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SUMMARY

Paroxysmal kinesigenic dyskinesia with infantile
convulsions (PKD/IC) is an episodic movement dis-
order with autosomal-dominant inheritance and
high penetrance, but the causative genetic mutation
is unknown. We have now identified four truncating
mutations involving the gene PRRT2 in the vast
majority (24/25) of well-characterized families with
PKD/IC. PRRT2 truncating mutations were also de-
tected in 28 of 78 additional families. PRRT2 encodes
a proline-rich transmembrane protein of unknown
2 Cell Reports 1, 2–12, January 26, 2012 ª2012 The Authors
function that has been reported to interact with the
t-SNARE, SNAP25. PRRT2 localizes to axons but
not to dendritic processes in primary neuronal cul-
ture, and mutants associated with PKD/IC lead to
dramatically reduced PRRT2 levels, leading ulti-
mately to neuronal hyperexcitability that manifests
in vivo as PKD/IC.

INTRODUCTION

The paroxysmal dyskinesias (PD) are a heterogeneous group of

episodicmovement disorders that can be separated on the basis
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of factors that precede or precipitate attacks, the nature and

durations of attacks, and etiology (Bhatia, 2011; Blakeley and

Jankovic, 2002). Individuals are typically completely normal

between attacks. Attacks of PD and epileptic seizures share

several characteristics. The syndrome of paroxysmal kinesigenic

dyskinesia with infantile convulsions (PKD/IC, formerly reported

as ICCA syndrome; MIM 602066) typically presents in the first

year of life with benign, afebrile infantile convulsions that sponta-

neously resolve, usually by 2 years of age. In young childhood,

these individuals begin having PKD; i.e., frequent but brief

movements precipitated by sudden movements or change in

velocity of movement (e.g., sitting to standing, standing to

walking, walking to running). Patients may experience dozens

to hundreds of PKD attacks per day. They typically last less

than 5 or 10 s but occasionally may be longer. Interestingly,

investigators studying families with autosomal-dominant infan-

tile convulsions had recognized that these individuals also devel-

oped paroxysmal movement disorders (Szepetowski et al.,

1997). Separately, investigators studying PKD, upon taking

closer family histories, recognized that their families were also

segregating alleles for autosomal-dominant infantile convulsions

(Swoboda et al., 2000). In typical PKD/IC families, variable pre-

sentation is usual and patients present with PKD, IC, or both.

Interfamilial variable expressivity also exists. Hence, families

with IC but no PKD were reported and the majority were con-

sidered allelic variants of PKD/IC (Caraballo et al., 2001). Simi-

larly, many PKD families are recognized in whom there is no

mention of IC, perhaps because the seizures had resolved,

leading to presentation with an episodic movement disorder.

The nature of the infantile convulsions and the paroxysmal

dyskinesias has been well described (Bruno et al., 2004; Roch-

ette et al., 2008; Swoboda et al., 2000; Szepetowski et al.,

1997). The gene associated with PKD/IC has been mapped

to chromosome 16 by many groups, and extensive efforts to

identify the gene have been ongoing (Bennett et al., 2000; Call-

enbach et al., 2005; Caraballo et al., 2001; Du et al., 2008; Kiku-

chi et al., 2007; Lee et al., 1998; Roll et al., 2010; Swoboda et al.,

2000; Szepetowski et al., 1997; Tomita et al., 1999; Weber et al.,

2004).

After having firmly excluded by sequencing the vast majority

of the 180 known or predicted genes in the critical chromosome

16 locus for PKD/IC, we set out to perform whole-genome

sequencing from one affected member from each of our six

most well-characterized families. Upon examining this se-

quence, we identified potential mutations in a gene called

proline-rich transmembrane protein 2 (PRRT2, Entrez Gene no.

112476). We chose to examine this gene in a larger collection

of well-characterized families from an international PKD/IC

consortium. Our interest in PRRT2 was strengthened for a num-

ber of reasons. We’ve shown that a mouse model of PNKD

exhibits dysregulation of dopamine signaling in the striatum

(Lee et al., 2012), and our recent work on the molecular charac-

terization of the protein causing this related disorder showed that

it functions in synaptic regulation (Ptá�cek et al., unpublished

data). In addition, PRRT2 was shown in a two-hybrid screen to

interact with a synaptic protein, SNAP25 (Stelzl et al., 2005),

raising the possibility that PKD/ICmight also result from synaptic

dysfunction.
RESULTS

Whole-Genome Sequencing
Six samples from six well-defined PKD/IC families (K2916,

K3323 [Asian], K3538 [African American], K4874, K4998, and

K5471, [Caucasian if not otherwise noted]) were selected for

whole-genome sequencing at Complete Genomics, Inc. (CGI).

For all of the samples, CGI reported overall > 503 genome

coverage, with > 95% of the reference genome called. In the

whole genome, the CGI results reported around 500 newly iden-

tified nonsynonymous variants in each Caucasian sample, and

729 and 1202 in the Asian and African American samples,

respectively.

Of note, we have also analyzed the copy number variations

(CNVs) and structural variations (SVs) in the PKD/IC region, in

order to see whether there were genomic level insertions, dele-

tions, duplications, translocations, or inversions present in the

region (Figure S1 available online). However, and as previously

reported (Roll et al., 2010), no major CNVs and SVs that were

unique and common to the PKD/IC samples were found.

