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ABSTRACT OF THE DISSERTATION

Noisy Binary Search: Practical Algorithms and Applications

by

Sung-En Chiu

Doctor of Philosophy in Electrical Engineering
(Communication Theory and Systems)

University of California San Diego, 2019

Professor Tara Javidi, Chair

This dissertation addresses the problem of searching a target within a region by sequential

queries with noisy responses. A Bayesian decision maker is responsible for collecting observation

samples to enhance his knowledge about the actual location speedily. When the response is

noiseless, the classical binary search solves such a problem optimally. Noisy binary search, on

the other hand, has also been formulated and studied extensively in theory over the past 60 years

since Horstein (1963). However, the algorithms developed in noisy binary search problem find

limited practical applications in real-world engineer problem. Motivated by bridging theory and

practice, we formulate the noisy binary search problem by identifying realistic scenarios and

xii



constraints that naturally rises with practical applications such as spectrum sensing in cognitive

communication, AoA estimation by adaptive beamforming in large antenna array system, visual

image inspection, bit-wise data transmission, heavy hitter detection in network system, etc.

The first part of the dissertation (Chapter 2) focuses on theoretical understanding and

developing noisy binary search algorithms under those practical constraints. Three algorithms

sortPM , dyaPM , hiePM are proposed. Using the extrinsic Jensen Divergence from informa-

tion theory, we provide upper bound for the expected search time of each of the algorithms. By

comparing with an information theoretic lower bound, we demonstrate the asymptotic optimality

and suboptimality of the proposed algorithms (asymptotic in the resolution of the target location).

The second part of the dissertation applies the proposed hiePM to practical problems. In

particular, Chapter 3 demonstrates the application of hiePM on the data transmission problem

with noiseless feedback. The dyadic hierarchical query area of hiePM relates directly to the bit

representation of the data stream. This method simplifies the corresponding adaptive encoding

scheme significantly and allows a bit-wise encoding. Chapter 4 considers the initial beam

alignment problem in 5G mmWave communication using beamforming. With a single-path

channel model, the problem is reduced to actively searching the Angle-of-Arrival (AoA) of the

signal sent from the user to the Base Station (BS). hiePM is applied to adaptively and sequentially

choose the beamforming from the hierarchical beamforming codebook. The proposed algorithm

is compared to prior works of initial beam alignment that employs linear beam search, repeat

binary search, or random beam search, respectively, and gives the state-of-art performance in

terms of both AoA estimation error at the end of the initial alignment, and the spectral efficiency

during the communication phase.
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Chapter 1

Introduction

This dissertation addresses the problem of searching a target within a region by sequential

queries. A Bayesian decision maker is responsible for collecting observation samples to enhance

his knowledge about the true location speedily. When the response is noiseless, the classical

binary search solves such a problem optimally. The problem of binary noisy search for a target

with query-independent noise [1–7] have been studied extensively in the literature. Relying on

connections with feedback coding, [2, 3] proposed a noisy variant of the binary search algorithm.

For a general channel with feedback, [8] proposed a scheme, referred to as Posterior Matching,

generalizing the noisy binary search algorithm. In particular, [8] established the rate-optimality

where we define the targeting rate as the ratio of the logarithm of the search resolution over the

number of queries. By allowing for random search time, [7] proposed two-phase schemes that

achieve the optimal rate-reliability trade-off where reliability is defined to be the ratio of the

logarithm of error probability over the (expected) number of queries.

In many applications of interest, such as spectrum sensing [9] in cognitive radio, AoA

estimation in initial beam alignment (Chapter 4), and heavy hitter detection [10] in Networking,

the noise statistics of the observation is usually query-dependent. In particular, querying a larger

size region is often prone to return a noisier measurement than querying a smaller region. With

1



binary measurements and Bernoulli noise, for instance, this noise behavior means that the false

alarm and miss detection of each query can be thought of a non-decreasing function of the size of

the query set.

Motivated by practical applications, in this dissertation, we study the problem of query-

dependent noisy search. Chapter 2 is dedicated to formulating in detail the target localization

problem where at any given time, an agent can choose a region to query for the presence of the

target in that region. Each query is assumed to be subjected to an additive noise whose variance

is an increasing function of the size of the query region. Motivated by practical applications

such as initial beam alignment in array processing, heavy hitter detection in Networking, and

visual search in robotics, we proposed adaptive algorithms with the following essential metrics:

query time complexity, computational and memory complexity, query geometry (the shape of the

query set) and query cardinality (cardinality of the collection of query sets that are allowed to

be chosen from). Three novel search strategies: sorted Posterior Matching (sortPM ), dyadic

Posterior Matching (dyaPM ) and hierarchical Posterior Matching (hiePM ), are proposed. Each

of them has its advantages in different applications. In particular, sortPM , by a sorting operation,

greedily reduces the noise variance of each query, with the compromise of query geometry and

query cardinality (by sorting, the chosen query set can be any measurable set). With minor

sacrifice in the query noise, we design dyaPM under the constraint that the agent can only query

connected sets, which aims at applications where connected query sets are favorable. Lastly,

we design hiePM by further limiting the query set to be the sets in noiseless bisection. Hence

hiePM not only enjoys a hierarchical query structure, but the query cardinality of hiePM is

small. These benefits make hiePM suitable for applications such as beamforming in array

processing that requires pre-construction and storage of the query sets. We demonstrate a low

(computational and memory) complexity implementation of the three strategies, which shows

a logarithmic improvement over search strategies in the literature of query-dependent noisy

search. Furthermore, with the Extrinsic Jensen Shannon (EJS) Divergence, we provide a unified

2



asymptotic analysis (asymptotic in resolution and error probability) on the time complexity. In

particular, we derive upper bounds on the expected search time with respect to the resolution and

error probability of the final estimate of the target location. To our surprise, even though dyaPM

is designed under a connected query constraint, both sortPM and dyaPM achieves asymptotic

optimality in time complexity whereas hiePM is near-optimal in the asymptotic performance.

Numerically, we show that all the proposed search strategies have superior non-asymptotic

performance.

In Chapter 3, we demonstrate the application of the proposed hiePM in the feedback

coding problem (corresponding to query-independent noise). In particular, we consider the

problem of bit-wise channel coding over a Binary Symmetric Channel (BSC) with feedback.

While it is known that feedback does not increase the capacity of a memoryless channel, it is

believed to simplify the coding schemes for some channels. The most significant one is the Binary

Erasure Channel (BEC) where capacity is achieved by a simple sequential bit-wise repetition code

under which each bit is (re-)transmitted until it is received. This sequential bit-wise feedback code

has the added advantage that it can be used for streaming applications over BECs. In contrast,

there is no known sequential bit-wise code with feedback that can achieve a non-zero transmission

rate for a BSC. For example, under Posterior Matching for a binary input channel with feedback,

also known as Horstein scheme, each message is considered in its entirety in a block coding

manner. We apply hiePM to this problem and proposes a sequential feedback coding scheme,

bitPM , with a hierarchical bit-wise structure that generalizes repetition codes. This scheme is

shown to achieve a strictly positive rate for a large class of binary input channels including a BSC

with arbitrary cross-over probability p ∈ (0, 1
2
).

In Chapter 2, we demonstrate another application of hiePM in Millimeter-wave (mmWave)

communication. MmWave communication with large antenna arrays is a promising technique

to enable extremely high data rates due to the large available bandwidth in mmWave frequency

bands. Besides, given the knowledge of an optimal directional beamforming vector, large antenna

3



arrays have been shown to overcome both the severe signal attenuation in mmWave as well

as the interference problem. However, fundamental limits on the achievable learning rate of

an optimal beamforming vector remain. This chapter considers the problem of adaptive and

sequential optimization of the beamforming vectors during the initial access phase of commu-

nication. With a single-path channel model, the problem is reduced to actively learning the

Angle-of-Arrival (AoA) of the signal sent from the user to the Base Station (BS). We, therefore,

propose to use hiePM for designing sequential beamforming for estimating the AoA. For any

given resolution and error probability of the estimated AoA, an upper bound on the expected

search time of the proposed algorithm is derived via Extrinsic Jensen-Shannon Divergence. The

upper bound demonstrates that the search time of the proposed algorithm asymptotically matches

the performance of the noiseless bisection search up to a constant factor, in effect, characterizing

the AoA acquisition rate. Furthermore, the upper bound shows that the acquired AoA error

probability decays exponentially fast with the search time with an exponent that is a decreasing

function of the acquisition rate. Numerically, the proposed algorithm is compared with prior work,

where a significant improvement of the system communication rate is observed. Most notably,

in the relevant regime of low (−10dB to +5dB) raw SNR, this establishes the first practically

viable solution for initial access and, hence, the first demonstration of stand-alone mmWave

communication.

