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Thermoelectricity

Thermoelectricity: Thomson vs. Onsager, with advice from Maxwell
J.D. Goddard1

Department of Mechanical and Aerospace Engineering
University of California, San Diego
9500 Gilman Drive
La Jolla, CA 92093-0411 USA

This paper deals with the long-standing conflict between interpretations of thermoelectricity based on the
original reversible thermodynamics of W. Thomson and the later irreversible thermodynamics of L. Onsager.
It is shown that, by a slight modification of the Maxwellian relaxation treated in a previous paper (J. Goddard
and K. Kamrin. Proc. Roy. Soc. A 475.2226 (2019): 20190144), Onsager’s symmetry is simply a reflection
of the underlying symmetry of equilibrium thermodynamics. It is also shown that a modern interpretation
of Thomson’s thermodynamics, as given recently by the present author, reveals thermoelectricity to be the
analog of a fluid-mechanical transport process with the limit of thermodynamic equilibrium corresponding to
the convection-dominated regime of large Péclet number.

“Die ... Theorie ist so schön in sich abgeschlossen,
dass die Möglichkeit irher vollständig Übereinstimmung
mit den Thatsachen nicht geleugnet werden kann.” L.
Boltzmann (1887). Comment on Thomson’s theory of
thermoelectricity.5

I. INTRODUCTION

Classical thermodynamics involves two distinguished
and idealized limits, namely, strictly reversible or con-
servative systems, and strictly irreversible or dissipative
systems. Remarkably, these two extremes are joined
at the hip mathematically since both involve thermody-
namic potentials and may admit the associated varia-
tional principles. The classical treatments of thermoelec-
tricity provide a perfect illustration, according to which
we have, on the one hand, the landmark equilibrium-
thermodynamic treatment of W. Thomson1 (later Lord
Kelvin) and, on the other, the diametrically opposed
irreversible-thermodynamic treatment of L. Onsager2.
What is most striking in this state of affairs is the appar-
ent success of either treatment in describing the relation
between various thermoelectric effects. The purpose of
this brief article is to provide a plausible explanation,
although time does not permit a detailed analyses of nu-
merous and varied experiments.

II. HISTORY

In a previous work3, hereinafter referred to as Ref. 1,
the present author provides a review of Thomson’s ther-
moelectricity recasting it into a modern equilibrium-
thermodynamic form that provides a transparent inter-
pretation of various thermoelectric quantities in terms of
standard thermodynamic quantities. Table I summarizes
the various effects and the related quantities

TABLE I. Thermoelectric effects

Effect Relation

Volta VAB(θ) = −µAB
e (θ)

Seebeck SAB = ∂θVAB = ηAB
e (θ)

Peltier Q̇AB = ΠABI = θηAB
e (θ)I

Thomson dQ̇ = T I dθ = cpeI dθ

where θ denotes absolute temperature. Effects at the het-
erojunction AB between conductors A and B are given,
respectively, in terms of the Volta potential V, Seebeck
coefficient S, and Peltier heat Q̇, with coefficient Π,
where I denotes electrical current through effectively one-
dimensional conductors and junctions. Last but not least
is the Thomson effect, giving the external reversible in-
crement of heat dQ̇ released by electrical current flow
through the incremental temperature change dθ arising
from a thermal gradient along a materially homogeneous
conductor. As emphasized below, it is merely the con-
vection of electronic enthalpy by electrical current.
Above as in the following we employ italic d to de-

note infinitesimal quantities, reserving the upright d to
denote differentials of state variables. Also we employ su-
perposed dots to denote temporal rates that are not nec-
essarily rates of change of various quantities. Finally, we
employ the thermodynamic notation of Gibbs employed
in Ref. 1 and favored in much of the modern literature
on continuum thermomechanics.
As pointed out in Ref. 1, Thomson’s analysis is based

on a tour de force application of Carnot’s principle,
whereas the modern treatment offered in Ref. 1 and sum-
marized in Table I makes evident the relation of various
effects and associated coefficients to the thermodynamic
functions he, the electronic enthalpy, µe, the electronic
Gibbs free energy, and the entropy ηe = −∂θµe(θ). For
rigid conductors with uniform electrical charge density
ρe all the above thermoelectric relations follow by stan-
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dard thermodynamic formulae from Thomson’s “specific
heat of electricity” T = cpe(θ), as discussed in detail in
Ref. 1. That review is concerned with mechanical effects
and the specific Helmholtz free energy ψ of a conductor is
allowed to depend on strain and specific electrical charge
qe = ρe/ρ, where ρe is electrical charge density, ρ is mass
density of the conductor, and the subscript e stands for
the partial derivative ∂e = ∂/∂qe of thermodynamic state
functions with strain or stress and temperature θ held
constant. In summary, we have

