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Abstract: Acute kidney injury (AKI) is increasing in prevalence and causes a global health burden.
AKI is associated with significant mortality and can subsequently develop into chronic kidney disease
(CKD). The kidney is one of the most energy-demanding organs in the human body and has a role in
active solute transport, maintenance of electrochemical gradients, and regulation of fluid balance.
Renal proximal tubular cells (PTCs) are the primary segment to reabsorb and secrete various solutes
and take part in AKI initiation. Mitochondria, which are enriched in PTCs, are the main source of
adenosine triphosphate (ATP) in cells as generated through oxidative phosphorylation. Mitochondrial
dysfunction may result in reactive oxygen species (ROS) production, impaired biogenesis, oxidative
stress multiplication, and ultimately leading to cell death. Even though mitochondrial damage
and malfunction have been observed in both human kidney disease and animal models of AKI
and CKD, the mechanism of mitochondrial signaling in PTC for AKI-to-CKD transition remains
unknown. We review the recent findings of the development of AKI-to-CKD transition with a focus
on mitochondrial disorders in PTCs. We propose that mitochondrial signaling is a key mechanism of
the progression of AKI to CKD and potential targeting for treatment.

Keywords: mitochondria; acute kidney injury; AKI; chronic kidney disease; CKD; AKT1

1. Introduction

The kidneys, pivotal to maintaining health through the filtration of waste, regulation
of fluids, and production of essential hormones, become a focal point when compromised,
as observed in kidney disease. This compromise creates a chain reaction, triggering health
and economic consequences. Kidney diseases, encompassing both acute kidney injury
(AKI) and chronic kidney disease (CKD), constitute a burgeoning global burden.

AKI has emerged as a pressing concern in the global health landscape, intricately
linked to a spectrum of adverse health outcomes. Its prevalence has surged over the last
decade, leading to heightened morbidity and mortality rates, making it a significant global
public health challenge [1–4]. In hospital settings, AKI is pervasive, affecting approximately
50% of intensive care unit (ICU) patients [5]. Despite some cases being reversible, recent
evidence underscores the long-term consequences of AKI, including an elevated risk of
adverse renal and cardiovascular outcomes [6,7].

Comparatively, patients experiencing AKI face a substantially increased risk of CKD
development, progression of existing CKD, end stage kidney disease (ESKD), and mortality,
as opposed to those with CKD without a history of AKI [8,9]. Notably, each episode of
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AKI doubles the risk of advanced CKD in patients with diabetes [10]. Hence, the interplay
between AKI and the subsequent development of CKD carries significant clinical implica-
tions [11,12]. Understanding and addressing these intricate dynamics are paramount in
pursuing effective kidney health management.

2. The Intricate Relationship between AKI and CKD

Several factors can precipitate AKI, ranging from unstable hemodynamics and volume
depletion to infection and exposure to nephrotoxic agents [13]. Among these, acute tubular
necrosis induced by prolonged ischemia stands out as the most prevalent cause of hospital-
acquired AKI [14]. Evidence increasingly underscores the complex relationship between
AKI and CKD [11].

The progression from a transient kidney injury to sustained AKI and acute kidney
disease (AKD), potentially acting as a bridge to the transition from AKI to CKD, hinges
on individual susceptibility and underlying mechanisms (Figure 1) [15–17]. In many AKI
cases, aberrant cell responses, such as abnormal cellular proliferation, sustained proin-
flammatory and profibrotic signaling mechanisms, progressive capillary loss, disruptions
in the cell cycle, and epigenetic changes in renal cells, contribute to permanent kidney
damage, culminating in renal failure [15,18,19]. Tubulointerstitial injury induces tissue hy-
poxia, ischemia, and vascular rarefaction, negatively impacting renal cellular function [17].
Disruptions in tubuloglomerular feedback recruit inflammatory cells and may exacerbate
tubulointerstitial fibrosis. The persistent state of injury and fibrosis hinders kidney repair,
leading to irreversible changes [15].
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Figure 1. Standard perspectives on the pathophysiology in the progression from AKI to CKD: When
the kidney encounters one or more precipitating factors of AKI, it can undergo repair, restoring
normal or near-normal structure and function through ‘adaptive’ repair. However, maladaptive and
incomplete repair can result in the development of fibrosis and, ultimately, chronic kidney disease.
Figure created with biorender.com (accessed on 1 December 2023).

In clinical settings, the 13th Acute Dialysis Quality Initiative (ADQI) Consensus Con-
ference differentiates between “adaptive repair” processes, facilitating the restoration of
renal structure without long-term complications, and “maladaptive repair”, contributing
to a persistent decline in kidney function linked to a change in renal structure [20]. The
interplay between adaptive and maladaptive repair processes, alongside injury mecha-
nisms, ultimately dictates the number of irreversibly damaged nephrons and, consequently,
the long-term outlook for kidney function. Post-AKI, persistently activated fibrogenic
cells drive the progression of renal fibrosis [18,21]. These factors converge, leading to the
transition from AKI to CKD.
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3. Deciphering the Pathways: From AKI Precipitants to Irreversible Nephron Damage
and AKI-to-CKD Progression
3.1. Early Signaling Events in the Wake of Ischemia-Reperfusion Injury (IRI)

The precise mechanisms governing the transition from AKI to CKD remain a subject
of ongoing exploration. It is postulated that alterations in the intracellular and extracellular
signaling of PTCs contribute significantly to the progression of this complex AKI-to-CKD
transition [22–24].

