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Abstract

Computerised paradigms have enabled decision making re-
searchers to gather rich data on human behaviour, including
information on motor execution of a decision, e.g., by track-
ing mouse cursor trajectories. As the number and complexity
of mouse-tracking studies rapidly increase, more sophisticated
methodology is needed to analyse the decision trajectories.
Here we present a new computational approach to generat-
ing decision landscape visualisations based on mouse-tracking
data. Decision landscape is an analogue of energy potential
field mathematically derived from velocity of mouse move-
ment during a decision. Visualised as a 3D surface, it pro-
vides a comprehensive overview of motor evolution of deci-
sions. Employing the dynamical systems theory framework,
we develop a new method for generating decision landscapes
based on arbitrary number of trajectories. The decision land-
scape visualisation have potential to become a novel tool for
analysing mouse trajectories during decision execution, which
can provide new insights into the dynamics of decision mak-
ing.

Keywords: decision making; mouse tracking; dynamical sys-
tems; visualisation

Introduction
Traditionally, decision making studies have been focused on
what people choose and explaining the mechanisms lead-
ing to the observed choice outcome distributions. Sequen-
tial sampling models (Busemeyer & Townsend, 1993; Rat-
cliff & Rouder, 1998) make predictions on the time required
for the decision maker to arrive to a decision, thereby stimu-
lating empirical research to measure response times in addi-
tion to choice outcomes. However, in the past decade, deci-
sion making researchers have been employing more advanced
experimental paradigms, measuring behavioural activity dur-
ing decision-making to investigate whether how we choose is
meaningfully related to what we choose.

A variety of experimental methods have been used to
study the cognitive processes underlying decision making.
One class of paradigms, including eye tracking (Orquin &
Loose, 2013) and different variations of information search
paradigm (Payne, 1976), taps attentional processes, trying to
answer the question of what information is attended to in the
course of decision. Another strand of research, focused on

hand or mouse tracking, examines how decisions are exe-
cuted through motor system. These studies interpret motor
output of a decision as a continuous trace of decisional pro-
cesses. In a typical experiment on mouse tracking, the partici-
pant chooses between the two options presented in the corners
of a computer screen (Fig. 1). The dynamics of the response,
as expressed in recorded mouse cursor trajectories, can then
reveal the degree of competition between the two options dur-
ing choice.

Mouse (or hand) tracking have been employed to in-
vestigate decision making dynamics in a variety of differ-
ent domains, e.g., speech processing (Spivey, Grosjean, &
Knoblich, 2005), social categorisation (Freeman, Ambady,
Rule, & Johnson, 2008; Freeman & Ambady, 2011), and in-
tertemporal choice (Dshemuchadse, Scherbaum, & Goschke,
2013; O’Hora, Carey, Kervick, Crowley, & Dabrowski,
2016). The recent development of “off-the-shelf” solutions
for capturing mouse cursor data (Freeman & Ambady, 2010;
Kieslich, Wulff, Henninger, & Haslbeck, 2017) has further
increased the amount and complexity of the data generated
by mouse-tracking studies. However, the vast majority of
available studies utilise only few basic measures derived from
rich mouse-tracking data. At the same time, much potentially
important information conveyed by mouse trajectories is still
very often ignored. More advanced analysis methods can po-
tentially enable us to get deeper insights from the rich data
provided by the mouse-tracking paradigm.