ψe = εe−θηe = εe &µe = ψe+pve = he−θηe+pve, (1)

where ε, v = 1/ρ, p denote, respectively, specific internal
energy, specific volume, and isotropic pressure.

In addition to the above relations we recall that the
the total electrochemical potential is given by

ϕe = µe +Φ = ∂e(g +Φqe, ) (2)

where g is specific Gibbs free energy and Φ is the po-
tential of an external electric field. Continuity of ϕe a
heterojunction gives the jump in Φ in terms of that of µe

represented by the Volta effect in Table I.
For purposes of the present discussion, it suffices to

consider rigid conductors with partial electronic volume
ve = 0 so that εe ≡ he and µe ≡ ψe. Moveover, setting
aside certain capacitance effects we may assume qe to be
constant and spatially uniform. Hence, as anticipated in
Table I, we may assume εe, he and ηe to depend only on
θ.

It should be noted that the above theoretical frame-
work is in keeping with Thomson’s analogy of thermo-
electric currents to the flow of a massless incompressible
fluid (well before the discovery of the electron by an-
other Thomson4 and the advent of modern theories of
electronic conduction).

Following Thomson’s express concerns as to the sepa-
rability of reversible and irreversible thermodynamic ef-
fects, doubts were subsequently raised by others, notably
by Boltzmann5 whose admiration of Thomson’s theory
is summarized by the above epigrammatic quote. Thom-
son’s treatment was later obscured and nearly swept away
by the linear irreversible thermodynamics of Onsager2, at
least according to one group of eminent scientists. Ref.
1 cites certain tortured logic that occasionally surrounds
the question.

Table II gives a brief history of the opposing treat-
ments of the subject. As one exception in Table II, the
calculation done by Boltzmann5 led him to conclude that
both reversible and irreversible heating are inevitable in
a closed thermoelectric circuit, as already anticipated for
electrically linear conductors by Thomson1,6. In particu-
lar, Thomson posits that the rate of heat exchange with
the surroundings Q̇ should depend on the thermoelec-
tric current I as Q̇ = aI + bI2, where the coefficients
a, b are independent of I. The linear term in I repre-
sents reversible heat effects associated with thermody-
namic equilibrium while the quadratic term represents

TABLE II. Brief historical summary of opposing views

Reversible Irreversible

W. Thomson (1851-54)1,6 ...
... L. Boltzmann (1887)5

G.N. Lewis (1918)7 ...
P.W. Bridgman (1918-29)8 ...
E.H. Hall (1918-20)9 ...
... L. Onsager (1931)2

... H. Callen (1948)10

.... J.F. Nye (1957)11

N.F. Mott (1958)12 ...
... A. Sommerfeld (1964)13

... C. Kittel (1986)14

... (Many others)
This Author (2011)3 ...

dissipative (Joule) heating. Thus, the extremes identi-
fied in the present work correspond to b ≡ 0 (Thomson)
or a ≡ 0 (Onsager). In that connection, we recall that
Thomson stipulates that his equilibrium-thermodynamic
relations should apply only for sufficiently small I, also
noting that this could be achieved by insertion of a device
to extract work from the thermoelectric circuit. Thus,
the back-emf of the device would serve to diminish the
current I allowing one to approach a quasi-static ther-
modynamic equilibrium.
With the above as background, the present work is

aimed at reconciliation of the two extreme models of the
thermodynamics by means a recent work that connects
the two otherwise distinct types of potentials involved.