Following an IRI, a critical phase ensues where renal blood flow is reestablished
through autoregulation mechanisms mediated by the myogenic mechanism and tubu-
loglomerular feedback. This intricate process aims to guarantee adequate oxygen delivery
for the production of essential components such as adenosine triphosphate (ATP), nitric
oxide (NO), and reactive oxygen species (ROS), all integral to the homeostatic control of
renal function [25,26].

In the acute aftermath of IRI, PTC releases various factors, with transforming growth
factor-beta (TGF-β) and tumor necrosis factor (TNF-α), monocyte chemoattractant protein-1
(MCP-1), and transforming growth factor-beta (TGF-β) acting as key players.

TNF-α and MCP-1 serve as chemotactic factors, orchestrating the recruitment of
inflammatory cells to the site of injury. The upregulation of MCP-1 facilitates the influx
of monocytes, lymphocytes, and dendritic cells into the renal tissue, contributing to the
inflammatory milieu associated with IRI [27]. The upregulation of these expression may
persist for up to 7 days after AKI [28]. Moreover, MCP-1 has been implicated in the
modulation of various cellular processes, including oxidative stress and apoptosis, further
underscoring its multifaceted role in the progression of renal damage following IRI [29].
TGF-β1, a multifunctional cytokine, exerts a dual role in the context of IRI. On one hand, it
is recognized for its involvement in tissue repair and fibrosis, promoting the regeneration
of damaged tubules [30]. Conversely, an excessive and dysregulated activation of TGF-β1
has been implicated in the pathogenesis of renal fibrosis and inflammation [31] (Figure 2).
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Figure 2. Molecular signaling in the repair/disease progression. In the early stages of ischemia-
reperfusion injury (IRI), regenerating tubules release factors such as TGF-β and MCP-1, recruiting
inflammatory cells and inducing cellular damage. MMP activity intensifies, leading to interstitial
edema and diminished renal blood flow. Crucial signaling cascades, including WNT/β-catenin
and PI3K/AKT, play key roles in the progression from AKI to CKD. WNT/β-catenin activation
contributes to renal fibrotic lesions, while PI3K/AKT exhibits a potential protective role. However,
inflammation, mitochondrial dysfunction, oxidative stress, and impaired nitric oxide production lead
to proximal tubular cell (PTC) re-differentiation. Regenerated tubular cells transform pericytes into
fibroblasts, contributing to abnormal fibroblast behavior. Diverse signaling pathways perpetuate
fibroblast transformation, ultimately causing extensive kidney tissue damage. Figure created with
biorender.com (accessed on 1 December 2023).
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3.2. Complex Signaling Cascades Orchestrating the Transition from AKI to CKD

IRI also instigates a complex orchestration of downstream signaling cascades, encom-
passing pivotal pathways such as WNT/β-catenin, PI3K/AKT/Bad, glycogen synthase
kinase-3, and Ca2+-dependent cysteine protease signaling [32–40]. The Wnt/β-catenin
signaling pathway plays crucial roles in organogenesis, tissue homeostasis, and the devel-
opment of various diseases, including those affecting the kidneys [41]. It remains relatively
quiescent in the uninjured adult kidney but undergoes reactivation during both acute and
chronic renal injury. And the exaggerated activation of Wnt/β-catenin emerges as a critical
player in the intricate process, contributing significantly to the developing renal fibrotic
lesions marked by interstitial myofibroblast activation and excessive extracellular matrix
deposition (Figure 2).

Conversely, the PI3K/AKT pathway activation displays a potential protective role, miti-
gating the severity of AKI [37]. However, a delicate balance in these signaling transductions is
paramount, as an imbalance manifests in inflammatory cell infiltration, mitochondrial dysfunc-
tion, heightened oxidative stress, lipid peroxidation, and impaired nitric oxide production.

Post-acute inflammation, regenerated renal tubular cells dynamically engage intersti-
tial precursor cells, orchestrating their transformation into fibroblasts, a critical step in the
generation of connective tissue. Predominantly constituted by pericytes, these precursor
cells intricately interact with capillaries and renal tubules [42–44]. Despite the regenerative
efforts, certain PTCs falter in the re-differentiation process, failing to regain their regular
structure [45]. These fibroblasts’ abnormal epithelium expresses profibrotic peptides and
exhibits heightened signaling activity [46].

Many signaling pathways contribute to the challenge of fibroblasts failing to re-
differentiate. WNT, TGF-β, Platelet-Derived Growth Factor Subunit B (PDGF-B), connective
tissue growth factor (CTGF), α-smooth muscle actin (α-SMA), Sonic hedgehog, as well as
micro-RNA21, PPARa, and NOX4, all play intricate roles in perpetuating this state [47–57].
These persistent PTC signaling pathways continue to fuel the transformation of pericytes
into fibroblasts.

While these signaling and secretory responses are essential for regeneration, their
timely downregulation is equally critical once tubules recover. Unfortunately, multiple
activating signals disrupt this delicate equilibrium, resulting in intercellular proteolysis
and cellular dissociation. At the interface of endothelial–pericyte–fibroblast interactions,
pathologic events unfold, causing capillaries to rupture and fibroblasts to undergo detach-
ment, transformation, migration, and proliferation. The consequential widening of the
interstitium, brought about by proliferating fibroblasts and connective tissue, reduces capil-
lary density [58]. The escalating transformation of pericytes into fibroblasts exacerbates
kidney fibrosis, culminating in extensive kidney tissue damage.