Here we present a new computational approach for il-
lustrating mouse-tracking data via three-dimensional visu-
alisations of decision landscape. Recently, a method was
suggested to infer such visualisations directly from the
data (O’Hora, Dale, Piiroinen, & Connolly, 2013). Here,
we build up on this work, employing an alternative, model-
based approach. We assume that the decision process, as
reflected by a mouse trajectory, is governed by a ’potential
energy’ landscape. The parameters defining the form of the
landscape for each decision can then be fitted to capture spe-
cific mouse motion trajectory during that decision. Visualised
as a 3D surface, this decision landscape provides a com-
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Figure 1: Typical setup of a mouse-tracking experiment. Plot-
ted in green is an actual mouse trajectory representing binary
choice in a learning task (O’Hora et al., 2013)

Figure 2: Mouse trajectory from Fig. 1 and a hypothetical
decision landscape driving the decision process. The grey
line is a projection of the trajectory on the decision landscape.
The figure is based in part on visualisation of hypothetical
decision attractor manifold by Spivey and Dale (2006).

prehensive overview of motor evolution of decisions. The
suggested method can generate illustrations of decision land-
scapes based on arbitrary number of trajectories. Using previ-
ously collected data on a learning task (O’Hora et al., 2013),
we demonstrate how decision landscape visualisations can be
used to compare sets of mouse trajectories between experi-
mental conditions or individual decision makers in a compre-
hensive, visually appealing way.

Visualising decision landscape
The proposed method is aimed at reconstructing a 3D deci-
sion landscape based on a mouse trajectory of a decision (or
a set of trajectories). We assume that each trajectory can be
described by a dynamical system of a specific form, which
incorporates a parametrised function describing the shape of
the two-well landscape. By fitting this dynamical system to a
set of trajectories, we obtain specific values of the parameters
characterising these particular trajectories. We can then use
these parameters to generate the 3D visualisation of the deci-
sion landscape characterising all of the given decisions. The
source code implementing all the procedures of the method in
Python is available via Open Science Framework (Zgonnikov,
Aleni, Piiroinen, O’Hora, & di Bernardo, 2017).

Data requirements and preprocessing
To visualise decision landscapes, we use two-dimensional
trajectories obtained in a typical mouse-tracking experiment
(Fig. 1). We assume that each decision trajectory starts in the
bottom centre part of the screen and ends in either top left or
top right corner. The method can be generalised to the case of
more than two choice options; with minor adjustments (e.g.,
using two-dimensional projections of 3D trajectories) it can
as well be used with any other experimental paradigm gen-
erating simple enough continuous trajectories, for instance,
arm reaching (Song & Nakayama, 2008; Gallivan & Chap-
man, 2014).

Importantly, the current version of the method assumes
continuity and smoothness of the trajectories, which is not
always the case. In a fraction of experimental trials, partic-
ipants change their mind in the course of a trial, which is
indicated by major shifts in the x-direction of a decision tra-
jectory (Resulaj, Kiani, Wolpert, & Shadlen, 2009; Freeman,
2014). The deterministic dynamical model of a decision tra-
jectory utilised in the present method does not account for
such changes-of-mind, so we recommend using the method
only with the trajectories without abrupt shifts.

As screen size and proportions can differ between experi-
ments, we illustrate the method for spatially normalised tra-
jectories. In particular, the screen coordinates are assumed to
be rescaled such that each trajectory originates near (x,y) =
(0, 0) and ends in the vicinity of (x,y) = (−1, 1) (left target)
or (x,y) = (1, 1) (right target).

Each trajectory is supposed to be described by the time se-
ries of x- and y-coordinates of the mouse cursor on the screen.
In addition to this data, the method also requires x- and y-
velocities of the mouse cursor at each time step, which are
computed numerically.

Model of trajectory dynamics
Without aiming at developing a model explaining the dynam-
ics of a decision, we use a simple dynamical system to de-
scribe the decision trajectory, capturing the high-level fea-
tures of motion of the mouse cursor. We describe the time
dependent x- and y-components of a decision trajectory by a
system of ordinary differential equations

τẋ =−∂V
∂x

,

τẏ =−∂V
∂y

,

(1)

where ẋ = dx
dt and ẏ = dy

dt are the time derivatives of x and
y, τ > 0 is the time scale parameter expressed in seconds,
V (x, y) is a function describing the decision landscape, which
defines the dynamics of the system, and ∂V

