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ABSTRACT OF THE DISSERTATION 

Leveraging Computational Methods And Electronic Health Records-Linked Biobank 

Data In Oral And Craniofacial Health Research 

 

by 

Vidhya Venkateswaran 

Doctor of Philosophy in Oral Biology 

University of California, Los Angeles, 2023 

Professor Ichiro Nishimura, Co-Chair 

Professor Bogdan Pasaniuc, Co-Chair 

 

Bioinformatics and computational methods play an important role in advancing medical 

research with their ability to leverage large datasets, including data from electronic 

health records (EHR) linked biobanks. Precision medicine can benefit from leveraging a 

more comprehensive picture of a patient’s genotypes and phenotypic presentation for 

targeted interventions and treatment planning. In this work, I discuss the applications of 

bioinformatics methods in the UCLA ATLAS biobank, in evaluating craniofacial traits 

and their risk factors: specifically, head and neck cancer and tobacco use disorder. 

First, I describe phenome-wide and lab-wide association analysis pipelines that 

leverage the breadth of the available information in the biobank, and the results of 

preliminary investigations of the phenome-wide and laboratory-wide associations of a 

genetic predisposition to tobacco use disorder. Next, I present the results of an 

evaluation of the predictive performance of a tobacco use polygenic score across 
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different genetic ancestry groups and further discuss the differences in disease 

presentations in tobacco use-predisposed individuals with and without a history of the 

associated tobacco use behavior. Next, I employ these pipelines and statistical methods 

in the examination of the interplay of serum bilirubin, tobacco use, head and neck, and 

lung cancer. I present the results of this project, examining the effect of environmental 

and genetic factors on serum bilirubin and associations with head and neck cancer and 

lung cancer. Lastly, I propose a research project to examine the germline risk factors for 

oropharyngeal cancer and discuss the future directions of this work. 
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Chapter 1 

 

Introduction  

Bioinformatics is a subdiscipline of data science that uses information technology 

to collect, analyze, and disseminate biological data and information1. A large amount of 

data is generated in healthcare settings; including demographics, encounter 

information, laboratory results, prescription data, diagnostic, and procedure codes. A 

newer source of data that is now adopted in many healthcare settings is the electronic 

health records linked biobank2. These biobanks include almost all patients in a 

healthcare system who have consented to participate in research, with each patient’s 

de-identified health records and linked genotypes. Consequently, these biobanks have 

large sample sizes, capturing a diverse range of ethnicities and races, across various 

socioeconomic groups3.  

Computational methods have yielded promising results in the study of many 

dental diseases and risk factors. A large genome-wide association meta-analysis of 

dental caries identified 47 novel genetic risk loci4. Mendelian randomization analyses 

have causally linked periodontal disease with diseases such as stroke5 and obesity6. 

Genomic studies of oral cancer have identified the effect of germline mutations and 

genetic ancestry on somatic mutations and tumor characteristics7-9. Lastly, studies have 

identified genetic polymorphisms that interact with smoking pharmacotherapeutic 

outcomes including the CHRNA5-A3-B4 and CYP2A6 loci10. These examples 

demonstrate the potential of genomics and bioinformatics in expanding our 

understanding of the genetic basis of craniofacial diseases and risk factors, with 

clinically relevant results. There are some challenges to EHR-linked biobanks. While the 
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data is rich, it is largely unstructured and unvalidated, requiring careful quality control 

and validation of any phenotypes to be examined. Building initial computational 

pipelines, and curating and preprocessing data are time-consuming and computationally 

intensive. However, after this initial investment, these pipelines and curated data are 

available for use by other researchers for many research questions.  

My thesis focuses on building these pipelines and then utilizing them to study 

tobacco use and head and neck cancer (HNC) in the UCLA ATLAS biobank10-14 - a 

diverse biobank embedded in the UCLA healthcare system with linked genotype 

information. Using these pipelines, I studied the genetic effects of a predisposition to 

tobacco use disorder and potential interplay of tobacco use with serum bilirubin on the 

risk of HNC and lung cancer in the UCLA biobank.  

I found that a polygenic score (PGS)15 for tobacco use disorder demonstrates 

inconsistent predictive performance in non-European ancestry populations in the UCLA 

biobank. The PGS was associated with a number of cardiometabolic, psychiatric and 

respiratory diseases across the phenome, capturing the effects of tobacco use. 

Interestingly, the PGS demonstrated associations with obesity and alcohol use disorder 

when tobacco use behavior was not present.  

With further validation, these findings could have a significant impact on tobacco 

use management, suggesting that if an individual is genetically predisposed to tobacco 

use, early and comprehensive interventions to address underlying addictive tendencies 

might be warranted. Inconsistent predictive performance of the PGS across ancestry 

groups necessitates further research to improve this aspect before clinical translation to 

allow for equitable delivery of care. 
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Building on the results of the systemic effects of tobacco use, in an examination of 

the interplay between serum bilirubin, tobacco use, and head and neck, and lung 

cancer, I found that serum bilirubin had an inverse relationship with HNC and lung 

cancer risk. Tobacco use interacts with serum bilirubin on lung cancer risk and a 

polygenic score for serum bilirubin is associated with lung cancer. i.e. cigarette smokers 

with low serum bilirubin had a higher risk of lung cancer when compared to cigarette-

smokers with high serum bilirubin. These findings indicate a potential role for serum 

bilirubin in the risk stratification of patients at risk of HNC and lung cancer.  

Lastly in this thesis, I propose future studies to examine the germline genetic risk 

factors associated with oropharyngeal cancers using methods including genome-wide 

association studies, phenome-wide association studies and polygenic scores. These 

projects are organized into the following thesis chapters: 

 

1. Introduction 

2. Leveraging the Breadth of EHR-linked Biobank Data for Phenome and Lab-Wide 

Association Studies of Tobacco Use Genetic Variants  

3. Polygenic Scores for Tobacco Use Provide Insights into Systemic Health Risks 

4. EHR-Data And Polygenic Scores Reveal The Interplay Of Serum Bilirubin, 

Smoking, And Cancer 

5. Conclusions and Future Directions  
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Chapter 2 

Leveraging the Breadth of EHR-linked Biobank Data for Phenome and Lab-Wide 

Association Studies of Tobacco Use Genetic Variants  

2.1 Abstract 

EHR-linked biobanks offer a wealth of health information that can be utilized in 

research. We present the results of three pipelines, phenome-wide association analyses 

(PheWAS) using single nucleotide polymorphism (SNP) and a polygenic score (PGS) 

and a laboratory-wise association analysis (LabWAS) using a polygenic score for 

tobacco use disorder (TUD). We find that the SNP-PheWAS for rs6024489 is 

associated with ‘tobacco use disorder’ (P-Value = 0.000011), likely capturing the effect 

of this nicotine dependence risk loci. In the TUD-PGS-PheWAS, we observe top 

associations with ‘Tobacco use disorder’, ‘Obesity’, ‘Diabetes Mellitus’, ‘Substance 

addiction and disorders’, and ‘Emphysema’ (P Values = 5.21E-36, 7.63E-13, 7.20E-12, 

9.19E-11, 1.42E-10 respectively). These results capture potential pleiotropic 

associations in addition to tobacco use driven comorbidities. Lastly, in the TUD-PGS-

LabWAS, we observe associations with high glucose and HBA1c lab results (P-Values: 

4.30e-12 and 4.62e-08) that validate the diseases noted above (diabetes mellitus). We 

also observe associations with HDL (P Value: 1.30e-07), a known effect of tobacco 

smoking. Lastly, a triad of decreased Vitamin D levels and calcium levels (P Values: 

1.71e-05 and 1.39e-05) with increased parathyroid hormone (P Value: 3.36e-06) are 

suggestive of hyperparathyroidism, a new finding not captured in the PheWAS analysis. 

These findings demonstrate the potential of these pipelines in validation and discovery 
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of the system-wide effects of genetic variants associated with a trait of interest, in this 

case tobacco use disorder. 

2.2 Introduction 

Personalized medicine or precision medicine uses patient characteristics, 

including the genetic information of an individual, to design interventions personalized to 

each individual’s genotype and disease presentation. Electronic health record (EHR)-

linked biobanks provide a vast repository of information that can be leveraged in 

precision medicine research. EHR-linked biobanks can be used to identify disease 

biomarkers and diseases with shared genetic risk1,2, thus identifying the potential 

symptoms, biomarkers, or laboratory measurements that may not directly relate to the 

classical presentation of a disease. Using methodological approaches developed for the 

complex data from EHRs, we can leverage genetic and health information to identify a 

network of comorbidities, and laboratory results to predict disease risk, treatment 

response, and adverse effects. 

A novel way of harnessing the information available in EHR-linked biobanks is by 

testing for associations across the full spectrum of available data in order to generate 

hypotheses about the disease of interest. Two such methods that can evaluate 

associations across a wide spectrum of data include phenome-wide and lab-wide 

association studies. The phenome-wide association study (PheWAS), introduced by 

Denny et al in 20103, is an analysis designed to evaluate the associations between 

genetic variants and phecodes, which are meaningfully grouped ICD codes3. These 

phecodes span the full phenotypic spectrum, helping us identify patterns of disease 



 

 9 

presentation across different disease categories. PheWAS studies have been 

conducted in several biobanks including the UK Biobank and BioVu, providing us with 

novel disease insights across metabolic, psychiatric and cardiovascular phenotypes to 

name a few4,5. 

In a similar vein, laboratory test result data can be harnessed for lab-wide 

association studies (LabWAS), testing the effects of genetic variants across all 

laboratory tests available in the EHR to obtain a full picture of the potential impact of the 

genetic variants on a broad spectrum of lab results, including tests that might not 

directly be prescribed for the patient’s existing medical history6,7. 

These association tests can utilize a polygenic score; a score assigned to each 

individual, summarizing the estimated effect of multiple genetic variants on a trait of 

interest, thus providing a more comprehensive estimate of genetic risk when compared 

to a single genetic variant8. In this chapter, we discuss computational pipelines for 

phenome-wide and lab-wide association testing within the UCLA ATLAS biobank for 

single nucleotide polymorphisms and polygenic scores. We highlight the differences 

between using individual variants and polygenic scores in these pipelines using 

tobacco-use genetic variants as a preliminary example and discuss the findings from 

each of these pipelines. 

2.3 Methods 

2.3.1 Study population 

The PheWAS and LabWAS pipelines were built and evaluated in the UCLA 

ATLAS Biobank. The UCLA ATLAS biobank is an electronic health record-linked 



 

 10 

biobank embedded within the UCLA Health system, a comprehensive healthcare 

system serving the population in and around the greater Los Angeles area9,10,11. The 

UCLA Institute for Precision Health is home to the UCLA ATLAS biobank with 

approximately 60k participants genotyped, of which 25,463 participants were included in 

this study. ATLAS biobank includes a collection of genotyped biospecimens that are 

integrated with the UCLA Data Discovery Repository (DDR), which contains de-

identified patient EHR that include clinical, procedural, laboratory, prescription, and 

demographic information. The participants included in this study were 18 years of age 

and above and provided informed consent to using their genotypes and EHR for 

research purposes. 

We assigned the participants to genetically inferred ancestry (GIA) groups using 

their genotype information. The study population included in this study were individuals 

inferred to be in the European American continental ancestry group. Detailed 

descriptions of the workflow for inferring ancestry are discussed in previous 

publications9,10,11. Briefly, we computed the top 10 principal components of ATLAS 

participants using FlashPCA2 software12. We then grouped our study population into 

genetically inferred ancestry groups (GIAs) by using k-nearest neighbor (KNN) 

stratification of the principal components, using the continental ancestry populations 

from the 1000 Genomes Project as a reference13.  

2.3.2 ICD codes and Phecodes 

The International Classification of Diseases (ICD) codes are a set of codes used 

by providers to record diseases, symptoms, and other elements of a patient's diagnosis 
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in a patient’s health record. These ICD codes can be used to collect information about 

the patient's medical status and subsequently to study diseases, outcomes, and 

patterns in the population of interest. The UCLA ATLAS biobank includes versions 9 

and 10 of the ICD codes. These ICD codes were mapped to ‘Phecodes’ to allow for 

meaningful clinical groupings. Phecodes are curated and grouped ICD codes that 

condense similar ICD codes into a single phecode14, using the Phecode V1.2 mapping. 

This grouping reduces the dimensionality of ICD codes for research purposes, 

decreases multiple testing burden, and simplifies interpretation of results.  Phecode 

V1.2 contains 1864 phecodes in 18 categories that map to approximately 70,000 ICD 

codes. ICD 9 and 10 codes in each patient's record were mapped to the corresponding 

phecode, assigning them case or control status for each phecode. The presence of a 

phecode (i.e. ICD codes mapped to that particular phecode) in the individual’s EHR 

classifies them as a case, and the absence of all ICD codes mapped to a phecode 

classifies the individual as a control. 

2.3.3 Lab tests and values 

The de-identified data repository of the UCLA ATLAS biobank includes 1977 

laboratory-base names that could be extracted from the electronic health records. 580 

of these lab tests contained numeric lab values that could be used for the proposed 

analysis. After excluding lab tests with >80% missing data, 79 lab tests were included in 

the final analysis with minimal missing values and numeric results that could be used in 

statistical analysis. Since most individuals have multiple results of the same lab test, 

taken over their encounter span at UCLA health system, we extracted the maximum 

and minimum values in each patient’s record and computed their mean to get an 
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average lab result. Final processing of the lab results included the following steps - We 

first replaced ‘999999’s with the code for missing data: ‘NA’, ensuring the lab tests still 

had <80% missing data. Next, we excluded outliers that were >0.9 percentile and <0.01 

percentile for each lab test. 