3.3. Intracellular Signaling Cascades Orchestrating the Transition from AKI to CKD

Alterations in intracellular signaling within renal tubular cells propel the progression
of the AKI-to-CKD transition and emerge as pivotal contributors to the intricate devel-
opment of tubulointerstitial fibrosis and glomerulosclerosis [22–24] (Figure 3). In this
multifaceted cascade, the persistent activation of the TGF-β signaling pathway assumes a
central role, inducing the deposition of fibrotic extracellular matrix proteins upon transi-
tioning into the CKD phase [59,60]. The consequence of this activation is a restructuring of
the renal tissue, setting the stage for the fibrotic transformations characteristic of chronic
kidney disease.
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Figure 3. Intracellular signaling cascades orchestrating the transition from AKI to CKD: dysregulation
of PGC1α, AMPK, SIRT3, and their downstream genes NRF1/NRF2 is evident in AKI. Proximal
tubular cells (PTCs) are particularly affected by kidney hypoxia and mitochondrial dysfunction.
Persistent TGF-β in the glomerulus induces the deposition of fibrogenic matrix proteins, leading to
glomerulosclerosis. Consequently, tubulointerstitial hypoxia triggers fibrogenesis, elevating levels of
α-SMA and collagen I. As the disease progresses, dysfunctional renal tubules intensify the profibrotic
response, activating the secretion of TGF-β, potentially inducing the production of HIF. Figure created
with biorender.com (accessed on 1 December 2023).

PTCs play crucial roles in the tubule–glomerular interaction, and tubulointerstitial
hypoxia. In tubulointerstitial hypoxia, a consequential feature operates on a dual front
by triggering fibrogenesis and elevating levels of α-SMA and collagen I. This elevation
catalyzes the production of fibroblasts, further contributing to the fibrotic remodeling of
renal tissues [57]. While the TGF-β pathway plays a prominent role, it is crucial to recognize
that the intricacies of this process involve a symphony of interconnected mechanisms.

Moreover, dysfunction within the renal tubules has a ripple effect, sensitizing tubu-
loglomerular feedback and intensifying the profibrotic response [61]. This heightened
sensitivity, in turn, activates the secretion of TGF-β, potentially inducing the production of
hypoxia-inducible factor (HIF). The induction of HIF serves as a nexus linking hypoxia,
fibrogenesis, and glomerulosclerosis, adding another layer of complexity to the pathogenic
progression [62].

Navigating the intricate landscape of renal pathophysiology, it is essential to recog-
nize that the presented narrative is not all-encompassing, and there may be additional
mechanisms intricately contributing to the dynamic interplay of events. Delving deeper
into these complexities, further exploration is warranted to unveil the full spectrum of
factors shaping the transition from acute kidney injury to chronic kidney disease. This
ongoing investigation holds promise for identifying targeted therapeutic interventions and
fostering a more profound comprehension of renal health. The elucidation of these intricate
signaling pathways illuminates the multifaceted journey from AKI to CKD, underscoring
the need for continued exploration toward refined therapeutic strategies and enhanced
clinical outcomes.

4. Mitochondria’s Vital Role in Kidney Health

Mitochondria stand at the epicenter of cellular energy production, generating ATP
and orchestrating many vital cellular functions. Their pivotal roles extend beyond mere
energy provision to include the regulation of apoptosis, calcium balance, cellular differ-
entiation, synthesizing essential macromolecules, and cellular growth [63]. Furthermore,
mitochondria serve as the primary source of the cell’s reactive oxygen species (ROS) while

biorender.com
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harboring a wealth of inherent antioxidants. This is critical in maintaining the cell’s redox
balance and overseeing intricate signaling pathways [63].

Structured with a double-membrane design comprising an outer membrane (OMM)
that carefully regulates the selective transport of substances into and out of the mitochondria
and an inner membrane (IMM) forming folds known as cristae, mitochondria house the
electron transport chain. This respiratory chain, composed of five highly conserved protein
complexes I–V embedded in the inner membrane, facilitates redox reactions, establishing an
electrochemical gradient by concurrently transferring electrons to oxygen and transporting
protons from the matrix across the inner membrane into the intermembrane space essential
for cellular function. Any disruption to this delicate gradient can lead to the inability to
generate ATP, impair oxidative phosphorylation, and ultimately result in the maladaptive
response of PTCs following AKI [64].

The intricate architecture and functional integrity of mitochondria emerge as crucial
determinants in cellular resilience, particularly in the face of physiological stressors like
AKI. Understanding the nuanced interplay between mitochondrial dysfunction and AKI
opens avenues for targeted interventions, promising insights that extend beyond energy
metabolism to impact the broader landscape of renal health.

4.1. Mitochondrial Mastery: Unveiling the Distinct Needs within Kidneys

In recent years, the pivotal role of mitochondrial dysfunction has gained increasing
recognition in acute and chronic renal injuries [65,66]. The kidneys, renowned for their
elevated metabolic rate, receive 20% of the cardiac output, consuming 10% of the body’s
oxygen intake [66,67]. This organ is notably rich in mitochondria, the energy-producing
organelles crucial for maintaining cellular redox balance and energy homeostasis. Each
distinct region of the kidney possesses unique energy requirements, reflected in the varying
amounts of ATP they produce. For instance, in podocytes, the preservation of mitochon-
drial function is imperative for expressing nephrin and podocin, essential for upholding
glomerular filtration [63]. Meanwhile, PTCs, the most energy-demanding cells in the kid-
ney, are densely populated with mitochondria [64]. Impaired mitochondrial bioenergetics
has the potential to interfere with vital biological processes. In addition to energy produc-
tion, mitochondrial signaling pathways and the subsequent calcium flux underscore their
crucial role in cellular metabolism, the generation of reactive oxygen species (ROS), and
the regulation of apoptosis [65].