∂x and ∂V
∂y are its

partial derivatives with respect to x and y.
Our method is not constrained by some particular function

V (x,y); here we use one of the simplest possible variants.
We assume that V (x,y) comprises a fixed baseline component
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Vx(x)+Vy(y) and a parametrised component Vxy(x, y) so that

V (x,y) =Vx(x)+Vy(y)+Vxy(x,y), (2)

where Vx(x) and Vy(y) are polynomials chosen in a way that
the two target locations, (-1, 1) and (1, 1), are attracting steady
states (“attractors”), and the starting location (0, 0) is a re-
pelling state of the system (1) given that Vxy(x, y)≡ 0. Thus,

Vx(x) =
∫

∂Vx

∂x
dx =

∫
x(x+1)(x−1)dx =

x4

4
− x2

2
, (3)

Vy(y) =
∫

∂Vy

∂y
dy =

∫
y(y−1)dy =

y3

3
− y2

2
. (4)

Having a two-attractor decision landscape as a baseline, we
introduce the parametrised polynomial component Vxy(x,y) to
be able to account for asymmetry in the landscape and other,
more intricate properties of experimental trajectories. Here,
also for the reason of simplicity, for Vxy(x,y) we use a poly-
nomial function of x and y

Vxy(x,y) =
α

∑
k=2

∑
i, j>0
i+ j=k

ci jxiy j/(k−1), (5)

where the parameter α ≥ 2 determines the number of terms
in the polynomial, which in turn regulates flexibility of the
model, and the coefficients ci j are fitted to the data. Note that
with increasing α the number of free parameters increases,
thus the fitted values of these parameters may be difficult to
interpret for large α. We recommend using the method with
α= 2, 3, or 4, depending on the complexity of the trajectories,
and to take into account the trade-off between approximation
accuracy and interpretability of the parameters.

The effect of the model parameters τ and ci j on the shape
of the decision landscape can be analysed independently of
the experimental data (Fig. 3). For any α, two parameters
always enter the model, τ and c11. The parameter τ affects
the characteristic time scale of the system motion: the larger
the value of τ, the slower the motion of the mouse generated
by the model (in both directions). In what follows we use the
baseline value τ = 0.05 s.

The parameter c11, corresponding to the only second-order
polynomial term of the model, is the primary determinant of
the asymmetry of the decision landscape. Such asymmetry
may be caused, for instance, by strong prevalence of one de-
cision outcome over the other. Another possible example of
asymmetry would be a situation when the trajectories towards
one option are consistently faster compared to the trajectories
pointing to the other option, with the two options being cho-
sen equally likely.

When α ≥ 3, additional polynomial terms enter Vx,y(x,y).
The effects of the parameters ci j in front of these higher-order
terms are somewhat similar to those of τ and c11, but allow
for much finer tuning of the decision landscape to the experi-
mental trajectories.

Fitting the model to the single trajectory
For a single experimental trajectory, we aim to find the pa-
rameters allowing the model (1)–(5) to reproduce this trajec-
tory as closely as possible. We can define the fitting error in
two ways: as a function of the positional difference between
the data and the modelled trajectory, or based on the differ-
ence in mouse velocities between the data and the model. The
first approach would result in a more accurate approximation
of trajectories, but requires substantially more computational
time, as on each step of the fitting algorithm the system of dif-
ferential equations (1) has to be integrated numerically. The
second approach, employing the velocity-based fitting error,
is much more efficient in terms of computational resources,
sometimes at the expense of approximation accuracy. Here
we focus on the latter; the supplied source code implements
both approaches.

Given an experimental mouse trajectory sampled at m time
steps and the numerically derived mouse velocities {vdata

x ,
vdata

y }, we define the fitting error

H(τ,ci j,{vdata
x ,vdata

y }) =
1
m

m

∑
i=0

(vmodel
x (xi,yi)−vdata

x (ti))2 +(vmodel
y (xi,yi)−vdata

y (ti)),

(6)

where vmodel
x,y (xi,yi) are the values of the right-hand side of

the system (1) computed at each point (xi,yi) along the ex-
perimental trajectory. These values depend on the current
parametrisation of the model, so the defined error function
depends both on the model parameter values and the experi-
mental trajectory.