III. POTENTIALS AND RELAXATION

A simple equilibrium-thermodynamic systems with fi-
nite degrees of freedom is described by the tempera-
ture θ and an n-dimensional vector space of configura-
tional variables x = {x1, x2, . . . , xn}, and we can iden-
tify dual space of generalized specific forces f(θ,x) =
{f1, f2, . . . , fn} (force per unit mass) such that the incre-
mental work done on the system is given by

dw = f ·dx = fi dx
i, with fi = ∂xiψ(θ,x), i = 1, . . . , n.

(3)
where ∂z = ∂ /∂z and sums from 1 to n are taken over
repeated indices, here and below, and where ψ denotes
specific Helmholtz free energy. We recall that there exists
a Legendre dual

φ(θ, f) = f ·x− ψ with xi = ∂fiφ (4)

.
For the other extreme of interest here, strictly dissi-

pative systems (i.e. generalized Onsager-symmetric sys-
tems devoid of gyroscopic or powerless force-velocity
pairs15–17), we encounter a parallel structure with gener-
alized velocities v = {v1, v2, . . .}, for example, vi = ẋi,
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replacing x, such that

fi = ∂vi ψ̃(θ,v), and vi = ∂fi φ̃(θ, f), (5)

The tildes identify the dissipation potentials of
Edelen15–17 which serve to define non-linear Onsager
symmetry, exemplified by

∂vifj = ∂vjfi, for i, j = 1, ..., n (6)

In the notation of Onsager {v, f} is denoted by the “flux-
force” pair {J,X}, where the fluxes are abstract rates,
not generally given as the time rate of change of config-
urational variables, and the same interpretation of v can
be made for purposes of the present formulation. We re-
call the well-known fact that the Onsager symmetry in
(6) breaks down in the presence of gyroscopic effects of
the kind associated with magnetic fields.

A. Thermoelectric relaxation

In an effort to clarify the origins of dissipation poten-
tials, Goddard and Kamrin18 have recently proposed a
generalization of Maxwellian relaxation on small time
scales τ , which leads in the the present context to the
relaxation approximation:

ψ̃(θ,v) = τ−1ψ(θ, τv), and φ̃(θ, f) = τ−1φ(θ, f), (7)

where τ denotes a relaxation or ”elastic-collapse” time,
for which relevant estimate is given below. We note that
this time constant is related to that defining the retarded
motions of Coleman and Noll19 and that terms O(τ) rep-
resent the onset of dissipation.

It is clear that the transformation (7) preserves forces
and gives a “displacement” τv occurring on time-scale τ .

To a large extent, the present connection of irreversible
forces and fluxes to thermodynamic equilibrium may
serve to allay some albeit not all of the well-known cri-
tiques of “Onsagerism”20,21.

B. Clapeyron energy

With E = f ·x as analog of Clapeyron elastic energy,
the relaxation approximation for the rate of dissipation
is given by

D = τ−1E(τv) = v·f(τv) = τ−1f ·x(f), (8)

It is worthwhile noting the generally important result
that convex equilibrium-thermodynamic potentials can
be derived from convex Clapeyron energies by Edelen’s
transformation17 between dissipation rate and dissipa-
tion potential, namely

φ(f) =

∫ 1

0

ε(ξf)
dξ

ξ
= f ·

∫ 1

0

x(ξf) dξ, (9)

and an identical relation for the dual potential ψ(x) with
roles of f and x reversed and ε given as function of x.
For the linear response treated below, the Clayperon

energy reduces to a quadratic form, such that it is equal
to twice the stored energy, as has been considered in de-
tail by Fosdick and Truskinovsky22. Hence, the rate of
dissipation assumes the Onsager quadratic form D = f·Lf
which, as pointed out elsewhere17 is twice the dissipation
potential φ̃.

C. Multimodal forms

As another important general matter that has direct
bearing on the present application, it is necessary to ex-
tend the above treatment of uniform relaxation given by
Goddard and Kamrin18 to relaxation on commensurate
but distinct time scales for the various modes of relax-
ation. With a primary view to local linear forms, these
modes may be associated with the eigenvectors and eigen-
values λi of the local HessianH with componentsHij and
diagonalization given by

Hij = ∂fi∂fjφ(θ, f), with H = PΛPT, (10)

where the diagonal form Λ = diag = {λ1, . . . , λn} is
given by a standard orthogonal matrix P. Given a sec-
ond diagonal matrix R = {r1, . . . , rn} of inverse ratios of

relaxation times we obtain the linear symmetric form Ĥ

L = Ĥ = τ−1R̂H, with R̂ = PRPT, (11)

The symmetric matrices H and R̂ are readily shown to
commute yielding symmetry of Ĥ, and Onsager’s linear
theory is of course obtained by evaluation of the local
Hessian H(f) at f = 0.