Mitochondria are dynamic cellular powerhouses that generate ATP through oxidative
phosphorylation and play essential roles in heme biosynthesis, the Krebs cycle, fatty acid
β-oxidation pathways, calcium ion homeostasis, thermogenesis, proliferation, and apopto-
sis [65]. The abundance of mitochondria in the kidney and susceptibility to dysfunction
often associated with AKI underscores their critical regulatory role in kidney functions.

Following AKI, oxygen depletion impedes the electron transport in the mitochondrial
respiratory chain, resulting in decreased ATP production. Anaerobic metabolism lowers
pH and activates the Na+/H+ exchanger, prompting sodium ion influx to reduce the uptake
of calcium ions by the endoplasmic reticulum (ER) [34,66–72]. Beyond energy depletion,
mitochondria in PTCs exhibit varying degrees of swelling and fracturing post-AKI [73].
This mitochondrial damage emerges as a leading cause of cell apoptosis and necrosis in
PTCs, significantly contributing to an imbalance in energy metabolism [74,75].

4.2. mtDNA as a Marker for Inflammation

The mitochondria have their own DNA, namely mitochondrial DNA (mtDNA), re-
sponsible for encoding essential proteins within the mitochondrial respiratory complex.
It is a closed-circular double-stranded molecule housing 37 encoded genes in the mito-
chondrial matrix. Unlike nuclear DNA, mtDNA lacks robust repair systems and histone
protection, rendering it susceptible to damage. Marked by unmethylated CpG repeats akin
to bacterial DNA, mtDNA is flagged by the immune system as non-self. Post-traumatic
mitochondrial damage unleashes mtDNA outside the mitochondria, particularly with
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low-molecular-weight cell-free mtDNA linked to inflammation and unfavorable clinical
outcomes post-trauma. This released mtDNA activates inflammation through diverse
signaling pathways [76,77]. In mitochondrial stress, damage, or cell death, mtDNA is
released into the cellular milieu. Immune cells, such as macrophages and dendritic cells,
discern the unmethylated CpG repeats in mtDNA as a danger signal [78]. This recognition
sets off the Toll-like Receptor 9 (TLR9) pathway, with TLR9 binding to the CpG motifs,
initiating downstream signaling cascades. Activation of TLR9 recruits adaptor proteins,
such as MyD88, subsequently activating nuclear factor kappa-B (NF-κB) and mitogen-
activated protein kinase (MAPK) cascades. These pathways lead to the transcription of
proinflammatory cytokines like TNF-α, interleukin-1β (IL-1β), and interleukin-6 (IL-6) [79].
Additionally, mtDNA can engage other cytosolic DNA sensors, such as cyclic GMP-AMP
synthase (cGAS), prompting the production of type I interferons and other inflammatory
cytokines through the cGAS–STING pathway [80]. The release of these proinflammatory
mediators attracts immune cells, intensifying the inflammatory response.

While this response is crucial for the body’s defense, prolonged or excessive inflamma-
tion may contribute to various pathological conditions, including AKI. Extensive popula-
tion studies suggest a correlation between mtDNA copy number and renal disease, hinting
at the potential use of circulating DNA copy number as a biomarker for longitudinally
monitoring renal function [81]. This evolving comprehension of the intricate interplay
between mitochondria and renal health illuminates the pathophysiology of kidney injuries
and propels us toward innovative therapeutic strategies to preserve mitochondrial integrity
and mitigate the consequences of renal dysfunction.

4.3. The Mitochondrial Quality Control

Mitophagy, an indispensable process in cellular maintenance, meticulously oversees
the removal of damaged or dysfunctional mitochondria to safeguard cellular health [82]
(Figure 4). When mitochondria encounter stressors, such as oxidative damage or mem-
brane depolarization, a tagging mechanism ensues, orchestrated by essential proteins like
PINK1 and Parkin [83]. In response to mitochondrial damage, PINK1 accumulates on
the outer mitochondrial membrane, activating Parkin, an E3 ubiquitin ligase. Parkin, in
turn, ubiquitinates mitochondrial proteins, marking them for degradation. The recruitment
of autophagosomes, double-membrane vesicles, to the ubiquitinated mitochondria facil-
itates their engulfment, leading to subsequent fusion with lysosomes and the formation
of autolysosomes. Within these structures, damaged mitochondria undergo meticulous
breakdown by lysosomal enzymes, ensuring the efficient recycling of cellular components
and thwarting the accumulation of dysfunctional mitochondria. Mitophagy operates in
tandem with mitochondrial biogenesis, striking a delicate balance to maintain a robust
and healthy mitochondrial population within cells. This quality control mechanism is
paramount for cellular homeostasis and is pivotal in mitigating conditions linked to mito-
chondrial dysfunction, including neurodegenerative disorders and metabolic diseases. The
well-characterized PINK1–Parkin pathway exemplifies the cell’s sophisticated strategies to
uphold mitochondrial integrity.

