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Learning a Head-Tracking Pointing Interface

Muratcan Cicek1 and Roberto Manduchi1

University of California, Santa Cruz, USA
mcicek@ucsc.edu

Abstract. For people with poor upper limb mobility or control, inter-
action with a computer may be facilitated by adaptive and alternative
interfaces. Visual head tracking has proven to be a viable pointing inter-
face, which can be used when use of the mouse or trackpad is challenging.
We are interested in new mechanisms to map the user’s head motion to
a pointer location on the screen. Towards this goal, we collected a data
set of videos of participants as they were moving their head while follow-
ing the motion of a marker on the screen. This data set could be used
to training a machine learning system for pointing interface. We believe
that by learning on real examples, this system may provide a more natu-
ral and satisfactory interface than current systems based on pre-defined
algorithms.

1 Introduction

Interacting with a computer via traditional interface mechanisms requires good
upper limb and hand control. For people with motor impairment, tasks such as
typing and pointing (moving the pointer with the mouse or a trackpad) may
become difficult or impossible [24]. Assistive technology solutions for computer
interaction are designed to receive user input in alternative ways, or through
entirely different channels such as sound or vision. For example, dictation systems
can be used in lieu of typing, but only if the user has understandable speech (e.g.,
they may be useless for someone with dysarthria). As for pointing, computer
vision-based head tracking has gained popularity in recent years, with several
applications using this technology already available [2,6,15,17,18]. These systems
use a camera (e.g., embedded in a computer screen) to track the user’s head
motion using computer vision algorithms. Typically, measurements are taken in
terms of a “face box" or of a specific facial figure (e.g. the nose tip [4]). These
measurements are then mapped to the pointer location in the screen using a
pre-defined algorithm.

A main drawback of this approach is that the mapping from head motion to
pointer location is not necessarily representative of the user’s intent. For example,
moving one’s head to the right may lead to a rightwards motion of the pointer
that is faster than what the user intended. This may result in an overshoot, which
then needs to be corrected by a leftward head motion. In practice, the user needs
to learn to use the system with head patterns that may not feel “natural". While
these algorithms typically afford some parameter tuning, the general mapping
mechanism remains unchanged.
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We propose a user-centric approach to designing a pointing algorithm based
on head tracking. Rather than imposing a pre-defined algorithm mapping head
position to pointer position, we would like to learn a flexible mechanism that
adapts to the user’s intent. As a first step towards this goal, we created a data set
where the measured data (head position from video frames) is associated with
the desired location of the pointer. To build such a data set, we resorted to the
following strategy. We showed a well-visible marker (a white disk) moving on the
screen in specific patterns. While watching the marker moving, participants were
asked to move their head “as if” they were controlling the marker themselves.
Images were collected by a screen-embedded camera, and time-registered with
the location of the marker on the screen at each time. We believe that the videos
thus recorded are representative examples of the way participants would move
their head if asked to move the cursor to replicate the same trajectories traversed
by the pattern they saw moving on the screen.

This paper describe our data collection strategy, which was accomplished
remotely due to COVID-19 social distancing constraints. We also present exam-
ples of the dynamic of a specific facial feature (the nose tip) while participants
were following different trajectories of the pattern in the screen, and provide a
simple analysis of the variance of the location measured for this feature across
participants.

2 Related Work

There are various head-based pointing methods developed by the researchers
including physical head-mounted styluses like Finger-nose [21] for touchscreens,
and new sophisticated products like Quha Zono [20] and Glassouse [10]. In ad-
dition physical styluses, there are also software-based solutions [3, 6, 15, 17, 18]
thanks to the front cameras and the advancements in Computer Vision. Vision-
based head-based pointing shares the same fundamental with the gaze-based
mechanisms [12,16,19] but instead it tracks the movement of the head rather than
eye balls. Comparisons between head-based and gaze-based interactions [1, 13]
suggest that head-based techniques are more voluntary, stable and have greater
accuracy while gaze-based techniques may be faster for some specific tasks like
typing [9].

