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A network for simulating pre-colonial migration in
the Americas
Gereon A. Kaiping
Department of Geography, Universität Zürich, Switzerland
gereon.kaiping@geo.uzh.ch

Abstract
Because history is inaccessible to experimentation, agent-based and other simulations are a main
source to explore theories about pre-historical humanity. Continent-scale migrations are of great
interest in this context. With advances in computing and GIS, tracking entire populations migrating
across continents become accessible in simulation. In this paper, I present a network representing
North and South America for such tasks. The nodes roughly follow a hexagonal grid and represent
small territories around a focal point. They are annotated with the carrying capacity for hunter-
gatherers per ecoregion in the vicinity. The edge weights represent the travel times between the
focal points on foot or by boat. I validate the network by comparing its predicted optimal path
between Nashville, TN and Natchez, MI with the route of the historical Natchez Trace.
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1 Introduction

Agent-Based Models (ABM) can be a useful tool for the investigation of complex systems
not otherwise accessible to the researcher. ABMs have been fruitfully applied to study
the evolution of cooperation and culture. In the wider historical sciences, ABMs can help
archaeologists and paleontologists interpret scarce data [2, 4]. However, most of these models
are very abstract in either the interactions between the agents or their representation of
geography. Easily available data structures, such as weighted graphs with metadata, could
help advance computational models towards complex interactions in the context of real or at
least realistic geography.

The human settlement history of the pre-historic Americas is unclear. While most
evidence points to humans moving from East Beringia into the wider North America around
14’000 yBP, a small number of paleontologists highlight finds which suggest that humans
may have lived in the Americas much earlier. Agent-Based Models with a detailed account
of human migration could help to shed light on the human history of the Americas. In this
short paper, I describe a network that can be used to model the dispersal of humans over
North and South America. While the ultimate goal would be to provide a dataset that allows
the modelling of ancient migrations, here I restrict myself to contemporary topography and
ecology as a proof-of-concept that is at least partially accessible to evaluation.

2 Design Choices

The network I describe in this paper should be suitable for ABMs of human migration on the
continental scale. For such models, long-term interactions between humans are an important
aspect, and the network needs to provide an easy framework to facilitate these interactions.
In a network structure, co-locality between agents is a useful condition for social interactions.
Nodes will therefore represent an area of a radius where regular interactions between humans
tend to happen. Following [10], an interaction radius of 5 km seems appropriate, so each
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2 Pre-historic migration network

node should represent a territory of extending ca. r = 5 km around a central location (thus
having an area of roughly πr2 = 78 km2), which I shall refer to as ‘core location’ of the
territory to distinguish from locations that are central given other measures.

It has been shown that language families spread easier east-west than north-south, due
to climate varying much more with latitude than with longitude. Local biome can also play
a role in the dispersal of a language family, as argued eg. by [7, 6], and Eco-Cultural Niche
Modelling [1] has a variety of archaeological applications. This suggests that including a
measure of ecology in addition to resource availability or population capacity will be necessary
for generating realistic migration patterns. [15] argue that models should take into account
not only the amount (e.g., in terms of caloric content) of resources, but also their accessibility.
This suggests that the topography of resources around core locations is important.

I construct a cost function that describes the effort moving from one core location to
another, in terms of raw energy expenditure and missed foraging opportunities due to time
spent on the trail. For land-based travel, I estimate walking times using an empirical function
that improves upon earlier heuristics such as Tobler’s hiking function. [17] use very specific
metabolic costs depending on load, body weight, and other properties of the walker, which
are however narrowly clipped and proportional to the time travelled outside the central range
of slopes. I therefore parameterize the migration network in terms of travel time, instead of
giving metabolic costs, according to the empirical formulas derived from [9]. Similar to [11],
I derive travel times along rivers from a constant canoeing speed plus or minus river flow
speeds, and over sea using the same constant canoeing speed not adjusted for currents.

3 Method and Data

The migration network is implemented as an SQLite database, generated using Python. It
includes travel times across terrain and over water (rivers, lakes, and sea). Terrestrial travel
times are computed using an empirical formula depending on slope, which was estimated
using navigation speeds of male US cadets on cross-country navigation tasks [9], applied to
the 30 arc second GMTED2010 digital elevation model. I compute the geodesic distance
between all pixels in an 8-neighbourhood (to N, NE, E, SE, S, SW, W, NW).