IV. ONSAGER’S THEORY

As the key result of this section, the above considera-
tions imply that we may obtain a generalization of On-
sager’s strictly dissipative model from Thomson’s strictly
conservative model by the transformation {x, f(x)} →
{τR̂v, f(τR̂v}. In the case of the linearized response
arising for small |τv| note that the relation (11) is the
analog and generalization of Maxwell’s expression for vis-
cosity as product of relaxation time and elasticity18,23.
(cf. the “pseudolinear” forms for non-linear response
given elsewhere17 (and Errata).)
Should the above ideas prove correct, they might serve

generally to establish the equivalence of Onsager’s cel-
ebrated ”microscopic reversibility” to macroscopic ther-
modynamic reversibility.

At any rate, we require convexity of the function φ(f),
except possibly for certain “soft-mode” instabilities such
as those occurring at phase transitions, so that its Hes-
sian is positive-definite and invertible, leading to similar
results for Onsager resistance as inverse of L.
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As regards the linear theory, it is worth noting the oft-
quoted paper of Miller (1960) which claims to offer exper-
imental tests of Onsager symmetry for various dissipative
transport phenomena. In the case of thermoelectricity24

(Section III,Eq. (18)), Miller makes unabashed use of
Thomson’s relations for the ratio of off-diagonal terms
(L12/L21) to establish the putative Onsager symmetry
and then rejects the validity of Thomson’s analysis, as is
the case with several prominent researchers cited in Table
1 and pointed out elsewhere17. It is clear that the relax-
ation times representing irreversibility must drop out of
this ratio, so that Onsager symmetry is nothing more
than Thomson symmetry, a matter revisited below.

V. CIRCUITS

In the case of a simple thermoelectric circuit we may
provisionally regard τ |v| as the analog of Maxwell’s di-
electric displacement which could be realized in principle
by interruption of the circuit with a capacitor or storage
battery, which would also serve to store thermoelectro-
static energy.

It is clear that the thermal driving forces arise from
temperature gradients in the surrounding, and one draw-
back of Thomson’s theory is that it requires reversible
external heat exchange everywhere on the boundary of
a conductor, requiring a very special environmental tem-
perature gradient and, in effect, a continuum of Carnot
engines on which his analysis is based3. We consider be-
low a somewhat less idealized and also less complicated
set-up involving internal heat transfers which allows us to
treat the case of a thermally insulated thermoelectric cir-
cuit with external heating only at discrete points. With
the insertion of a voltage source into the thermoelectric
circuit we obtain a simple Carnot heat engine or heat
pump depending on Θ = θH − θL and on the emf V of
the voltage source, as depicted below in Fig. 1.

A. Dissipative transport phenomena

Assuming Fourier’s and Ohm’s law for heat flux q and
electrical flux je, the steady-state energy balance, given
as Eq. (2) in Ref. 1, reduces for a rigid conductor to

υe ·∇θ = αe

(
∇2θ+

j2e
σk

)
+β, with αe = k/ρecpe,

β = J/cpeρe, and je = |je|,
(12)

where k, σ, υe = je/ρe, and J denote, respectively, the
thermal and electrical conductivities, the effective veloc-
ity of the electrical current, and the influx of external
heat which depends in general on spatial position. More-
over, the barycentric velocity of the conductive medium
has been taken as zero, neglecting the contribution from

electrical current. There nevertheless remains the con-
vective term in (12), representing the Thomson effect,
while the source terms on the right-hand side represents
Joule and external heating and the heat conduction term
is diffusive .
We note that (12) is the rough analog of the fluid-

mechanical Brinkman equation for heat transport with
viscous dissipation25 (pp. 276 ff.). Hence, one can iden-
tify the corresponding Péclet and Brinkman numbers
Pe and Br. When the equation is cast into a non-
dimensional form based on a characteristic length, ve-
locity, and effective thermal diffusivity αe, the latter is
replaced by 1/Pe. This may suggest a treatment of dis-
sipative effects as a singular perturbation on the non-
dissipative limit.
It now becomes evident that the Thomson’s equi-