Most of the visual-based head-based pointing solutions rely on off-the-shelf
face tracking algorithms to capture user feedback (i.e. head movement) and
convert this input into pointing coordinates on the screen. We know that Enable
Viacam [17] benefits from the Haar Cascade algorithm [25] for face detection by
evaluating its source code. Camera Mouse [3] also allows users to choose the input
mechanism for pointing. Besides face tracking, it also includes point tracking
based on simple optical flow calculation. In this setting, users can determine
a small patch on their face and the software tries to keep track of this patch
on the following frames. On the other hand, HeadGazeLib [5] utilizes the depth
sensors of the device the locate user face with respect to the camera. While other
methods [4, 15] use advanced deep learning algorithms to detect and track the
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facial features from RGB images, their conversion functions are again tailored by
the developers and involve no machine learning. To the best of our knowledge,
there is no visual-based head-based pointing solution that aims to learn pointing
from user’s appearance directly.

3 Data Collection

We recruited 8 participants (3 female) from our university. One participant has
a motor impairment due to cerebral palsy, and is a regular user of head-based
pointing technology. Although this is a relatively small sample size, it is adequate
for a proof-of-concept. We will consider a larger set of participants (including
more participants with motor impairment) in future work. The goal of this study
was to collect videos of the participants as they moved their head, following the
path of a small white disk shown on their computer screen. The participants
were instructed to pretend that they were controlling the white disk with their
head motion. They were asked to not just follow the disk with their eye gaze,
but by moving their head. No other instructions (e.g., how much to move their
head, whether to rotate it vs. move it, etc.) were given. Hence, we can assume
that the head motion of each participant was as “natural” and spontaneous as it
could be.

We first generated a number of “trajectory videos" with a small white disk
moving along a predetermined trajectory against a black background. Some of
these trajectories were repeated at a slower velocity. Some trajectories included
“pause” points, where the disk would stop for one second. Participants were able
to see the future path of the disk (shown with dimmed brightness), so that
they would know in advance where the disk would move next. Examples of disk
trajectories are shown in Fig. 1. Note that in all trajectories, the disk started
and ended at the center of the screen. We uploaded these trajectory videos (17
in total) on YouTube and created separate playlists for each participant, with
the order of the video randomly permuted for each playlist.

The study was conducted remotely due to the social distancing requirements
imposed by the COVID-19 pandemic. We utilized the Zoom platform to run the
data collection sessions, including recording the participants’ visual input during
the pointing tasks. For each participant, we scheduled a one-hour online meeting
via Zoom. We collected information about the computer they would use for the
test, whether they would use the embedded camera in the screen or an external
camera,the screen size and resolution. In the teleconference, we explained to
each participant how the test would be conducted, then asked them to go to
the YouTube site at the playlist assigned to them, and to expand the browser
window to fulls screen. In this way, participants would only interact with the
moving disk in the trajectory videos, while images of their head were taken by
the camera and recorded in the cloud via Zoom.

Consecutive trajectory videos within the playlist were separated by 10 second
intervals. Participants could use these intervals of time to briefly rest, and they
were also allowed to pause the playlist in between trajectory videos. An acoustic
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signal was played at the beginning and at the end of each trajectory video in
the playlist. This was used to synchronize the video displayed to the user, with
the video of the user recorded via Zoom (“user video"). These user videos were
recorded at a resolution of 1280×720 pixels and at a rate of 25 frames per second.
The whole session for each participant as recorded by Zoom was exported as a
single video for simplicity. We then cropped individual user videos, using as
reference the acoustic signal recorded at the beginning and at the end of each
trajectory video. In this way, we obtained pairs of synchronized trajectory-user
videos, to be used for our analysis. 17 such video pairs were recorded for each
user. We had to discard only 2 such video pairs, one due to noticeable latency
caused by Zoom, and one because the video was mistakenly interrupted by the
experimenter. In total, we obtained 136 synchronized video pairs from 8 separate
participants, with the length of the user videos varying between 536 and 2267
frames.

