to perform well for rectangular holdout sets. When looking at the circular holdout 

sets, NSGP is preferred to TGP, which again is expected since NSGP uses nonrectangular 

partitions of the domain. BART outperforms both TGP and NSGP for the circular holdout 

sets, although recall that we previously decided to exclude BART from consideration based 

on its unrealistic prediction map.

One limitation of using CRPS to compare models is that it is difficult to evaluate the 

relative improvement for one model versus another. Clearly, NSGP yields only modest (at 

best) improvements in CRPS relative to the other fitted models; however, we note that 

other papers that focus on nonstationary modeling (e.g., Paciorek and Schervish (2006); 

Fuglstad et al. (2015)) also find very small improvements in out-of-sample evaluation 

criteria relative to stationary models, even when exploratory analyses indicate the presence 

of nonstationarity in the data. Fuglstad et al. (2015) note that, in their experience, 

“nonstationary models do not lead to much difference in the predicted values, [but] that the 

differences are found in the prediction variances”—this is also noted by Schmidt, Guttorp 

and O’Hagan (2011) and Vianna Neto, Schmidt and Guttorp (2014), and is certainly true 

for our application as well. As in Fuglstad et al. (2015), we would like to point out that 

whether or not we have improved the CRPS is not the only question worth asking: in this 

case, we argue that our more flexible characterization of the prediction variances yields 

increased insight into the spatial distribution of SOC (we expound upon this further in the 

next section).

5.3. Implications for decision making.

Gridded prediction maps and corresponding standard deviations such as those shown in 

Figures 3 and 6 are extremely important to soil scientists, and (as mentioned in Section 

1) are used for a wide variety of purposes, including benchmarking mechanistic models 

of soil carbon (e.g., Todd-Brown et al. (2014)), identifying target areas for soil restoration 

projects (e.g., Ryals et al. (2014); Ryals et al. (2015)), and informing carbon sequestration 

projects that seek to determine the limits of soils’ carbon storing capacity (e.g., Angers et al. 

(2011); Wiesmeier et al. (2014)). For each of these purposes, it is very important to account 

for spatial variation in the uncertainty of the resulting predictions: as discussed in Section 

5.2, note that the NSGP model can account for this (e.g., right panel of Figure 6) while 

the stationary (or approximately stationary) models cannot (e.g., bottom row of Figure 3). 

Thus, while the posterior mean predictions look quite similar (for example, NSGP, SGP, 

and PP) and the quantitative cross validation results do not yield overwhelming evidence in 
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support of the nonstationary model, the clear differences in standard deviations are a strong 

argument for using NSGP.

To emphasize this point, we plot the ratio of standard deviations in Figure 7, specifically 

showing the posterior standard deviations for SGP, PP, and TGP divided by the 

corresponding quantity for NSGP. In this plot, areas with a ratio of greater than one 

correspond to regions where NSGP provides much more precise predictions relative to the 

other models; areas with a ratio of less than one represent regions where posterior standard 

deviations from the other models are smaller. Using the results from the nonstationary 

model, a practitioner seeking to identify target areas for a new soil restoration project 

may want to focus their efforts in the Ohio River Valley (Kentucky, southern Indiana, 

and southern Illinois), as this is an area where both the soil carbon predictions are low 

and the uncertainty associated with these predictions is small. Alternatively, while soil 

carbon appears to be low along the Mississippi River in Wisconsin, the uncertainty in these 

measurements is much larger. Neither SGP nor PP provide this information.

6. Discussion.

In this paper, we have proposed a novel method for obtaining predictions of soil organic 

carbon at unobserved locations using a covariate-driven nonstationary spatial Gaussian 

process model. Our approach uses covariate partitioning to divide the geographic space 

according to the within-segment distribution of the covariates (here, land use-land cover and 

drainage class), so that the covariates indirectly inform the modeled first- and second-order 

properties of SOC as well as the resulting predictions. This approach extends existing 

covariate-driven nonstationary approaches in that the information a covariate provides on 

SOC can be used for prediction even if the covariate is not fully observed over the 

spatial domain. Bayesian model averaging accounts for uncertainty in the partitioning, and 

while our approach yields only modest improvements in terms of out-of-sample evaluation 

criteria, it provides a more appropriate characterization of the spatial variation in prediction 

uncertainty. Furthermore, while many nonstationary spatial approaches are computationally 

intensive, our approach results in computational times that are significantly faster than the 

time required to fit a corresponding second-order stationary model.

Of course, there are limitations to our nonstationary model. For example, the marginal 

likelihood estimation seems to be fairly sensitive to individual likelihood values, resulting 

in a few nonzero and many nearly zero posterior model probabilities. Regardless of which 

marginal likelihood method was used (see the Supplementary Material, Risser et al. (2019)), 

the estimates always put nearly all the weight on a single model. In a general setting, 

this may not be problematic; however, in our approach, we rely on model averaging to 

produce a scientifically meaningful (i.e., smooth) fitted surface, and we are well aware that 

the individual models, which specify independence across segments, are not on their own 

appropriate for modeling an environmental process like SOC. In light of the variability 

in the marginal likelihood estimates, we might also consider a second approach to model 

averaging, which could involve identifying a subset of the partitions that are in some 

sense “good” (as indicated by the data) and uniformly weighting over the reduced set. The 
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resulting surface would likely be more scientifically meaningful while also using the data to 

indicate which of the partitions provide a better fit to the observed SOC.