Notations used in this dissertation are as follows. We use boldface letters to represent

vectors. We write boldface bI to denote a vector of length |I| with elements from {bi}i∈I .

Similarly, we also write b1:l to be a length l vector with elements being the first l elements in

b. We write b↓ to denote sorted element of a vector b in descending order, i.e., b↓i represents

the ith largest element of b. For a set of indices S, we write non-bold bS ≡
∑

i∈S bi to be the

summation of all elements in bS . Similarly for a set collection I = {I1, I2, ..., In}, we write

bI = (bI1 , bI2 , ..., bIn). We use [x] to denote the integer closet to a real number x. We denote

the space of probability mass functions on set X as P (x). We denote the Kullback-Leibler
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(KL) divergence between distribution P and Q by D(P‖Q) =
∑

x P (x) log P (x)
Q(x)

. The mutual

information between random variable X and Y is defined as I(X;Y ) =
∑

x,y p(x, y) log p(x,y)
p(x)p(y)

,

where p(x, y) is the joint distribution, and p(x) and p(y) are the marginals ofX and Y . Let Bern(p)

denote the Bernoulli distribution with parameter p, and I(q, p) denote the mutual information

of the input X ∼ Bern(q) and the output Y of a BSC channel with crossover probability p. Let

C1(p) := D(Bern(p)‖Bern(1− p)). Let E[·] denote the expectation. We use |St| to represent the

counting measure of a discrete set St (cardinality of St). CN (µ,Σ) denotes multivariate complex

Gaussian distribution and CN (x;µ,Σ) with mean µ and covariance matrix Σ. Rice(µ, σ2)

denotes and Rician distribution and Rice(x;µ, σ2) := x
σ2 exp

(
−(x2+µ2)

2σ2

)
J0(xµ

σ2 ) denotes its

probability density function, where J0(·) is the modified Bessel function of the first kind with

order zero.
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Chapter 2

Sequential Query-Dependent Noisy Search

In this chapter, we formulate the target localization problem. We proposed and analyzed

three novel search strategies, sorted Posterior Matching (sortPM ), dyadic Posterior Matching

(dyaPM ) and hierarchical Posterior Matching (hiePM ).

2.1 Introduction

We consider a target search problem where at any given time, an agent can choose a query

set to query for the presence of the target in that set. By the query, the agent receives a noisy

measurement regarding the presence of the target in the set that the agent chooses. The agent

conducts multiple queries where each query set is chosen adaptively and strategically based on

previous (noisy) measurements. The main focus of this chapter is to design, analyze, and compare

various search strategies under the setting of realistic noise models.

The problem of binary noisy search for a target with query-independent noise [1–7] have

been studied extensively in the literature. Relying on connections with feedback coding, [2, 3]

proposed a noisy variant of the binary search algorithm. For a general channel with feedback, [8]

proposed a scheme, referred to as Posterior Matching, generalizing the noisy binary search

6



algorithm. In particular, [8] established the rate-optimality where the targeting rate is defined as

the ratio of the logarithm of the search resolution over the number of queries. By allowing for

random search time, [7] proposed two-phase schemes that achieve the optimal rate-reliability

trade-off where reliability is defined to be the ratio of the logarithm of error probability over the

(expected) number of queries.

In many applications of interest, such as spectrum sensing [9] in cognitive radio, AoA

estimation in initial beam alignment (Chapter 4), and heavy hitter detection [10] in networking,

the noise statistics of the observation is usually query-dependent. In particular, querying a larger

size region is often prone to return a noisier measurement than querying a smaller region. With

binary measurements and Bernoulli noise, for instance, this noise behavior means that the false

alarm and miss detection of each query can be thought of a non-decreasing function of the size of

the query set.

The problem of noisy search with query-dependent noise was first introduced in [6], where

the author proposed a search strategy, maxEJS, that designs the query set by maximizing the

Extrinsic Jensen Shannon (EJS) divergence (a function of the posterior) exhaustively over all

possible query sets. However, the prohibitive complexity of the exhaustive maximization of EJS

divergence renders maxEJS impractical in many applications. Furthermore, even though the

functional EJS relates well to the sequential analysis, [6] fails to give tight asymptotic bounds for

the expected search time.

By using the technique of random coding, [11] constructed a three-phase random search

scheme (here we refer to as 3rand) and proved that the scheme achieves a tight upper and

lower asymptotic bounds for the expected search time, which sets the fundamental limits and

behavior of the query-dependent noise search problem. In particular, while it is known [12] that

feedback (corresponds to adaptivity) does not increase capacity (corresponds to targeting rate)

in channel coding problem (corresponds to query independent noise), adaptivity is shown to

0thus we will refer to the noisy variant of binary search algorithm as median Posterior Matching, medianPM
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be essential [11] and can increase not only reliability but also the targeting rate compared with

non-adaptive strategies. The strategy 3rand is, however, constructed primarily for asymptotic

analytical/proof purposes. Indeed, non-asymptotically 3rand performs poorly and highly depends

on the parameters that determine the transition between the three phases. Furthermore, the optimal

estimator for 3rand is of high complexity (the same as the optimal decoder of random coding).

Motivated by practical applications such as initial beam alignment in array processing,

heavy hitter detection in networking, and visual search in robotics, in this dissertation we study

the problem of query-dependent noisy search with the following important metrics: query time

complexity, computational and memory complexity, query geometry (the shape of the query set)

and query cardinality (cardinality of the collection of query sets that are allowed to be chosen

from). We proposed three novel search strategies, sorted Posterior Matching (sortPM ), dyadic

Posterior Matching (dyaPM ) and hierarchical Posterior Matching (hiePM ), where each of

which has its advantages in different applications. In particular, sortPM , by a sorting operation,

greedily reduces the noise variance of each query, with the compromise of query geometry and

query cardinality (by sorting, the chosen query set can be any measurable set). With minor

sacrifice in the query noise, we design dyaPM under the constraint that the agent can only query

connected sets, which aims at applications where connected query sets are favorable. Lastly,

we design hiePM by further limiting the query set to be the sets in noiseless bisection. Hence

hiePM not only enjoys a hierarchical query structure, but the query cardinality of hiePM is

small. These benefits make hiePM suitable for applications such as beamforming in array

processing that requires pre-construction and storage of the possible query sets.

We demonstrate a low (computational and memory) complexity implementation of the

three strategies, which shows an exponential improvement (logarithmic complexity) over search

strategies in the literature of query-dependent noisy search (maxEJS and 3rand). Furthermore,

with the Extrinsic Jensen Shannon (EJS) Divergence [13] , we provide a unified asymptotic

analysis (asymptotic in resolution and error probability) on the time complexity. In particular, we
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derive upper bounds on the expected search time with respect to the resolution and error probability

of the final estimate of the target location. To our surprise: even though dyaPM is designed under

a connected query constraint, both sortPM and dyaPM achieves asymptotic optimality in query

time complexity; whereas hiePM is near-optimal in the asymptotic performance. Numerically,

we show that all the proposed search strategies have superior non-asymptotic performance

compared with that of 3rand. Notably, although hiePM is asymptotically sub-optimal, its

non-asymptotic performance in some regime is even better than that of sortPM and dyaPM .