Additionally, mitochondria undergo continuous fusion and fission processes, with the
PINK1–Parkin pathway serving as a checkpoint for identifying and removing defective
mitochondrial segments [83]. Mitophagy, activated notably during IRI AKI, specifically
targets impaired mitochondria, averting cellular mortality induced by mitochondrial ox-
idative stress and proapoptotic signaling. The IRI associated with AKI induces a shift in
mitochondrial dynamics towards the fission process, wherein Drp1, a fission mediator,
becomes phosphorylated and translocates to the mitochondria, ultimately leading to fission
of the mitochondrial outer membrane [84–86]. This intricate interplay underscores the
dynamic nature of mitophagy and its pivotal role in cellular resilience.
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4.4. PGC-1α, the Mitochondrial Master Regulator

PGC-1α, or Peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α, assumes
a pivotal role in orchestrating the intricate process of mitochondrial biogenesis, necessitating
meticulous coordination between nuclear and mitochondrial genomes [87–89] (Figure 4).
Operating as a master regulator, PGC-1α initiates a regulatory dance that propels the tran-
scriptional machinery, increasing mitochondrial mass to meet heightened energy demands
in tissues. Within the PGC-1 family, PGC-1β and PRC contribute to maintaining basal mito-
chondrial function and overseeing mitochondrial biogenesis in proliferating cells. The activity
of PGC-1α is finely tuned through posttranslational modifications and gene expression lev-
els, responding to stressors like glucose deprivation or exercise via AMP-activated protein
kinase (AMPK)-mediated phosphorylation and activation. Elevated nicotinamide adenine
dinucleotide (NAD) levels further activate Sirtuin-1 (SIRT1), a NAD-dependent deacetylase,
intensifying PGC-1α activation. The active form translocates into the nucleus, collaborating
with transcription factors such as Nrf1, Nrf2, and Tfam, triggering mitochondrial protein syn-
thesis, mtDNA replication, and the genesis of new mitochondria. PGC-1α’s interactions with
diverse nuclear factors influence cellular energy metabolism pathways within and outside
mitochondria. While cAMP response element-binding protein (CREB) positively regulates
PGC-1α transcription, inflammatory and profibrotic factors like TNF-α, TWEAK, Hes1, and
TGF-β1 negatively impact PGC-1α expression, unveiling a multifaceted regulatory network.
Notably, PGC-1α knockout mice exhibited compromised renal function and increased tubular
injury after ischemia/reperfusion, in contrast to the improved outcomes observed in mice
with PGC-1α overexpression [90]. These findings underscore PGC-1α’s protective role in
mitigating kidney damage post-ischemia/reperfusion, highlighting its critical involvement in
cellular energy homeostasis and potential implications for kidney disease.

4.5. AKT1 Shifting from Cytoplasm to Mitochondria after AKI

AKT1 kinase, also known as protein kinase B (PKB), is a serine/threonine kinase
playing a crucial role in various cellular processes. Its activation is typically triggered by
the binding of growth factors or other extracellular signals to cell surface receptors, initiating
the activation of PI3K. PI3K generates the lipid second messenger phosphatidylinositol
(3,4,5)-trisphosphate (PIP3), and AKT1 binds to PIP3 via its pleckstrin homology (PH)
domain. This interaction facilitates the accessibility of T308 in the activation loop for
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phosphoinositide-dependent kinase 1 (PDK1). The PI3K/Akt signaling pathway stimulates
cell proliferation, growth, and inhibits cell apoptosis.

Upon stimulation, AKT1 accumulates in the mitochondrial matrix, with various known
substrates identified within the mitochondrion [91]. These substrates include glycogen
synthesis kinase β [92], hexokinase II [93], and the β-subunit of complex V [94], indicating
that AKT1 likely exerts a regulatory influence on mitochondrial processes. In our previous
research, the renal tubular AKT1 was activated and translocated into mitochondria after
renal IRI [95]. The intra-mitochondrial cycling of AKT1 is pivotal for modulating redox pro-
cesses involved in cell cycle progression [96]. Mitochondrial Akt1 activation contributes to
an anti-apoptotic effect in cardiac muscle cells [97], and dysfunction in the translocation and
activation of mitochondrial AKT1 has also been linked to diabetic myocardium conditions.
Furthermore, robust cardioprotection against both calcium overload and ischemic injury
through the activation of mitoKATP channels depends on the associated translocation of
phosphorylated AKT1 to the mitochondria [98]. It is likely that the intra-mitochondrial
cycling of AKT1 after renal IRI provides a protective role. While emerging evidence sup-
ports the involvement of AKT1 in mitochondrial functions, the precise mechanism of AKT1
translocation remains poorly understood, potentially being associated with the activity of
heat shock protein 90 [99].

4.6. Mitochondrial Iron Metabolism Dysregulation after AKI

Iron’s significant pathological role in both triggering and advancing tissue damage
induced by ischemia-reperfusion (IR) is well-established. The occurrence of ferroptosis
is intricately linked to the regulation of iron metabolism within the mitochondria. CISD1
(CDGSH iron sulfur domain 1), anchored in the mitochondrial outer membrane, func-
tionally regulates mitochondrial iron absorption. Deficiency in CISD1, leading to the
accumulation of mitochondrial iron and subsequent oxidative stress, has been identified
as a catalyst for erastin-induced ferroptosis [100]. Furthermore, studies have revealed
that cells deficient in the mitochondrial iron import protein sideroflexin 2 (SFXN2) exhibit
heightened susceptibility to the ferroptosis inducer erastin. This heightened susceptibility
is attributed to increased mitochondrial iron, reduced heme levels, and diminished activity
of heme-dependent enzymes [101]. Catalases, peroxidases, or cytochromes P450, which
rely on heme as essential cofactors, are among the affected enzymes in this context.