librium limit corresponds to the convection-dominated
regime of large Pe such that, with irreversible inter-
nal heat conduction neglected, the resulting equation
for external heat transfer contains both a “reversible”
linear term and a quadratic “irreversible” term in je.
This confirms and generalizes Thomson’s Ansatz for one-
dimensional conduction.
As final and crucial remarks in this subsection, note

that the preceding analysis provides a relaxation time-
scale τ = ℓ2/αe, where ℓ is a characteristic linear di-
mension of the thermoelectric conductor. One may also
identify a second “RC ” time constant

τe = C/σℓ, with τe/τ = Cαe/σℓ
3, (13)

where C is a constant with units of capacitance, which
like ℓ depends on the details of the thermoelectric system.
Note that C/τe may be identified with the ratio I(V )/V
or I/V (I), respectively, for linear voltage-controlled cur-
rent source or current-controlled voltage source. To il-
lustrate the foregoing considerations, we reinterpret the
formulae for the local dissipation in a conductor given by
Miller24.

B. Onsager’s conduction

Guided by the form for dissipation employed by
Miller24 and references therein, we assume a local ther-
moelectric (Clapeyron) energy density in a conductor as

ρε = Q·∇ ln θ+Qe ·∇Φ, (14)

where Q and Qe denote the respective quasi-static ther-
mal and electrical displacements, which are assumed to
represent uncoupled equilibrium modes. Thus, as depen-
dence on the nominal thermal and electrical forces ∇θ
and ∇Φ we assume

Q(∇θ) = ρecpe∇θ, and Qe(∇Φ) = C∇Φ (15)

The first is compatible with the equilibrium thermody-
namic relation dQ = θ dη = ρecpe dθ and the second
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s , I

s , I

VV

Q   ,  θL L

A

B

Q   ,  θH H

Q   ,  θM Q   ,  θM 

A B

A B

FIG. 1. Carnot circuit with V = VA + VB, Q̇M = Q̇A + Q̇B

involves a necessary capacitance effect either real, e.g.
associated with surface charge, or fictitious, consistent
with our treatment of electrical flux as an incompressible
flow. From the time constants in (13) we then obtain
Onsager’s form for local dissipation density as

ρD = τ−1Q·∇ ln θ+ τ−1
e Qe ·∇Φ

=
1

ℓ2

(
k
|∇θ|2

θ
+ σ|∇Φ|2

)
,

(16)

employed by Miller24 and assumed in (12). The charac-
teristic length ℓ can be interpreted as the square root of
mean cross sectional area of the conductor.

C. A generalized Carnot circuit
Consider now an idealized circuit with one-dimensional

conductors so that (12) reduces to

υe
dθ

ds
= αe

(
d2θ

ds2
+
j2e
σk

)
+ β(s), (17)

from which it is evident from that the reversible purely
convective limit without external heat transfer (αe = 0 =
β) implies either a uniform temperature or a zero electric
current. However, we may imagine an idealized circuit in-
volving external heat exchange only at discrete locations
on the circuit. We shall treat these as heat inputs which
take on negative values for heat rejection.

Thus, consider the circuit with total length ℓ illus-
trated in Fig. 1 and having symmetrically disposed
branches A and B that represent the two thermoelectric
conductors A and B, with distance s along the circuit
reckoned clockwise, such that s = 0 mod ℓ at junction
AB where θ = θH and s = ℓ/2 mod ℓ at junction BA
where θ = θL. We assume that one or both branches of
the circuit are interrupted by an external voltage or cur-
rent source, with V = VA+VB, Q̇M = Q̇A+Q̇B, and com-
bined external power input or output V I. Also indicated
is a heat effect with entropy change at the sources an-
ticipated by Gibbs26 (Section VII) and which involves on
external heat exchanges indicated on the figure. This also

covers the case of the Peltier refrigerator as heat pump,
with θM representing the ambient temperature at which
heat is rejected. It is understood that θH ≥ θM ≥ θL.
Then we have two equations of the form Eq. (17) with