2.2 Problem Setup

We consider the problem of searching for a point target in the unit interval, where the

target is uniformly placed on the unit interval. We wish to estimate the target position on the unit

interval to a particular resolution 1
δ
. In other words, the distance between the estimate and the

actual target is smaller than or equal to δ. Given a target the resolution 1
δ

that is determined and

fixed in advance, without loss of generality, we can discretize the problem by quantizing the area

into δ sub-intervals before the search process begins.

We now formulate the problem with finite resolution 1
δ
.More precisely, let us divide the

unit interval [0, 1] into 1
δ

sub-intervals (referred to as bins), where 1
δ
, without loss of generality,

is assumed to be an integer. Let θ be the index of the bin that contains the target. We wish to

estimate θ by sequentially choosing (possible random) any query sets St ⊆ {1, 2, ..., 1
δ
}. Let

Xt = 1(θ ∈ St) denote the clean binary signal indicating whether the target is in the query set St.

The agent obtains a corrupted version Yt of Xt, with noise level that corresponds to the size of the

query set |St|. Specifically, the agent obtains

Yt = Xt ⊕ Zt(St) (2.1)

where ⊕ denotes exclusive OR operation, and Zt(St) is the variable of Bernoulli noise where

9



its statistics depends on the query set St. In particular, we assume that Zt(St) ∼ Bern(p(|St|))

where p : (0, 1)→ (0, 1
2
) is a continuous and non-decreasing function.

After τ queries, the agent declares the target index θ̂. The search is said to have resolution

1
δ

and reliability ε if

P( | θ̂τ 6= θ | ≤ δ) ≥ 1− ε. (2.2)

A sequential query strategy consists of a query function γ that determines a sequence of the

query sets St, t = 1, 2, 3..., a stopping time τ , and an estimator θ̂τ of the index of the target

position. The strategy γ is said to be adaptive if the choice of the query St is a random set

measurable with respect to the sigma-filed generated by Y t−1
1 ; otherwise, the strategy is said

to be non-adaptive. The search is said to be fixed-length if τ is determined in advance and

independently of observations Y τ
1 ; otherwise, the search is said to be variable-length, i.e. if τ is a

random stopping time with respect to the sequence of observations Y1, Y2, .... Finally, we consider

the uniform Bayesian prior πi(0) = P(θ = i) = δ. It is sufficient for us to consider strategies

that select the next query set St ⊆ {1, 2, ..., 1
δ
} based on the vector of posterior probability π(t)

whose ith element is denoted by

πi(t) = P(θ = i | Y t−1
1 ), i = 1, 2, ...,

1

δ
. (2.3)

In other word, the deterministic and adaptive strategy γ can be represented by the function:

γ : ∆δ → 2{1,2,...,
1
δ
} (2.4)

where ∆δ is the probability simplex of dimension 1
δ
.

We characterize the performance of search strategies by the following:

i) The Query Time Complexity:

We are interested in search strategies that can find the target location accurately (with
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resolution 1
δ
) and reliability (with confidence 1 − ε) as quickly as possible. We measure

the asymptotic time complexity by how the expected number of queries τε,δ scales with the

resolution 1
δ

and the reliability ε.

ii) The Computational and Memory Complexity:

There are memory and computational requirements for computing the query set St at every

query time t, as well as computing the final estimate θ̂. Specifically, adaptive selection of St

requires updating the posterior vector. There is also the computation complexity associated

with the mapping γ from π(t) to the next query set St+1.

iii) The Query Geometry and the Query Cardinality:

In many practical settings, the choice of the query set St cannot be arbitrary. Let A ⊆

S ≡ 2{1,2,...,
1
δ
} be the set of allowable query sets, i.e. St ∈ A. We evaluate the algorithms

in terms of the geometric complexity of sets in A. One possible interesting choice of A,

motivated by the visual search [6] and initial beam alignment (Chapter 4) applications,

is when A = I := {{i : a ≤ i ≤ b} : 1 ≤ a < b ≤ 1
δ
}, i.e. when the query sets

are constrained to be contiguous intervals. In such case, we say that the search strategy

is with a connected/contiguous query geometry. On the other hand, we define the query

cardinality as the cardinality of A. A smaller query cardinality is favorable for applications

where the construction of the query set itself is non-trivial and a pre-construction with a

codebook-based approach is preferable (e.g. the beam alignment problem in Chapter 4).

Note that by tracking the posterior vector π(t) of length 1
δ

with Bayes’ rule, the computa-

tional and memory complexity are both at least of orderO(1
δ
). Now, the connected query geometry

of I offers an immediate reduction of computational and memory complexity in tracking the

posterior. In particular, we have

Lemma 2.1. For connected query geometry Sn ∈ I := {{i : a ≤ i ≤ b} : 1 ≤ a < b ≤ 1
δ
},

n = 1, 2, ..., t with uniform prior πi(0) = δ for all i, the posterior at time t can be written as a

11



simple function with at most 2t + 1 intervals. Specifically, there exist some I(t) = {I(t)
u : u =

1, 2, ..., 2t} ⊆ I where I(t)
u are disjoint partitions {1, 2, ..., 1

δ
} = ∪2t

u=0I
(t)
u such that

πi(t) =
2t∑
u=0

π
I
(t)
u

|I(t)
u |

1
I
(t)
u

(i). (2.5)

Proof. (2.5) is true for t = 0 with uniform prior and I0 = {1, 2, ..., 1
δ
}. By Procedure 2.1 and

Math Induction, we conclude the assertion.

Procedure 2.1: Sequential Quantization and Bayes’ Rule
1 Input: (πI(t)(t), I(t), St+1, Yt+1) where St+1 = {i : s1 ≤ i ≤ s2};
2 Output: (πI(t+1)(t+ 1), I(t+1)) ;
3 Find I(t)

t1 , I
(t)
t2 such that s1 ∈ I(t)

t1 and s2 ∈ I(t)
t2 ;

4 for 0 ≤ u < t1 do
5 I

(t+1)
u = I

(t)
u , π

I
(t+1)
u

(t) = π
I
(t)
u

(t) ;

6 I
(t+1)
t1 = [min It1 , s1 − 1], π

I
(t+1)
t1

(t) =
|I(t+1)
t1

|

|I(t)t1 |
π
I
(t)
t1

(t) ;

7 I
(t+1)
t1+1 = [s1,max It1 ], πI(t+1)

t1+1
(t) =

|I(t+1)
t1+1 |

|I(t)t1 |
π
I
(t)
t1

(t) ;

8 for t1 + 2 ≤ u < t2 + 1 do
9 I

(t+1)
u = I

(t)
u−1, π

I
(t+1)
u

(t) = π
I
(t)
u−1

(t) ;

10 I
(t+1)
t2+1 = [min It2 , s2 − 1], π

I
(t+1)
t2+1

(t) =
|I(t+1)
t2+1 |

|I(t)t2 |
π
I
(t)
t2

(t) ;

11 I
(t+1)
t2+2 = [s2,max It2 ] , π

I
(t+1)
t2+2

(t) =
|I(t+1)
t2+2 |

|I(t)t2 |
π
I
(t)
t2

(t) ;

12 for t2 + 3 ≤ u <≤ 2t+ 2 do
13 I

(t+1)
u = I

(t)
u−2, π

I
(t+1)
u

(t) = π
I
(t)
u−2

(t) ;

14 # Bayes’ rule:

π
I
(t+1)
u

(t+ 1) =
π
I
(t+1)
u

(t)P(Yt+1 | Xt+1 = 1(t1 + 1 ≤ u ≤ t2 + 1))∑2t+2
u′=0 πI(t+1)

u′
(t)P(Yt+1 | Xt+1 = 1(θ ∈ I(t+1)

u′ ))
(2.6)

By lemma 2.1 and procedure 2.1, we see that the complexity of tracking the posterior is

of order O(τ) under the connected query geometry. Therefore, this benefit offers a logarithmic
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Table 2.1: Comparisons between different search strategies and Main results

Asym. # Query Computation Memory Query Query

Rate: limδ
log(1/δ)
E[τε,δ]

(each query) Complexity Geom. Card.