2.3.4 SNP and Polygenic Scores (Independent variables) 

For the example SNP-PheWAS pipeline, we used a single nucleotide 

polymorphism (SNP) -  rs6024489 (Chromosome 20, Base pair: 6465338) as the 

primary predictor. This SNP is located within 1 Megabase of genetic variants in the 

CHRNA4 locus, a region known for its effect on nicotine metabolism and on the 

addictive response to nicotine15.  

For the PGS-PheWAS and PGS-LabWAS pipelines, we used a publicly available 

polygenic score (PGS) for tobacco use disorder from the PGS Catalog (PGS002037) as 

the primary predictor16; referred to as the TUD-PGS. This TUD-PGS was trained on 

391,124 European individuals from the UK biobank. This trait, ‘tobacco use disorder’ 

was identified using phecode 318.0 which is also available for analysis within ATLAS. 

Additionally, 94.4% of the SNPs in the PGS demonstrate overlap with SNPs that were 

included in ATLAS. We computed the PGS for each ATLAS participant by multiplying 

the individual risk allele dosages by their corresponding weights that are provided by the 

PGS catalog. The PGS was mean-centered and standardized by the standard deviation 

within the EUR group to generate a standardized PGS Z-score. 

2.3.5 Statistical analysis and association testing 
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All analysis was conducted in either Python 2.6.817 or R 4.2.118. For the SNP-PheWAS 

and PGS-PheWAS, we used logistic regression models to evaluate the associations 

between the dependent variables which were the phecode case-control status and 

independent variables of either the SNP of interest or TUD-PGS. We adjusted for 

participant age, sex, and the first 5 principal components in all models. Odds ratios and 

confidence intervals were calculated, with P-values from Wald-type test statistics, using 

the following logistic regression model: 

1864 Phecodes ~ PGS/SNP + Age + Sex + PCs1-5 

For the PGS-LabWAS, we used linear regression models with the numeric 

laboratory test results as dependent variables and the independent variable as the 

PGS:  

79 Lab test results ~ PGS + Age + Sex + PCs1-5 

Similar to the logistic regression models, we adjusted for participant age, sex, and the 

first 5 principal components for the linear regression. Effect sizes and 95% confidence 

intervals were computed, with P-values from Wald-type test statistics.  

2.3.6 Ethical Approval 

Patient Recruitment and Sample Collection for Precision Health Activities at 

UCLA is an approved study by the UCLA Institutional Review Board (UCLA IRB) 

IRB#17-001013. 

2.3.7 Data Sharing 

All shareable data produced in the present work are contained in the manuscript. 
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2.4 Results 

2.4.1 Study population characteristics 

This study included 25,463 individuals of European American genetically inferred 

ancestry groups. All participants were aged 18 and above with an average age of the 

participants was 59.3 years and females constituted 52.6% of the study population. 

Approximately 71,000 codes in ICD-10 and 4,000 codes in ICD-9 were available 

in patient records and these mapped to 1864 phecodes. Each participant had an 

average of 83 phecodes in their EHR. Phecode 272.0 - “Disorders of lipid metabolism”, 

was the most represented with 14,237 patients containing this phecode at least once in 

their record.  Next, out of 580 numeric lab tests, 79 lab tests were available in ATLAS 

for analysis. Each patient had a mean of 48 lab test results in their record. The most 

commonly ordered lab test was platelet count with over 88% of included participants 

with a lab result for it in their EHR. 

2.4.2 SNP-PheWAS for SNP near the CHRNA4 region shows association with tobacco 

use disorder 

First, we evaluated the phenome-wide effects of a single SNP, rs6024489 

located in chromosome 20 using a SNP-PheWAS pipeline (Fig 2.1). We examined the 

effects of this SNP on 1854 phecodes available within ATLAS. In a logistic regression-

based SNP-PheWAS of individuals assigned to the European American genetically 

inferred ancestry group, we noted a significant association with the phecode 318.0 for 

‘tobacco use disorder’ (P-Value = 0.000011) after adjusting for age, sex, and the first 

five principal components and correcting for multiple testing (0.05/1864). (Fig 2.2) 
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2.4.3 PGS-PheWAS of TUD-PGS shows associations with circulatory, endocrine, 

psychiatric, and respiratory phecodes 

Next, we evaluated the phenome-wide associations of a TUD-PGS in European 

American GIA using a PGS-PheWAS pipeline (Fig 2.1). While in the previous section, 

we evaluated the effect of a single SNP across the entire phenome, here we evaluate 

the effects of a polygenic score for tobacco use disorder, TUD-PGS (PGS002037) 

which captures the effect of multiple variants that genetically predispose an individual to 

tobacco use disorder. In a PGS-PheWAS of this TUD-PGS across 1864 phecodes in 

the European American GIA group, we observed 56 significant associations at 

Bonferroni-adjusted P < 0.05 after adjusting for age, sex, and the first 5 principal 

components. The top phecodes associated with the TUD-PGS were ‘Tobacco use 

disorder’, ‘Obesity’, ‘Diabetes Mellitus’, ‘Substance addiction and disorders’, and 

‘Emphysema’ (P Values = 5.21E-36, 7.63E-13, 7.20E-12, 9.19E-11, 1.42E-10 

respectively) (Fig 2.3) 

2.4.4 PGS-LabWAS of TUD-PGS shows associations with lab tests that are not 

captured by phecodes 

Lastly, we tested the association of the TUD-PGS across available numeric lab 

tests in ATLAS using linear regression models. In a PGS-LabWAS of TUD-PGS, we 

observed 17 significant associations with laboratory test results. Some lab tests 

followed a similar association pattern as noted in the PGS-PheWAS. For e.g., high 

glucose and HBA1c lab results (P-Values: 4.30e-12 and 4.62e-08). Other lab tests 

capture the effects of smoking on clinically observed and reported biomarkers. For e.g., 
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low HDL (P Value: 1.30e-07) is a known effect of smoking behaviors and could also be 

secondary to insulin resistance. Lastly, some results generate interesting new avenues 

of research. For example, the triad of decreased Vitamin D levels and calcium levels (P 

Values: 1.71e-05 and 1.39e-05) with increased parathyroid hormone (PTHINT) (P 

Value: 3.36e-06) are suggestive of hyperparathyroidism. 

2.5 Discussion 

In this paper, we leveraged the breadth of the rich data available in the UCLA 

ATLAS EHR-linked biobank by creating and utilizing phenome-wide and lab-wide 

pipelines. These pipelines enabled us to conduct association tests using both SNPs and 

PGS that are linked to tobacco use disorder or nicotine addiction. In our results, in a 

SNP-PheWAS of rs6024489, a variant <1 Megabase from CHRNA4, we observed a 

significant association with tobacco use disorder, capturing the reported effect of this 

loci on tobacco use. Next, in a TUD-PGS PheWAS, we observed several significant 

associations of the PGS with phecodes in various disease categories including 

cardiovascular, endocrine/metabolic, respiratory, and neuropsychiatric disorders. Lastly, 

we performed a TUD-PGS - LabWAS analysis where we found unique associations that 

were not captured by the previous PheWAS analysis. 

The results of the SNP-PheWAS and PGS-PheWAS highlight some innate 

differences between the research questions answered by these two different methods. 

The former examines the effect of a single SNP across the entire phenome and these 

effects might be too small to capture and might not survive a very strict multiple-testing 

correction. The PGS-PheWAS tests the associations of an overall genetic predisposition 
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to tobacco use disorder. The results of this analysis capture the comorbidities most 

noted in individuals with this predisposition, often likely secondary to the behavior they 

are predisposed to. Many of these TUD PGS-PheWAS correlations, including type 2 

diabetes, cardiovascular and neuropsychiatric diseases, have been reported clinically 

and/or are reported in other genetic studies, validating our findings and the utility of this 

pipeline in identifying disease associations19-23. The results of the PGS-PheWAS can be 

interpreted in two different ways - 1) these diseases that are associated with a TUD-

PGS could potentially share genetic architecture or 2) these diseases and tobacco use 

could be driven by common environmental factors including tobacco smoking behavior. 

Follow up studies are needed to disentangle the environmental vs the genetic drivers of 

these associations. In any case, identifying patterns of disease presentation is 

invaluable in designing precision health interventions and public policy around the 

treatment and prevention of tobacco use.  

Lastly, we aimed to capture the effect of a genetic predisposition to tobacco use 

on common laboratory test results with the TUD-PGS-LabWAS pipeline. The results of 

this analysis validated several results of the PGS-PheWAS associations. For example, 

we found associations with increased glucose and HBA1C levels, capturing the Type 2 

diabetes associations noted in the PGS-PheWAS. Next, we observed new associations 

with a triad of low vitamin D and low calcium levels with high parathyroid hormone 

levels, suggestive of an altered bone metabolism state, which could lead to 

osteoporosis and fractures24. This is a finding that was captured uniquely by the PGS-

LabWAS analysis that we did not observe in the PGS-PheWAS analysis. Studies have 

linked tobacco use to altered Vitamin-D, calcium and parathyroid hormone levels25, 
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often a precursor to osteoporosis and the risk of increased fracture. These findings 

underscore the importance of assessing laboratory results in conjunction with 

phecodes, highlighting their combined value. 

Our study has several strengths, we leverage the vast amount of information 

available in electronic health records to create flexible and reproducible pipelines for 

hypothesis-free association testing. In our preliminary analysis of tobacco use variants, 

we observe results that demonstrate the utility of these pipelines in validation and 

discovery. The results of our analysis are clinically relevant and could provide insights 

into the overall health and disease presentation of individuals with a genetic 

predisposition to tobacco use disorder. While we did not utilize longitudinal information 

in our analysis, the discovery and validation of potential biomarkers necessitate careful 

and well-designed follow-up studies that include longitudinal information to study such 

biomarkers in depth. The results of our pipelines and pilot analysis generate hypotheses 

between the genetic propensity to tobacco use disorder and several disease and lab 

associations that we have followed up with two individual studies, see chapters 3 and 4. 

We conclude with some limitations of our study. We conducted our analyses 

solely on individuals of inferred European American Ancestry. This was intentional 

because studies have shown that polygenic scores perform best in the ancestry that the 

original PGS is trained in and do not generalize well to other ancestry groups26. 

However, this choice means that we cannot generalize the results of the PheWAS and 

LabWAS analyses to other ancestries as genetic effects may vary between ancestries26. 

Further studies are required to examine the predictive performance of TUD-PGS across 

ancestries and the cross-ancestry effects across the phenome. Next, we used ICD 
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codes derived phecodes for our pipelines - ICD codes are billing codes and are not 

meant to record accurate or detailed diagnoses. Additionally, several phenotypes that 

are relevant to our trait of interest are not recorded by ICD codes, for e.g. quantitative 

measurements of tobacco and alcohol use. These limitations must be kept in mind while 

interpreting the results, noting that the ICD codes might not provide a fully complete 

picture of an individual's health. Lastly, several environmental factors have strong 

effects on tobacco use and the observed comorbidities including education level, 

income, and other socioeconomic factors. Unfortunately, as UCLA ATLAS is a de-

identified database, these variables are unavailable for analysis and as such, the 

environmental effect on TUD and comorbidities cannot be quantified with this data 

alone. Further studies are required in other biobanks or in cohorts with these variables 

to further tease apart the effects of environment and genetics and study their interactive 

effects on tobacco use and associated comorbidities.   
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2.6 Figures 

Figure 2.1: Schematic of SNP-PheWAS and PGS-PheWAS/PGS-LabWAS: The 

disease status of the represented organ systems is captured through phecodes 

for the PheWAS and through lab test results for LabWAS 
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Figure 2.2: SNP-PheWAS plot for rs6024489 in the European American GIA group 

showing top association with tobacco use disorder 
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Figure 2.3: PGS-PheWAS plot for TUD-PGS in the European American GIA group 

showing top associations with tobacco use disorder, obesity, diabetes mellitus, 

substance addiction disorders, and emphysema 
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Figure 2.4: PGS-LabWAS plot for TUD-PGS in the European American GIA group 

showing significant associations with laboratory tests for glucose, HDL, Vit D, 

Calcium 
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Chapter 3 

 

Polygenic scores for tobacco use provide insights into systemic health risks in a 

diverse EHR-linked biobank in Los Angeles 

3.1 Abstract 

Tobacco use is a major risk factor for many diseases and is heavily influenced by 

environmental factors with significant underlying genetic contributions. Here, we 

evaluated the predictive performance, and potential systemic health effects of tobacco 

use disorder (TUD) predisposing germline variants using a polygenic score (PGS) in 

24,202 participants from the hospital-based UCLA ATLAS biobank. Among genetically 

inferred ancestry groups (GIAs), TUD-PGS was significantly associated with TUD in 

European American (EA) (OR: 1.20, CI: [1.16, 1.24]), Hispanic/Latin American (HL) 

(OR:1.19, CI: [1.11, 1.28]), and East Asian American (EAA) (OR: 1.18, CI: [1.06, 1.31]) 

GIAs but not in African American (AA) GIA (OR: 1.04, CI: [0.93, 1.17]). In a cross-

ancestry phenome-wide association meta-analysis, TUD-PGS was associated with 

cardiometabolic, respiratory, and psychiatric phecodes (17 phecodes at P < 2.7E-05). 