5. Critical Role of Mitochondria in AKI-to-CKD Transition

Exploring the critical nexus between AKI and the subsequent progression to CKD
unveils a rich and intricate landscape of mitochondrial dynamics. This facet of research not
only captivates the scientific community but also holds the promise of yielding valuable
insights that could pave the way for therapeutic interventions in renal pathologies. Recent
studies have notably underscored the indispensable role of mitochondrial function in
orchestrating this complex transition [55,56].

CKD manifests through heightened oxidative stress, a consequence of the dysregulated
production and removal of ROS [102]. Within this biochemical milieu, mitochondria emerge
as central figures, assuming a dual role as victims and perpetrators. They contribute to
renal damage and functional deterioration [73–75]. The intricacies of oxidative stress in
CKD are intimately tied to impaired mitochondrial function, creating a self-perpetuating
cycle that amplifies mitochondrial ROS production and, ultimately, drives cells toward
apoptosis [73,74,102].

The multifaceted role of mitochondria in dictating cellular fate gains further promi-
nence in the context of diabetic CKD. Here, renal cells succumb to mitochondrial apoptosis
under the influence of elevated glucose and albumin levels, adding a layer of complexity
to the interplay between metabolic factors and mitochondrial function [103]. As we delve
deeper into the nuanced interconnections within this framework, it becomes increasingly
apparent that understanding the role of mitochondria is paramount for deciphering the
intricacies of disease progression.
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This ongoing exploration into the interwoven tapestry of mitochondrial dynamics and
renal health not only sheds light on the molecular mechanisms at play but also holds the
potential to shape targeted interventions to mitigate the progression from AKI to CKD.
Our subsequent discussion will further elucidate the multifaceted role of mitochondria in
steering the trajectory of renal pathologies.

5.1. Lessons Learned from PGC-1α Animal Model Systems

As previously discussed, the regulatory influence of the PGC-1α factor is paramount
in overseeing mitochondrial biogenesis, ensuring the synthesis of both inner and outer
mitochondrial membranes, mitochondrial-encoded proteins, and the import of nuclear-
encoded mitochondrial proteins, crucial for fatty acid oxidation [87,88]. In clinical settings
and mouse models of AKI and CKD, there is a consistent observation of diminished PGC-
1α expression [87–89]. This reduction corresponds with decreased mitochondrial DNA
copy number, compromised membrane potential, and diminished ATP production during
the transition from AKI to CKD [80,81].

Remarkably, kidney PGC-1α experiences a reduction within 24 h of kidney IRI, and
PGC-1α-deficient mice exhibit more severe AKI. Conversely, the overexpression of PGC-1α
in tubular cells provides protection against AKI stemming from various causes [88–90,104].
These findings suggest that preserving kidney PGC-1α may confer protective effects in
AKI. The orchestration of mitochondrial dynamics through PGC-1α emerges as a critical
determinant in the continuum of renal health. These results underscore the association
between mitochondrial dysfunction and both the occurrence of AKI and the development
and progression of CKD.

5.2. Mitochondrial Modulation in AKI: A Pathway to Prognostic Improvement

Experimental investigations have remarkably illuminated promising strategies for
enhancing AKI prognosis through the modulation of mitochondrial function. Notably,
instances of AKI induced by both ischemia and cisplatin showcased significant amelioration
when apoptosis was strategically inhibited through the ablation of Bax and Bak [105,106].
This groundbreaking revelation highlights the intricate connection between mitochondrial
dynamics and the apoptotic cascade, shedding light on potential therapeutic targets for
preventing AKI progression.

Moreover, animal models simulating AKI induced by ischemia and nephrotoxicity
demonstrated encouraging outcomes when mitochondrial fragmentation, a process in-
tricately linked to cellular stress, was deliberately inhibited [107]. This underscores the
pivotal role of mitochondrial structural integrity in mitigating the severity of AKI. Targeting
mitochondrial dynamics is a valuable avenue for therapeutic interventions to prevent or
ameliorate AKI in various clinical scenarios.

The preservation of functional mitochondria emerges as a critical factor in shielding
against AKI and its subsequent renal injuries. This aligns with the growing recognition of
mitochondria as energy-producing organelles and crucial cell fate and survival regulators.
Mitochondrial health is intricately linked to cellular resilience, and interventions that
promote mitochondrial integrity could hold the key to preventing or mitigating AKI-
associated complications.

Given the acknowledged significance of tubular cell injury and death in the onset of
AKI, the repair and regeneration of tubules have been identified as pivotal processes in AKI
recovery [16,20,21]. This emphasizes the dynamic nature of AKI pathophysiology, where
preventing initial injury and promoting regenerative processes is crucial for successful
recovery. Strategies targeting tubular repair and regeneration, involving mitochondrial-
focused approaches, could represent innovative directions for AKI management.

While sub-lethal injuries may exhibit reversibility, the irretrievable loss of tubular
function ensues from the demise of tubular cells and intracellular mitochondrial malfunc-
tion [88]. This insight underscores the importance of preventing cell death and addressing
the underlying mitochondrial dysfunction. Therapeutic interventions targeting mitochon-
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drial repair mechanisms could provide a dual benefit by preventing cell loss and restoring
cellular function.