medianPM [2] I(1
2
, pmax) O(log 1

δ
) O(log 1

δ
) conn. O(1

δ
)

maxEJS [6] I(1
2
, pmin) O(2

1
δ ) O(1

δ
) disj. O(2

1
δ )

3rand [11] I(1
2
, pmin) O(1

δ
)1 O(1

δ
) disj. O(2

1
δ )

sortPM I(1
2
, pmin) [Thm2.1] O(1

δ
log 1

δ
) 2 O(1

δ
) disj. O(2

1
δ )

dyaPM I(1
2
, pmin) [Thm2.3] O(log 1

δ
) O(log 1

δ
) conn. O((1

δ
)2)

hiePM I(1
3
, pmin) [Thm2.2] O(log 1

δ
) O(log 1

δ
) conn. O(1

δ
)

Optimal error exponent limε
log(1/ε)
E[τδ,ε]

= C1(p[δ]) is achieved by most of these algorithm except
medianPM where the error exponent is only of I(1

2
, pmax).

order of reduction for the computational and memory complexity from O(1
δ
) to O(log 1

δ
) (we will

show that τ = O(log(1
δ
)) for all the proposed algorithms)

Lastly, we use the rate-reliability pair to capture the asymptotic query time complexity:

Definition 2.1. A family of search strategies γε,δ with resolution 1
δ
, reliability ε, and stopping time

τε,δ are said to achieve a maximum rate R and a maximum reliability E respectively if and only if

R = lim
δ→0

log(1
δ
)

E[τε,δ]
, E = lim

ε→0

log(1
ε
)

E[τε,δ]
. (2.7)

2.3 Proposed Search Strategies and Main Results

In this section, we introduce three proposed search strategies: sorted Posterior Matching

(sortPM ), dyadic Posterior Matching (dyaPM ), and hierarchical Posterior Matching (hiePM ).

We give a summary of our main results and complexity comparisons in Table 2.1

1we count the complexity of random search by the optimal decoder which requires a tracking of the posterior
vector. It’s possible to reach O(poly(log 1

δ )) for both memory and computation by trading memory with computation
via other codes rather than random coding

2By a more sophisticated implementation using sequential quantization, it is possible to implement sortPM
with both memory and computational complexity of order O((log 1

δ )(log log
1
δ ))
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2.3.1 Sorted Posterior Matching

First, we present sorted Posterior Matching (sortPM ) [14] by the idea of sorting the

posterior vector π(t) together with Posterior Matching [8]. In particular, we apply the sortPM

on the sorted posterior π↓(t). Let k∗ = arg min k |π
↓
[1,k](t)− 1/2|, under sortPM

St+1 = γs(π(t)) = {i : σt(i) ∈ [1, k∗]}, (2.8)

is queried, where and σt is the corresponding sorting operation such that πi(t) ≡ π↓σt(i)(t).

Algorithm 2.1: Sorted Posterior Matching
1 Input: resolution 1

δ
, error probability ε, fixed stopping time n, stopping-criterion

2 Output: estimate of the target location θ̂ after τ queries
3 Initialization: πi(0) = δ for all i = 1, 2, ..., 1/δ,
4 for t = 0, 1, ... do
5 # Design the search region by sorted posterior
6

k∗ = arg min
k

|π↓[1,k](t)− 1/2|

St+1 = γs(π(t)) = {i : σt(i) ∈ [1, k∗]},
(2.9)

7 # Take next measurement
8 Yt+1 = 1(θ ∈ St+1)⊕ Zt+1

9 # Posterior update by Bayes’ Rule
10 π(t+ 1)← Yt+1,π(t)
11 # Stopping criteria
12 case: stopping-criterion = fixed length (FL)
13 if t+ 1 = n then
14 break;

15 case: stopping-criterion = variable length (VL)
16 if maxi πi(t+ 1) > 1− ε then
17 break;

18 τ = t+ 1 (length of the search)
19 θ̂ = arg max i πi(τ)

Theorem 2.1. The expected search time of sortPM of achieving resolution δ > 0 and reliability
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0 < ε < 1 can be upper bounded by

E[τε,δ] ≤
log(1/δ)

I(1/2, p[α])
+

log(1/ε)

C1(p[δ])
+ o(

1

δε
), (2.10)

for any fixed α > (e log 1
δε

)−Ks , where Ks > 0 a constant defined in Lemma A.1.

Remark 2.1. By first taking δ → 0 and then α→ 0, Theorem 2.1 together with the corresponding

converse theorem [Theorem 1 in [6]] implies that sortPM achieves the best possible acquisition

rate I(1/2, pmin) and the best reliability exponent C1(p[δ]) (by taking ε→ 0).

Remark 2.2. Even though sortPM , as well as prior works such as maxEJS [6] and 3-phase

random search [11], are asymptotically optimum in time complexity under query-dependent noise,

there’s no constraint on the query set they choose. This unstructured query geometry prevents

them from many applications where connected query set or other specific geometry is preferred

(such as visual search [6]). Furthermore, the query cardinality of these algorithms are of a

prohibitive order O(2
1
δ )

2.3.2 Hierarchical Posterior Matching

Motivated by the need of the connected query geometry, here we proposed a novel low-

complexity search strategy which we call Hierarchical Posterior Matching, hiePM . HiePM

utilizes the hierarchical query geometry that is used in the noiseless binary search. For the

brevity of presentation, we assume that 1
δ

= 2L for some L > 0. The hierarchical query

geometry is therefore written as H = {Hm
l : l = 0, 1, 2, ...,m = 0, 1, 2, ..., 2l − 1} where

Hm
l = {m2L−l + 1,m2L−l + 2, ..., (m + 1)2L−l}. This query geometry, as shown in Fig. 2.1,

can be represented by a binary tree recursively by

Hm
l = H2m

l+1 ∪H2m+1
l+1 , l = 0, 1, 2, 3, ..., L. (2.11)
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Figure 2.1: Binary search tree and the posterior for a given time t

SinceH ⊆ I, hiePM has a connected query geometry.

Now, hiePM applies the Posterior Matching hierarchically along the binary tree as

follows: let

l∗t = arg max
l

{
max
m

πHm
l

(t) ≥ 1

2

}
,

m∗t = arg max
m

πHm
l∗t

(t),

(2.12)

and the hierarchical half posterior matching with

(lt+1,mt+1) = arg min
(l′,m′)∈{(l∗t ,m∗t ),(l∗t+1,2m∗t ),(l∗t+1,2m∗t+1)}

∣∣∣∣πHm′
l′

(t)− 1

2

∣∣∣∣ , (2.13)

hiePM queries St+1 = H
mt+1

lt+1
(The whole procedure of hiePM is summarized in Algo-

rithm 2.2).

Theorem 2.2. The expected search time of hiePM for achieving resolution δ > 0 and reliability

0 < ε < 1 can be upper bounded by

E[τε,δ] ≤
log(1/δ)

I(1/3, p[2−l])
+

log(1/ε)

C1(p[δ])
+ o(

1

δε
), (2.15)
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Algorithm 2.2: Hierarchical Posterior Matching
1 Input: resolution 1

δ
= 2L, error probability ε, fixed stopping time n,

stopping-criterion
2 Output: estimate of the target location θ̂ after τ queries
3 Initialization: πI(0)(0) = 1, I(0) = {(1, 2, ..., 2L)}
4 for t = 1, 2, ... do
5 l∗t = arg max l

{
maxm πHm

l
(t) ≥ 1

2

}
;

6 m∗t = arg max m πHm
l∗t

(t);

7 # Match half posterior along the hierarchy l

(lt+1,mt+1) = arg min
(l′,m′)∈{(l∗t ,m∗t ),(l∗t+1,2m∗t ),(l∗t+1,2m∗t+1)}

∣∣∣∣πHm′
l′

(t)− 1

2

∣∣∣∣ ; (2.14)

St+1 = H
mt+1

lt+1
;

8 # Take next measurement
9 Yt+1 = 1(θ ∈ St+1)⊕ Zt+1

10 # Posterior update by Bayes’ Rule (Procedure 2.1)
11 (πI(t+1)(t+ 1), I(t+1))← (πI(t)(t), I(t), St+1, Yt+1) ;
12 # Stopping criteria
13 case: stopping-criterion = fixed length (FL)
14 if t+ 1 = n then
15 break;

16 case: stopping-criterion = variable length (VL)
17 if maxi πi(t+ 1) > 1− ε then
18 break;

19 τ = t+ 1 (length of the search)
20 θ̂ = arg max i πi(τ)

for any fixed l > 0 such that 2−l > (e log 1
δε

)−Kh , where Kh > 0 is a constant defined in Lemma

A.3.