When restricted to never-smokers, the top TUD-PGS associations were obesity and 

alcohol-related disorders (P = 3.54E-07, 1.61E-06). Mendelian Randomization (MR) 

analysis provides evidence of a causal association between adiposity measures and 

tobacco use. Inconsistent predictive performance of the TUD-PGS across GIAs 

emphasizes the need to include participants of diverse ancestries at all levels of genetic 

research for equitable clinical translation of TUD-PGS. Our results suggest that TUD-
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predisposed individuals may require comprehensive tobacco use prevention and 

management approaches to address underlying addictive tendencies. 

 

3.2 Introduction 

Tobacco use causes significant global mortality and morbidity, contributing to 

several systemic conditions, including cardiometabolic diseases and cancers1,2. 

Tobacco use could be viewed as a complex psychiatric trait with environmental risk 

factors3 and genetic contributions4,5. Multi-ancestry genetic studies report an estimated 

SNP-based heritability of tobacco use behaviors ranging between 5-18%4,5.  Twin and 

family studies report heritability estimates of 40%-56% for cigarette smoking and 72% 

for nicotine dependence. These heritability estimates vary widely between different 

tobacco use traits and between males and females6. Prevention and management 

strategies for tobacco use can benefit from precision medicine approaches, with the 

inclusion of baseline genetic risk to develop individualized preventive and therapeutic 

strategies. These efforts require a thorough understanding of the effects of a genetic 

predisposition to tobacco use and the impact of tobacco predisposition on the overall 

systemic health of an individual.  

Researchers use genome-wide association studies (GWAS) to identify single 

nucleotide polymorphisms (SNPs) associated with tobacco use disorder. GWAS have 

identified over 2000 loci associated with tobacco use traits, such as smoking behaviors 

and nicotine dependence4,5. However, single variants rarely capture a large proportion 

of phenotypic variation for a complex behavioral trait like tobacco use.  polygenic scores 

(PGS) sum the weighted effects for multiple variants of interest, capturing a larger 



 

 32 

proportion of phenotypic variation than single variants. Polygenic scores have been 

used in research for disease prediction and to evaluate disease correlations, with the 

potential for clinical translation to identify high-risk individuals7. In particular, tobacco 

use behaviors have shown genetic correlations with diseases such as schizophrenia 

and substance use disorders8–12.  

Using the variants identified by GWAS, phenome-wide association studies 

(PheWAS) test the association of a single genetic variant across multiple phenotypes13. 

PheWAS identifies other traits or disorders upon which the single genetic variant could 

exert an effect. Generally, PheWAS use phenotypes that are identified using phecodes, 

which are ICD codes that are aggregated into clinically-meaningful groupings.  

In our analysis, we combined a PGS for tobacco use disorder (TUD) with a 

PheWAS approach to create a PGS-PheWAS to examine the potential pleiotropic 

effects of multiple genetic variants that predispose to tobacco use disorder and identify 

systemic disease risks for individuals with a genetic predisposition to tobacco use14. We 

used a publicly available PGS for tobacco use disorder, developed in European-

ancestry individuals in UK Biobank15 and imputed these scores into the UCLA ATLAS 

biobank which comprises consented and genotyped UCLA patients representing 

diverse ancestry groups and phenotypes drawn from their electronic health records16–20. 

We found that the TUD-PGS demonstrated inconsistent predictive performance and risk 

stratification in non-European ancestry groups within the UCLA ATLAS biobank. In a 

PGS-PheWAS, we identified several phecodes associated with a genetic predisposition 

to tobacco use, mainly in cardiometabolic, respiratory, and neuropsychiatric phenotype 

categories. Next, to separate out the effects of tobacco use behavior from a genetic 
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predisposition to tobacco use, we restricted a PGS-PheWAS to patients with no 

smoking history and identified persistent associations with obesity and alcohol-related 

disorders, suggesting shared genetic etiologies for these complex traits. Finally, we 

used publicly available GWAS summary statistics to perform Mendelian randomization21 

to evaluate the nature of the persistent tobacco use-obesity associations. We found 

evidence of causality between adiposity measures and tobacco use. Our work 

underscores the need to expand the diversity of study populations to generalize findings 

and to equitably translate genetic research to patient care. Further, the potential 

pleiotropic effects of tobacco-predisposing genetic variants suggest a more 

comprehensive approach to addressing tobacco use addiction that includes due 

consideration to other associated behavioral traits. 

 

3.3 Methods 

3.3.1 Study population 

All analyses were performed with UCLA ATLAS Biobank data, a biobank 

embedded within the UCLA Health medical system16–20. UCLA Health is a 

comprehensive healthcare system serving the population in and around the greater Los 

Angeles area. The UCLA Institute for Precision Health is home to the UCLA ATLAS 

biobank with >40k participants genotyped, of which 24,202 participants were included in 

this study. This large-scale collection of genotyped biospecimens is integrated with the 

UCLA Data Discovery Repository (DDR), containing de-identified patient electronic 

health records (EHR) which include clinical, procedural, laboratory, prescription, and 

demographic information. 
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Final analyses included 24,202 ATLAS participants (7,902 cases and 16,283 

controls) with complete information on the outcome and covariates including smoking 

status and insurance information. For ancestry-specific analysis, we included European 

American (N = 15,780), Hispanic/Latin American (N = 4,412), East Asian American (N = 

2,377), and African American (N = 1,633) ancestry groups with sufficient sample sizes 

for analysis.  

 

3.3.2 Data processing and population stratification 

Detailed information on data processing can be found in previous publications16–

20. Briefly, blood samples were collected from consented participants and genotyped on 

a custom array22. Initial array-level quality control measures included removing strand 

ambiguous SNPs and variants with >5% missingness and filtering out SNPs that do not 

pass the Hardy-Weinberg equilibrium test with a p-value set at (“–hwe 0.001”).  After 

restricting to unrelated individuals, the QC-ed genotypes were imputed to the TOPMed 

Freeze5 reference using the Michigan Imputation Server23,24. The final QC steps were 

to filter the variants at the threshold of R2 > 0.90 and minor allele frequency > 1%. All 

quality control steps were conducted using PLINK 1.925. 

We computed the top 10 principal components for the study population using 

FlashPCA2 software26. We then grouped the study population into genetically inferred 

ancestry groups (GIAs) - European American (EA), Hispanic/Latin American (HL), East 

Asian American (EAA), African American (AA) - by k-nearest neighbor (KNN) 

stratification of the principal components, using the continental ancestry populations 

from 1000 Genomes Project27,28 as a reference. To account for differences in population 
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stratification between GIA groups, for the PGS-PheWAS analysis, we conducted 

individual PGS-PheWAS within each GIA group and then meta-analyzed across GIA 

groups to obtain cross-ancestry results. 

 

3.3.3 Polygenic score imputation within ATLAS 

We used a publicly available polygenic score trained on 391,124 European 

individuals (21954 cases and 357624 controls) from the UK biobank for the trait 

‘tobacco use disorder’ from the PGS catalog (PGS002037)15,29. This trait, ‘tobacco use 

disorder’ was identified using phecode 318.0 which corresponds to ICD-codes F17.0, 

F17.1, F17.2, F17.3, F17.4, F17.9, Z72.0, 305.1, 305.10, 305.11, 305.12, 305.13, 649.0, 

649.00, 649.01, 649.02, 649.03, 649.04 and V15.82. This PGS was selected for two 

reasons: (1) the PGS was trained on the same phecode for TUD that is available in 

ATLAS and (2) there is a high degree of overlap with ATLAS genotyped variants 

(800,381 of 847,691 total variants in TUD-PGS overlapping with ATLAS data - 94.4% 

overlap). The original PGS training analyses were performed using LDpred230 and 

adjusted for the following covariates: sex, age, birth date, Townsend’s deprivation index, 

and the first 16 principal components of the genotype matrix. We computed the PGS for 

each ATLAS participant by multiplying the individual risk allele dosages by their 

corresponding weights that are provided by the PGS catalog29. The PGS was mean-

centered and standardized by the standard deviation within each GIA group to generate 

a PGS Z-score. 

We also tested the predictive performance of 16 multi-ancestry PGS from Saunders et 

al, Nature 2022 5, trained on European, Admixed, East Asian and African ancestry 
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populations for traits ‘Smoking initiation’, ‘Age of smoking initiation’, ‘Cigarettes smoked 

per day’ and, ‘Smoking cessation’. We downloaded these PGS (PGS003357- 

PGS003372) from the PGS Catalog29 and tested their predictive performance on 4 

genetically inferred ancestry groups within ATLAS for phecode 318.0 for tobacco use 

disorder, since we do not have information on the traits that the PGS were originally 

trained in. 

 

3.3.4 Phecodes 

ICD9 and ICD10 billing codes were aggregated into clinically meaningful 

groupings called phecodes using mappings derived from the PheWAS catalog, v1.231. 

Cases were defined by the presence of an ICD code tagged by the respective phecode 

and controls by the absence of the ICD codes. Tobacco use disorder diagnosis was 

derived from the presence of “tobacco use disorder” phecode (318.00) within an 

individual’s health record which groups ICD codes (F17.200, F17.201, F17.210, 

F17.211, F17.220, F17.221, F17.290, F17.291, O99.33, O99.330, O99.331, O99.332, 

O99.333, O99.334, O99.335, Z87.891) for tobacco use disorder (TUD). For the 

PheWAS analysis, we used 1847 phecodes, extracted from each individual’s health 

record as described above, to capture phenotypes across the phenotypic spectrum31. 

 

3.3.5 Statistical Analysis 

All analysis was conducted in either Python 2.6.832 or R 4.2.133. 

a) Predictive Performance and Risk Stratification 
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We analyzed the predictive performance of the standardized TUD-PGS across 

ancestry groups and risk quantiles using GIA-stratified logistic regression models, with 

the phecode for TUD as the outcome and with predictors including terms for age, sex, 

the first five principal components of the genotype matrix, and insurance class.  

We include insurance class information as the closest proxy to bias introduced by 

participation and access to healthcare within the de-identified electronic health 

records34. This insurance class variable consists of the type of insurance used by the 

patient in their clinical encounters. The classes include “Public”, “Private” or “Self-pay”. 

Public class includes ‘Medicare’, ‘Medicare Advantage’, ‘Medicare Assigned’, ‘Medi-

Cal’, ‘Medicaid’, and ‘Medi-Cal Assigned’. Private class includes ‘International Payor’, 

‘Group Health Plan’, ‘Worker's Comp’, ‘Tricare’, ‘UCLA Managed Care’, ‘Blue Shield’, 

’Commercial’, ’Blue Cross’, ‘Package Billing’ and ‘Other’.  

Odds ratios were calculated within each GIA, with P-values from Wald-type test 

statistics and a Bonferroni-corrected significance level of 0.0125 = (0.05/4). For risk 

stratification analysis, we grouped individuals of each GIA group into 5 groups of equal 

size based on their PGS and compared the quintile with the highest score with the 

quintile with the lowest scores. This model can be represented as 

Tobacco use disorder phecode (318.0) ~ PGS_Z (or) PGS quintile + Age + Sex + PCs1-

5 + Insurance Class 

b) Phenome-wide association meta-analysis 

For the phenome-wide association analysis, we tested the association between 

the standardized TUD-PGS and 1847 electronic health record-derived phecodes across 

the phenome. Each GIA-specific PheWAS analysis consisted of logistic regressions 
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across 1847 EHR-derived phecodes, controlling for age, sex, first 5 PCs, and insurance 

class. For the cross-ancestry meta-analysis, we use the PGS-PheWAS results 

computed within each GIA group and meta-analyze across these ancestry groups using 

a random effect, inverse variance weighted model using the metafor (version 3.4) 

package in R35. We use a phenome-wide Bonferroni-corrected p-value significance 

threshold of 2.7e-05 to adjust for the multiple testing burden (P = 0.05/1847 tests for 

each trait identified by phecodes). The never-smoker analysis followed a similar 

analysis plan, restricted to individuals of European American GIA with no history of 

smoking recorded by their provider within their medical records (n=9,921). 

c) Mendelian Randomization 

We evaluated causality using Mendelian Randomization (MR) methods to test for 

and evaluate the causality between tobacco use and obesity21. We used summary 

statistics from GSCAN Consortium GWAS for “Cigarettes Smoked Per Day” (249,752 

participants of European Ancestry and 12,003,613 SNPs)36 and summary statistics from 

MRC Integrative Epidemiology Unit - the University of Bristol and UKBB GWAS for 

“Waist Circumference” (462,166 participants of European Ancestry and 9,851,867 

SNPs)37 as the instrumental variables to test the causal association between tobacco 

use and obesity measures. We performed a second MR analysis to validate the 

previous analysis using summary statistics for ‘Body Mass Index - BMI’ using summary 

statistics from UK Biobank37 (461,460 individuals and 9,851,867 SNPs), using the same 

‘Cigarettes smoked per day’ summary statistics from GSCAN as the outcome.  

Lastly, GSCAN consortium and UK Biobank have approximately 35% sample 

overlap and hence we also tested this association using summary statistics for BMI from 
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GIANT consortium (322,154 individuals and 2,554,668 SNPs)38. We used the 

‘TwoSampleMR’ R package to extract instruments, harmonize and obtain effect sizes 

from multiple MR methods (MR Egger, Weighted median, Inverse variance weighted, 

Simple mode, and Weighted mode)39. 

 

3.4 Results 

3.4.1 Baseline characteristics of included ATLAS Biobank participants 

The final analysis included n = 24,202 individuals with complete information on all 

covariates. Within the “TUD” phecode, the study population consisted of 7,902 cases 

and 16,283 controls. The average age of individuals with a TUD phecode was 64.3 

years. Participant sex was significantly associated with TUD phecode with 55.1% of the 

phecode represented by the male sex. Four genetically inferred ancestry groups had 

sufficient sample size to perform the analyses: European American (EA), Hispanic/Latin 

American (HL), East Asian American (EAA), and African American ancestry (AA) 

(n=15,780, 4,412, 2,377, and 1,633, respectively). Table 3.1 summarizes the 

demographics of the study sample. 