We summarized all of the coding variants in the extended crit-

ical region from D16S403 to D16S3057 (chr16:22,937,651–57,

629,851, NCBI build 37) (Figure S2). Upon initial examination,

we did not find a gene with unknown nonsynonymous variants

in all six samples. However, there were several genes with previ-

ously unidentified nonsynonymous variants in two samples,

including TNRC6A, PRRT2, GDPD3, ZNF267, and NLRC5. In

PRRT2, the sample fromK5471 showed an insertion of a thymine

that would lead to a p.E173X mutation. The sample from K3323

had a C-to-T transition causing a p.R240X mutation (Figure 1).

A closer look at the original read alignments fromWGS evidence

files in these genes showed that there were two ‘‘no-call’’ (not

having enough reads to be significant) cytosine insertions in

PRRT2 (leading to p.R217Pfs*8) in two additional PKD/IC sam-

ples from kindreds K2916 and K4998 (Figure 1 and Figure S3).

However, Sanger sequencing ofPRRT2 showed that the C inser-

tion was also present in the remaining two PKD/IC samples from

kindreds K3538 and K4874 (Figure 1). The reason for the diffi-

culty in calling the C insertion by CGI might be that the insertion

was in a stretch of nine Cs. BecauseCGI uses a 10+25 short read

structure (Drmanac et al., 2010), it had a lower chance to cover

the whole stretch of nine or ten Cs in one read. Thus, all six

PKD/IC samples were found to have truncating (frameshift or

nonsense) mutations in PRRT2.

Further Investigation of PRRT2 in Probands from
25 Clinically Well-Characterized PKD/IC Families
Sanger sequencing of the proband from each of the 25 best-

characterized families in the International PKD/IC Consortium

(including the six discussed above) revealed mutations in 24 of

the 25 probands (Figures 1 and 2). Among these, 21 (K821,

K2916, K3446, K3534, K3538, K4874, K4962, K4998, K5118,

K5212, K5770, K7716, K7717, K7718, K7719, K7720, K7721,

K16719, K18113, K19599, K30085, andWashU) had a1bp (cyto-

sine, C) insertion between bases 649 and 650 (c.649_650insC).

This leads to a frame shift and premature protein termina-

tion (p.R217Pfs*8; Figures 1 and 2). Two probands (K3323,

K7722) harbored a base-pair change (C to T) that leads to an
Cell Reports 1, 2–12, January 26, 2012 ª2012 The Authors 3



Figure 1. Twenty-Four of Twenty-Five PKD/IC Pedigrees with the Most Secure Phenotypes Carry PRRT2 Mutations
Eleven of these twenty-four PKD/IC pedigrees are shown. Females are denoted with circles andmales with squares. The kindred number is denoted at the upper

left corner of each pedigree, and the DNA numbers are noted under individuals for whom they are available. The specific mutation is denoted under each

individual, when present. Individuals with a DNA number but no mutation noted have the WT genotype. Affection status for paroxysmal kinesigenic dyskinesia

(PKD), infantile convulsions (IC; under the age of 2 years), and GS (generalized seizures; occurring after age 2) are as noted. Samples that were used for WGS are

marked with an asterisk (*). One phenocopy was present in K3323 (marked by an arrow).
immediate stop codon at position 240 (p.R240X; Figures 1

and 2). Another proband (K5471) harbored a 1 bp (T) insertion

between bases 516 and 517 (c.516_517insT), leading to an

immediate stop codon (p.E173X; Figure 1). The remaining one

pedigree (K8317, not shown) did not harbor any mutation in

PRRT2.
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Testing of Probands from 78 Less Well-Characterized
PKD/IC Families
Additional families were available to us, for whom we have less

clinical data, for whom additional family members were not avail-

able, or for whom the clinical presentation was somewhat

less classic than typical PKD/IC (Bruno et al., 2004). Sanger



Figure 2. Twenty-Four of Twenty-Five PKD/IC Pedigrees with the Most Secure Phenotypes Carry PRRT2 Mutations

Thirteen of these PKD/IC pedigrees are shown. Symbols are as in Figure 1.
sequencing of these additional 78 probands for whom the

clinical diagnosis was considered less secure revealed an

additional ten probands (K10615, K50049, K8664, K12206,

K50112, K6661, K7920, K9278, K50078, K7253) harboring the

p.R217Pfs*8 mutation in familial cases (Figure S4) and 17 with
the p.R217Pfs*8 mutation who were isolated cases (data

not shown). Finally, one family harbored an unexpected muta-

tion, a 1 bp (T) insertion between bases 980 and 981

(c.980_981insT), leading to a frame shift and stop codon

(p.I327Ifs*14) (K3391, Figure S4). Altogether, 28 probands of
Cell Reports 1, 2–12, January 26, 2012 ª2012 The Authors 5



the 78 less well-characterized PKD/IC families also had muta-

tions in PRRT2.

Examination of Normal Controls for PRRT Newly
Identified Alleles
We examined the 1000 Genomes database and the 60 publicly

available CGI whole genomes for any of the four alleles that we

had identified in PKD/IC patients and did not find them in any

of these controls (data not shown). In addition, we sequenced

an additional 200 controls and found these alleles in none of

them. Thus, these alleles were not present in over 2,500 control

chromosomes.