Finally, an additional extension that might address the nonsmooth mean predictions in 

Figure 6 would be to use different weighting functions for the partition-specific likelihood 

in (4.6). Recall that we use indicator weight functions; more generally, we might use weight 

functions without sharp boundaries. In this case, the transition between segments for a 

particular partition would be smoother, resulting in a more realistic specification for the 

individual models. In fact, we implemented such an approach, using the bivariate Gaussian 

densities from (3.1) as the unnormalized weights combined with the nearest neighbor 

Gaussian process likelihood (NNGP; Datta et al. (2016)) to speed up the computation. 

Unfortunately, such an approach did not improve the CRPS criteria relative to NSGP with 

indicator weights, and the computational times for fitting the individual partitions increased 

to as much as 2 hours (even with the NNGP likelihood; without NNGP the computational 

times were much longer, exceeding 10 hours for an individual partition). In general, the 

primary benefit of using indicator weight functions is computational: the product nature of 

(4.6) greatly reduces the computational time for fitting each model. The decision to use a 

different weight function should be balanced with the computational limitations of model 

fitting for a general data set.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Great Lakes subset of the soil organic carbon stocks data set.
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Fig. 2. 
Fitted exponential semivariograms for the entire Great Lakes region (top) and for four 

arbitrary subregions (bottom), with 95% confidence bands.
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Fig. 3. 
Posterior mean predictions (top) and corresponding posterior standard deviations (bottom) 

for log SOC in the Great Lakes region, using the models BART (left), TGP (left-center), PP 

(right-center), and SGP (right). (Note: both color bars have the same limits as in Figure 6.)
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Fig. 4. 
The Great Lakes region subset of the Rapid Carbon Assessment (RaCA) land use-land cover 

classes (left) and drainage classes. For land use, CRP refers to a Conservation Reserve 

Program cropland site. For drainage class, the labels are as follows: VPD = very poorly 

drained, SPD = somewhat poorly drained, PD = poorly drained, MWD = moderately well 

drained, WD = well drained, SED = somewhat excessively drained, ED = excessively 

drained.
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Fig. 5. 
Finite mixture models used to generate the candidate partitions. The plotted points represent 

locations with a nonmissing observation of both the drainage class and land use variables.
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Fig. 6. 
Model-averaged posterior mean predictions (left) and corresponding posterior standard 
deviations (right) for log SOC (units = logMg/ha to 100 cm).
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Fig. 7. 
Comparison of the posterior standard deviations across SGP, PP, TGP, and NSGP. The 

plotted colors represent the ratio of standard deviations for SGP (left), PP (center), and TGP 

(right) divided by the standard deviations for NSGP. Areas with a ratio of less than one 

correspond to regions where NS-GP provides more precise predictions relative to the other 

models; areas with a ratio of less than one represent regions where the other models likely 

underestimate the standard deviations.
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Table 1

A summary of the models fit to the SOC data. (GP indicates a Gaussian process; lat/lon refers to latitude/

longitude.) All spatial models use an exponential correlation function. Computational times correspond to 

fitting the model to the full data set (n= 790)

Label Details Mean function R package Computational time

BART‡ Bayesian additive regression trees Lat/lon as inputs BayesTree 12.4 minutes†

TGP‡ Bayesian treed GP Lat/lon for inputs and mean tgp 13.1 minutes†

PP‡ Bayesian Predictive Process (r = 103 knots) Constant spBayes 2.4 minutes†

SGP‡ Bayesian stationary GP Lat/lon spBayes 19.4 minutes†

NSGP Bayesian nonstationary GP Constant n/a 7.0 (max), 3.4 (avg.) minutes†

†
Time given for an Intel Core i7 3.1 GHz machine (16 GB memory) for 20,000 MCMC iterations.

‡
Methods using available off-the-shelf software.
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Table 2

Mean continuous rank probability scores (averaged over holdout sets) for each group of holdout sets, with the 

standard deviation in scores in parenthesis. The best model for each holdout set is in bold

Holdout NSGP SGP BART† TGP PP

10-fold 0.391 (0.026) 0.396 (0.025) 0.407 (0.026) 0.399 (0.025) 0.398 (0.023)

Block 0.168 (0.142) 0.185 (0.140) 0.168 (0.089) 0.136 (0.125) 0.188 (0.162)

Circular 0.178 (0.157) 0.229 (0.192) 0.151 (0.068) 0.189 (0.155) 0.223 (0.201)

†
BART is excluded from consideration based on its unrealistic prediction map.
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