 

3.4.2 Prediction and risk stratification of TUD using TUD-PGS across genetically 

inferred ancestry groups 

We first evaluated how well the TUD-PGS predicts TUD across the multi-ancestry study 

sample within the ATLAS biobank. The TUD-PGS associated significantly with the 

phecode for TUD within the ATLAS biobank for individuals of European American (EA) 

GIA (OR:1.20, CI: [1.16, 1.24]), showing an increase in odds of TUD by 20% for each 
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standard deviation increase in the TUD-PGS. Similarly, we observed significant 

associations between TUD-PGS and TUD among Hispanic/Latin American (HL) GIA 

(OR:1.19, CI: [1.11, 1.28]), and East Asian American (EAA) GIA groups (OR: 1.18, CI: 

[1.06, 1.31]). However, the TUD-PGS was not associated with TUD in individuals of 

African American (AA) GIA group (OR: 1.04, CI: [0.93, 1.17]). Supp Table 3.1 

summarizes these associations.  

In addition, we used multi-ancestry PGS (PGS003357- PGS003372) and tested 

their predictive performance in the ancestry group corresponding to their training group. 

These PGS showed inconsistent albeit significant associations in EA GIA and 

insignificant associations in non-European GIAs with TUD in ATLAS (Supp Table 3.2) 

Next, we assessed if the TUD-PGS could stratify individuals by risk for tobacco 

use disorder. Based on TUD-PGS, we divided the study sample into quintiles and 

estimated the odds ratio of TUD for each quintile compared to the bottom quintile. When 

compared to the quintile with the lowest TUD-PGS, the quintile with the highest TUD-

PGS demonstrated an OR = 1.69 (CI: [1.51, 1.88]) in EA and 1.71 (CI: [1.36, 2.14]) in 

HL ancestry groups. The TUD-PGS offered strong risk stratification for individuals of EA 

GIA and for the top two risk quintiles in HL. Risk stratification was weaker and 

inconsistent in the EAA, (OR = 1.60, CI = [1.15, 2.24]) and AA ancestry groups (OR = 

1.02, CI = [0.71, 1.47]) (Fig 3.1, Supp Table 3.3). This TUD-PGS risk stratifies 

individuals in EA and HL ancestry groups, potentially identifying individuals at a higher 

risk of tobacco use disorder within these ancestry groups. However, this risk 

stratification was inconsistent or absent in EAA and AA ancestry groups. 
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3.4.3 Systemic comorbidities in TUD-predisposed individuals identified by TUD-PGS- 

PheWAS 

Next, we systematically evaluated associations between a genetic predisposition 

to TUD with 1847 traits or diseases across the phenome. The TUD-PGS captures the 

genetic predisposition to TUD and the 1847 traits are captured using phecodes 

extracted from each individual’s electronic health record.  In a PheWAS of the TUD-

PGS across 1847 phecodes (Supp Fig 3.1a), meta-analyzed across 4 GIAs, we found 

17 significant associations at Bonferroni-adjusted P < 0.05 after adjusting for age, sex, 

first 5 principal components of the genotype matrix, and health insurance information. 

The top phecodes associated with the TUD-PGS were ‘morbid obesity’, ‘obstructive 

chronic bronchitis’, ‘substance addiction and disorders’, and ‘ischemic heart disease’ (P 

= 1.38E-09, 2.73E-09, 4.45E-08, 1.61E-07) (Fig 3.2a). Phecode categories with multiple 

associations were circulatory (n=5), respiratory (n=3), neurological (n=2), and metabolic 

(n=2) phenotypes (Supp Table 3.4). The results of this analysis systematically identify 

the health risks associated with a genetic predisposition to tobacco use captured by the 

PGS.  

However, it must be noted that these associations may reflect the traits and 

diseases associated with tobacco use behavior, which lie on the TUD-PGS to 

trait/disease pathway (Supp Fig 3.1b). To study the potential pleiotropic effects of 

germline variants that predispose to TUD, we leveraged the fact that individuals with 

genetic predisposition to TUD may choose not to engage in tobacco use behaviors. We 

can thus account for the effect of tobacco use behavior to identify systemic risks of TUD 

genetic predisposition by stratifying to individuals with no smoking history recorded in 



 

 42 

their electronic health records. Accordingly, we repeated the PGS-PheWAS association 

analysis, restricting to “never-smokers” in individuals of EA ancestry, i.e. individuals who 

reported that they have never smoked tobacco (Supp Fig 3.1b). In this analysis, the 

TUD-PGS demonstrated associations with obesity, alcohol-related disorders, cancer of 

the esophagus, and hypertension (P = 3.54E-07, 1.61E-06, 3.05E-06, 2.62E-05) 

(Figure 3.2b, Supp Table 3.5).  

In an evaluation of the trends of obesity and alcohol-related disorders across 

quintiles of the TUD-PGS, we observed higher ORs among never-smokers compared to 

ever-smokers for obesity and alcohol-related disorders. TUD-PGS offered inconsistent 

risk stratification for obesity and alcohol-related disorders in ever-smokers, or 

individuals with a history of smoking (Figure 3.3). In contrast, a reverse trend is noted in 

lung cancer, an established trait associated with smoking behavior, which can thus 

serve as a negative control, where we observed higher ORs in ever-smokers compared 

to never-smokers. (Supp figure 3.2, Supp Table 3.6) We can conclude from this 

analysis that, individuals predisposed to TUD show associations with obesity and 

alcohol-related disorder even in the absence of tobacco use behavior.  

 

3.4.4 Mendelian randomization analysis finds evidence of causality in the association 

between obesity and tobacco use 

To evaluate if the association between obesity and tobacco use can be given a 

directional and causal interpretation, we performed Mendelian randomization (MR) 

analysis between quantitative measures of obesity and tobacco use using publicly 

available GWAS of “waist circumference”36 and “cigarettes smoked per day”35. From the 
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results of multiple MR methods, we observed that the exposure “waist circumference” 

demonstrated significant positive causal associations with the outcome “cigarettes 

smoked per day” across all methods used to test this association (MR Egger, Weighted 

median, Inverse variance weighted, Simple mode, Weighted mode with P = 2.39E-03, 

1.50E-32, 1.49E-46, 8.22E-05, 2.05E-08, respectively). A second MR analysis of “body 

mass index” as the exposure and “cigarettes smoked per day” as the outcome showed 

similar positive causal associations (MR Egger, Weighted median, Inverse variance 

weighted, Simple mode, Weighted mode P = 2.65E-03, 8.34E-33, 1.17E-45, 8.23E-06, 

5.78E-07). An MR analysis of the reverse direction, with “cigarettes smoked per day” as 

the exposure and “waist circumference” and “body mass index” as outcomes did not 

show significant causal effects. Supp Figure 3.3a and b presents the causal effect 

estimates and confidence intervals. In a subsequent MR analysis in both directions 

using summary statistics for BMI from GIANT consortium, we find similar results, shown 

in Supp Table 3.7. 

 

3.5 Discussion 

In this study, we examined the predictive performance and risk stratification of a 

publicly available TUD-PGS in the UCLA ATLAS biobank.  We demonstrate that this 

TUD-PGS predicts TUD and risk-stratifies EA and HL GIA groups. However, 

inconsistent prediction and risk stratification was noted in the EAA and AA GIA groups.  

There are two drawbacks to using this TUD-PGS clinically to identify individuals 

at high risk for tobacco use. First, the inconsistent predictive performance across GIA 

groups will result in inequitable clinical translation. Second, individual-level clinical 
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decisions must be validated with clinical history in addition to genetic risk. At present, 

being classified as “high risk” by TUD-PGS is unreliable due to large uncertainty in 

imputed polygenic scores at an individual level40 

Next, we evaluated the potential pleiotropic effects of TUD predisposing variants 

using the PGS to conduct a phenome-wide association analysis. Additionally, we 

repeated this analysis in a subgroup of participants without a reported history of 

smoking behavior, to evaluate the systemic associations of a genetic predisposition to 

tobacco use in the absence of tobacco use behavior. The PGS-PheWAS cross ancestry 

meta-analysis demonstrated significant associations with respiratory and cardiovascular 

phenotypes, both of which have robust clinical and biological evidence 41,42. Other 

significant associations were in the category of psychiatric disorders, including 

associations with anxiety disorders and substance addiction disorders. These 

psychiatric disorder associations have been consistently reported in past genetic 

studies of smoking and tobacco use43.  

In the PGS-PheWAS analysis of never-smokers, phenotypes associated with 

tobacco use behaviors, namely, respiratory and cardiovascular phecodes, did not 

demonstrate statistical significance. Instead, we observed associations with psychiatric 

phecodes including alcohol-related disorders, and metabolic phecodes with potential 

behavioral contributions such as obesity. The MR analysis results suggest a causal 

association between adiposity and tobacco use, in line with other published literature 

with similar directionality and effect sizes44. Together, the associations between tobacco 

use, obesity, and alcoholism are suggestive of shared genetic architecture between 
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these traits, likely originating from the biological regulation of impulsivity and addictive 

behaviors45.  

While this TUD-PGS cannot yet be translated clinically, these findings 

nevertheless have implications for patients with tobacco use disorder. We demonstrate 

the systemic comorbidities associated with a genetic propensity to TUD and that 

genetically predisposed individuals may be at risk for obesity and alcohol use disorder 

even when tobacco use behavior is absent. For patients in the TUD high-risk genetic 

propensity group, these findings would necessitate broadening the focus of the 

preventive and therapeutic strategy to include a more comprehensive regulation of 

biological pathways that underlie addiction and impulsivity. 

A major strength of this study is that we evaluated TUD-PGS in an information-

rich biobank across multiple genetically inferred ancestry groups. The rich phenotypic 

information available in the biobank allowed us to test associations across the phenome 

in a hypothesis-free manner, allowing for the discovery of disease associations. Another 

strength of the paper is that we accounted for possible confounding bias introduced by 

participation/access to healthcare bias, which can arise from using data from a hospital-

based biobank, by using an insurance class variable as a proxy marker for participation 

and access. 

Previous work has shown that PGS accuracy decreases linearly when there is a 

large difference in genetic ancestry between the training sample and the target sample. 

These differences in performance lead to bias and imprecision in risk stratification when 

PGS are applied clinically for complex traits such as TUD. Our results add to these 

results and motivate more sophisticated computational methods to improve the 
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portability of PGS, especially for complex traits, like TUD, that are influenced greatly by 

both genetics and the environment and are risk factors for other diseases. 

We conclude with limitations and future considerations of our work. Our study 

included a multi-ancestry sample of patients, but non-European ancestries are 

represented at smaller sample sizes for most analyses using the UCLA ATLAS biobank. 

With continued enrollment, we hope to increase the non-European sample sizes and 

evaluate differential genetic effects in these ancestries. Next, phecodes are derived 

from ICD codes which are billing codes and, accordingly, may not always capture the 

full extent of an individual’s disease history. The interpretations of our analyses are 

within the limitations of these phenotype definitions. We emphasize that the risk of 

having a phecode in the electronic health record does not accurately reflect the risk of 

having the disease. Phecode assignments come with biases, including access to 

healthcare. We have attempted to address this bias introduced by healthcare access by 

including an insurance class information variable. Nevertheless, this difference must be 

considered when applying these results to the general population. Lastly, the MR 

analysis has a partial sample overlap which might offer biased results. However, 

subsequent analysis with summary statistics from GWAS without sample overlap 

demonstrates similar results as the original MR analysis, supporting a conclusion of a 

potential causal association between measures of adiposity and tobacco use. 

The results of our study have implications for public health and clinical 

approaches to the treatment of tobacco use disorder. Future research should strive to 

improve the prediction and risk stratification of TUD-PGS in all ancestry groups. With 

consistent performance across ancestry groups and improved individual-level 
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prediction, TUD-PGS can be useful to identify individuals who can benefit from 

comprehensive preventive and therapeutic strategies to manage their underlying 

addictive tendencies. Given the growing evidence on health risks associated with 

obesity and tobacco use, our results suggest possible shared genetic etiology between 

these two risk factors, strengthening the argument that public health approaches must 

consider this shared risk while formulating interventions.  
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3.6 Tables 

Table 3.1: Baseline characteristics of ATLAS participants included in this study 

  Overall 

n  24202 

Age, median [Q1, Q3]  61.0 [46.0,72.0] 

Sex, n (%) Female 13277 (54.9) 

 Male 10914 (45.1) 

Insurance Class, n (%) Private 14996 (62.0) 

 Public 8431 (34.8) 

 Self-Pay 775 (3.2) 

Tobacco Use Disorder, n (%) Controls 16283 (67.3) 

 Cases 7902 (32.7) 

Genetically Inferred Ancestry, n (%) African American (AA) 1633 (6.7) 

 

Hispanic/Latin  

American (HL) 4412 (18.2) 

 East Asian American (EAA) 2377 (9.8) 

 European American (EA) 15780 (65.2) 
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3.7 Figures 

Figure 3.1: TUD-PGS correlates with TUD phecode in EA, HL, and EAA ancestries 

across risk quintiles 

The X-axis represents the top 4 quintiles grouped according to TUD-PGS. Y axis 

represents effect sizes represented by odds ratios. The red line indicates OR = 1. Effect 

sizes between TUD-PGS and TUD phecode vary across PGS-quintiles in 4 genetically 

inferred ancestry groups with strong risk stratification noted in EA and HL and 

inconsistent risk stratification in AA and EAA groups.  
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Figure 3.2a: TUD-PGS-PheWAS plot across 1847 phecodes (cross-ancestry meta-

analysis) 

Associations between TUD-PGS and 1847 phecodes across the phenome, meta-

analyzed across 4 GIA groups with significant associations labeled. The X-axis 

represents the Z value (beta/SE). Each color represents a phecode category and each 

dot represents a phecode. Phenome-wide significance is represented by the red dashed 

line at a Z value = 4.2 which corresponds to a P value of 2.57e-5 (1847 tests/0.05). Top 

associations were noted in circulatory, metabolic, mental and respiratory phenotype 

categories. 