Conservation of PRRT2 across Species
Orthologs of PRRT2 were found in human, gorilla, macaque,

mouse, guinea pig, dog, cat, dolphin, and zebrafish, but not

in D. melanogaster and C. elegans. By performing protein

sequence alignments, we found that human PRRT2 shared

> 90% similarity with other primates (gorilla, macaque), �80%

similarity with most mammals, and �30% similarity with zebra-

fish (Figure S5). PRRT2 has two predicted transmembrane

domains in its C-terminal sequence. Interestingly, the C-terminal

sequences of PRRT2 orthologs were extremely conserved

across species. Human PRRT2 showed > 90% similarity of its

C-terminal sequence with other mammals and �60% similarity

with zebrafish. The high conservation in the region affected by

the mutations suggests an important role of this region of the

protein in its biological function.

Testing PRRT2 Variants for Cosegregation
with the PKD/IC Phenotype
Next, we tested all available DNA samples in the pedigrees

harboring PRRT2 alleles to test for cosegregation. With the

exception of family K3323, in all families for which DNA samples

from multiple affected individuals were available, the mutant

alleles cosegregated with the phenotype and with the haplotype

whenever previously determined (Figures 1, 2, and S4). In K3323

(Figure 1), there was one affected individual who did not carry the

disease allele. In light of the fact that so many of our families

cosegregated alleles that were not present in a large number

of controls, we consider this one individual to be a phenocopy

of the PKD/IC phenotype.

Expression of PRRT2 in the Central Nervous System
Human embryonic kidney (HEK) 293T cells transfected with the

N-terminal FLAG fusion protein of hPRRT2 were used as posi-

tive controls, and untransfected and vector-alone-transfected

HEK293T cells were used as negative controls. Western blots

of cell extracts were probed with anti-FLAG antibodies and

showed a band of�65 kDa only in the lane from cells transfected

with the clone expressing the FLAG-tagged hPRRT2 fusion

protein (Figure S6, lane 11). No band was present in lanes with

extracts from untransfected cells or those transfected with

vector alone (lanes 9, 10). In addition, extracts from eight

different mouse tissues were also run on the gel and blotted

(lanes 1–8). When the Western blot was probed with an antibody

against PRRT2, an identically sized band (�65 kDa) was

observed in lanes with extracts from mouse brain and spinal
6 Cell Reports 1, 2–12, January 26, 2012 ª2012 The Authors
cord (lanes 1 and 8) and in the lane with the extract

from HEK293 cells that contained the FLAG-tagged PRRT2

(lane 11). No bands were detected in extracts from peripheral

mouse tissues tested at this exposure level (Figure S6). At

extended exposures, a faint band of the same size was noted

in heart extracts (data not shown). Taken together, these data

confirm the specificity of the anti-PRRT2 antibody and the

localization of PRRT2 in the central nervous system.

PRRT2 Interacts with SNAP25
The potential interaction between SNAP25 and PRRT2 defined

by a two-hybrid screen in a previous report (Stelzl et al., 2005)

may be a false positive. Thus, we set out to test whether this

interaction is valid. The transmembrane protein prediction soft-

ware (TMHMM Server and TMpred) indicated that PRRT2 has

two putative transmembrane domains at its C terminus. The

site of the p.R217Pfs*8 and other mutations relative to the trans-

membrane domains are diagrammed (Figure 3A). We preformed

in vitro coimmunoprecipitation experiments to validate the pos-

sible interaction between SNAP25 and PRRT2 in HEK293T cells

coexpressing FLAG-tagged SNAP25 and either the WT or the

mutant form (p.R217Pfs*8) of HA-tagged PRRT2. After pull-

down of FLAG-tagged SNAP25 with FLAG antibody, HA-tagged

WT PRRT2 can be detected with anti-HA antibody on Western

blot of HEK293T extracts cotransfected with FLAG-SNAP25

and WT HA-PRRT2 (Figure 3B). The reciprocal experiment using

an anti-HA antibody to pull down tagged Prrt2 demonstrated that

SNAP25 could be detected with anti-FLAG antibody (data not

shown). Brain extracts from control mice were then used to

pull down Snap25 with anti-Snap25 antibody, and after Western

blotting, Prrt2 could be detected with anti-PRRT2 antibodies

(Figure 3C). Taken together, these results indicate that PRRT2

interacts with SNAP25 both in vitro and in vivo.

Truncated PRRT2 Failed to Express Normally in Vitro
Surprisingly, we did not detect obvious expression of mutant

HA-PRRT2 (R217Pfs*8) in transfectedHEK293T cells (Figure 3B),

implying that the mutant form of PRRT2 was either unstable or

was not expressed at all in this heterologous system and in

turn lost its ability to interact with SNAP25. These experiments

were then repeated with the three other mutant alleles. Results

indicated that all four truncation mutations showed remarkably

reduced (R240X and I327Ifs*14) or absent (R217Pfs*8 and

E173X) expression when transfected alone (Figure 4, left side).

When cotransfected with wild-type (WT) PRRT2, PRRT2 protein

was present, suggesting that the mutation did not exert a

dominant-negative effect on protein levels (Figure 4, right side).