Together with the elevation difference from the DEM, this gives the slope that governs the
travel speed, which is adjusted using terrain coefficients generalized from [12] (who collected
data for Kenya) to all terrestrial ecoregions according to https://ecoregions2017.appspot.
com/. In this way I derive travel times between all neighbouring pixels at a 30 arc-second
resolution, which can be used as input for subsequent steps. Traversing rivers takes time.
If a river segment crosses a pixel, I add a time penalty for leaving that pixel. Because
the penalties from [11] refer to established travelling infrastructure, I instead estimate the
possibility and time for wading using the river reaches taken from GloRiC 1.0 [5].

Travel by water is assumed to follow a basic canoeing speed. Modern paddlers seem to be
able to maintain speeds of above 4 knots for longer times, but in general, enthusiast forums
on the internet give numbers of 3 to 4 knots. The experiments cited in [8, 11] give lower
speeds. Due to river navigation obstacles playing a role in wilderness navigation, but less so
in leisure canoeing, I follow the latter and assume a basic long-term effective cruise speed of
3.0 km/h. For following coasts or short island hops, this velocity is taken unmodified up to a
maximum distance of 150 km (which corresponds to about 50h of gross travel time). Along
rivers and streams, this is modified by the flow speed v of the river, which is added when
moving downriver and subtracted when moving upriver. Unfortunately, the mean speed of
flow is available only for a minority of American rivers. A rough estimate can be derived
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G. A. Kaiping 3

Figure 1 Core locations (black stars) are generated according to the minimum sum of shortest
paths from H3 hexagons boundary points, so obstacles (blue rectangle) can push the core locations
away from the hexagon centres. Shortest paths from core locations then give the network edges and
Voronoi cells (shaded, with red dotted border). As such, the optimal path in the network (green
line) is only an approximation of the theoretical optimum (green dashed line).

following [14]:

W = 2.71 ·Q0.557 D = 0.349 ·Q0.341 (1)

R = D ·W/(2D +W ) v = 1
n

·R2/3 · S1/2 (2)

where Q is the discharge [m3/s] and S is the slope [1]. While they suggest that knowing
the river roughness n vastly improves the speed estimates, data is also lacking for those
quantities, so I use their reported mean value of 0.044. Rivers are taken from GloRiC 1.0 [5].
While GloRiC does not include data on the slope directly, it includes the log10 of stream
power P [kgm/s2], which is related to slope S and discharge Q by P = ρgQS (with the
density of water ρ = 1000 kg/m3 and g = 9.81 kgm/s2. Following [13, 18], I include all river
reaches with a discharge of 8 m3/s or more and a slope of 10% or less.

Together, this provides a theoretical basis to calculate the gross travel time between any
two terrestrial or coastal 30” pixels on foot or by boat. Unfortunately, this calculation is
computationally expensive, so I will instead derive a network of locations with surrounding
territories and the distances between each of them and their nearest neighbours. In order to
generate largely regular terrestrial territories with an area of about 100 km2 each, I start
with the H3 grid [3], a hexagonal, hierarchical global grid that is easily available as Python
library. Core locations should however represent typical transit locations in the territory
instead of the hexagon centre points, which may lie in impassable terrain. To mitigate this, I
collect for each hexagon the corner points and the center of each edge. The core location
for each grid cell is then the node (pixel) that minimizes the sum of travel times to and
from each of those boundary points, and as such minimizes distortions when considered as
proxy for the whole hexagon. I derive a 30” raster of ecoregions, and of population densities
following [16], compatible with the DEM and the travel time rasters.

Territory and resources are then allocated to the nodes by calculating the generalized
Voronoi decomposition of the 30” raster, according to the travel time (outbound plus return)
from the core location. Reducing the granularity of the DEM raster to larger Voronoi cells
permits, at the cost of some over-estimation of distances, the computation of migration routes
on the continent scale while at the same time giving a convenient proxy for interactions
between agents that share a cell. Figure 1 shows a simplified example of this process. In
this manner, every pixel is associated to the core location from where it is most accessible.
For each pixel, the population capacity (area represented by the pixel times population
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Figure 2 Fastest path between the end points of the Natchez Trace (blue, red) compared to
the modern-day Natchez Trace Parkway (green). The coloured background shows the Voronoi
tessellation with stars at the core locations, the shading describes the terrain: Darker pixels, eg.
rivers, are more difficult to cross.