Figure 3.2b: TUD-PGS-PheWAS plot across 1847 phecodes in never-smokers of 

EA ancestry group 

Associations between TUD-PGS and 1847 phecodes across the phenome in never-

smokers of EA ancestry with significant associations labeled. The X-axis represents the 

Z value (beta/SE). Each color represents a phecode category and each dot represents 

a phecode. Phenome-wide significance is represented by the red dashed line at a Z 

value = 4.2 which corresponds to a P value of 2.57e-5 (1847 tests/0.05). In TUD-PGS-

PheWAS restricted to ‘never smokers’, top associations were obesity and alcohol-

related disorders. 
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Figure 3.3: TUD-PGS associations with Alcohol-related disorders and Obesity 

among all vs ever vs never-smokers across TUD-PGS quintiles 

Associations between TUD-PGS quintiles and Alcohol-related disorders (phecode = 

317.0) and Obesity (phecode = 278.1). The X-axis represents the top 4 quintiles 

grouped according to TUD-PGS. Y axis represents effect sizes represented by odds 

ratios. The red line indicates OR =1. TUD-PGS risk-stratifies for the phecodes for 

alcohol-related disorders and obesity in ‘never smokers’ but not in ‘ever-smokers’. 
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3.8 Supplementary Tables 

Supplementary Table 3.1: TUD-PGS association with TUD across GIAs 

GIA β SE P-

Value 

[0.025 0.975] OR OR_lower_CI OR_upper_CI 

European 

American 

0.2 0.02 1.66E-

25 

0.15 0.22 1.20 1.16 1.24 

Hispanic/Latin 

American 

0.2 0.04 2.24E-

06 

0.10 0.24 1.19 1.11 1.28 

East Asian 

American 

0.2 0.05 1.93E-

03 

0.06 0.27 1.18 1.06 1.31 

African 

American 

0.04 0.06 5.07E-

01 

-0.08 0.16 1.04 0.93 1.17 

 

Supplementary Table 3.2: Evaluation of predictive performance of 16 multi 

ancestry PGS for phecode for ‘tobacco use disorder’ (TUD) in ATLAS: 

Associations of PGS002037 (trained for TUD) for TUD in ATLAS 

Trait Training 

Pop 

Testing Pop in 

ATLAS 

PGS coef SE P>|z| 0.025 0.975 

TUD European European 

American 

PGS002037 0.20 0.02 <0.0001 0.16 0.24 

TUD European Admixed 

American 

PGS002037 0.21 0.04 <0.0001 0.13 0.29 

TUD European East Asian 

American 

PGS002037 0.20 0.07 0.003 0.07 0.33 
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TUD European African American PGS002037 0.04 0.08 0.591 -0.12 0.20 

 

Associations of the multi-ancestry PGS for TUD - Trained in European 

ancestry, tested in European ancestry in ATLAS 

Smoking 

initiation  

European European 

American 

PGS003360 -

0.3 

0.02 <0.0001 -

0.37 

-

0.30 

Age of smoking 

initiation 

European European 

American 

PGS003364 0.1 0.02 <0.0001 0.10 0.17 

Cigarettes 

smoked per 

day 

European European 

American 

PGS003368 -

0.1 

0.02 <0.0001 -

0.15 

-

0.08 

Smoking 

cessation 

European European 

American 

PGS003372 -

0.1 

0.02 <0.0001 -

0.14 

-

0.07 

 

Associations of the multi-ancestry PGS for TUD- Trained in Admixed 

ancestry, tested in Admixed American ancestry in ATLAS 

Smoking 

initiation 

Admixed Admixed 

American 

PGS003358 -0.09 0.05 0.06 -0.19 0.01 

Age of smoking 

initiation 

Admixed Admixed 

American 

PGS003362 -0.06 0.04 0.1 -0.14 0.01 

Cigarettes 

smoked per day 

Admixed Admixed 

American 

PGS003366 0.01 0.04 0.8 -

0.066 

0.08 

Smoking 

cessation 

Admixed Admixed 

American 

PGS003370 0.024 0.04 0.6 -0.06 0.11 
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Associations of the multi-ancestry PGS for TUD - Trained in East Asian 

ancestry, tested in East Asian American ancestry in ATLAS 

Smoking 

initiation 

East 

Asian 

East Asian 

American 

PGS003359 -0.2 0.06 <0.0001 -

0.33 

-

0.11 

Age of smoking 

initiation 

East 

Asian 

East Asian 

American 

PGS003363 -

0.03 

0.06 0.6 -

0.14 

0.08 

Cigarettes 

smoked per 

day 

East 

Asian 

East Asian 

American 

PGS003367 -

0.05 

0.06 0.4 -

0.16 

0.06 

Smoking 

cessation 

East 

Asian 

East Asian 

American 

PGS003371 -

0.08 

0.05 0.1 -

0.18 

0.02 

 

Associations of the multi-ancestry PGS for TUD - Trained in African 

ancestry, tested in African American ancestry in ATLAS 

Smoking initiation African African 

American 

PGS003357 -

0.08 

0.10 0.46 -

0.28 

0.13 

Age of smoking 

initiation 

African African 

American 

PGS003361 -

0.01 

0.07 0.94 -

0.15 

0.14 

Cigarettes 

smoked per day 

African African 

American 

PGS003365 0.09 0.06 0.1 -

0.02 

0.20 

Smoking 

cessation 

African African 

American 

PGS003369 -

0.18 

0.06 0.004 -

0.29 

-

0.06 
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Supplementary Table 3.3: TUD-PGS association with TUD across quintiles and 

GIAs 

PGS_ 

Quantile 

Coef SE P>|z| 0.025 0.975 OR OR_ 

lower_CI 

OR_ 

upper_CI 

GIA 

2 0.10 0.06 6.27E-02 -0.005 0.21 1.11 0.99 1.24 EA 

3 0.22 0.06 7.70E-05 0.11 0.33 1.25 1.12 1.39 EA 

4 0.31 0.06 2.47E-08 0.20 0.42 1.36 1.22 1.52 EA 

5 0.52 0.06 3.25E-21 0.41 0.63 1.69 1.51 1.88 EA 

2 0.15 0.12 1.86E-01 -0.07 0.38 1.17 0.93 1.47 HL 

3 0.16 0.12 1.66E-01 -0.07 0.39 1.18 0.94 1.48 HL  

4 0.29 0.12 1.13E-02 0.07 0.52 1.34 1.07 1.68 HL 

5 0.54 0.12 3.27E-06 0.31 0.76 1.71 1.36 2.14 HL 

2 0.19 0.17 2.64E-01 -0.15 0.53 1.21 0.86 1.70 EAA 

3 0.52 0.17 1.94E-03 0.19 0.85 1.69 1.21 2.35 EAA 

4 0.31 0.17 6.87E-02 -0.02 0.65 1.37 0.98 1.91 EAA 

5 0.47 0.17 5.77E-03 0.14 0.80 1.60 1.15 2.23 EAA 

2 -0.10 0.18 5.58E-01 -0.45 0.24 0.90 0.63 1.27 AA 

3 0.01 0.18 9.49E-01 -0.34 0.36 1.01 0.71 1.43 AA 

4 0.12 0.18 4.93E-01 -0.23 0.48 1.13 0.79 1.62 AA 

5 0.02 0.18 9.18E-01 -0.34 0.38 1.02 0.71 1.47 AA 

 

Supplementary Table 3.4: Significant associations between TUD-PGS and 1847 

traits in the PGS-PheWAS cross-ancestry meta-analysis 
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Phecode beta SE P 

Value 

CI.LB CI.UB Phenotype Category 

278.11 0.12 0.02 1.38E-

09 

0.08 0.17 Morbid obesity endocrine/metabolic 

496.21 0.25 0.04 2.73E-

09 

0.17 0.33 Obstructive 

chronic 

bronchitis 

respiratory 

316 0.12 0.02 4.45E-

08 

0.08 0.16 Substance 

addiction and 

disorders 

mental disorders 

411 0.09 0.02 1.61E-

07 

0.05 0.12 Ischemic Heart 

Disease 

circulatory system 

228.1 -

0.10 

0.02 3.49E-

07 

-0.14 -0.06 Hemangioma of 

skin and 

subcutaneous 

tissue 

neoplasms 

428.1 0.12 0.02 4.80E-

07 

0.07 0.16 Congestive heart 

failure (CHF) 

NOS 

circulatory system 

327.3 0.08 0.02 5.29E-

07 

0.05 0.11 Sleep apnea neurological 

228 -

0.09 

0.02 1.74E-

06 

-0.13 -0.05 Hemangioma 

and 

lymphangioma, 

any site 

neoplasms 
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411.3 0.12 0.03 5.83E-

06 

0.07 0.17 Angina pectoris circulatory system 

530 0.06 0.01 8.05E-

06 

0.03 0.09 Diseases of 

esophagus 

digestive 

428 0.09 0.02 9.57E-

06 

0.05 0.14 Congestive heart 

failure; 

nonhypertensive 

circulatory system 

338.2 0.06 0.01 1.05E-

05 

0.03 0.09 Chronic pain neurological 

509 0.09 0.02 1.24E-

05 

0.04817 0.13 Respiratory 

failure, 

insufficiency, 

arrest 

respiratory 

278.1 0.11 0.03 1.42E-

05 

0.064552 0.17 Obesity endocrine/metabolic 

411.2 0.11 0.03 1.45E-

05 

0.060558 0.16 Myocardial 

infarction 

circulatory system 

300 0.06 0.01 1.95E-

05 

0.031596 0.09 Anxiety 

disorders 

mental disorders 

508 0.07 0.02 2.23E-

05 

0.035846 0.097 Pulmonary 

collapse; 

interstitial and 

compensatory 

emphysema 

respiratory 
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Supplementary Table 3.5: Significant associations between TUD-PGS and 1847 

traits in the ‘never-smoker’ PGS-PheWAS in EA ancestry group 

Phecode Coef SE P 

Value 

0.025 0.975 Phenotype Category 

278.1 0.13 0.03 3.54E-

07 

0.08 0.18 Obesity endocrine/metabolic 

317 0.23 0.05 1.61E-

06 

0.14 0.32 Alcohol-related 

disorders 

mental disorders 

721 0.12 0.03 1.64E-

06 

0.074 0.17 Spondylosis and 

allied disorders 

musculoskeletal 

278.11 0.16 0.03 2.56E-

06 

0.09 0.23 Morbid obesity endocrine/metabolic 

150 0.71 0.15 3.05E-

06 

0.41 1.01 Cancer of 

esophagus 

neoplasms 

228 -

0.12 

0.03 4.67E-

06 

-0.17 -0.07 Hemangioma and 

lymphangioma, any 

site 

neoplasms 

317.1 0.23 0.05 1.78E-

05 

0.12 0.33 Alcoholism mental disorders 

401 0.09 0.02 2.62E-

05 

0.05 0.14 Hypertension circulatory system 

 