Using numerical optimisation routines (available, e.g., in
the Python package scipy.optimize), one can find the val-
ues of the model parameters τ,ci j minimising function (6) for
a given mouse trajectory. These parameters are substituted in
Eq. (5), which, along with Eqs. (2)–(4), fully specifies V (x,y).
The 3D plot of the function V (x,y)/τ then visualises the de-
cision landscape representing the original trajectory.

Fitting to multiple trajectories
Visualising a decision landscape that would integrate the
properties of multiple trials (within a single experimental con-
dition, individual participant, or a group of participants) is
where the method can prove most useful. To be able to do
this, we use the same approach as in the case of a single trial,
and minimise the average error across individual trials in a
set of trials. Given the set of N trajectories and their veloci-
ties {vdata

x ,vdata
y }N

n=1, the fitting error for multiple trajectories
is defined by

Ĥ(τ,ci j,{vdata
x ,vdata

y }N
n=1) =

1
N

N

∑
n=1

H(τ,ci j,{vdata
x ,vdata

y }n),

(7)
where H is defined in (6).
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Figure 3: Changes in the baseline decision landscape depending on the parameters of the model for α = 2. In each panel, all
parameters except for the one in the panel title are fixed at the baseline levels τ = 0.05, ci, j = 0; the baseline landscape is shown
in grey colour. In this and the following figures, the black marble marks the starting location of a trial.

Example scenarios
We illustrate several potential scenarios of using our method
to visualise mouse tracking data by applying it to the pre-
viously obtained experimental data on a simple learning
task (O’Hora et al., 2013). The task consisted of a series of
binary choices between abstract symbols, with each symbol
yielding either low or high reward (e.g., 5 or 20 points). The
goal of the participants was to get as many points as possible
throughout a set of 36 trials, which included low vs. low, high
vs. low, and high vs. high choices. By the end of the experi-
ment, most of the participants successfully learned to choose
only the symbols associated with high reward.

Here we only consider part of the dataset corresponding
to high vs. low choices, so that there is always a “correct”
choice. The data are preprocessed so that the correct (“high”)
option is mapped to right-hand corner of the screen, and in-
correct option is located in the left-hand corner. To fit the ex-
perimental data, we used the version of the model with α = 4,
which has seven free parameters. The baseline values of the
parameters were set to τ = 0.05, ci j = 0.

Fig. 4 shows the example decision landscapes obtained for
three trajectories generated by Participant 444. The shape
of the fitted landscape changes depending on the dynamics
of the decision. Two key properties of a mouse trajectory
reflected by the fitted decision surface are: motion time, i.e.,
the how long it takes for the cursor to reach the response area
once it leaves the starting location, and maximum deviation of
the trajectory from the ideal, straight-line trajectory (termed
“max-d”).

Importantly, the decision landscape is supposed to capture
dynamics rather than geometry of the mouse trajectory. How-
ever, with increasing deviation of the trajectory towards un-
chosen option, the strength of the attractor corresponding to
that option increases. Moreover, in extreme cases, when de-
viation towards competitor option is very large, the attractor
representing the unchosen option can be even stronger than
the attractor corresponding to the eventually chosen option
(yellow surface in Fig. 4). This situation, paradoxically indi-
cating that the attraction towards the unchosen option during