density according to the raster) is then allocated to the corresponding ecoregion in the node
attributes corresponding to the core location. By tracking the distances computed from the
core locations to the Voronoi boundary points and back individually, the Voronoi tessellation
also gives the pairwise travel time for each pair of adjacent Voronoi cells, and thus the weights
of the migration graph. However, in most short-distance cases the shortest path between the
core locations of two Voronoi cells which are not directly adjacent will be shorter than the
sum of the Delaunay edges. So, I compute the shortest walking paths not just between every
neighbouring Voronoi cells, but to every node within a hexagonal radius of 2, and also to all
end points of river reaches and coasts and all points where a river reach crosses a Voronoi
cell boundary within that radius. This gives a more dense network which is better able to
represent the topography.

The resulting network, as well as all the Python code to generate it and raster files
containing the results of intermediate steps, is available from https://doi.org/10.5281/
zenodo.5167698. The network contains 137 522 territorial nodes (each with population
capacities per ecoregion) and 405 855 nodes representing water boundary points (on river
reaches or the coastline, each without population capacities). The terrestrial edges between
core points represent travel times between 2.4 h and 16.8 h (5% and 95% quantiles), with a
mean of 10.9 h. Edges across the sea or large lakes have a broader range, from 1.7 h up to
50 h (the limit imposed by 150 km at 3 km/h). Due to the resolution of the river network,
distances reflected by it are much shorter, with 95% of them shorter than 1.5 h. The average
terrestrial area of a territory in the network is 104 ± 34 km2, and thus appropriate for the
desired resolution.

4 Evaluation

The Natchez Trace is a historic trail of 710 km from Nashville, Tennessee, to Natchez,
Mississippi, going back thousands of years. It became obsolete (and is nowadays a US
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national parkway) when steamboats became an alternative for travelling upriver.
To test the generated network, I compute the path from the node at 86.979◦ W, 35.967◦

N, which contains the start of the trail near Nashville, to the node at 91.400◦ W, 31.579◦ N
at the end of the trail near Natchez without the use of rivers, and in the reverse direction
with the use of rivers. I compare these two optimal paths according to the network with the
route represented by today’s Natchez Trace Parkway.

The results are shown in Figure 2. The optimal path is the very similar in both directions,
but the red path uses river nodes (teal ‘+’) in a few isolated places, essentially crossing the
rivers with less deviation. The paths deviate from the shortest hexagon path from Nashville
to Natchez, but less than the actual Natchez Trace. This suggests that my implementation
incorporates some, but not all environmental features that influence cross-country navigation.
The best route is inferred with a travel time of around 1050 hours in both directions.
Compared to an aerial distance of 643 km, this is a very low speed of 0.62 km/h. The
maximum navigation speed is 2.8 km/h (0.78 m/s, [9]) and the area mostly contains forest
biomes (brighter center area in the figure), where the terrain coefficient is 1, which means
that the roughness of the terrain is a major factor slowing down the movement.

The inferred path follows the actual Natchez Trace Parkway about half of its length. A
noticeable discrepancy is that the real Natchez Trace turns to the south following along
the Yockanookany river and passes through the modern-day City of Jackson, the optimal
paths in the network instead turns to the north and proceed on the other side of the Big
Black River. The maximal distance between the inferred and the real path is about 60km. I
speculate that this is not by chance: The location of the modern-day City of Jackson likely
has properties (such as its location on the navigable Pearl River, or ecological factors making
it suitable for settlement) that were favourable for both the near passing of the Trace and
the foundation of the city, but which are not considered in this simple shortest-path analysis.

5 Discussion

The migration network presented here aggregates estimations and data about the natural
environment, and human movement within it, from a variety of sources. The evaluation
shows that terrain plays a major role in the selection of optimal paths in the absence
of established routes, and that it can potentially reflect the route choices of pre-historic
Americans. This network is created to be used as the underlying structure for an agent-based
model investigating the settlement and language diversity in the Americas. Beyond this
and immediate application and other agent-based model studies, the underlying data could
also be used for investigations similar in archaeology and human history: [11] describes the
difficulty of aggregating data and using general-purpose software to estimate pre-historic
pathways. Hopefully this paper, together with the accompanying Python code and raster
data, can contribute to filling this gap.
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