Supplementary Table 3.6: Associations between Alcohol-Related Disorders, 

Obesity, and Lung cancer and PGS quantiles traits in the ‘ever-smoker’ and 

‘never-smoker’ groups 
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PGS_ 

Quantil

e 

SE P>|z| Phecod

e 

Smokin

g 

History 

OR OR_Lower_

CI 

OR_Upper_

CI 

Phenotyp

e 

2 0.0

5 

9.40E

-01 

278.1 all 1.0

0 

0.91 1.11 Obesity 

3 0.0

5 

9.38E

-04 

278.1 all 1.1

8 

1.07 1.30 Obesity 

4 0.0

5 

1.11E

-04 

278.1 all 1.2

1 

1.1 1.33 Obesity 

5 0.0

5 

2.02E

-08 

278.1 all 1.3

2 

1.2 1.45 Obesity 

2 0.0

9 

6.17E

-01 

278.1 smokers 1.0

5 

0.88 1.25 Obesity 

3 0.0

9 

1.97E

-01 

278.1 smokers 1.1

2 

0.94 1.33 Obesity 

4 0.0

9 

6.34E

-03 

278.1 smokers 1.2

6 

1.07 1.49 Obesity 

5 0.0

8 

6.22E

-02 

278.1 smokers 1.1

7 

0.99 1.38 Obesity 

2 0.0

6 

6.93E

-01 

278.1 never 

smokers 

0.9

8 

0.86 1.10 Obesity 

3 0.0

6 

3.22E

-03 

278.1 never 

smokers 

1.2

0 

1.06 1.35 Obesity 

4 0.0

6 

1.67E

-02 

278.1 never 

smokers 

1.1

6 

1.03 1.31 Obesity 
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5 0.0

6 

9.73E

-08 

278.1 never 

smokers 

1.3

8 

1.23 1.56 Obesity 

2 0.0

8 

4.69E

-01 

317 all 1.0

6 

0.90 1.25 Alcohol 

Related 

Disorders 

3 0.0

8 

1.63E

-01 

317 all 1.1

2 

0.95 1.32 Alcohol 

Related 

Disorders 

4 0.0

8 

6.60E

-02 

317 all 1.1

6 

0.99 1.36 Alcohol 

Related 

Disorders 

5 0.0

8 

2.44E

-05 

317 all 1.3

9 

1.19 1.63 Alcohol 

Related 

Disorders 

2 0.1

2 

6.41E

-01 

317 smokers 0.9

5 

0.75 1.19 Alcohol 

Related 

Disorders 

3 0.1

1 

5.09E

-01 

317 smokers 1.0

8 

0.86 1.35 Alcohol 

Related 

Disorders 

4 0.1

1 

7.08E

-01 

317 smokers 0.9

6 

0.77 1.20 Alcohol 

Related 

Disorders 
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5 0.1

1 

3.24E

-01 

317 smokers 1.1

1 

0.90 1.38 Alcohol 

Related 

Disorders 

2 0.1

2 

3.42E

-01 

317 never 

smokers 

1.1

2 

0.88 1.41 Alcohol 

Related 

Disorders 

3 0.1

2 

7.85E

-01 

317 never 

smokers 

1.0

3 

0.81 1.31 Alcohol 

Related 

Disorders 

4 0.1

2 

6.42E

-02 

317 never 

smokers 

1.2

4 

0.99 1.56 Alcohol 

Related 

Disorders 

5 0.1

1 

7.64E

-04 

317 never 

smokers 

1.4

7 

1.17 1.84 Alcohol 

Related 

Disorders 

2 0.1

1 

4.65E

-01 

165.1 all 1.0

9 

0.87 1.36 Lung 

Cancer 

3 0.1

1 

2.39E

-01 

165.1 all 1.1

4 

0.91 1.42 Lung 

Cancer 

4 0.1

1 

9.08E

-01 

165.1 all 1.0

1 

0.81 1.27 Lung 

Cancer 

5 0.1

1 

5.50E

-01 

165.1 all 1.0

7 

0.85 1.34 Lung 

Cancer 

2 0.1

6 

7.82E

-01 

165.1 smokers 1.0

5 

0.76 1.44 Lung 

Cancer 
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3 0.1

5 

1.15E

-01 

165.1 smokers 1.2

8 

0.94 1.73 Lung 

Cancer 

4 0.1

6 

8.13E

-01 

165.1 smokers 1.0

4 

0.76 1.42 Lung 

Cancer 

5 0.1

6 

4.52E

-01 

165.1 smokers 1.1

2 

0.83 1.53 Lung 

Cancer 

2 0.1

6 

6.18E

-01 

165.1 never 

smokers 

1.0

8 

0.79 1.49 Lung 

Cancer 

3 0.1

7 

6.40E

-01 

165.1 never 

smokers 

0.9

2 

0.66 1.29 Lung 

Cancer 

4 0.1

7 

5.88E

-01 

165.1 never 

smokers 

0.9

1 

0.65 1.27 Lung 

Cancer 

5 0.1

8 

3.81E

-01 

165.1 never 

smokers 

0.8

6 

0.60 1.21 Lung 

Cancer 

 

Supplementary Table 3.7: Mendelian Randomization results between Cigarettes 

smoked per day (GSCAN) and Body Mass Index (GIANT Consortium) 

outcome exposure method nsnp b se pval 

Body mass index || 

id:ieu-a-835 

Cigarettes smoked 

per day || id:ieu-b-

142 

MR Egger 16 -

0.082 

0.044 0.083 

Body mass index || 

id:ieu-a-835 

Cigarettes smoked 

per day || id:ieu-b-

142 

Weighted 

median 

16 -

0.046 

0.021 0.032 

Body mass index || Cigarettes smoked Inverse 16 - 0.029 0.622 
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id:ieu-a-835 per day || id:ieu-b-

142 

variance 

weighted 

0.014 

Body mass index || 

id:ieu-a-835 

Cigarettes smoked 

per day || id:ieu-b-

142 

Simple mode 16 0.060 0.065 0.372 

Body mass index || 

id:ieu-a-835 

Cigarettes smoked 

per day || id:ieu-b-

142 

Weighted 

mode 

16 -

0.049 

0.021 0.0360 

Cigarettes smoked 

per day || id:ieu-b-

142 

Body mass index || 

id:ieu-a-835 

MR Egger 65 0.23 0.123 0.070 

Cigarettes smoked 

per day || id:ieu-b-

142 

Body mass index || 

id:ieu-a-835 

Weighted 

median 

65 0.33 0.047 1.29E-

12 

Cigarettes smoked 

per day || id:ieu-b-

142 

Body mass index || 

id:ieu-a-835 

Inverse 

variance 

weighted 

65 0.26 0.042 2.93E-

10 

Cigarettes smoked 

per day || id:ieu-b-

142 

Body mass index || 

id:ieu-a-835 

Simple mode 65 0.47 0.127 4.44e-

04 

Cigarettes smoked 

per day || id:ieu-b-

142 

Body mass index || 

id:ieu-a-835 

Weighted 

mode 

65 0.45 0.086 1.87E-

06 
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3.9 Supplementary Figures 

Supplementary Figures 3.1A and B 

a) DAG showing the relationship evaluated in the PGS-PheWAS meta-analysis 

b) DAG showing the relationship evaluated in the PGS-PheWAS never-smoker 

analysis 

Effects of germline variants that predispose to tobacco use are captured by the TUD-

PGS. Systemic health effects are captured by 1847 phecodes. The star indicates the 

relationship evaluated in the PGS-PheWAS analysis. The red X in 1B denotes that the 

effect of tobacco use behavior on those systemic health effects is accounted for in the 

PGS-PheWAS analysis in never-smokers. 

 

 

 

Supplementary Figure 3.2: TUD-PGS association with Lung Cancer across PGS 

quintiles among ever-smokers and never smokers 

X-axis represents the top 4 quintiles grouped by TUD-PGS. Y axis represents effect 

sizes represented by odds ratios. Red line indicates OR =1. 
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Supplementary Figures 3.3A and 3.3B: Mendelian Randomization Between Waist 

Circumference, BMI, and Cigarettes Smoked Per Day 

a) MR results between Outcome - cigarettes smoked per day and Exposure - 

waist circumference and body mass index 

Mendelian Randomization results across multiple MR methods using summary statistics 

for cigarettes smoked per day from the GSCAN Consortium and for waist circumference 

from MRC-UBristol and body mass index from UKBB. X axis represents the effect sizes 

and Y axis represents the MR method used. 

b) MR results between Exposure - cigarettes smoked per day and Outcome - 

waist circumference and body mass index 
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Mendelian Randomization results across multiple MR methods using summary statistics 

for cigarettes smoked per day from the GSCAN Consortium and for waist circumference 

from MRC-UBristol and body mass index from UKBB. X axis represents the effect sizes 

and Y axis represents the MR method used. 
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Chapter 4 

EHR-Data And Polygenic Scores Reveal The Interplay Of Serum Bilirubin, 

Smoking, And Cancer 

4.1 Abstract 

Bilirubin is a potent antioxidant with a protective role in many diseases. We 

examined the interplay of serum bilirubin (SB) levels, tobacco smoking (a known cause 

of low SB), head and neck cancer (HNC), and lung cancer (LC).  

Using data from 393,252 participants from UCLA Health we used regression 

models, propensity score matching, and polygenic scores to examine bidirectional 

causal effects between smoking, HNC and LC risk, and SB levels. 

Current tobacco smokers showed lower SB (-0.038mg/dL, 95% CI: [-0.043, -

0.032]), compared to never-smokers. HNC and LC cases demonstrated lower SB levels 

(-0.11mg/dL, [-0.13, -0.09] and -0.085mg/dL, CI [-0.10, -0.07] respectively) compared to 

cancer-free controls. This effect persisted after adjusting for smoking. SB levels are 

associated with HNC and LC risk (ORs: 0.27, CI [0.20,0.37] and 0.57, CI [0.43,0.75], 

respectively). Lastly, a polygenic score for SB is associated with LC but not with HNC 

(OR: 0.78, CI [0.65,0.94] and 1.01, [0.86,1.19], respectively). 

Low SB levels are associated with a risk of HNC and LC independent of the 

effect of tobacco smoking. Observed low SB is associated with LC and HNC, while 

genetically predicted low SB (from polygenic scores) is associated with LC only. These 

findings suggest that, with further validation, SB could serve as a potential early 

biomarker for LC and HNC.  
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4.2 Introduction 

Bilirubin is a compound found in the blood, derived from the breakdown of heme, 

a component of hemoglobin found in red blood cells. At the end of their life cycle, red 

blood cells are broken down in the spleen and bone marrow, forming bilirubin, which is 

then transported to the liver and excreted in bile. Thus, the level of serum bilirubin (SB) 

is an indicator of liver health, and high SB levels are clinically used markers of liver 

disease1. However, low levels of SB have not been categorized broadly in clinical 

settings and do not factor into diagnosis or treatment planning in most diseases. Recent 

studies, however, have redefined the role of SB in the human body, recognizing it as a 

metabolic hormone with potent antioxidant effects2. Low SB levels are associated with 

increased risk of diseases including cancers, and metabolic and cardiovascular 

diseases2,3,4. Low SB levels have also been associated with poorer survival and worse 

prognosis in lung and oral cancers5,6.  

A commonly reported cause of low SB is tobacco smoking, likely secondary to 

the oxidative stress placed on the body under tobacco smoking conditions, disrupting 

normal bilirubin metabolism7. Tobacco smoking is also a well-established risk factor for 

cancers, especially lung and head and neck cancers (HNC). Thus, it can be theorized 

that low SB levels linked to cancers could be secondary to interaction with tobacco 

smoking. Studies have reported interactions between low SB levels and tobacco use in 

the risk of LC8,9. However, this relationship is not well-studied in HNC. 

Here, we examined the interplay of SB with tobacco smoking, HNC, and LC 

using lab values and electronic health records (EHR) information from a hospital-based 

biobank in Los Angeles. We examined differences in SB levels across sex, self-reported 
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ethnicity/race (SIRE), and cancer case and control status. Next, we examined the 

effects of smoking on SB and of HNC and LC on SB. We assessed the validity of using 

SB to predict HNC and LC by using observed SB levels from the patient's EHR and 

evaluating the combined effect of tobacco smoking and SB on both cancers. Lastly, we 

used a polygenic score for SB to evaluate the predictive ability of genetically predicted 

SB to predict HNC and LC. 

 

4.3 Methods 

4.3.1 Study Population: The UCLA ATLAS biobank 

The study population is derived from UCLA Health which is a de-identified patient 

electronic health records (EHR) linked biobank with over 2 million patients. The biobank 

includes information on demographics, diagnostic codes, laboratory values, 

prescriptions data, and procedure codes. The UCLA ATLAS Community Health Initiative 

also includes > 60,000 genotyped participants with their de-identified EHR linked 

through the DDR. A more extensive description of this resource including information on 

recruitment, consent, sample processing, and quality control pipelines can be found in 

previous publications10-14.  

In this study, we included 393,252 participants from the DDR aged 18 and above, 

of which 15,023 participants were of European American genetically inferred ancestry 

group with SB measurements and genotypes available for polygenic score construction 

and analyses. All participants consented to participate in the research. 

 

4.3.2 Bilirubin Biomarker Measurements 
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The primary biomarker analyzed in this study is serum total bilirubin (SB), 

measured in mg/dL. The SB measurements were extracted from the patient’s electronic 

health records. Since most patients have multiple blood tests over their encounter 

history with multiple results for serum total bilirubin laboratory tests, we extracted the 

maximum and minimum total bilirubin values in each patient’s record and computed 

their mean to get a mid-range total bilirubin value for each individual. For quality control 

and to filter out errors in data entry and significant outliers, we excluded SB values that 

were less than the 0.1th percentile or greater than the 95th percentile. This step also 

served to exclude patients with consistently high bilirubin values secondary to liver 

disease or medication side effects. 

4.3.3 HNC, LC, and Tobacco Smoking Ascertainment 

Smoking history was extracted from the patient’s self-reported demographic 

information. We binarized smoking history to ever and never smokers.   

● Ever-smokers included participants who selected any of the following 

options in their health history: ‘Former’, ‘Heavy Smoker’, ‘Light Smoker’, 

‘Smoker, Current Status Unknown’, and ‘Some Days’.  

● Never smokers included participants who selected the following options: 

‘Never’, ‘Passive Smoke Exposure - Never Smoker’.  

We excluded participants who selected ‘Never Assessed’ or whose smoking 

history was ‘Unknown’. Further, we created a ‘Current Smoker’ label for participants 

who answered yes to 'Every Day', ‘Some Days’, ‘Light Smoker’, or ‘Heavy Smoker’ in 

their smoking history question. This variable was used for additional analysis of tobacco 

smoking and SB. 
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Head and neck cancer (HNC) and LC status were ascertained by extracting ICD 

codes from the participant's EHR. A detailed list of the ICD codes used to ascertain 

HNC and LC status is included in the supplementary section. Participants were 

designated as a ‘Case’ if the ICD codes for head and neck cancer or LC existed in their 

EHR. Participants were assigned to ‘Controls’ when their EHR did not contain any ICD 

codes for malignancy or cancers. 