Remark 2.3. As shown in Algorithm 2.2, both the computational and memory complexity are

dominated by tracking the posterior representation πI(t) , I(t) in Procedure 2.1. By Theorem 2.2

we know that the computational and memory complexity is of order O(log 1
δ
).

Remark 2.4. The hierarchical query geometry H not only is connected but also is of a hi-

erarchical structure, which is suitable for the applications such as heavy hitter detection in

17



networking [10] (monitoring pre-fix IP addresses) and bit-wise coding (Chapter 3). Furthermore,

the query cardinality is only |H| = O(1
δ
), rendering hiePM a great candidate for beamforming

applications as we will see in Chapter 4.

Remark 2.5. Taking ε → 0, we see that hiePM achieves the best possible error exponent

C1(pmin). However, the achievable acquisition rate of hiePM by Theorem 2.2, is only I(1/

3, pmin) < I(1/2, pmin). It remains an open problem of the best achievable acquisition rate

when we restrict the query area St+1 to be hierarchical intervals. In the case of measurement

independent noise (p[x] ≡ p), the simulation study in Chapter 3 suggests that hiePM achieves

an acquisition rate that is very close but is strictly less than the optimal rate I(1/2, p).

2.3.3 Dyadic Posterior Matching

By using the hierarchical query H, hiePM gives a solution that allows for constraints

on the connectedness of query geometry. However, we do see that hiePM loses the asymptotic

optimality in time complexity. In this subsection, we proposed another low-complexity search

strategy which we call dyadic Posterior Matching, dyaPM .

By the same procedure as in hiePM , dyaPM first finds the smallest binary interval that

contains more than half posterior, i.e. Hm∗t
l∗t

= {m∗t2L−l
∗
t + 1,m∗t2

L−l∗t + 2, ..., (m∗t + 1)2L−l
∗
t } as

in equation (2.12). The dyaPM algorithm then applies the Posterior Matching within Hm∗t
l∗t

by

St+1 = [m∗t2
L−l∗t + 1, k∗] (2.16)

where k∗ = arg min k |π[m∗t 2L−l
∗
t +1,k]

(t)− 1/2| (The whole procedure of dyaPM is summarized

in Algorithm 2.3).

Theorem 2.3. The expected search time of dyaPM of achieving resolution 1/δ and reliability
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Algorithm 2.3: Dyadic Posterior Matching
1 Input: resolution 1

δ
, error probability ε, fixed stopping time n, stopping-criterion

2 Output: estimate of the target location θ̂ after τ queries
3 Initialization: πI(0)(0) = 1, I(0) = {(1, 2, ..., 2L)}
4 for t = 1, 2, ... do
5 l∗t = arg max l

{
maxm πHm

l
(t) ≥ 1

2

}
;

6 m∗t = arg max m πHm
l∗t

(t);

7 k∗ = arg min k |π[m∗t 2L−l
∗
t +1,k]

(t)− 1/2|;
8 St+1 = [m∗t2

L−l∗t + 1, k∗];
9 # Take next measurement

10 Yt+1 = 1(θ ∈ St+1)⊕ Zt+1

11 # Posterior update by Bayes’ Rule (Procedure 2.1)
12 (πI(t+1)(t+ 1), I(t+1))← (πI(t)(t), I(t), St+1, Yt+1) ;
13 # Stopping criteria
14 case: stopping-criterion = fixed length (FL)
15 if t+ 1 = n then
16 break;

17 case: stopping-criterion = variable length (VL)
18 if maxi πi(t+ 1) > 1− ε then
19 break;

20 τ = t+ 1 (length of the search)
21 θ̂ = arg max i πi(τ)

0 < ε < 1, can be upper bounded by

E[τε,δ] ≤
log(1/δ)

I(1/2, p[2−l])
+

log(1/ε)

C1(p[δ])
+ o(

1

δε
), (2.17)

for any fixed l > 0 such that 2−l > (e log 1
δε

)−Kd , where Kd > 0 a constant defined in Lemma

A.2.

Remark 2.6. By taking δ → 0 and then l → ∞, we conclude that dyaPM achieves the best

possible acquisition rate I(1/2, pmin). And by taking ε→ 0, dyaPM achieves the best reliability

exponent C1(δ). To the best of our knowledge, dyaPM is the first and the only known algorithm

with connected query geometry that achieves asymptotic optimality under query-dependent noise
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Remark 2.7. As shown in Algorithm 2.3, both the computational and memory complexity are

again dominated by tracking the posterior representation πI(t) , I(t) in Procedure 2.1. By Theorem

2.3 we know that the computational and memory complexity of dyaPM is of order O(log 1
δ
).

2.3.4 Asymptotic Results

To illustrate the asymptotic results from Theorem 2.1-2.3, here we present the achievable

rate-reliability (R,E) pair from Definition 2.1. As an example, we use the noise profile p[x] =

0.1 + 0.5x and obtain the rate-reliability region In Fig. 2.2, where we have pmin = 0.1, pmax =

p[1
2
] = 0.35. By Theorem 2.1-2.3, any (R,E) pairs below the corresponding curves are achievable

by the corresponding algorithm. In fact, further by the converse theorem from [Theorem 1 in [6]],

we have the converse: any (R,E) pair above the blue line is not achievable by any algorithm.

Figure 2.2: Achievable rate-reliability region
The noise profile is set to be p[x] = 0.1 + 0.5x, which means pmin = 0.1, pmax = p[1

2
] = 0.35.
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2.4 Numerical Examples

In this section, we give numerical comparisons amongst various algorithms. We study

the error probability versus the number of queries at a fixed resolution. We compare all the

algorithms under query-dependent Bernoulli noise where p[δ|S|] is linearly increasing in |S|. For

applications of our algorithm under different noise profiles as well as non-Bernoulli noise, we

refer readers to Chapter 4. The proposed algorithms sortPM, dyaPM, and hiePM are as described

in Sec. 2.3. The median binary search from [2, 8] is denoted as medianPM. The 3 phase random

search from [11] is denoted as 3rand. We use algorithm-VL to represent the variable length

termination of the algorithm where the number of queries is reported in its expectation value.

Likewise, we use algorithm-FL to represent the fixed length termination of the algorithm.

Figure 2.3: Error probability vs. number of queries: linear noise case
We set resolution 1

δ
= 215 and Bernoulli noise with linear flipping probability

p[δ|S|] = 0.1 + δ|S|/2

As we see in Fig. 2.3, the proposed algorithms sortPM , dyaPM , and hiePM enjoys
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the optimal error exponent C1(p[δ]) with variable length (VL) operation for both measurement

independent and query-dependent noise, as predicted by Theorem 2.1, 2.3, and 2.2. Notably,

even with the restriction of contiguous query area, dyaPM and hiePM perform almost the

same as sortPM both asymptotically and non-asymptotically in reliability. As we expect, the

medianPMfails in generalization to query-dependent noise (Fig. 2.3). On the other hand, while

3rand is also asymptotically optimal in reliability with VL operation, we see that there is an

obvious non-asymptotic performance gap compared with our proposed algorithms. We also

summarized the performance of each of the algorithms with fixed length (FL) operation. While

the full characterizations of FL error exponent with respect to the noise profile p[·] is still an

open problem, here by the superior numerical performance of the proposed algorithms, we can

conclude the applicability of the proposed algorithms under different settings.