This is consistent with the idea that PKD/IC mutations are loss-

of-function (haploinsufficiency) mutations, as well as with the

single reported case of an individual with possible PKD/IC who

harbors a deletion encompassing PRRT2 (Lipton and Rivkin,

2009).

Cell Localization Studies
We transfected rat hippocampal neuron cultures with either WT

or mutant forms (R217Pfs*8) of PRRT2. PRRT2 was present in

thin, MAP2-negative processes extending from neuron cell

bodies that overlap with synapsin-positive puncta (Figures 5A



Figure 3. PRRT2 and SNAP25 Interact In Vitro and

In Vivo

(A) The comparison of protein structures for WT and

truncated mutants of PRRT2. The blue rectangles re-

present putative C-terminal transmembrane domains of

PRRT2. The black arrows represent positions of mutations

producing either nonsense or frameshift mutations. Red

rectangles represent protein sequences produced by

frameshift mutations.

(B) In vitro coimmunoprecipitation was performed in

HEK293T cells singly transfected or cotransfected with

FLAG-tagged SNAP25 and either HA-tagged WT or

mutant forms (p.R217Pfs*8) of PRRT2. After FLAG anti-

body pull-down, only the cell extract from HEK293T cells

cotransfected with FLAG-tagged SNAP25 and HA-tagged

WT PRRT2 showed an �65 kDa band (upper panel,

rightmost lane), implying that an interaction exists

between SNAP25 and PRRT2 in vitro. Interestingly, no

obvious expression was detected in cell extracts trans-

fected with the mutant form of PRRT2 (upper panel,

second and fourth lanes from the left).

(C) In vivo coimmunoprecipitation of Snap25 and Prrt2

using whole-brain extracts from a control mouse. After

SNAP25 antibody pull-down, a Prrt2 band (�65 kDa) was

detected with the use of an anti-PRRT2 antibody. An

antibody specific for SYNTAXIN1, a protein interacting

with SNAP25, was also used as a positive control.
and 5B), as well as synaptophysin and SV2 puncta (data not

shown), indicating that it localized predominantly in axons.

Importantly, PRRT2 R217Pfs*8, themost common PRRT2muta-

tion in PKD/IC patients, led to complete abrogration of PRRT2

expression in cultured neurons (Figure 5C). This result matched

our observations in the coimmunoprecipitation experiment

described above (Figures 3B and 4).

DISCUSSION

PKD/IC is a fascinating disorder combining an infantile form of

epilepsy with a paroxysmal and reflex form of movement dis-

order. The relationship of PD with epileptic seizures has long

been suspected, and genetic studies demonstrated that PKD
Cell Reports
and IC share common molecular mechanisms

(Szepetowski et al., 1997). Despite intensive

and multicenter efforts, the disease gene re-

mained unknown until now. PKD/IC and PNKD

appear to be genetically homogeneous; most

families with clinically ‘‘classical’’ disease have

mutations in the recognized genes (Bruno

et al., 2007, and data presented here). PRRT2

mutations that segregated with the disease

were found in nearly all (24/25) of our most

well-characterized PKD/IC families, including

the largest multigenerational ones. Indeed, pre-

vious studies predicted a high level of genetic

homogeneity (Bennett et al., 2000; Callenbach

et al., 2005; Caraballo et al., 2001; Kikuchi

et al., 2007; Lee et al., 1998; Roll et al., 2010;

Swoboda et al., 2000; Szepetowski et al.,

1997; Tomita et al., 1999; Weber et al., 2004).
The mutations occur in a highly conserved part of the gene,

are not present in controls, and lead to near absence of mutant

protein expression in vitro.

Whether the family with negative screening has a PRRT2

mutation in noncoding sequences or deletion of an entire exon

has not been resolved.When other smaller and less well-charac-

terized PKD/IC families and isolated patients were screened, an

important proportion of them were also found to have PRRT2

mutations. In total, 52/103 of all index cases had mutations in

PRRT2. Obviously some of the ‘‘negative’’ patients are probably

misdiagnosed as having PKD/IC. Others might have a disease

that is different from, albeit similar to, typical PKD/IC. This topic

has been discussed in a previous review of a large collection of

PKD patients (Bruno et al., 2004); moreover, nongenetic forms of
1, 2–12, January 26, 2012 ª2012 The Authors 7



Figure 4. Truncated Mutations of PRRT2 Lead to Abnormal Protein

Expression In Vitro

When HEK293T cells were cotransfected with FLAG-tagged PRRT2 and

HA-tagged PRRT2, an�65 kDa band was present when probed with antibody

for the tag on the WT fusion protein, but FLAG-tagged fusion proteins for the

truncation mutations showed a significant reduction (R240X and I327Ifs*14)

or undetectable expression (R217pfs*8 and E173X). Thus, the mutations led to

low or undetectable PRRT2 protein levels that did not affect the WT allele

in vitro. GAPDH antibody was used as a sample loading control.
IC and of PKD/IC have been reported (Abe et al., 2000; Camac

et al., 1990; Clark et al., 1995; Drake, 1987; Hattori and Yorifuji,

2000; Huang et al., 2005; Mirsattari et al., 1999; Zittel et al.,

2011). It is noteworthy that we had previously identified PRRT2

variants in a small number of families but had not pursued

them immediately as one did not cosegregate with the disease

in K3323. We now know this is the result of a phenocopy in

this family.