 

4.3.4 Polygenic score selection and imputation 

A publicly available polygenic score for ‘Total Bilirubin’ was used for polygenic 

score computation ( PGS002160 from the PGS Catalog15,16) trained using 391,124 

European individuals from the UK biobank and includes 120,068 SNPs. PGS training 

analyses were adjusted for sex, age, birth date, Townsend’s deprivation index, and the 

first 16 principal components of the genotype matrix to account for population 

stratification. We computed the PGS for each genotyped UCLA ATLAS participant by 

multiplying the individual risk allele dosages by their corresponding weights provided by 

the PGS catalog using the ‘pgsc_calc’ workflow16. The PGS was mean-centered and 

standardized by the standard deviation within the European American genetic ancestry 

group to generate a PGS Z-score which was used in further analysis (n = 15,023). We 

restricted the PGS analysis to European American ancestry group since the original 

PGS was trained in Europeans, and studies have shown that the predictive 

performance of PGS is unreliable when used in ancestries that are genetically dissimilar 

to the trained population17. 
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4.3.5 Statistical Analyses 

All analysis was conducted in either Python 2.6.818 or R 4.2.119. We used linear 

regression models to evaluate the associations between the dependent variable of SB 

levels and independent variables of tobacco smoking, HNC, and LC. We adjusted for 

participant age, sex, and self-reported race/ethnicity (SIRE) in all models. In a 

subsequent model to evaluate cancer effect sizes on SB, we additionally account for 

tobacco smoking by including it as an independent variable. Linear coefficients and 

confidence intervals were calculated, with P-values from Wald-type test statistics.  

Propensity scores were estimated by logistic regression analysis, with cancer 

status as the dependent variable and age, sex, SIRE, and tobacco smoking as 

independent variables. We used 1:1 propensity matching to create a more balanced 

analysis group, creating two groups - 2,037 HNC cases and 2,037 HNC controls, and 

2,373 LC cases and 2,373 LC controls with no significant differences in age, sex, SIRE 

or tobacco smoking. 

To evaluate the effect of observed SB and genetically predicted SB on HNC and 

LC, we used logistic regression models with HNC/LC as the dependent variable and SB 

as the independent variable. The SB variable was the extracted SB levels from the EHR 

for the observed SB analysis and the polygenic score for SB for the genetically 

predicted SB analysis. Odds ratios and confidence intervals were calculated, with P-

values from Wald-type test statistics for these analyses.   

 

4.3.6 Ethical Approval 
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Patient Recruitment and Sample Collection for Precision Health Activities at 

UCLA is an approved study by the UCLA Institutional Review Board (UCLA IRB #17-

001013). All participants provided informed consent to participate in the research. 

 

4.3.7 Data Sharing 

All shareable data produced in the present work are contained in the manuscript. 

 

4.4 Results 

4.4.1 Participant characteristics and effect of demographic factors on SB 

The baseline characteristics of 393,252 participants with 2,039 HNC cases, 

2,378 LC cases, and 388,835 cancer controls are shown in Supp Table 4.1. We used a 

multivariable linear regression model to systematically evaluate the differences in SB 

level distributions among demographic factors. Males on average had 0.15 mg/dL 

higher SB compared to females (CI [0.146, 0.151]), and older individuals had a 0.0009 

mg/dL increase per year of age, CI [0.0009,0.001]). When compared to self-reported 

White or Caucasian group, Asians had on average 0.019 mg/dL higher SB values, (CI 

[0.015, 0.023]) and African Americans had 0.01 mg/dL lower SB values (CI [-0.016, -

0.005]). Lastly, individuals who self-identified as ‘Hispanic/Latin American’ ethnicity had 

0.024 mg/dL higher SB compared to individuals who self-identified as ‘Not 

Hispanic/Latin American’ CI [0.020, 0.028] (Table 4.1). These results suggest that SB 

levels vary significantly by participant sex, age and SIRE in this study population. 

 

4.4.2 Lower SB levels are associated with smokers compared to never smokers 
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Next, we evaluated whether tobacco smoking is associated with SB levels. For this, we 

compared the SB levels of ever-smokers to never-smokers and further, we compared 

the SB levels of current smokers to  never-smokers. 

In a linear regression model adjusting for age, sex, and SIRE, ever-smokers 

demonstrated a negative association with SB (-0.017 mg/dL, CI [-0.019, -0.014]). This 

effect size persists and slightly increases when comparing ‘current smokers’ (-0.038 

mg/dL, CI [-0.043, -0.032]) to ‘never smokers’. Both of these results suggest that 

tobacco smoking is associated with low SB levels with current smokers demonstrating 

much lower SB levels when compared to ever-smokers (Table 4.2). 

 

4.4.3 Lower SB levels are associated with LC and HNC independent of smoking status 

Next, we evaluated the associations between LC and HNC and SB levels. In a 

linear regression model, HNC and LC demonstrate negative associations with SB after 

adjusting for age, sex, SIRE (-0.11 mg/dL, CI [-0.13, -0.1] and -0.09 mg/dL, CI [-0.1, -

0.07], respectively). The negative associations between HNC, LC, and SB persist after 

adjusting additionally for smoking history (-0.11 mg/dL, CI [-0.13, -0.09] and -0.08 

mg/dL, CI [-0.1, -0.07], respectively). An interaction term between LC and smoking 

demonstrated a significant effect on SB (-0.06 mg/dL, CI [-0.09, -0.02] ) while an 

interaction term between HNC and smoking did not (-0.01 mg/dL, CI [-0.04, 0.03]) 

(Table 4.3).  

We additionally explored this association using propensity matched groups. The 

baseline characteristics of the propensity-matched HNC and LC groups are shown in 

Supplementary Tables 2a and 2b. In two linear regression models, HNC and LC 
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individually demonstrated negative associations with SB ( -0.11mg/dL, CI [-0.13, -0.09]) 

and -0.083mg/dL, CI [-0.10, -0.07] respectively). These results suggest that SB has an 

inverse relationship with LC and HNC which is not mediated solely by tobacco smoking. 

Additionally, the significant interaction between LC and smoking on SB suggests that 

the negative association between LC and SB is exacerbated with smoking, though a 

similar trend is not observed for HNC.  

 

4.4.4 Observed SB Levels are associated with LC and HNC 

Next, to obtain the effect sizes of SB on the risk of LC and HNC, we used logistic 

regression models with HNC and LC as the dependent variables. In this model, lower 

levels of SB predict LC and HNC after adjusting for age, sex, SIRE, and smoking. (OR: 

0.57, CI [0.43,0.75] and 0.27, CI [0.20, 0.37]) respectively). Additionally, interaction 

terms of SB and smoking demonstrated significant effects on LC but not on HNC (OR: 

0.5, CI [0.35, 0.72]) and 0.95, CI [0.62,1.46] respectively). (Table 4.4) 

 

4.4.5 A polygenic score for SB (SB-PGS) is associated with LC 

In a sub-group of genotyped European ancestry patients from the UCLA ATLAS 

biobank, we first validated a PGS for total serum bilirubin (SB-PGS). This SB-PGS 

demonstrated a strong association with observed SB levels extracted from the patient’s 

EHR lab values (0.094 mg/dL per standard deviation of SB-PGS, CI [0.091, 0.097], 

demonstrating reliability in predicting SB. 

We then evaluated the effect sizes of genetically predicted SB on LC and HNC. 

In this European ancestry sub-group, after adjusting for age, sex, and the first 5 
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principal components, SB-PGS predicts LC (n=124 cases, OR: 0.78, CI [0.65,0.94]) but 

not HNC, (n = 152 cases; OR = 1.01, CI [0.86,1.19]). When restricted to only ever-

smokers in this subgroup, SB-PGS demonstrates a slightly higher effect size (OR: 0.70, 

CI [0.56,0.88]) on LC and no effect with HNC (OR:0.95, CI [0.74,1.20]). 

 

4.5 Discussion 

In this study, we analyzed the associations of SB with the risks of HNC and LC 

using the UCLA ATLAS EHR-linked biobank. SB was inversely associated with HNC 

and LC, even after adjusting for tobacco smoking. Tobacco smoking significantly 

interacted with SB on LC risk but not HNC. Lastly, observed SB predicts both HNC and 

LC while genetically predicted SB predicted LC and not HNC. 

This study is the first large-scale study to report on the negative associations 

between SB and HNC. These results parallel the negative association between SB and 

LC noted in our study and other studies of SB and LC 8,9,20. One potential mechanism 

for this observed association is likely through SB’s action on reactive oxygen species 

and inflammatory factors, which are known to promote the etiopathogenesis of 

cancers21,22. The protective effects of SB on these two cancers are likely secondary to 

its antioxidant function in the body and endogenous anti-inflammatory activity23. 

The associations between SB and cancers could be mediated by intrinsic or 

extrinsic factors that have an effect on one or both of these factors. Among extrinsic 

factors, tobacco smoking is a well-known contributor of free radicals and reactive 

oxygen species, playing an important role in carcinogenesis24. Studies including this 

one find evidence of strong negative associations between tobacco smoking and 
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SB7,8,9, necessitating further inquiry into the role of tobacco smoking in the SB-cancer 

pathway. The persistent associations of the SB-HNC/LC associations after adjusting for 

tobacco smoking suggest that these associations are not solely driven by tobacco 

smoking. In fact, tobacco smoking interacts with SB in LC, a finding we did not observe 

in HNC. The difference in the SB-tobacco smoking interaction results between HNC and 

LC could likely be explained by differences in etiology (alcohol consumption and human 

papillomavirus infection for HNC), differential tissue response, local environment, and 

microbiome differences between the two sites. From a clinical perspective, these results 

suggest that SB could be a low-cost laboratory biomarker for HNC and LC. However, 

further studies are needed to understand these complex pathway mechanisms and to 

validate these findings.  

Next, an intrinsic factor that might play a role in the SB-cancer association is the 

genetic control of SB. A validated polygenic score for SB predicted LC but not HNC in 

this study. Additionally, a larger effect size is noted in ever-smokers for LC, i.e. ever-

smokers with genetically predicted high SB levels had a lower risk of LC when 

compared to ever-smokers with lower SB levels. A recent study used Mendelian 

Randomization methods to evaluate the association between two genetic variants which 

account for ~40% of population-level SB variability and LC and found evidence of a 

causal association25. These findings suggest the possible influence of genetic control of 

SB on the susceptibility to LC. The inability of the SB-PGS to predict HNC could be 

attributed to the multifactorial nature of HNC development. It is also likely that the 

genetic effects of the variants in the SB-PGS have very small effects on HNC that we 

could not capture. Further validation studies are required with adequate sample sizes 
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across the subtypes of HNC and including information on a larger spectrum of 

environmental risk factors, including alcohol consumption and human papillomavirus 

status. Multiple stages of research must be completed before clinical translation is 

possible and equitable — such as ensuring the robust predictive performance of SB-

PGS across diverse ancestral groups. 

The main strengths of our study are that we use data from an EHR-linked 

biobank, thus including patients from a real-world hospital system of diverse racial and 

ethnic groups. The large sample size adequately powers the analysis of SB, HNC, and 

LC. Given the significant role that tobacco smoking plays in the development of HNC 

and LC, we thoroughly evaluated the effects of tobacco smoking on SB levels and 

potential interactions with SB levels in the context of the cancer risk. Lastly, we used a 

polygenic score to explore the role that genetics may play in SB levels and cancer risk, 

to identify potential genetic biomarkers that could be used to predict cancer.  

We end this discussion with some limitations of our study that must be kept in 

mind when interpreting and applying the results of this study. The observational nature 

of our study prevents us from making causal interpretations and assigning directions to 

the associations observed between SB levels, tobacco smoking, HNC, and LC. Next, 

the de-identified nature of an EHR-linked biobank prevents us from including 

socioeconomic variables that could have effects on tobacco smoking and cancer risk. 