(Note that for 3rand, we modified and enhanced the algorithm from [11] by tracking and

using the posterior to determine the phase transition. In particular, in phase-1 coarse search, we

chop the area into 8 coarse bins and randomly choose 4 out of 8 as a query area for each query. If

one of the coarse bin accumulates more than 1− ε1 = 0.99, then the process switches to phase-2

where half of the fine resolution bins (1/δ) within the 1− ε1 coarse bin is randomly selected as

query area. If the posterior of the coarse bin from phase-1 decreases under 1− ε1 during phase-2,

then the process switches back to phase-1. If otherwise during the phase-2 random search, one

of the fine resolution (1/δ) accumulates more than 1 − ε2 = 0.5, then the process switches to

phase-3 confirmation phase where only the 1− ε2 fine bin is selected as query area. If the fine

bin posterior drops under 1 − ε2 during phase-3 confirmation, then the process switches back

to phase-2 random search (as opposed to [11] where the whole process is started over if the

confirmation phase gives a NACK decision). This modification of a sequential 3rand allows us to

run the 3rand algorithm with both fixed length and variable length.)
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2.5 Discussion: Finite Resolution vs. Variable Resolution

Figure 2.4: Resolution vs. Number of Queries: linear noise case
We set error probability ε = 0.02 and Bernoulli noise with linear flipping probability

p[δ|S|] = 0.1 + δ|S|/2

For pre-determined and fixed finite resolution 1
δ
, the logarithmic scaling between resolution

and (expected) number of queries is predicted by Theorem 2.1-2.3 and verified by simulation

in Fig. 2.4. However, We note that although we formulate the search problem with finite and

pre-determined resolution 1
δ
, the original search problem operates on a continuous area (interval

[0, 1]). Indeed, our proposed algorithms dyaPM and hiePM are free of pre-quantization and can

operate on the continuous area with a natural sequential quantization-refinement which allows a

variable resolution. For better comparison, in this chapter, we discuss under pre-quantization and

focus on the fixed resolution case. We refer readers to Chapter 4 for an application of the proposed

algorithm operating with a variable resolution that is sequentially determined. Furthermore, we

also note that while we focus on binary noise in this chapter for the brevity of presentation, our
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framework can be modified to deal with various forms of noise corruption by adapting the Bayes’

rule accordingly (see Chapter 4 Sec. 4.3.4 for examples).

2.6 Appendix: query-independent noise

Here for reference, we append the performance of the algorithms under query-independent

noise, which can be seen as a special case of query-dependent noise with p[x] ≡ p0 for all x. In

Fig. 2.5, we observe minor variations in the error probability between the proposed algorithms and

medianPM, and a non-asymptotic gap of 3rand. See Chapter 3 for an application of the proposed

algorithm hiePM to the case of query-independent noise in the feedback coding problem.

Figure 2.5: Error probability vs. number of queries: constant noise case
We set resolution 1

δ
= 215 and Bernoulli noise with constant flipping probability p[δ|S|] = 0.1

Chapter 2, in part, is a reprint of the material as it appears in the paper: Sung-En Chiu and

Tara Javidi. ”Sequential Measurement-Dependent Noisy Search.” 2016 IEEE Information Theory

Workshop (ITW). IEEE, 2016. The dissertation author was the primary investigator and author of
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this paper.

Chapter 2, in full, is currently being prepared for submission for publication as Sung-En

Chiu and Tara Javidi, ”Query-Dependent Noisy Search.” The dissertation author was the primary

investigator and author of this material.
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Chapter 3

Bit-wise Sequential Coding with Feedback

Even though hiePM is developed for query-dependent noise in Chapter 2, we demonstrate

the application of hiePM in the feedback coding problem (corresponding to query-independent

noise). We apply hiePM to the feedback coding problem and proposes a sequential feedback

coding scheme, bitPM , with a hierarchical bit-wise structure that generalizes repetition codes.

This scheme is shown to achieve a strictly positive rate for a large class of binary input channels

including a BSC with arbitrary cross-over probability p ∈ (0, 1
2
).

3.1 Introduction

Consider the problem of transmitting information over a noisy channel in the presence

of perfect output feedback, i.e., the transmitter has a perfect observation of the received signal.

While it is known that the presence of the feedback does not increase the capacity of a memoryless

channel [12], one hopes to utilize the feedback to simplify the encoding scheme significantly. This

folk belief that feedback can simplify the encoding is based on the construction of the optimal

code for the Binary Erasure Channel (BEC) with perfect output feedback. More specifically, the

simple sequential scheme that sends the message bit-by-bit via persistent retransmission of bits

achieves the optimal transmission rate–reliability trade-off for a BEC.
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Unfortunately and counter-intuitively, similar simple bit-wise sequential codes that achieve

a positive rate of transmission over other noisy channels remain. For instance, the transmission

rate of the noisy variant of the bit-by-bit repetition code over a Binary Symmetric Channel

(BSC) is strictly zero for all values of crossover probability p ∈ (0, 1
2
). Conversely, no known

capacity-achieving feedback code has a bit-wise sequential structure. For example, under Posterior

Matching, each message is considered in its entirety in a block coding manner. To the best of

our knowledge, the only sequential bit-wise feedback code over BSCs has been considered by

Simsek et. al. in [15]. However, the analysis in [15] only applies to BSCs where the crossover

probability is extremely small.

In this chapter, we provide the first sequential feedback code with a bit-wise nested

structure that generalizes the simple repetition codes. By using the Extrinsic Jensen Shannon

(EJS) divergence, this scheme is shown to achieve a strictly positive rate for a BSC with arbitrary

crossover probability p ∈ (0, 1
2
). We also show that this result can be generalized to a large class

of binary input channels.

3.2 Problem Setup

A Binary Symmetric Channel (BSC) with cross-over probability p ∈ (0, 1
2
) has the

following channel transition probabilities when an input symbol x ∈ {0, 1} is transmitted:

p(y|x) =


1− p, y = x,

p, y 6= x.

(3.1)

A transmitter wishes to send a source message with bit representation b1:n of length n where

each bit is independently and identically distributed (i.i.d.) with distribution B(1
2
). At time t,

we assume that the causal noiseless feedback of past channel outputs y1:t−1 is available at the

transmitter. A channel coding scheme consists of a sequence of encoders with feedback given
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by the functions en,t : {0, 1}n × {0, 1}t−1 → {0, 1} which maps the n source bits given the past

observation y1:t−1 to the channel input xt as follows

xt = en,t(b1:n,y1:t−1). (3.2)

After observing τ (possibly random) number of channel outputs y1:τ , the receiver guesses

the n source bits as

b̂1:n = dn,τ (y1:τ ) (3.3)

where dn,τ is the decoding function. After τ channel uses, the probability of error of the coding

scheme is defined as

pe(τ) := P(dn,τ (y1:τ ) 6= b1:n). (3.4)

A variable length channel coding scheme γn,ε that transmits n bits consists of a sequence of

encoding functions and a decoding functions (en,t, dn,t) for t ≤ τn,ε where τn,ε is a stopping

rule such that Pe(τn,ε) ≤ ε for a given target error probability ε ∈ (0, 1). A rate R is said to

be achievable by a variable length channel coding scheme γ if for all ε ∈ (0, 1) there exists a

sequence of schemes γn,ε for n ≥ 1 such that

lim
n→∞

n

E[τn,ε]
≥ R. (3.5)

Furthermore, we say that this scheme achieves rate–reliability pair (R,E) if there exists a

sequence of schemes γn,ε for n ≥ 1 such that

lim
n→∞

n

E[τn,ε]
≥ R, and lim

n→∞

log(1/ε)

E[τn,ε]
≥ E. (3.6)

Fact 3.1. No coding scheme can achieve diminishing error probability at rates higher than C(p).
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Furthermore, no coding scheme can achieve positive rate–reliability pair (R,E) unless

E ≤ C1(p)

(
1− R

C(p)

)
, R ∈ (0, C(p)). (3.7)

Fact 3.2 ( [13]). The expected stopping time of a variable length coding scheme γn,ε which

transmits an n bit message such that Pe ≤ ε for some positive ε > 0, satisfies the following

E[τn,ε] ≤
(

n

Rγn,ε
+

log 1
ε

Eγn,ε

)
(1 + o(1)) (3.8)

for some positive valuesEγn,ε andRγn,ε . Then, the scheme γn,ε can achieve any rateR ∈ [0, Rγn,ε ]

with error exponent E, if it satisfies the following

E ≤ Eγn,ε

(
1− R

Rγn,ε

)
. (3.9)

3.2.1 Bit-wise Coding

In this section, we provide a general class of encoding scheme with a specific structure.