The present identification of PRRT2 as themajor gene respon-

sible for the syndrome of PKD/IC represents a crucial entry point

to elucidate the pathophysiology of this disorder. An interesting

aspect of the disease relates to its natural history. The afebrile

seizures typically develop in infancy and resolve by the second

year of life. The movement disorder can begin from infancy

through adolescence and continues through young adult life.

However, in a majority of patients, the movement disorder gets

significantly better or completely resolves as patients grow into

middle adult life (Bruno et al., 2004). Whether these temporal

changes in the expression of the disease are due to devel-

opmental differences in the expression of PRRT2, epigenetic

changes in PRRT2 with aging, or another cause remains to be

studied. In some PKD/IC patients, seizures can also occur in

other contexts (febrile convulsions, generalized seizures in adult

patients, etc.). It is not clear whether this reflects coincidence of

these common disorders with PKD/IC or whether PKD/IC lowers

the threshold for other forms of epilepsy.

PKD/IC shares striking clinical and genetic similarity with

paroxysmal nonkinesigenic dyskinesia (PNKD). PNKD isa related

movement disorder in which individuals experience similar

dyskinetic attacks that are typically less frequent, longer lasting,

and not initiated by sudden movements (Demirkiran and Jan-

kovic, 1995; Tarsy and Simon, 2006). These patients are not
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recognized to have a related seizure phenotype but may have

an increased risk of migraine in comparison to the general pop-

ulation (L.P., unpublished data) (Bruno et al., 2004; Bruno et al.,

2007; Swoboda et al., 2000). In these patients, ingestion of

caffeine or alcohol can precipitate attacks, which can last for

1–4 hours (Bruno et al., 2007). Both are highly penetrant, auto-

somal-dominant disorders that exhibit a spectrum of episodic

hyperkinetic movements ranging from choreoathetosis (dance-

like and writhing movements) to dytonias (movement of limbs,

trunk, or face into a fixed position). Between attacks, patients

appear completely normal. The dyskinesias typically become

evident in childhood, worsen through adolescence, and often

improve as patients grow into middle age (Bruno et al., 2004;

Bruno et al., 2007). The threshold for inducing attacks in PKD/IC

and PNKD is lowered by stress. The clinical similarities between

these two disorders suggest the possibility that they may share

some similarities at a molecular and pathophysiological level.

Another phenotype similar to PKD/IC and PNKD has been

well studied and may occasionally be associated with epilepsy.

Paroxysmal exercise-induced dyskinesia (PED) is a disorder in

which individuals experience dyskinesias after prolonged bouts

of exercise. All three phenotypes can exhibit clinical dystonia

(PNKD as DYT8, PED as DYT9, and PKD/IC as DYT10) (Müller,

2009). The gene associated with a glucose transporter (GLUT1)

has recently been shown to be mutated in some families with

PED (Schneider et al., 2009; Suls et al., 2008; Weber et al.,

2008). Given the similarities among these three disorders, it is

interesting to speculate about possible similarities in pathophys-

iology. Of the three, the most is known about pathophysiology in

PNKD, with recent insights about the role of PNKD in synaptic

regulation and the effect of mutations in dysregulation of dopa-

minergic signaling (Lee et al., 2004; Ptá�cek et al., unpublished

data). Here, we present circumstantial evidence suggesting the

possibility that PKD/IC may also result from dysfunction of an

unexpected protein in synaptic regulation (through an interaction

with SNAP25), though much work remains to either prove or

disprove this hypothesis. Finally, what role is a glucose trans-

porter playing in a dyskinesia disorder, particularly one that

comes on after prolonged exercise (as opposed to coincident

with the onset of movement, as in PKD)? One possibility is that

an energy-dependent process such as synaptic regulation of

neuronal excitability may initially function normally but fail if the

energy source is insufficient to keep up with the need under

conditions of higher neuronal firing rates.

On the basis of other episodic disorders, it had long been pre-

dicted that PKD/IC might be a channelopathy (Ryan and Ptácek,

2010). However, multiple groups have previously ruled out genes

from the region known to encode channel-related proteins and

other physiologically relevant proteins such as those known to

function at the synapse. PRRT2 is a proline-rich protein that

was suggested to interact with synaptosomal-associated

protein 25 kDa (SNAP25). SNAP25 is a presynaptic membrane

protein involved in the synaptic vesicle membrane docking and

fusion pathway (Zhao et al., 1994); it plays a pivotal role in

calcium-triggered neuronal exocytosis (Hu et al., 2002; Sørensen

et al., 2002). This is consistent with previous studies on PNKD,

which is a synaptic protein regulating exocytosis (Ptá�cek

et al., unpublished data) and involved in dopamine signaling



Figure 5. Expression and Localization of PRRT2 in Hippocampal Neurons

(A) Coimmunostaining of WT FLAG-PRRT2 and MAP2 showed distinct localization patterns.

(B) Coimmunostaining for WT FLAG-PRRT2 and synapsin I showed that WT PRRT2 colocalized with synapsin I in neuronal puncta.