Mitochondria are also central to the initiation of AKI, potentially paving the way for
the transition to CKD following exposure to nephrotoxic agents [108]. Maleic acid (MA)-
induced AKI, notably affecting renal proximal tubules, is associated with mitochondrial
dysfunction [105,106]. MA-induced kidney injuries impact renal ammoniagenesis and
mitochondrial energy homeostasis and induce mitochondrial permeability transition pore
opening, leading to cell apoptosis [109–111]. Subsequent investigations reveal AKI-induced
mitochondrial deformities, deficient ATP synthesis, excessive ROS accumulation, and
impaired mitochondrial oxidative phosphorylation systems. Addressing mitochondrial
dysfunction emerges as a critical therapeutic avenue for managing the clinical transition
from AKI to CKD [75].

5.3. AKT1 in Focus: Unraveling Mitochondrial Signaling Dynamics in Renal Injury

Mitochondrial signaling during renal injuries remains an understudied domain; how-
ever, recent advances shed light on intricate communication pathways between mitochon-
dria and the cytosol [91]. As we discussed earlier, several regulatory proteins linked to
mitochondrial biosynthesis have been identified, including PGC-1α, AMP-activated protein
kinase (AMPK), AKT, SIRT3, and Nrf1 and Nrf2 [90,91,112,113]. Of particular interest is
the involvement of the PI3K/AKT signaling pathway, a fundamental intracellular pathway.
The major AKT isoform expressed in PTCs, AKT1, plays a dynamic role in regulating
diverse cellular functions such as angiogenesis, cell metabolism, growth/proliferation, cell
survival/anti-apoptosis, protein synthesis, and gene transcription [93].

AKT1 signaling extends beyond the cytosol, demonstrating its versatility by translo-
cating into mitochondria and the nucleus, exerting specific biological actions. For instance,
insulin-stimulated AKT1 has been observed to translocate into mitochondria, influencing
the oxidative phosphorylation complex V in cardiac muscle and improving bioenergetics
while reducing oxidative stress in cardiomyocytes [94] (Figure 4). In the context of IRI-
induced AKI, activated AKT1 was identified to translocate into PTC mitochondria [95].
Utilizing a tissue-specific, inducible overexpression animal model, mitochondrial AKT1
levels and its activation were manipulated. Inhibition of mitochondrial AKT during IRI in
renal tubules resulted in exacerbated tubular damage and AKI, characterized by uncoupled
mitochondrial respiration and increased oxidative stress in renal tubular epithelial cells.
This scenario also led to an accelerated development of chronic kidney disease (CKD) with
pronounced fibrosis.

Conversely, activating mitochondrial AKT in tubular cells during IRI protected against
AKI-induced renal tubule damage and retrograde glomerulosclerosis, ultimately attenu-
ating the progression from AKI to CKD. This animal model study strongly supports the
notion of a protective role for activated mitochondrial AKT1 in renal tubule cells during
IRI, preventing subsequent CKD development [95].

The intricate interplay between AKT signaling and mitochondrial dynamics in renal
injury showcases the potential therapeutic relevance of targeting mitochondrial AKT to
mitigate AKI and impede the subsequent development of CKD. This nuanced understand-
ing opens avenues for interventions to preserve mitochondrial function, paving the way
for novel strategies in renal health management.

In conclusion, the nexus between mitochondrial dynamics and the progression from
AKI to CKD presents an intricate landscape of molecular events. Understanding these
complexities opens avenues for targeted interventions to preserve mitochondrial integrity,
offering hope for mitigating renal injuries and fostering kidney recovery.

6. Mitochondrial Targeting and Antioxidants Are the Potential Treatments for AKI and
AKI-to-CKD Transition

Our comprehensive exploration has shed light on the profound involvement of mitochon-
drial dysfunction in the intricate pathogenesis of chronic renal disease. This dysfunction sets
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off a cascade of events, initiating cellular apoptosis and triggering inflammatory and fibrotic
responses, thus contributing significantly to the progression of renal pathology [73].

In therapeutic interventions for renal health, promising avenues emerge, particularly
in addressing maleic acid-induced nephropathy. The inhibition of the citric acid cycle
following malic acid administration, as discovered by Johan Martensson in 1940, explains
the observed increase in citric acid excretion after malic acid administration. When con-
sidering malic acid supplements, it is crucial to closely monitor kidney function due to its
negative impact despite its potential protective effect against renal stone development. In
recent years, the effects of antioxidants on renal function, especially in the context of malic
acid-induced renal damage, have been extensively studied. Building on these research
findings, antioxidants such as sulforaphane and curcumin have exhibited noteworthy
efficacy. Their ability to mitigate redox imbalance and preserve mitochondrial bioenergetics
underscores their potential as therapeutic agents in countering the adverse effects of maleic
acid-induced nephropathy [114,115].

Expanding our scope to antioxidants renowned for their adeptness in scavenging ROS,
including Coenzyme Q10, MitoQ, Mito-CP, and SkQR1, a compelling body of evidence
supports their role in preventing AKI [107]. This highlights their relevance in the context
of mitochondrial health and positions them as potential guardians against the immediate
consequences of renal insult.

