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Gradient Boosting Classifiers Combining Vessel Density and 
Tissue Thickness Measurements for Classifying Early to 
Moderate Glaucoma

Christopher Bowd, Akram Belghith, James A Proudfoot, Linda M Zangwill, Mark 
Christopher, Michael H Goldbaum, Huiyuan Hou, Rafaella C Penteado, Sasan Moghimi, 
Robert N Weinreb
Hamilton Glaucoma Center and Shiley Eye Institute, The Viterbi Family Department of 
Ophthalmology, University of California, San Diego, La Jolla, CA 92093-0946

Abstract

Purpose—To compare gradient boosting classifier (GBC) analysis of optical coherence 

tomography angiography (OCTA)-measured vessel density (VD) and OCT-measured tissue 

thickness to standard OCTA VD and OCT thickness parameters for classifying healthy eyes and 

eyes with early to moderate glaucoma.

Design—Comparison of diagnostic tools.

Methods—One-hundred-eight healthy eyes and 193 glaucomatous eyes with OCTA and OCT 

imaging of the macula and optic nerve head (ONH) were studied. Four GBCs were evaluated that 

combined 1) all macula VD and thickness measurements (Macula GBC), 2) all ONH VD and 

thickness measurements (ONH GBC), 3) all VD measurements from the macula and ONH (Vessel 

Density GBC), and 4) all thickness measurements from the macula and ONH (Thickness GBC). 

ROC curve (AUROC) analyses compared the diagnostic accuracy of GBCs to standard instrument 

provided parameters. A fifth GBC that combined all parameters (Full GBC ) also was investigated.
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Results—GBCs had better diagnostic accuracy than standard OCTA and OCT parameters with 

AUROCs ranging from 0.90 to 0.93 and 0.64 to 0.91, respectively. The Full GBC (AUROC=0.93) 

performed significantly better than the ONH GBC (AUROC=0.91, p=0.036) and the Vessel 

Density GBC (AUROC=0.90, p=0.010). All other GBCs performed similarly. The mean relative 

influence of each parameter included in the Full GBC identified a combination of macular 

thickness and ONH VD measurements as the greatest contributors.

Conclusion—GBCs that combine OCTA and OCT macula and ONH measurements can improve 

diagnostic accuracy for glaucoma detection compared to most, but not all, instrument provided 

parameters.

INTRODUCTION

Optical coherence tomography angiography (OCTA) is a relatively new optical imaging 

technology that allows non-invasive measurement of vessel density using two subsequent 

aligned OCT images to detect between-image changes in relative voxel position that indicate 

the presence of flowing blood. OCTA vessel density measurements (percentage of OCTA 

image occupied by regions of flowing blood) have been shown to be lower in glaucoma 

suspect and glaucoma eyes compared to healthy eyes, to decrease with increasing glaucoma 

severity as described by decreasing standard automated perimetry visual field (VF) mean 

deviation (MD) and to be lower in the corresponding perimetrically unaffected hemiretina of 

eyes with hemifield-specific VF defects.eg. 1–10 In addition, baseline parapapillary and 

macular vessel density measurements are reportedly predictive of more rapid glaucoma-

related thinning of the retinal nerve fiber layer (RNFL)11 and a significant decrease in 

superficial macular vessel density has been reported over time in glaucoma eyes in 

conjunction with a thinning of the ganglion cell complex (GCC).12

Current OCTA instruments provide limited analytics beyond global and local vessel density 

measurements obtained from the perifoveal and peripapillary regions. Available numeric 

vessel density measurements are difficult to assess in part because comparisons to standard 

normative measurements from healthy eyes used to determine outside of normal limits 

measurements are not available. Therefore, vessel density measurements obtained using 

OCTA currently are difficult to interpret beyond subjective visual inspection of en face 
images and comparison of relative regional vessel densities.

We and others have shown over the last decades that machine learning (ML) models 

developed from information available in optic nerve head photographs, optical imaging 

measurements and visual field measurements, alone and combined, can improve 

classification of healthy and glaucoma patient eyes compared to expert assessment, raw 

measurements and commercially available instrument manufacturer-provided measurement 

parameters.13–35 Results provided by ML models allow relatively easy assessment because 

they can provide output in the form of probability of disease based on information learned 

from training data. The purpose of the current study was to determine if ML models trained 

and tested on OCTA vessel density measurements can improve disease classification 

compared to vessels density measurements alone. We also compared and combined localized 

OCTA vessel density measurements with localized OCT tissue thickness measurements to 
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determine if combining available regional measurements would improve classification, to 

evaluate whether combining macular and optic nerve head measurements could contribute to 

clinical decision making.