Fig. 1: Samples of trajectory videos. The whole trajectory of the white disk is
visible, with lighter color indicating earlier locations in the trajectory. Small
circles correspond to location where the white disk stopped for one second.

4 Head Motion Computation

One of the goals of this study is to explore whether the motion of the white
disk on the screen could be predicted from the user video. For this purpose, we
first extracted a number of visual “features", that can be used to describe the
user head’s motion. These features can then be mapped, using suitable machine
learning mechanisms, to the position of the disk on the screen.
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Fig. 2: Facial landmarks produced by the PFLD algorithm [11] for one of the
participants, taken at the time the white disk appeared in the location shown in
the left half of the figure.

A very simple, though perhaps not very informative, feature is the loca-
tion of the “face box", defined as a rectangle encompassing the whole face im-
age [7, 14,23]. A richer description can be obtained by identifying specific facial
landmarks. We experimented with three state-of-the-art facial landmark detec-
tion models [11, 26, 27]. For example, Fig. 2 shows the location of the facial
landmarks produced by the PFLD algorithm [11] for one of the participants, at
the times when the white disk being followed was situated in vicinity of the four
corners of the screen.

A higher-level feature that we will consider in future work is the pose (3-D
location + orientation) of the user’s head, which can be computed using 3-D
deformable models (e.g., [8, 22,28]).

5 Trajectories Analysis

It is instructive to compare the trajectory of the visual features being tracked,
against that of the white disk on the screen. This can provide some intuition
about how a user would move their head in relation to the desired pointer loca-
tion. In Fig. 3, we show the trajectory of a specific facial feature, the user’s nose
tip, for two participants (P2 and P6), viz-a-viz the trajectory of the white disk.
Note that the nose tip location has been used used successfully for head-based
pointing control in prior work [4]. While the trajectories of the nose tips may
vaguely resemble the trajectory of the white disk on the screen, it is clear that
a precise one-to-one positional mapping would be hard if not impossible.

The trajectories of the nose tip feature shown in Fig. 3 are clearly different
across the two considered participants. This is to be expected, since the dy-
namic of head motion associated with tracking the white disk on the screen is
completely subjective (remember that participants were not given instructions
about how to move their head). In some cases (see e.g. the last case of Fig. 3),
a positional bias is visible (possibly because the users positioned themselves at
different locations in front of the camera). In these cases, the bias could be easily
recovered and compensated for.
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Fig. 3: Trajectories of the nose tip features for two different participants (P2 and
P6) associated with the white disk trajectories shown in the left half of each row.
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Fig. 4: Average standard deviation of the X and Y coordinate of the nose tip
across participants for each trajectory video.

In order to quantify the difference between trajectories across participants,
we computed a measure of variance as follows. For each trajectory video, we
measured, at each time, the variance in the X and Y coordinate of the nose
tip location across all participants. (We excluded P5 in this analysis, as facial
feature detection was unreliable for this participant.) Then, we computed the
average of these variances over the whole trajectory. The squared root of the
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average variance (i.e., the standard deviation) for the X and Y coordinates of
the nose tip are plotted for each trajectory video in Fig. 4. These values vary
between 28 and 42 pixel for X, and between 31 and 53 pixels for Y (remember
that the recorded images have resolution of 1280× 720 pixels.)

6 Conclusions

This paper presents a unique data set collected for the purpose of understand-
ing the different head motion dynamics adopted by different participants while
imagining to control a moving disk on a screen. We are currently using this data
set to train a machine learning system that can predict the desired location of
the cursor based on the user’s head motion. Our hope is that, by learning from
videos collected in response to a stimulus on the screen, this system can do a bet-
ter job of mapping image feature to cursor locations than current, hand-tailored
algorithms.

Our initial analysis of the collected data shows that there is a fairly large
variance of the location of facial features (e.g., the nose tip) across participants
while following the same disk trajectory. This suggests that a certain degree of
personalization may be necessary, in order to adjust the algorithm to the specific
head dynamics of each user.
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