(C) After coimmunostaining of the FLAG-PRRT2 R217Pfs*8 mutant with synapsin I, no obvious positive staining of mutant PRRT2 was detected. Red, WT FLAG-

PRRT2; green, MAP2 or Synapsin1. Scale bars represent 10 mm.
(Lee et al., 2012). Interestingly, one atypical patient with deletion

of a region encompassing PRRT2 had not only PKD and possibly

infantile-onset convulsions, but also DOPA-responsive parkin-

sonism (Lipton and Rivkin, 2009). If indeed this deletion causes

the phenotype in this patient, it argues for a loss-of-function

mechanism. This would be consistent with the near absence of

protein expression that we saw when expressing the PRRT2

mutations in HEK293 cells and cultured neurons and with the

persistence of protein on Western blots when WT and mutant

constructs were coexpressed.

Here, we show that PRRT2 localizes to neurons and that

the human mutations lead to near absence of mutant protein
in vitro. This latter observation could be due to nonsense-

mediated RNA decay. Alternatively, the mRNA and protein may

be expressed and translated but degraded very quickly. Such

possibilities can be resolved in future work.

Additional studies are now needed to understand how and

when the disturbance of synaptic functioning leads to a hetero-

geneous syndrome with episodic, variable, and age-dependent

cortical and subcortical clinical manifestations. Cloning of the

causative gene for this complex disorder has been a Herculean

task that has taken nearly 15 years, and now the recognition of

the causative role of PRRT2 enables many new lines of experi-

ments that will accelerate the pace of discovery into pathways
Cell Reports 1, 2–12, January 26, 2012 ª2012 The Authors 9



relevant to the hyperexcitability giving rise to dyskinesias in

these patients.

EXPERIMENTAL PROCEDURES

Patient and Family Data Collection

PKD/IC patient and family data were collected as previously described

(Bennett et al., 2000; Bruno et al., 2004; Caraballo et al., 2001; Lee et al.,

2004; Swoboda et al., 2000; Szepetowski et al., 1997; Thiriaux et al., 2002).

The country of origin and ancestry of the enrolled research subjects is shown

in Table S1.

Whole-Genome and Whole-Exome Sequencing

Whole-genome sequencing (WGS) was carried out at Completegenomics

(CGI). Fifteen micrograms of genomic DNA was submitted for each sample.

Front-end data analysis, including sequence mapping and assembly and

variant calling, was included in the CGI service. The resulting data from CGI

included variant calls (including the original variant calls, their functional

annotations, and summary by gene), CNV, and SV calls, as well as the

alignment and coverage files. WGS samples of other diseases studied by

our group and samples from the CGI public genomes, 70 genomes in total,

were used as controls in this study.

For PKD/IC, we focused on the genomic region between D16S403 and

D16S3057 (chr16:22,937,651–57,629,851; NCBI build 37), which covered all

of the critical regions previously reported in PKD/IC linkage analyses. We

retrieved all of the variants in the genomic region from the WGS results of

the PKD/IC samples and reorganized them by their host genes along the

chromosome. Variants that were also present in the control genomes were

filtered out. We were particularly interested in variants that were not present

in dbSNP (build 131), control WGS genomes, or the 1000 Genomes data.

Genes with newly identified nonsynonymous variants in multiple samples

were given high priority for further examination. We have also examined the

additional region from D16S3057 to D16S503, based on a very recent report

(Ono et al., 2011) (data not shown).

With the WGS data, we have also examined whether there were CNVs

and SVs common among the PKD/IC samples and not in the control genomes

(Figure S7). CGI estimated the copy number on the basis of the normalized

counts of reads (read depth) aligned to genomic regions. The window width

for calculating the CNV is 2 kb. We visualized and compared the CNV results

from CGI with the Integrated Genome Viewer (Robinson et al., 2011). We con-

verted the junction data to SVs with cgatools and then visualized and

compared them with custom scripts and Circos.

Three members of the Wash U family (Figure 2; Table S2) were subjected

to exome sequencing with Nimblegen SeqCap EZ Exome capture and either

Solexa GAIIx 76-cycle paired-end sequencing or 101-cycle HiSeq. Sequence

data were aligned to hg19 with the Burroghs-Wheeler Aligner (BWA v0.5.7),

optical duplicates were marked with Picard (v1.29), and variants were ex-

tracted with SAMtools (v0.1.8). Data were filtered for common variants with

the use of dbSNP130, 1000 Genomes, and information from eight HapMap

individuals as described elsewhere (Harbour et al., 2010).

PCR and Sanger Sequencing of DNA Samples

PRRT2 was screened for mutations via Sanger sequencing of genomic DNA.

Coding regions in DNA of the PKD/IC probands were selected for initial PCR

sequencing. Twenty-five microliters of PCR reactions were carried out per

100 ng of genomic DNA and 10 pmol of both forward and reverse primers.

Primers were designed outside of splice sites with the intent that intronic

sequencing of at least 50 bp would flank each exon border. PCR procedures

that led to successful product amplification were as follows: 98�C, 30 s (98�C,
10 s; 60�C, 30 s; 72�C, 40 s) 3 35, 72�C, 10 min, and 4�C hold. PCR product

purification was performed with the use of the PCR96 Cleanup Plate (Millipore),

followed by sequencing. Exon 2 and exon 4 of PRRT2 are too large to be ampli-

fied by a single primer pair, so multiple overlapping primer pairs were used.