MATERIALS AND METHODS

This was a cross-sectional comparison of diagnostic tools involving a group of patients with 

primary open-angle glaucoma (POAG, as defined below) and a group of healthy control 

participants from the Diagnostic Innovations in Glaucoma Study (DIGS) (ClinicalTrials.gov 

identifier: NCT00221897). The DIGS is an ongoing prospective, longitudinal study at the 

Hamilton Glaucoma Center, University of California, San Diego, designed to evaluate 

anatomical structure in glaucoma. Details of the DIGS protocol have been described 

elsewhere.36 All methods adhered to the tenets of the Declaration of Helsinki and the Health 

Insurance Portability and Accountability Act and were approved by the Institutional Review 

Board of the University of California, San Diego.

Participants

Eligible participants had best corrected visual acuity of 20/40 or better and open angles on 

gonioscopy at study entry. All participants were older than 40 years. Participants were 

excluded if they had a history of intraocular surgery (except for uncomplicated cataract or 

uncomplicated glaucoma surgery). Eyes with coexisting retinal disease, uveitis, or non-

glaucomatous optic neuropathy also were excluded. Diabetic participants with no evidence 

of retinal involvement were included.

Eyes of healthy participants had healthy appearing optic discs and RNFLs OU based on 

masked assessment of digital stereoscopic photographs with no history of repeatable 

abnormal VF results (HFA II with 24–2 testing using the Swedish Interactive Thresholding 

Algorithm, Carl Zeiss Meditec Inc., Dublin, CA) and no history of elevated intraocular 

pressure (IOP) (all IOP ≤ 21 mm Hg) in either eye. Normal VFs were defined as those with 

MD and pattern standard deviation (PSD) within 95% confidence limits (95% CI) and a 

Glaucoma Hemifield Test (GHT) result within normal limits.

Glaucoma patient eyes had at least 2 consecutive and reliable (defined below) VF 

examinations with either PSD ≥ 5% or a GHT result outside of the 99% normal limits with 

similar patterns of glaucoma-related defects in consecutive exams. Severity of glaucoma was 

restricted from early to moderate with MD ≥ −12 dB.

Visual Field Testing

All VFs were evaluated by UC San Diego Visual Field Assessment Center (VisFACT) 

personnel based on a standardized protocol.36 Visual fields with more than 33% fixation 

losses or false-negative errors or more than 15% false-positive errors were automatically 

excluded. Visual fields exhibiting a learning effect (i.e. initial tests with reduced sensitivity 

followed by consistent improvement in a series of tests) also were excluded. Visual fields 

were further reviewed for lid and rim artifacts, fatigue effects, evidence that the visual field 

results were due to a disease other than glaucoma (e.g. homonymous hemianopia), and 

inattention. Test results indicating such characteristics were excluded.
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Optical Imaging

The commercially available Avanti Angiovue (Optovue Inc. Fremont, CA) combines OCTA 

and OCT imaging in a single system. Avanti Angiovue OCTA (software version 

2017.1.0.151) and OCT (software version 5.6.3.0) images of the macula and optic nerve 

head were obtained using the Avanti on the same day by the same instrument operator. The 

Avanti system for measuring vessel density and tissue thickness has been described 

previously.37

For OCTA vessel density measurements, each volume is composed of 2 consecutive B-scans 

captured at each fixed position. The instrument-specific split-spectrum amplitude-

decorrelation angiography (SSADA) method is used to capture the dynamic motion of the 

red blood cells between consecutive B-scans to provide a high-resolution 3-dimensional 

visualization of the perfused retinal vasculature.37 Vessel density is calculated automatically 

as the proportion of measured area occupied by flowing blood vessels defined as pixels 

having decorrelation values acquired by the SSADA algorithm above the threshold level.

Avanti high density 6 × 6 mm2 field of view scans centered on the macula and high density 

4.5 × 4.5 mm2 field of view scans centered on the optic nerve head (ONH) were acquired 

and included in the analysis. Macula scan parafoveal measures are obtained within an 

annular region with an inner diameter of 1 mm and outer diameter of 6 mm. To obtain 

OCTA vessel density measurements each scan is automatically segmented by the Angiovue 

software to visualize the instrument defined macular superficial capillary plexus and deep 

capillary plexus. The ONH circumpapillary measures are obtained from within a 10 pixel–

wide annulus with an inner diameter of 3.45 mm.