Figure 4: Decision landscapes of three representative trials of
Participant 444. In all three trials, the subject had chosen the
option on the right (“correct choice”). Trial 2 (yellow surface)
was slow (motion time 0.72 s) and mildly conflicted (max-d
0.23). In trial 15 (purple surface), the mouse trajectory was
fast (motion time 0.15 s) and was close to straight line (max-
d 0.02). In trial 28 (green surface), the trajectory was still
relatively fast (motion time 0.37 s), but substantially curved
towards the unchosen option (max-d 0.77).
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Figure 5: Decision landscapes of the two representative par-
ticipants. Participant 2 (blue surface) had chosen right- and
left-hand-side options 7 times each (mean motion times 0.56
and 0.45 s). Red surface illustrates Participant 3 with the
right-hand-side option chosen 3 times (mean motion time 0.5
s) and the left-hand-side option chosen 10 times (mean mo-
tion time 0.4 s).

the trial was stronger than towards the chosen one, is very
rare and happens only for landscapes of individual trajecto-
ries with high max-d.

One of the potential applications of the present method is
highlighting individual differences between two participants
performing the same task. To do this, one needs to obtain de-
cision landscapes individually for each participant by fitting
the model to all trials of that individual simultaneously. In the
case of multiple-trajectory fitting, the fitting error is defined
as the average error across all trajectories of a given partic-
ipant, so the resulting decision landscape will integrate the
information on how often and how fast each option was cho-
sen, providing a comprehensive overview of the participant’s
decisions throughout the experiment.

We illustrate this by comparing the decision landscapes of
the two participants (Fig. 5). Participant 2 was equally likely
to chose either option, with faster trajectories reaching to-
wards the incorrect (left-hand-side) option. Participant 3 had
chosen the incorrect (left) response more often, and it was
chosen on average faster than the correct option.

If the experimental task involves adaptation, the current
method can be used to highlight learning patterns within sub-
jects. Fig. 6 represents three decision landscapes separately
fitted to the trajectories of three consecutive blocks of trials
of Participant 4 (with each block containing six to eight tri-
als). The decision surface gradually changes from the two-
attractor landscape slightly favouring the right attractor to the
single-attractor configuration, thereby tracking the learning-
induced evolution of preference across blocks.

Discussion
The decision landscape visualisations provide comprehensive
overview of a mouse-tracking data. Each visualisation inte-
grates the information on 1) the likelihood of each option to

Figure 6: Evolution of decisions of Participant 4 throughout
three consecutive blocks of trials. Each surface corresponds
to all trials of a block.

be chosen, 2) the duration of the response, and 3) the degree
of competition between the options.

The first attempt to develop an algorithm to visualise de-
cision landscapes based on mouse tracking data has been re-
cently made by O’Hora et al. (2013). Their approach, how-
ever, is purely data-driven, and thus requires hundreds of tra-
jectories to generate a reliable visualisation of the decision
surface. By incorporating prior assumptions about decision
landscape V (x,y) into a parametrised model, we dramatically
reduce the data requirements of our method. As demonstrated
above, the method proposed here can be used with as few tra-
jectories as one, but can also incorporate arbitrary number of
trajectories.

One of the main limitations of the proposed method is its
focus on trajectories without changes-of-mind. An important
(although relatively rare) class of decisions are those involv-
ing preference reversals during choice execution. These hap-
pen even in simple perceptual discrimination tasks (Resulaj et
al., 2009); in more cognitively demanding tasks the frequency
of changes-of-mind can increase up to 20% (Freeman, 2014).
Developing a way of visualising decision landscapes of the
change-of-mind trajectories is one of our foremost future re-
search directions.

Attractor models have proved useful in understanding out-
comes of cognitive processes such as categorisation (Tuller,
Case, Ding, & Kelso, 1994), risky decision making (van
Rooij, Favela, Malone, & Richardson, 2013), and binary de-
cision making in intermittent motor control (Zgonnikov &
Lubashevsky, 2015). This work is among the first attempts
to apply the concepts of dynamical systems theory to process
data characterising decisions. We hope that the proposed de-
cision landscape visualisation approach will eventually grow
in a new tool for analysing decision trajectories, which will be
able to provide new insights into dynamics of decision mak-
ing.
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