This family of encoding schemes relies on three sets of variables which indicate the state of the

decoder. At time t and after receiving y1:t, let lt be the number of bits decoded by the decoder

at time t and b̂1:lt(t) be the decoder’s estimate of these bits; let It ⊆ {1, 2, ..., lt} be the index

of the bits that decoder would like to receive confirmation on; finally, let mt+1 ∈ {nt, cm} be

the agreed-upon state between encoder and decoder regarding the nature of the transmitted bit

after their shared observation y1:t. In particular, mt+1 = nt indicates the next transmission to be a

new bit blt+1 while mt+1 = cm represents a confirmation on bIt = b̂It . Now given these four

agreed-upon variables (as a function of y1:t which is shared by both encoder and decoder), the
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encoding scheme can be written as

xt+1 =


blt+1 , if mt+1 = nt,

1(bIt = b̂It(t)) , if mt+1 = cm.
(3.10)

3.2.2 Prior work

In this subsection, we detail, to the best of our knowledge, the only known bit-wise

schemes and show that they can be viewed as a special case in our family of encoding schemes.

Repetition coding: When It = {lt} for all t and while using an ACK/NACK feedback,

the bit-wise encoder given by (3.10) reduces to a simple repetition code where the number of

outputs lt and the next state mt+1 are determined as

(lt,mt+1) =

 (lt−1 + 1, nt) if ACK of blt−1 ,

(lt−1, cm) if NACK of blt−1 ,
(3.11)

where ACK of blt−1 implies that the decoder can decode the bit blt−1 with sufficient confidence

(for instance when the probability of error in decoding the bit blt−1 is at most ε for some ε ∈ (0, 1))

and NACK of blt−1 implies that decoder needs more information to decode the bit. While such a

repetition code with feedback achieves capacity over BEC, this choice of It = {lt} operates at

zero rate over BSC with any crossover probability p ∈ (0, 1
2
).

Simsek bit-wise coding: Other than the simple repetition codes, to the best of our

knowledge, [15] by Simsek et al. is the only other prior work that is of the bit-wise coding

structure. The authors in [15] used their coding scheme to keep the estimation error bounded in a

dynamical system with noisy observations (BSC). Their coding scheme chooses the confirmation
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index set It = {1, 2, ..., lt} such that

xt+1 =


blt+1 , if mt+1 = nt,

1(b1:lt = b̂1:lt(t)) , if mt+1 = cm,
(3.12)

where the decoder output b̂1:lt(t) remains the same during confirmation and is updated for every

new transmission, i.e.

b̂lt(t) =


b̂lt(t− 1) , if mt = cm

yt , if mt = nt
. (3.13)

The evolution to the next state mt+1 and the bit index lt is determined by previous state mt and

the observation yt. At time t after a new transmission (i.e., mt = nt) of the (lt−1 + 1)th bit, the

decoder updates (lt−1 + 1)th bit with yt as given by (3.13). The coding scheme then switches

to confirmation state (i.e., mt+1 = cm) confirming on all the bits of decoder’s output (1 : lt). If

at time t after a confirmation (i.e., mt = nt) of the lt−1 bits, if yt = 0 then the encoder/decoder

discard one bit (lt = lt−1 − 1) and confirm on (1 : lt−1 − 1) bits. However, if yt = 1 the coding

scheme switches to new transmission as long as lt−1 < n. More precisely, the number of output

bits lt and the next state mt+1 evolve as

(lt,mt+1) =



(lt−1 + 1, cm) ,mt = nt

(lt−1 − 1, cm) ,mt = cm, yt = 0, lt−1 > 1

(lt−1, cm) ,mt = cm, yt = 0, lt−1 = 1

(lt−1, nt) ,mt = cm, yt = 1, lt−1 < n

(lt−1, cm) ,mt = cm, yt = 1, lt−1 = n

(3.14)

for t ≥ 1 with initial state (l0,m1) = (0, nt).

This bit-wise transmission-confirmation scheme from [15] is shown to be able to stabilize
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the estimation error with channel BSC for cross over probabilities in a small set given by p < 0.05.

However, the analysis of achievable rates for this scheme for a communication problem with a

variable length decoding time remains.

3.3 Main Results

3.3.1 Bit-wise Posterior Matching

In this section, we propose a special case of the family of encoding schemes represented

by (3.10). We call the proposed scheme bit-wise Posterior Matching, denoted by bitPM, where

here the state mt+1, the number of the bits lt output by the decoder, decoder’s estimate b̂1:lt(t),

and the confirmation set It, are chosen as a deterministic function of the posterior:

πb′(t) := P(b = b′ | y1:t). (3.15)

In particular, let us consider the lth bit sequential MAP decoder and the l bit resolution posterior

b̂l(t) = max
b=0,1

π
{1:l}
(b̂1:l−1(t) b)

(t), l = 1, 2, ..., n, (3.16)

πlb′(t) := P(b1:l = b′ | y1:t). (3.17)

Now let us compute the posterior-matched resolution l∗ as

l∗t := arg min
l

∣∣∣∣π∗b̂1:l(t)− 1

2

∣∣∣∣ . (3.18)
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We are now ready to provide the update rule for mt, lt, and It:

(lt+1,mt+1) =


(lt + 1, nt), l∗t > lt

(lt, cm), l∗t ≤ lt or lt = n

(3.19)

and It = {1, 2, ..., l∗t }. In other words, the decoder will use the posterior to find the optimal

confirmation 1 : l∗t (closet to Bern(1
2
). And if those 1 : l∗t bits has all been transmitted before

(l∗t ≤ lt), the decoder asks the encoder to do confirmation on those 1 : lt bits. Otherwise (l∗t > lt),

the decoder asks the encoder to do a new transmission of the next bit blt+1.

Lastly, the posterior of the bits is updated sequentially in time via Bayes’ rule: for any

b′1:n ∈ {0, 1}n,

πb′1:n(t) =
πb′1:n(t− 1)p

(
yt | xt = 1(b′1:lt

= b̂1:lt(t))
)∑

b′1:n

πb′1:n(t− 1)p
(
yt | xt = 1(b′1:lt

= b̂1:lt(t))
) , (3.20)

and the stopping time of the scheme is given by

τn,ε = min
{
t : πb̂(t)(t) ≥ 1− ε

}
. (3.21)

3.3.2 Rate-Reliability of Bit-wise Posterior Matching

Now we state our main result showing that bitPM achieves strictly positive rates for all

BSCs and the best possible reliability with variable length decoding time.

Theorem 3.1. Operating the bit-wise feedback coding scheme bitPM over BSC(p), the expected

variable length decoding time τn,ε of successfully decoding n bits reliability with probability 1− ε,

is upper bounded by

E[τn,ε] ≤
n

R0(p)
+

log(1
ε
)

C1(p)
+ o(n log(

1

ε
)), (3.22)

33



where C1(p) := D(Bern(p)‖Bern(1− p)) and R0(p) := I(Bern(1
3
), Y ).

Proof. This theorem is a special case of Theorem 2.2 in Chapter 2 with query-independent

Bernoulli noise. To avoid re-writing the proof with a minor change of notation, we omit the proof.

We refer the reader to [16] for the proof under the notation of bit-transmission problem.

Remark 3.1. Note that R0(p) > 0 for all p < 0.5. By Theorem 3.1, bitPM achieves at least rate

R0(p) = I(Bern(1
3
), Y ) which is strictly positive, and in fact, close to the channel capacity of

BSC(p) because of the concavity of the mutual information with respect to the input distribution.

Numerical values of R0(p) and C(p) are also compared across different value of p in the

simulation session.