Ganglion cell complex (GCC, composed of retinal nerve fiber layer, ganglion cell layer and 

inner plexiform layer) thickness and circumpapillary retinal nerve fiber layer (cpRNFL) 

thickness measurements derived from the OCTA scans also were included in the analyses. 

All described measurements are included in standard clinical printouts and can be 

automatically exported from the Avanti instrument.

To construct parsimonious ML models, we selected 18 macula OCTA parameters from the 

superficial and deep capillary plexuses, 8 ONH OCTA parameters including parameters with 

and without large vessels removal, 9 macula OCT GCC thickness parameters and 3 ONH 

OCT cpRNFL thickness parameters. Chosen parameters are all listed along the x-axis of 

Figure 1 (see Results) and are shown in Supplemental Tables 1 and 2.

OCTA and OCT image quality review was completed according to the UC San Diego 

Imaging Data Evaluation and Analysis (IDEA) Reading Center standard protocol. Images 

with a quality index (QI) < 4, poor clarity, residual motion artifacts visible as irregular vessel 

patterns or disc boundaries on the enface angiogram, image cropping or local weak signal 

due to vitreous opacity, or segmentation errors that could not be corrected were excluded.

Gradient Boosting Classifier (GBC)

The GBC is an ensemble classifier that attempts to decrease error by resampling and varying 

the weights for individual weak learners in order to increase classification accuracy.38 In an 
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empirical comparison study of supervised learning algorithms comparing random forests 

and boosted decision trees, the GBC had the best overall performance.39 Motivated by this 

success, we chose to use gradient boosting as our classifier. An advantage of GBC is that it 

provides output in the form of probability of glaucoma that may be more useful for clinical 

interpretation than global or local percent vessel density and tissue thickness measurements 

alone. GBCs also provide a metric to assess the relative influence of each parameter 

included in the classifier.40

Up to five images from each healthy and each patient eye obtained longitudinally were 

included to increase the sample size and generate more generalizable models resulting in 

169 images of healthy eyes and 364 images of glaucoma eyes. Because multiple images 

were included from a single studied eye, images were initially weighted by the number of 

images available for each eye (e.g. for an eye providing five images, each would be included 

in the model with initial weight 0.2). Separate from the ten-fold cross-validation used to 

assess model performance (described below), a five-fold cross validation was used within 

each of the ten training sets to select the optimal number of boosting iterations and prevent 

overfitting the training data. We report the mean and range of the relative influence of each 

variable included in the Full GBC across all cross-validation folds.

Statistical Analyses

We developed 4 GBCs combining 1) all macula vessel density and thickness measurements 

(Macula GBC), 2) all ONH vessel density and thickness measurements (ONH GBC), 3) all 

vessel density measurements from the macula and ONH (Vessel Density GBC), 4) all tissue 

thickness measurements from the macula and ONH (Thickness GBC) to compare models 

based on different location specific measurements to each other and to compare models 

based on different structural measurements to each other. We also developed a fifth Full 

GBC combining all Avanti parameters included in the above GBCs to determine if 

combining macula and optic nerve measurements would improve classification overall. An 

improvement in classification here would suggest that imaging both the macula and optic 

nerve could improve diagnostic accuracy in patients with early to moderate glaucoma.

Areas under receiver operating characteristic curves (AUROCs) and sensitivities at fixed 

specificities of 80%, 85%, 90% and 95% were used to describe and compare the ability of 

individual vessel density and tissue thickness parameters and GBCs to discriminate 

glaucomatous eyes from healthy eyes. Estimates of the probability of glaucoma given by 

GBCs were calculated using logistic regression.

Ten-fold cross-validation was used to provide out-of-sample predictions for each logistic and 

GBC to avoid over optimistic estimates of classification accuracy. First, the full complement 

of healthy participants and glaucoma patients (and each of their contributed images) was 

randomly divided into 10 approximately equal, exhaustive and mutually exclusive subsets. 

Next, each model was trained on nine subsets and subsequently used to generate out-of-

sample predictions of the probability of glaucoma on the tenth subset. This sequence was 

repeated 10 times, with each subset serving as the test set one time, so that each tested 

subject was never part of its training set and was tested only once.
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Bias-corrected confidence intervals and hypothesis tests for AUCs were conducted via a 

clustered bootstrap with 2,000 resamples. Due to the exploratory nature of this analysis, no 

type I error correction for multiple comparisons was applied (as recommended by Bender & 

Lange41). GBC modeling and all statistical analyses were performed using the R statistical 

programming software (version 3.5.2). The R programming language used is an open-source 

statistical software that is available free as is the package ‘gbm’ used for GBC modelling 

herein. Please see42,43 for R GBM availability and usage information.