Exon 2 was broken into three fragments (2A–2C), while exon 4 was broken

into two (4A and 4B). All primer sequences and conditions for the four exons

are included in Table S3.
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Analysis of PRRT2 Sequence Conservation Across Species

In the search for homologous genes, the orthologous sequences of PRRT2

across different species were identified from publicly available online data-

bases (Ensembl, UCSC Genome Bioinformatics, and NCBI). The ClustalW2

program was used for multiple sequence alignment of PRRT2 orthologs.

For PRRT2 ortholog C-terminal sequences comparison, the transmembrane

protein prediction programs (TMHMM and TMpred) were used for prediction

of individual PRRT2 C-terminal sequences that potentially form the transmem-

brane domains, then these C-terminal sequences were aligned and compared

by the ClustalW2 program.

Cloning of WT and Mutant PRRT2

The PRRT2 plasmid clone (clone ID 5729288) from Open Biosystems (Thermo

Scientific) was used as the backbone for cloning WT PRRT2. The primer sets

containing EcoRI and BamHI sites at 50 and 30 ends were used to clone WT

PRRT2. The sequences of cloning primers are listed below: primer-F, 50-ACT
GACGAATTCCATGGCAGCCAGCAGCTCT-30 (with EcoRI site); and primer-R,

50-ACTGACGGATCCTCACTTATACACGCCTAA-30 (with BamHI site). The WT

hPRRT2 was amplified via PCR from the backbone plasmid and gel-purified

with the QIAquick Gel Extraction Kit (QIAGEN), followed by digestion with

EcoRI and BamHI and then purification by the QIAquick PCR Purification Kit

(QIAGEN), then it was cloned into the N-terminal p3XFLAG-CMV-10 expres-

sion vector (Sigma-Aldrich) with the use of the T4 DNA ligase (Promega). For

cloning of PRRT2 c.649_650insC (PRRT2 R217Pfs*8), site-directed mutagen-

esis was performed with the QuikchangeII Site-Directed Mutagenesis Kit

(Agilent Technologies), and the primers for mutagenesis were as follows:

mutF1, 50-GGCCCCCCCCCCGAGTGCTGCAG-30; mutR1, 50- CTGCAGCAC

TCGGGGGGGGGGCC-30; for PRRT2 c.649_650insC. For transfection of WT

and mutant PRRT into primary neuronal culture, the N-terminal FLAG-tagged

WT and mutant PRRT in p3XFLAG-CMV-10 expression vector were used as

templates and recloned into the pCAGGS/ES expression vector. The primers

for subcloning contained NheI and EcoRV sites at 50 and 30 ends, and their

sequences are as follows: FLAG-F, 50-ATCGATGCTAGCATGGACTACAAA

GACCATGACGGTGATTAT-30 (with NheI site); FLAG-R, 50-ATCGATGATA

TCTCACTTATACACGCCTAAGTTGATGAC-30 (with EcoRV site).

Western Blotting

Male C57/B6 mice were sacrificed, and different tissues, including brain,

spinal cord, spleen, kidney, heart, liver, skeletal muscle, and testes, were dis-

sected and homogenized in RIPA buffer (10 mM Tris-HCl [pH 7.2], 150 mM

NaCl, 5 mM EDTA, 1% Triton X-100, 1% SDS, 1% Deoxycholate) with

protease inhibitor (Roche) and Phosphatase Inhibitor Cocktails (Sigma). For

positive control of PRRT2 antibody, HEK293T cells were transfected with

plasmid DNA (p3XFLAG-PPRRT2WT construct and p3XFLAG-CMV-10 vector

alone) with the use of the FuGene HD transfection reagent (Roche Diagnostics

GmbH), grown, and harvested 36 hr later after transfection. HEK293T cells

were then homogenized in 1 ml of RIPA buffer with protease and phosphatase

inhibitors. Mouse tissue and HEK293T homogenates were resolved on

10% polyacrylamide gels and electroblotted to nitrocellulose membrane

with 50 mM Tris-HCl buffer (pH 8.4). The blot was incubated with a rabbit

anti-PRRT2 antibody (1:1000, Sigma) overnight at 4�C, then incubated with

goat anti-rabbit IgG-HRP (1:5000, Santa Cruz Biotechnology) at room temper-

ature for 1 hr, then detected with Immobilon Western Chemiluminescent HRP

substrate (Millipore). Blots were stripped and reprobed with a mouse anti-

FLAG antibody (1:5000; Sigma), followed by the procedure described above.

Coimmunoprecipitation Experiment for Testing the Interaction

between SNAP25 and PRRT2

The SNAP plasmid clone (clone ID 3867544) from Open Biosystems was used

as the backbone for cloning SNAP25. The primer sets containing EcoRI and

BamHI sites at 50 and 30 ends were used to clone SNAP25. The sequences of

cloning primers are as follows: primer-F, 50-ACTGACGAATTCATGGCC

GAAGACGCAGACATGCGCAATG-30 (with EcoRI site); primer-R, 50-ACT
GACGGATCCTTAACCACTTCCCAGCATCTTTGTTGC-30 (with BamHI site).