Taking a closer look at specific interventions targeting mitochondrial dynamics, the Szeto–
Schiller peptide SS-31 emerges as a noteworthy contender. Crafted to avert the peroxidation
of cardiolipin in the inner mitochondrial membrane, SS-31 can counteract mitochondrial
dysfunction resulting from the accumulation of ROS, particularly in the context of an impaired
oxidative phosphorylation system [116]. This peptide opens up intriguing possibilities for
tailored interventions at the molecular level to safeguard mitochondrial integrity.

Furthermore, rotenone, functioning as an inhibitor of complex I in the electron trans-
port chain, demonstrates promise in mitigating mitochondrial dysfunction. By impeding a
crucial component of the energy production process, rotenone addresses the root cause of
ROS accumulation, presenting a potential avenue for therapeutic intervention [117].

Expanding our repertoire of interventions, cyclosporin A emerges as a notable inhibitor
of mitochondrial permeability pore formation. This intervention, coupled with the family
of sirtuins, NAD+-dependent protein deacetylases [118], underscores the potential for
restoring mitochondrial function post-injury. These interventions present not only a means
of addressing immediate mitochondrial damage but also hold promise in preventing further
cascading damage that could contribute to the progression of renal pathology [107].

7. Conclusions

In conclusion, mitochondrial dysfunction emerges as a pivotal contributor to the
transition from AKI to CKD. The disruption of energy metabolism in PTCs during AKI
manifests through abnormalities in mitochondrial biosynthesis, kinetics, signal transduc-
tion, and compromised oxidative phosphorylation. Although mitochondrial signaling can
transiently compensate for fluctuations in energy supply and increased oxidative stress,
persistent oxidative stress in AKI culminates in mitochondrial dysfunction, thereby con-
tributing to the progression of CKD. The prolonged altered signal transduction between
renal tubules and the glomerulus further facilitates the development of the AKI-to-CKD
transition. Despite the documented significance of mitochondrial signaling in PTCs during
AKI, the remote effects of mitochondrial dysfunction on the glomerulus remain unknown.
This review explores recent research on the molecular pathways of mitochondrial signaling
in PTCs during AKI, highlighting its role as a primary pathophysiological mechanism in
AKI progression and a critical determinant of subsequent renal outcomes. Notably, tar-
geted mitochondrial AKT1 has shown promise in reversing CKD progression, emphasizing
the potential therapeutic impact of interventions to preserve mitochondrial integrity for
alleviating AKI and fostering renal recovery.
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In summary, the presented findings underscore the profound therapeutic potential of
interventions to preserve mitochondrial integrity in mitigating AKI and promoting renal
recovery. Mitochondria, once perceived solely as energy factories, are now recognized as
central players in the pathophysiology of AKI. Future research and clinical endeavors should
thus explore innovative strategies to safeguard mitochondrial function, offering renewed hope
for enhancing AKI outcomes and ushering in a transformative era in renal care.
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Abbreviations

AKT1 RAC(Rho family)-alpha serine/threonine-protein kinase 1
ADQI Acute Dialysis Quality Initiative
AKI acute kidney injury
AMPK AMP-activated protein kinase
ATP adenosine triphosphate
Bad BCL-2 antagonist of cell death
Bak BCL-2 homologous antagonist/killer
Bax BCL-2 activated X protein
CISD1 CDGSH iron sulfur domain 1, also known as mitoNEET
CKD chronic kidney disease
CREB cAMP response element-binding protein
cGAS cyclic GMP-AMP synthase
CTGF connective tissue growth factor
Drp1 dynamin-related protein 1
ER endoplasmic reticulum
ESRD end-stage renal disease
Hes1 hairy and enhancer of split-1 (a transcription factor)
HIF hypoxia-inducible factor
IL-1b interleukin-1β
IL-6 interleukin-6
IMM inner membrane
IRI ischemia-reperfusion injury
MA maleic acid
MAPK mitogen-activated protein kinase
MCP-1 monocyte chemoattractant protein-1
Mito-CP mitochondria-targeted nitroxide
mitoKATP channels mitochondrial ATP-sensitive potassium channels
MitoQ a selective antioxidant that concentrates in the mitochondria
MMPs matrix metalloproteinases
mtDNA Mitochondrial DNA
MyD88 Myeloid Differentiation Primary Response Protein 88
NAD nicotinamide adenine dinucleotide
NF-kB nuclear factor kappa-B
NO nitric oxide
Nox4 NADPH oxidase 4
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Nrf1 nuclear respiratory factor 1
Nrf2 nuclear respiratory factor 2
OMM outer membrane
Parkin an E3-ubiquitin (Ub) ligase central to mitochondrial quality control
PDGF-B Platelet-Derived Growth Factor Subunit B
PGC-1a Peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α
PGC-1b Peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1b
PI3K Phosphoinositide 3-kinases
PINK1 a mitochondrial kinase
PIP3 phosphatidylinositol (3,4,5)-trisphosphate
PTCs proximal tubular cells
PRC PGC-1-related coactivator
ROS reactive oxygen species
SFXN2 the mitochondrial iron import protein sideroflexin 2
SIRT-1 Sirtuin-1
SIRT-3 Sirtuin-3
SKQR1 a mitochondrial targeted antioxidant
a-SMA α-smooth muscle actin
SS-31 Szeto-Schiller peptide SS-31
TGF-b growth factor-beta
TLR9 Toll-like Receptor 9
TNF-a tumor necrosis factor-alpha
WNT Wingless-related integration site, Wnt/b-catenin pathway—plays critical roles in

embryonic development and adult tissue homeostasis
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