RESULTS

The study included 108 eyes of 60 healthy study participants and 193 eyes of 143 glaucoma 

patients. Summary demographic variables and measurements are shown in Table 1. 

Glaucoma patients were significantly older than healthy participants (mean age = 72.3 years 

[95% CI = 70.6, 73.9 years] vs. 61.5 years [95% CI = 58.9, 64.1 years], respectively; p < 

0.001) at the time of first examination. In addition, glaucoma patients had a significantly 

higher rate of systemic hypertension (55.9% vs. 40%, respectively; p = 0.046) and diabetes 

(16.8% vs. 5.0%, respectively; p = 0.024) than healthy participants. As expected, glaucoma 

eyes had a lower VF mean deviation (MD) than healthy eyes (−5.70 dB vs. 0.05 dB, 

respectively, p < 0.001; values presented in Table 1 are MD at the time of first imaging visit 

if multiple imaging visits were included). Glaucoma patients also had a slightly longer mean 

axial length (24.4 mm [95% CI = 24.2 mm, 24.6 mm] for glaucoma eyes and 23.9 mm [95% 

CI = 23.5 mm, 24.2mm] for healthy eyes; p = 0.014).

The standard OCTA and OCT parameters with the highest AUROC were whole image GCC 

thickness (AUROC = 0.91, 95% CI = 0.86, 0.94) and whole image vessel density (AUROC 

= 0.91, 95% CI = 0.86, 0.94), followed by cpRNFL thickness (AUROC = 0.89, 95% CI = 

0.84, 0.93) and perifoveal superficial vessel density measured within an annulus between 3 

mm and 6 mm from the fovea (AUROC = 0.84, 95% CI = 0.78, 0.89). AUROCs and 

sensitivities at fixed specificities of 80%, 85%, 90% and 95% for all investigated OCTA and 

OCT parameters are available in Supplemental Table 1.

AUROCs for classifying eyes as healthy or glaucomatous for all 5 evaluated GBCs and 

sensitivities at fixed specificities are presented in Table 2 (see also Figure 2 which also 

includes AUROC results for cpRNFL thickness). The diagnostic accuracy of the Full GBC 

(AUROC = 0.93, 95% CI = 0.89, 0.96) was significantly better than that of both the ONH 

GBC (AUROC = 0.91, 95% CI = 0.86, 0.94; p = 0.036) and Vessel Density GBC (AUROC = 

0.90, 95% CI = 0.86, 0.93; p = 0.010). Sensitivities at each of the chosen fixed specificities 

were similar across GBC models. See Supplementary Tables 1 and 2 for more detail.

All GBCs showed significantly better diagnostic accuracy than all superficial and deep layer 

macula OCTA vessel density measurements (macula vessel density AUROCs ranged from 

0.64 to 0.84; all comparisons p ≤ 0.006) and the Full GBC showed significantly better 

diagnostic accuracy than all ONH cpRNFL thickness measurements investigated (ONH 

cpRNFL thickness AUROCs ranged from 0.85 to 0.89; all comparisons p ≤ 0.014). The full 

GBC did not, however, improve classification compared to one of nine GCC thickness 

measurements (whole image GCC thickness, p = 0.099) and two of eight ONH OCTA vessel 
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density measurements (whole image vessel density, p = 0.113; circumpapillary vessel 

density, p = 0.095). AUROC comparisons among all GBCs and all investigated OCTA and 

OCT parameters are available in Supplemental Table 2.

Figure 3 shows the estimated probability of glaucoma distribution for all GBCs and 

indicates that images from glaucoma eyes were more accurately identified than images from 

healthy eyes. The distribution of probabilities was most accurate for the Full GBC which 

estimated more healthy eyes as having between 0% and 10% probability of glaucoma and 

more glaucoma eyes as having between 90% and 100% probability of glaucoma than other 

GBCs. Figure 1 shows the mean relative influence of each investigated parameter included 

in the full GBC and indicates that, for the current study population, the best classifier model 

is a combination of macular GCC thickness and ONH circumpapillary vessel density 

measurements. This finding suggests that combining tissue thickness and vessel density 

measurements obtained from both macula and ONH images may improve the classification 

of early to moderate glaucoma compared to any of the investigated imaging protocols alone.