SNAP25 was then cloned into the N-terminal p3XFLAG-CMV-10 expression

vector by the procedure described above. The PRRT2 plasmid clone from

OpenBiosystemswas used as the backbone for cloning N-terminal HA-tagged



PRRT2. The primer sets containing NcoI and EcoRI sites at 50 and 30 ends were

used to cloneWTHA-taggedPRRT2, and the sequences of cloning primers are

as follows: primer-F, 50-CATGCCATGGCATGCATGGCAGCCAGCAGCTCT

GAGATCTCTGAG-30 (with NcoI site); primer-R, 50-CCGGAATTCCCGTCACT

TATACACGCCTAAGTTGA-30 (with EcoRI site). PRRT2 was then cloned into

the pEF1-aHA vector (Clontech Laboratories). The mutant form of N-terminal

HA-tagged PRRT2 (c.649_650insC, R217Pfs*8) was made from the WT HA-

PRRT2cloneby thesite-directedmutagenesisdescribedabove.HEK293Tcells

were grown in Dulbecco’s modified Eagle’s medium (DMEM) supplemented

with penicillin, streptomycin, and 10% fetal bovine serum (Invitrogen) andmain-

tained at 37�Cwith 5%CO2. After 1 day, the cellswere split into 10 cmdishes. In

parallel, HEK293T cells grown to 80%–90% confluence were transfected with

DNA (p3XFLAG-CMV-10 SNAP25, pEF1-aHA-PRRT2-WT fusion construct,

pEF1-aHA-PRRT2-c.649_650insC fusion construct, and SNAP25 cotrans-

fected with the WT or mutant form of the pEF1-aHA-PRRT2 fusion construct)

with the use of FuGeneHD transfection reagent. Twenty-four to thirty-six hours

after transfection, cells were harvested and homogenized in RIPA buffer con-

taining protease and phosphatase inhibitors. The HEK293T extracts were

then applied in the coimmunoprecipitation experiments performed with the

use of an immunoprecipitation kit (Roche) in accordance with the manufac-

turer’s instructions. During the coimmunoprecipitation process, the mouse

anti-FLAG M2 monoclonal antibody (1:1000, Sigma) was used to pull down

the FLAG-tagged SNAP25, and rabbit anti-HA tag antibody (1:1000, Abcam)

was subsequently used for detecting HA-PRRT2 fusion proteins in HEK293T

cell extracts. The normal mouse IgG (1:1000, Santa Cruz Biotechnology) was

used as a control of antibody pull-down. For in vivo coimmunoprecipitation

experiments, whole brains from male C57/B6 mice were homogenized in

RIPA buffer with protease inhibitor and phosphatase inhibitor cocktails (3 mL/

brain). Mouse whole-brain extracts were used in coimmunoprecipitation

experiments with the use of a kit according to the manufacturer’s instructions.

During the process, rabbit anti-SNAP25 antibody (1:20, Cell Signaling

Technology) was used to pull down Prrt2, and rabbit anti-PRRT2 antibody

(1:1000) was subsequently used for detecting Prrt2 proteins in mouse whole-

brain extracts. Rabbit IgG (1:1000, Santa Cruz Biotechnology) was used as a

control for antibody pull-down. The mouse anti-Syntaxin1 antibody (1:1000,

Synaptic Systems GmbH) was used for detecting Syntaxin1, a known protein

partner of Snap25, as a positive control of in vivo coimmunoprecipitation.

In Vitro Degradation Experiments of Truncated PRRT2

To generate the remaining three N-terminal HA-tagged PRRT2 truncation

mutation constructs (HA-R240X, HA-E173X, and HA-I327Ifs*14), site-directed

mutagenesis was performedwith the QuikchangeII Site-DirectedMutagenesis

Kit described above. HEK293T cells were cotransfected with equal amounts of

WT FLAG-PRRT2 construct and either WT HA-PRRT2 or one of the four

truncation mutations with the FuGene HD transfection reagent. HEK293T cells

were grown, harvested 36 hr after transfection, then homogenized in 1 ml of

RIPA buffer with protease and phosphatase inhibitors. Western blotting

was performed as described above. A rabbit anti-HA antibody was used for

detecting HA-tagged PRRT2, and a mouse anti-FLAG antibody was used for

detecting FLAG-tagged PRRT2. A mouse anti-GAPDH antibody (1:5000,

Millipore) was also applied on blots as a loading control.

Primary Neuronal Culture and Immunofluorescence Microscopy

Hippocampal neurons were isolated from day 20 rat embryos in accordance

with UCSF IACUC guidelines, transfected with plasmids containing FLAG-

tagged WT and mutant human PRRT2 by electroporation (Amaxa), and

cultured as previously described (Li et al., 2005). Fixed cells were immuno-

stained with mouse anti-FLAG M2 monoclonal antibody (Sigma) and rabbit

anti-Synapsin (Abcam) or mouse anti-MAP2 (Sigma) antibodies at a dilution

of 1:500. Alexa488, Alexa 546 (Invitrogen), and Dylite 549-conjugated sec-

ondary antibodies (Jackson ImmunoResearch) were used at a dilution of

1:500. Imageswere obtainedwith a Zeiss LSM510Meta confocalmicroscope.
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