superscripts A & B affixed to θ and β accordingly as s ≶
ℓ/2 and with discontinuities at discrete points of external
heat exchange. Now, we assume a continuous reversible
heat transfer between points at the same temperature
on the separate branches A & B, as suggested by the
dashed arrows in the figure. Adding the two balance
equations gives an elementary differential equation for
θA +θB in terms of βA +βB which is satisfied by taking
θB(s) = θA(s − ℓ/2) and βB(s) = −βA(s − ℓ/2), with
d(θA(s) + θB(s))/ds = 0, i.e. such θ′ and β are odd
functions of s − ℓ/2 mod ℓ. Note that the definition of
β in (12) implies that the rate of heat exchange depends
on the ratio of Thomson coefficients cApe/c

B
pe.

Note that the global energy and entropy balances are

Q̇H + Q̇L + Q̇M + V I = 0,

and ṠH + ṠL + ṠM = 0, with Ṡi =
Q̇i

θi
,

(18)

where I is the electrical current around the circuit.
Hence, if each of the terms Q̇i/θi takes on the Peltier
form ∆ηe(θi)I then we obtain the change of ηe taken
around the circuit equal to zero as required by equilib-
rium thermodynamics.
The above device can be restricted to the form of a

heat engine or pump by placing the voltage sources next
to a heterojunction at the same temperature and tak-
ing Q̇M = 0 In practice, such a device might be real-
ized approximately by contiguous linear wires in contact
through an electrically insulating but thermally conduc-
tive lamella or sheath. In the absence of a coherent solid
material for this application an alternative such as radi-
ant or convective heat transport across an evacuated or
fluid-filled gap comes to mind.

D. Application to the Carnot circuit

For a rudimentary lumped-parameter description of
the overall thermodynamics of the simple circuit illus-
trated in Fig. 1, we choose as forces and displacements

f = {XH, XM, V },x = {SH, SM, Qe},
with Si = Qi/θi, XH = θH−θM, XM = θM−θL

V + V(θH)−V(θL) = 0,

(19)

where V = VAB, andQ&Qe denote quasi-static transfers
of heat and electrical charge. The Clapeyron energy (8)
becomes

E = XHSH +XMSM + V Qe

= QH

(
1− θM

θH

)
+QM

(
1− θL

θM

)
+ V Qe,

(20)
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involving evident Carnot work. For simplicity, we con-
sider the special case of the Carnot engine considered
above, with θM = θL.

In view of the Peltier effect (20) reduces to the form

E = ηAB(θH)(θA − θL) + V Qe (21)

Under linearization and assumptions like those employed
for (16), one obtains a similar form:

D =
1

ℓ2
(
k(θH−θL)

2 + σV 2
)
, (22)

with dissipation due solely to conduction without consid-
eration of dissipation in the heterojunction. Moreover,
there is now a coupling described by the last equation of
(19), which under linearization gives V ∝ (θH−θL) serv-
ing to describe the control of one quantity by the other,
depending on whether the device works as heat engine or
heat pump.

VI. CONCLUSIONS

The main conclusions are stated above in the Ab-
stract. As future work and testing ground for the
present hypotheiss, there is an array of other thermo-
electrochemical transport processes such as those studied
by Miller24 that are worthy of investigation. The exten-
sion to Edelen’s non-linear Onsager symmetry15 would
be both interesting and challenging. While the present
paper focuses on the application to thermoelectricity in
metals it can be extended to semi-conductors and elec-
trolytic systems involving multiple charge carriers3. Fi-
nally, there is an interesting question of the relation of
breakdown of symmetry in magneto-thermoelectricity to
the underlying equilibrium thermodynamics.
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physique et de chimie industrielles de la ville de Paris,
for alerting me to the notion of Clapeyron energy.

DATA AVAILABILITY STATEMENT

Data sharing is not applicable to this article as no new
data were created or analyzed in this study.

1W. Thomson, “On a Mechanical Theory of Thermo-Electric Cur-
rents,” Proc. Roy. Soc. Edinb. , 91–98 (1851), see also, Thomson
(1882), Vol. I, pp. 237-66.

2L. Onsager, “Reciprocal relations in irreversible processes. I,”
Phys. Rev. 37, 405 (1931).