DISCUSSION

The current study compared gradient boosting classifiers trained on combinations of whole 

image and regional OCTA and OCT macula and optic nerve head parameters to individual 

OCTA and OCT parameters for classifying images from healthy and glaucoma eyes. In the 

best case, the full GBC (that incorporated all selected OCTA and OCT parameters) showed 

better diagnostic accuracy than all but 3 individual parameters. Gradient boosting classifiers 

performed well at the classification task with AUROCs ranging from 0.90 to 0.93. These 

results show promise for combining structural measurements (i.e. vessel density and tissue 

thickness) obtained from two Avanti scanning protocols (i.e. macula and ONH) for improved 

detection of early to moderate glaucoma. To the best of our knowledge, this is the first study 

to combine both vessel density and tissue thickness in a single classifier model. It is, 

however, unclear whether the difference in whole AUROCs are of primary clinical 

importance because high sensitivities at low specificities contribute substantially to AUROC 

areas. Rather sensitivities at high specificities may be more clinically relevant. Results 

shown in Supplemental Table 1 indicate that the Full GBC was more sensitive at 90% 

specificity than all standard parameters investigated. Two macula GCC thickness 

parameters, six ONH vessel density parameter and one cpRNFL parameter were more 

sensitive than the least sensitive GBC (ONH GBC).

Other studies have investigated the combination of multiple individual structural parameters 

for classifying eyes as healthy or glaucomatous.44–46 Blumberg et al.44 compared the 

diagnostic performance of 19 individual ONH and RNFL Cirrus OCT parameters to a 

multivariable predictive model using logistic regression. The multivariable model improved 

the discrimination between glaucomatous and non-glaucomatous eyes (AUROC = 0.892) 

compared to the best single RNFL parameters (average RNFL, AUROC = 0.855). However, 

this improvement was not statistically significant. Baskaran et al.45 showed that in early 

glaucoma (MD ≥ −6.0 dB) the diagnostic performances of linear discriminant analysis 

(LDA) and Classification And Regression Tree (CART) combining Cirrus OCT ONH and 

RNFL parameters were similar to those of any single parameter investigated. For 

Bowd et al. Page 7

Am J Ophthalmol. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



comparisons including eyes with early to moderate glaucoma (MD ≥ −12.0 dB) however, 

both the CART model (AUROC = 0.99) and the LDA (AUROC = 0.94) improved diagnostic 

accuracy compared to that of any of the single parameter (AUROC range = 0.61–0.89). 

Yoshida et al.46 used random forest classification to discriminate between glaucomatous and 

healthy eyes using a total of 151 Topcon OCT peripapillary RNFL, macular RNFL and 

ganglion cell-inner plexiform layer parameters. Diagnostic performance of the random forest 

combination of parameters (AUROC = 0.985) was significantly better than any individual 

parameter. Classifier performance reported in the Yoshida study should be compared to 

performance in the current study with caution because of their inclusion of several advanced 

glaucoma eyes (range: MD = 1.8 dB to −23.2) possibly driving the very large AUROCs 

(although average MD was −5.6 dB, similar to that reported in the current study).

Numerous other studies have attempted to improve diagnostic accuracy in glaucoma by 

combining both anatomical and functional measurements and have shown these 

combinations to be superior to single structural or functional measurements. 13,47,48 In 

particular, several studies have investigated different machine learning algorithms to 

combine structural and VF measurements to assess diagnostic accuracy in healthy and 

glaucomatous eyes.47,49–52 Combining OCTA measurements with functional measurements 

using machine learning classifiers is a future research topic of our group.

Results from the current study confirm that combining structural measurements using MLCs 

(and LDA) can improve classification of healthy and glaucomatous eyes. The magnitude of 

the improvement varies among methods based on the parameters used in the models and the 

characteristics of the population, particularly disease severity. However, combining 

structural measurements for detection of early to moderate disease, as suggested specifically 

by the current study, is not without limitations. For instance, clinicians may be limited to a 

single imaging evaluation at each visit due to time constraints or technician availability. This 

issue theoretically could be resolved by using a wide-angle imaging protocol with a field of 

view that includes both the macula and ONH regions.