Lastly, we lacked information on cancer subtype, staging, and grading and could not 

investigate these factors that could throw further light on the mechanisms behind SB 

and cancer associations.  
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In conclusion, our study finds associations between low SB levels and HNC, LC 

risk, and tobacco smoking. Observed SB predicts both HNC and LC while genetically 

predicted SB predicts LC. Further research is needed to validate SB as a potential 

laboratory and genetic biomarker for HNC and LC. 
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4.6 Tables 

Table 4.1: Effects of demographic factors on SB 

Linear Regressions adjusted for age, sex, SIRE. Significance threshold is 0.05/8 

Reference Variables Effect Size 

(mg/dL) 

95% CI P-

Value 

Female Male 0.15 0.15,0.15 < 

0.0001 

 Patient Age (per year) 0.001 0.0009,0.001 < 

0.0001 

White or 

Caucasian 

American Indian or 

Alaska Native 

-0.02 -0.03,-0.002 0.03 

White or 

Caucasian 

Asian 0.02 0.015,0.02 < 

0.0001 

White or 

Caucasian 

Black or African 

American 

-0.01 -0.016,-0.004 0.0004 

White or 

Caucasian 

Native Hawaiian or 

Other Pacific Islander 

0.03 -0.004,0.06 0.09 

White or 

Caucasian 

Other Race 0.004 -

0.0001,0.009 

0.06 

Not Hispanic or 

Latin ethnicity 

Hispanic or Latin 

ethnicity 

0.02 0.019,0.03 < 

0.0001 
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Table 4.2: Effect of tobacco Smoking on SB, comparing ever-smokers and current 

smokers to never-smokers 

Reference Variables Effect on SB 

mg/dL 

95% CI P-Value 

Never smokers Ever-smokers -0.017 -0.019, -0.014 < 0.0001 

Never smokers Current smokers -0.038 -0.043, -0.032 < 0.0001 

 

Table 4.3: Effects of HNC and LC on SB, after adjusting for tobacco smoking and 

HNC/LC: smoking interaction 

Variables Effect on SB 

mg/dL 

95% CI P-Value 

HNC -0.11 -0.13, -

0.10 

< 

0.0001 

HNC (additionally adjusted for 

smoking) 

-0.11 -0.13, -

0.09 

< 

0.0001 

HNC: Smoking interaction  -0.01 -0.04, 0.03 0.8 

LC -0.09 -0.1, -0.07 < 

0.0001 

LC (additionally adjusted for smoking) -0.08 -0.1, -0.07 < 

0.0001 

LC: Smoking interaction  -0.06 -0.09, -

0.02 

0.0007 
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Table 4.4:  Effects of SB levels on HNC and LC 

 OR 95% CI P-Value 

Outcome - HNC    

Serum Bilirubin 0.27 0.20, 0.37 < 0.0001 

Bilirubin and smoking interaction variable 0.95 0.62, 1.46 0.8 

Outcome - LC    

Serum Bilirubin 0.57 0.43, 0.75 0.0001 

Bilirubin and smoking interaction variable 0.50 0.35, 0.72 0.0002 
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4.7 Supplementary Tables  

ICD Codes for HNC and LC 

HNC ICD Codes:  '140', '140.1',  '140.3', '140.4', '140.5', '140.6', '140.8', '140.9', '141', 

'141.1', '141.2', '141.3', '141.4', '141.5', '141.6', '141.8', '141.9', '142', '142.1', '142.2', 

'142.8', '142.9','143', '143.1', '143.8', '143.9', '144', '144.1', '144.8', '144.9', '145', '145.1', 

'145.2', '145.3', '145.4', '145.5', '145.6', '145.8', '145.9', '146', '146.1', '146.2', '146.3', 

'146.4', '146.5', '146.6', '146.7', '146.8', '146.9', '147', '147.1', '147.2', '147.3', '147.8', 

'147.9’, '148', '148.1', '148.2', '148.3', '148.8', '148.9', '149', '149.1', '149.8', '149.9', '160', 

'160.1', '160.2', '160.3', '160.4', '160.5', '160.8', '160.9’, '161', '161.1', '161.2', '161.3', 

'161.8', '161.9', 'C00.0', 'C00.1', 'C00.2', 'C00.3', 'C00.4', 'C00.5', 'C00.6', 'C00.8', 

'C00.9', 'C02.0', 'C02.1', 'C02.2', 'C02.3', 'C02.4', 'C02.8', 'C02.9', 'C06.0', 'C06.1', 

'C06.2', 'C06.8', 'C06.80', 'C06.89’, 'C06.9', 'C08.0', 'C08.1', 'C08.9', 'C09.0', 'C09.1', 

'C09.8', 'C09.9', 'C10.0', 'C10.1', 'C10.2', 'C10.3', 'C10.4', 'C10.8', 'C10.9', 'C11.0', 

'C11.1',’'C11.2', 'C11.3', 'C11.8', 'C11.9', 'C13.0', 'C13.1', 'C13.2', 'C13.8', 'C13.9', 

'C14.0','C14.2',  'C14.8',  'C30.0'.  

 

LC ICD Codes: 'C34.0', 'C34.1', 'C34.2', 'C34.3', 'C34.8', 'C34.9','162.0', '162.2', '162.3', 

'162.4', '162.5', '162.8', '162.9' 

 

Supplementary Table 4.1: Baseline characteristics of participants, stratified by 

cancer status 

  Cancer 

Controls 

LC 

Cases 

HNC 

Cases 
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n  388835 2378 2039 

Patient Age, mean (SD) 57.0 (18.7) 75.8 

(10.9) 

69.7 

(13.5) 

SB  mg/dL, mean (SD) 0.6 (0.3) 0.5 (0.2) 0.5 (0.2) 

Sex, n (%) Female 213694 

(55.0) 

1259 

(52.9) 

589 

(28.9) 

 Male 175141 

(45.0) 

1119 

(47.1) 

1450 

(71.1) 

Smoking History, n 

(%) 

Never Smokers 270645 

(69.6) 

831 

(34.9) 

1010 

(49.5) 

 Ever Smokers 118190 

(30.4) 

1547 

(65.1) 

1029 

(50.5) 

Self-reported Race, 

n (%) 

American Indian or Alaska 

Native 

2048 (0.7) 10 (0.5) 6 (0.4) 

 Asian 36563 

(13.4) 

395 

(19.6) 

208 

(12.8) 

 Black or African American 15834 (5.8) 111 (5.5) 59 (3.6) 

 Native Hawaiian or Other 

Pacific Islander 

527 (0.2) 9 (0.4) 2 (0.1) 

 Other Race 32190 

(11.8) 

203 

(10.1) 

171 

(10.5) 

 White or Caucasian 161651 

(59.1) 

1111 

(55.2) 

1078 

(66.2) 
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Self-Reported 

Ethnicity, n (%) 

Hispanic or Latin 50630 

(14.3) 

156 (7.0) 170 (9.0) 

 Not Hispanic or Latin 290389 

(82.2) 

1961 

(88.3) 

1655 

(87.9) 

 

Supplementary Table 4.2a: Propensity matched group baseline characteristics 

stratified by HNC 

  Overall HNC 

Controls 

HNC 

Cases 

n  4074 2037 2037 

Patient Age, mean (SD) 69.7 

(13.5) 

69.7 (13.5) 69.7 

(13.5) 

Serum Total Bilirubin, [Q1,Q3] 0.5 

[0.4,0.7] 

0.6 

[0.4,0.8] 

0.5 

[0.4,0.6] 

Sex, n (%) Female 1174 

(28.8) 

587 (28.8) 587 

(28.8) 

 Male 2900 

(71.2) 

1450 

(71.2) 

1450 

(71.2) 

Smoking History, n 

(%) 

0 2018 

(49.5) 

1009 

(49.5) 

1009 

(49.5) 

 1 2056 

(50.5) 

1028 

(50.5) 

1028 

(50.5) 
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Self-reported Race, 

n (%) 

American Indian or Alaska 

Native 

11 (0.3) 6 (0.4) 5 (0.3) 

 Asian 414 

(12.7) 

207 (12.7) 207 

(12.7) 

 Black or African American 118 (3.6) 59 (3.6) 59 (3.6) 

 Native Hawaiian or Other 

Pacific Islander 

4 (0.1) 2 (0.1) 2 (0.1) 

 Other Race 342 

(10.5) 

171 (10.5) 171 

(10.5) 

 Unknown Race 210 (6.5) 105 (6.4) 105 (6.5) 

 White or Caucasian 2156 

(66.2) 

1078 

(66.2) 

1078 

(66.3) 

Self-Reported 

Ethnicity, n (%) 

Hispanic or Latin 343 (9.1) 173 (9.2) 170 (9.0) 

 Not Hispanic or Latin 3310 

(87.9) 

1655 

(87.8) 

1655 

(88.0) 

 Unknown Ethnicity 112 (3.0) 56 (3.0) 56 (3.0) 

 

Supplementary Table 4.2b: Propensity matched group baseline characteristics 

stratified by LC 

  Overall LC 

Controls 

LC Cases 

n  4746 2373 2373 
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Patient Age, mean (SD) 75.8 

(10.9) 

75.8 

(10.9) 

75.8 

(10.9) 

Serum Total Bilirubin, [Q1,Q3] 0.5 

[0.4,0.7] 

0.5 

[0.4,0.7] 

0.5 

[0.4,0.7] 

Sex, n (%) Female 2512 

(52.9) 

1256 

(52.9) 

1256 

(52.9) 

 Male 2234 

(47.1) 

1117 

(47.1) 

1117 

(47.1) 

Smoking History, n 

(%) 

Never Smokers 1656 

(34.9) 

828 

(34.9) 

828 

(34.9) 

 Ever Smokers 3090 

(65.1) 

1545 

(65.1) 

1545 

(65.1) 

Self-Reported 

Race, n (%) 

American Indian or Alaska 

Native 

15 (0.4) 5 (0.2) 10 (0.5) 

 Asian 786 

(19.6) 

393 

(19.6) 

393 

(19.6) 

 Black or African American 222 (5.5) 111 (5.5) 111 (5.5) 

 Native Hawaiian or Other 

Pacific Islander 

12 (0.3) 6 (0.3) 6 (0.3) 

 Other Race 406 

(10.1) 

203 

(10.1) 

203 

(10.1) 

 Unknown Race 348 (8.7) 174 (8.7) 174 (8.7) 
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 White or Caucasian 2222 

(55.4) 

1111 

(55.5) 

1111 

(55.3) 

Self-Reported 

Ethnicity, n (%) 

Hispanic or Latin 326 (7.3) 171 (7.7) 155 (7.0) 

 Not Hispanic or Latin 3918 

(88.1) 

1959 

(87.8) 

1959 

(88.4) 

 Unknown Ethnicity 202 (4.5) 101 (4.5) 101 (4.6) 
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4.8 Supplementary Figures  

Supplementary Figure 4.1: Directed acyclic graph representing the associations 

of interest. Relevant result sections are indicated in the DAG 
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Chapter 5 

Conclusions and Future Directions 

Bioinformatics and computational methods are vital additions to our research 

arsenal in the era of precision medicine and dentistry. In this thesis, we utilized novel 

methods including phenome-wide association tests, lab-wide association tests, and 

polygenic scores, to create computational pipelines streamlined for the UCLA biobank 

data. We then used these pipelines to study two phenotypes - tobacco use disorder and 

head and neck cancer. We evaluated the potential of a polygenic score (PGS) to predict 

tobacco use disorder in 4 genetic ancestry groups. We also used this PGS to evaluate 

the phenome-wide associations of tobacco use predisposing genetic variants. We found 

that PGS trained in European ancestry populations did not reliably predict or risk-stratify 

participants of non-European ancestry groups for tobacco use disorder. Next, we found 

that individuals with a genetic predisposition to tobacco use demonstrate associations 

with circulatory, psychiatric, metabolic, and respiratory phenotypes. Lastly, we found 

that when individuals with a genetic predisposition to tobacco use disorder did not 

engage in tobacco smoking, they were at risk for other disorders including obesity and 

substance addiction disorders.  With further validation in other biobanks and across 

diverse populations, these findings could have implications for the management of 

tobacco use disorders. Individuals with a genetic predisposition to tobacco use disorder 

might require more comprehensive management to manage underlying addictive 

tendencies. 

Next, in the study examining serum bilirubin (SB) levels, tobacco use, head and 

neck (HNC), and lung cancer (LC), we found that SB demonstrates a bidirectional 
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negative association with HNC and LC. This association persists after adjusting for 

tobacco smoking, suggesting that the pathway between SB and HNC/LC is mediated by 

factors other than tobacco smoking. Lastly, we also found that a polygenic score for SB 

is significantly associated with LC. While these results are promising, clinical translation 

requires more precise measures of SB levels with clear risk thresholds for different sex, 

race and ethnicity groups. With further extensive validation of our results, SB levels 

could potentially serve as a low-cost biomarker for HNC and LC. 

In future studies, I aim to employ the computational methods described here, 

including genome-wide-, phenome-wide analysis, and polygenic scores to study head 

and neck cancers, specifically oropharyngeal cancers (OPC). Germline studies of OPC 

and head and neck cancer (HNC) patients indicate that, like other more widely studied 

cancers, several germline variants are associated with OPC1-5. Additionally, germline 

variants can interact with somatic mutations to influence the course of HNC6. However, 

there are some critical knowledge gaps: 

1) Current OPC genome-wide association studies (GWAS) are not ancestrally 

diverse. GWAS are powerful genetic tools to identify germline variants associated with 

traits of interest such as OPC and HNC1-5. However, these studies are done primarily in 

European ancestry populations and the results are not generalizable to individuals of 

other ancestries7,8. In order to translate these research findings to the clinic, it is critical 

to increase the diversity of populations included in genetic studies. 

2) The pleiotropic effects of OPC-associated germline variants are largely 

unknown.  Risk variants identified by GWAS for cancers often show associations with 

other cancer and developmental phenotypes. For example, a CDH1 germline variant is 
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associated with breast cancer, gastric carcinoma, and cleft/lip and palate9. These 

pleiotropic associations provide key information on the biological mechanisms 

underlying the risk conferred by these variants.  

To address these gaps, I plan to conduct ancestry-specific OPC GWAS and 

cross-ancestry meta-analyses within ATLAS using an analytic pipeline developed for 

the ATLAS biobank. I will then meta-analyze OPC ATLAS GWAS results with publicly 

available OPC GWAS summary statistics from patient-recruited cohorts and other 

biobank data, to create the largest and most diverse GWAS of OPC. Next, I plan to 

develop an OPC-PGS using the top variants from the results of the meta-analysis, 

excluding data from the ATLAS biobank to prevent sample overlap using methods 

optimized for multi-ancestry PGS development. I will thoroughly evaluate the PGS 

performance using performance metrics within all available genetic ancestry groups in 

UCLA ATLAS. I will utilize the phenome-wide association (PheWAS) analysis pipeline, 

integrated with the OPC-PGS to perform a PGS-PheWAS analysis to evaluate the 

pleiotropic effects of common variants across 1847 phenotypes. Lastly, with further IRB 

approval, I plan to evaluate the associations between the OPC-PGS and clinical 

characteristics such as human papillomavirus infection, tumor stage and grade, 

pathological findings and imaging presentations. Establishing clinical correlation with 

genetic factors will provide important therapeutic insights and will aid in the 

development of reliable genetic testing recommendations to advance precision 

medicine for OPC. Inclusion of diverse populations will help advance the goal of 

equitable clinical translation of research findings. 
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