3J. Goddard, “On the thermoelectricity of W. Thomson: Towards
a theory of thermoelastic conductors,” J. Elasticity 104, 267–280
(2011).

4J. Thomson, “Xl. cathode rays,” The London, Edinburgh, and
Dublin Phil .Mag. 44, 293–316 (1897).

5L. Boltzmann, “Zur Theorie der thermoelektrischen Ershein-
ungen,” Sitzungber. Akad. Wissen. Wien, Abt. II 96, 1258–97
(1887).

6W. Thomson, “Account of Researches in Thermo-Electricity,”
Proc. Roy. Soc. Lond. 7, 49–58 (1854), see also, Thomson (1882),
Vol. I, pp. 460-68.

7G. Lewis, E. Eastman, and W. Rodebush, “The Heat Capac-
ity of Electro Positive Metals and the Thermal Energy of Free
Electrons,” Proc. Nat. Acad. Sci. 4, 25–29 (1918).

8P. Bridgman, “On the application of thermodynamics to the
thermo-electric circuit,” Proc. Nat. Acad. Sci. 15, 765–68 (1929).

9E. Hall, “The Thomson Effect and Thermal Conduction in Met-
als,” Proc. Nat. Acad. Sci. 6, 613–21 (1920).

10H. Callen, “The application of Onsager’s reciprocal relations to
thermoelectric, thermomagnetic, and galvanomagnetic effects,”
Phys. Rev. 73, 1349 (1948).

11J. Nye, tensors and matrices, Oxford science publications
(Clarendon, Oxford, 1957).

12N. Mott, The theory of the properties of metals and alloys
(Dover Publications, New York, 1958).

13A. Sommerfeld, Lectures on theoretical physics - Thermodynam-
ics and Statistical Mechanics , Vol. 5 (Academic Press, New
York, 1964).

14C. Kittel, Introduction to solid state physics (Wiley, New York,
1986).

15D. Edelen, “A nonlinear Onsager theory of irreversibility,” Int.
J. Eng. Sci. 10, 481–90 (1972).

16D. Edelen, “On the existence of symmetry relations and dissipa-
tion potentials,” Arch. Ration. Mech. Anal. 51, 218–27 (1973).

17J. Goddard, “Edelen’s dissipation potentials and the visco-
plasticity of particulate media,” Acta Mech. 225, 2239–2259
(2014), Erratum: ibid. 226, 975, 2015.

18J. Goddard and K. Kamrin, “Dissipation potentials from elastic
collapse,” Proc. Roy. Soc. A 475, 20190144 (2019).

19B. Coleman and W. Noll, “Foundations of linear viscoelasticity,”
Revs mod, phys 33, 239 (1961), Erratum: ibid., 36:4, 1103, 1964.

20B. Coleman and C. Truesdell, “On the reciprocal relations of
Onsager,” J. Chem. Phys. 33, 28–31 (1960).

21I. Müller, A history of thermodynamics: the doctrine of energy
and entropy (Springer Science & Business Media, 2007).

22R. Fosdick and L. Truskinovsky, “About Clapeyron’s theorem in
linear elasticity,” in The Rational Spirit in Modern Continuum
Mechanics , edited by C.-S. Man and R. Fosdick (Springer, 2004)
pp. 399–426.

23J. Maxwell, “IV. On the dynamical theory of gases,” Phil. Trans.
R. Soc. Lond. 157, 49—-88 (1867).

24D. Miller, “Thermodynamics of Irreversible Processes. The Ex-
perimental Verification of the Onsager Reciprocal Relations,”
Chem. Revs. 60, 15–37 (1960).



Thermoelectricity 7

25R. B. Bird, W. Stewart, and E. Lightfoot, Transport phenomena
, 1st ed. (John Wiley & Sons, 1960) (cf. 2nd ed., 2006).

26J. Gibbs, Scientific Papers of Josiah Willard Gibbs, Volume
1 (Longmans, Green & Co., 1906) p. 455, H. Bumstead &
R. Van Name (eds.); Digital copy available from Wikisource,
https://en.wikisource.org/wiki/Scientific_Papers_of_

Josiah_Willard_Gibbs,_Volume_1. ,.
27J. Goddard, “The viscous drag on solids moving through solids,”
AIChE J. 60, 1488–1498 (2014).