This study has possible limitations. It may be suggested that including a large number of 

parameters in each GBC resulted in classifier over-fitting. However, ten-fold cross-validation 

was used to provide out-of-sample predictions for each logistic and GBC to avoid over 

optimistic estimates of accuracy. In addition, an increased sample size would allow division 

of available data into independent training and test sets. We believe that the use of cross-

validation in the current study is an acceptable substitute and given the limited sample size, 

likely is a better method of assessing classifier performance. In addition, significantly more 

glaucoma patients than healthy participants had hypertension and diabetes (Table 1), both of 

which can affect blood flow. Following the recommendations of Janes and Pepe53 for 

adjusted AUROC (adjusting for covariates which impact marker observations among 

controls), we first performed an exploratory analysis of differences in vessel density 

measures amongst healthy subjects with and without hypertension. We did not find a 

significant difference in any macula or ONH vessel density measures (all p > 0.104) and 

thus did not pursue an adjusted analysis. Due to the low number of diabetic healthy subjects, 

we are unable to adjust for this covariate in any analysis.
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In conclusion, the current results indicate that machine learning gradient boosting classifiers 

combining OCTA and OCT macula and optic nerve head measurements can improve 

diagnostic accuracy in early to moderate glaucoma compared to most, but not all, single 

parameters. Such techniques could be incorporated into instrument software to improve 

clinical usefulness.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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This cross-sectional observational study compares gradient boosting classifier (GBC) 

analysis of optical coherence tomography angiography (OCTA)-measured vessel density 

(VD) and OCT-measured tissue thickness to standard OCTA VD and OCT thickness 

parameters for classifying healthy eyes and eyes with early to moderate glaucoma. 108 

healthy eyes and 193 glaucomatous eyes with OCTA and OCT imaging of the macula 

and optic nerve head (ONH) were studied. Several GBCs were evaluated that combined 

macula and ONH VD and thickness measurements. Results suggest that GBCs that 

combine OCTA and OCT macula and ONH measurements can improve diagnostic 

accuracy for glaucoma detection compared to most, but not all, instrument provided 

parameters.
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Figure 1: 
Mean relative influence over each cross-validation fold in the Full Gradient Boosting 

Classifier (Full GBC). The upper bar represents the maximum relative influence observed.
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Figure 2: 
Area under the receiver operating characteristic curve (AUROC) plots for each Gradient 

Boosting Classifier (GBC).
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Figure 3: 
Estimated probability of glaucoma from each Gradient Boosting Classifier (GBC) for 

healthy and glaucoma images.
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Table 1:

Patient and eye characteristics by diagnosis. Mean values and 95% confidence intervals are shown for 

continuous variables. Statistical significance of differences in continuous and categorical variables are 

determined by two-sample t-tests and Fisher’s exact test for patient level variables (respectively) and linear 

mixed effects models for eye level variables.

Diagnosis

Healthy (n = 60, 108 Eyes) Glaucoma (n = 143, 193 Eyes) p-value

Age (years) 61.5 (58.9, 64.1) 72.3 (70.6, 73.9) <0.001

Sex (% Female) 75.0% 50.3% 0.001

Race (%)

 Non-White 45.0% 35.0% 0.073

 White 53.3% 65.0%

 Unknown 1.7% 0.0%

Hypertension (%) 40.0% 55.9% 0.046

Diabetes (%) 3 (5.0%) 24 (16.8%) 0.024

MD (dB) 0.05 (−1.17, 1.27) −5.70 (−6.50, −4.90) <0.001

IOP (mmHg)
a 15.0 (13.9, 16.1) 14.5 (13.8, 15.2) 0.451

AL (mm)
b 23.9 (23.5, 24.2) 24.4 (24.2, 24.6) 0.014

CCT (μm)
c 547.7 (536.5, 558.8) 536.8 (529.6, 543.9) 0.109

Disc or BMO? Area (mm2) 1.9 (1.8, 2.1) 1.9 (1.8, 2.0) 0.672

Missing a29, b7, and c11 values.
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Table 2:

Predictive performance metrics (areas under the receiver operating characteristic curves, AUROC; and 

sensitivities at fixed specificities) for each gradient boosting classifier (GBC). Significance is determined using 

a paired bootstrap test.

Sensitivity At

AUROC (95% CI) 80% Spec. 85% Spec. 90% Spec. 95% Spec. AUROC p-value vs. Full GBC

Full GBC 0.93 (0.89, 0.96) 87.1% 86.0% 79.1% 64.6% -

Macula GBC 0.91 (0.87, 0.95) 87.6% 80.8% 78.0% 65.7% 0.105

ONH GBC 0.91 (0.86, 0.94) 86.3% 81.3% 73.9% 66.2% 0.036

Vessel Density GBC 0.90 (0.86, 0.93) 86.5% 81.0% 76.1% 63.7% 0.010

Thickness GBC 0.91 (0.87, 0.95) 88.5% 87.4% 82.7% 61.5% 0.094
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