Remark 3.2. Intuitively, we achieve the rate R0(p) = I(Bern(1
3
), Y ) since that the bitPM coding

schemes gives the channel input xt ∼ Bern(qt) where 1
3
≤ qt ≤ 2

3
. To see this, by the selection

rule (3.19), we have xt ∼ Bern(1
2
) if it’s a new transmission. If it is a confirmation, the selection

of l∗t (3.18) and the sequential MAP estimate (3.16) ensure 1
3
≤ qt ≤ 2

3

Remark 3.3. For brevity, we choose to present this chapter with BSC. The scheme can be

applied on any binary input channel. Furthermore, our analysis remains valid for any binary

input bounded symmetric output channels, e.g., binary input truncated Gaussian channels.

3.4 Numerical Examples

In this section, we give numerical results for the proposed scheme bitPM as well as the

bit-wise coding scheme in [15], which is labeled SJV‘14 in the legend of Figure 3.1. To apply the

scheme in [15] to a variable length coding problem, we added into SJV‘14 the same stopping rule

τn,ε = min
{
t : πb̂(t)(t) ≥ 1− ε

}
. (3.23)
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We have also shown our analytic lower bound of the achievable rates of bitPM, R0(p), the

analytic lower bound on anytime rate (always a lower bound for achievable rate) of [15], RS(p),

along with the channel capacity of BSC(p) for comparison.

Figure 3.1: Rate comparison with target reliability ε = 10−2 over BSC(p)

As we can see in Fig. 3.1, numerically the proposed scheme bitPM has a higher rate than

SJV‘14 for all value of p ∈ (0.0.5). On the other hand, the analytically achievable rate R0(p) of

bitPM provided in our analysis is shown to be close to the channel capacity C(p). Moreover, we

also observe that numerically bitPM operates on a rate almost equal to the channel capacity when

p is small.

3.5 Conclusions and Future Work

In this chapter, we provided a bit-wise sequential feedback code with a nested structure

and obtained a strictly positive lower bound for its achievable rate over any BSC with arbitrary
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cross-over probability p. The rate-reliability analysis of the proposed scheme is given using the

Extrinsic Jensen Shannon divergence. We note that while for the simplicity of the exposition,

we have focused our analysis on BSC, the result is shown to be generalizable to a large class of

memoryless binary input symmetric output channels.

Furthermore, via numerical simulations, we have illustrated the performance of our

proposed bit-wise sequential feedback code against the capacity of the channel. More specifically,

we have shown that the achievable rate is near its optimal value even when the number of bits to

be transmitted over the channel is small (known benefit of feedback). This observation motivates

ongoing research on characterizing the non-asymptotic [17] analysis of our bit-wise sequential

feedback codes.

Chapter 3, in full, is a reprint of the material as it appears in the paper: Sung-En Chiu,

Anusha Lalitha and Tara Javidi, ”Bit-wise Sequential Coding with Feedback.” 2018 IEEE Interna-

tional Symposium on Information Theory (ISIT). IEEE, 2018. The dissertation author was the

primary investigator and author of this paper.
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Chapter 4

Active Learning and CSI acquisition for

mmWave Initial Alignment

In this chapter, we demonstrate another application of hiePM in Millimeter-wave

(mmWave) communication. In particular, we apply hiePM to the initial beam alignment prob-

lem. Numerical simulation shows that hiePM is the state-of-art among other beam alignment

algorithms.

4.1 Introduction

Millimeter wave (mmWave) communication with massive antenna arrays is a promising

technique that increases the data rate significantly, thanks to the large available bandwidth

in mmWave frequency bands. While an inherent challenge for mmWave communication is

exceptionally high pathloss [18]- [19], resulting in low SNR and high link outage, the small

wavelength can be exploited to deploy an array with a large number of antennas in a relatively

small area. It has been shown [20] that massive MIMO mmWave systems can be deployed to

form highly directional beams to mitigate the pathloss and the associated low SNR and high link
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outage. However, it is essential to note that the realization of highly directional beams requires a

precise and reliable estimate of channel state information (CSI) during the initial access phase.

This chapter considers the problem of actively learning an optimum beamforming vector from a

fundamental limit point of view.

With the scale of millimeter wavelength and the half wavelength spacing, a large number

of antennas can be packed into a modest-sized device. For large antenna arrays, however,

equipping each antenna with an RF chain is too hardware costly. This limitation prevents per

antenna digital processing. A hardware friendly proposal for practically implementing large array

systems in mmWave bands deploys a single RF chain where CSI acquisition reduces to finding

the optimal analog beamforming along the dominant direction of the signals between the base

station (BS) and the user that is trying to establish the communication link. In this chapter we

consider this practical scenario of mmWave communication with massive MIMO technology and

the practically designed low complexity hierarchical beamforming codebook of [21] to propose

an efficient and adaptive beamforming algorithm that quickly identifies the optimal beamforming

direction under a single dominant path channel model. Furthermore, we obtain bounds on the

performance of this algorithm to asymptotically match the information theoretic limits on the

speed and reliability of active learning and CSI acquisition with the given hardware constraints.

The exhaustive linear search, which utilizes beams that scan over all possible directions to

pick the best one, and has been proposed in IEEE 802.15 and 5G standards, requires a relatively

long initial access time that linearly grows with the angle resolution (highest resolution being the

number of the antenna elements).

On the theoretical front, in contrast, prior work which is based on simple measurement

models noted that the problem of CSI acquisition in mmWave is closely related to that of noisy

search, which itself has been shown to be closely related to the problem of channel coding over a

binary input channel with ( [11,22,23]) and without ( [24]) feedback. Under various noise models,

it is shown that the number of measurements can be kept to grow only logarithmically with the
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angular resolution and target error probability [11] and [23]. While these early studies did not

take the practical beam patterns into account, this logarithmic scaling was later also confirmed

and reported in more practical systems with realistic and empirically precise beam patterns ( [21]

and [25]) with the caveat of a sufficiently large SNR model. In particular, [21] carefully developed

a hierarchical beamforming codebook which in the noiseless setting allows for an (adaptive)

binary search over the angular space; increasing transmission power and time is then used to

combat the measurement noise. The authors in [25] showed that a non-adaptive strategy can also

achieve similar performance gains. More specifically, the authors of [25] proposed random hash

functions to generate a random beamforming codebook whose acquisition time, they showed,

grows only logarithmically with target resolution/error probability.

However, to guarantee coverage in low (< 5 dB) raw SNR regimes (cell-edge users), these

techniques provide a marginal advantage over the exhaustive linear search as noted in [22]. We

note that this logarithmic scaling (of search time with angular resolution) could also be obtained

when viewing the problem as that of sparse estimation with compressive measurements (see [26]

and references therein). As shown in [26], however, such an approach also requires large (> 5

dB) raw SNR to achieve reasonable accuracy for channel estimation.

We note that prior works that operate in higher raw SNR make them unsuitable for

cell-edge users in mmWave communication. This limitation has significant practical system

design implications. The current 5G mmWave communication in 3GPP standard [27] supports

mainly non-standalone mmWave in which the initial access phase is covered by legacy sub-6G ,

which provides higher SNR. This constraint highlights the need for a strategy that can adaptively

improve the measurement quality and is suitable for a low SNR regime.

4.1.1 Our work and contributions

In this chapter, we consider the problem of CSI acquisition during the initial access

phase for designing the analog beamforming in an environment with a single-path channel. We
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Figure 4.1: The active learning process of the AoA φ
The active learning process of the AoA φ is to design the beams wt ∈ WS adaptively for the

sequential collection of the observations yt, from which at the ending of the collection is to be
used for the estimation of the AoA φ.

formulate the CSI acquisition as active learning of the angle-of-arrival (AoA) at the base station

(BS) side where the user’s beamforming vector is assumed to be fixed as illustrated in Fig 4.1. We

consider two measures of performance for the proposed search scheme: the (expected) resolved

beam width (AoA resolution) and the (expected) error probability. Based on the nature of the

initial access protocol, we consider two types of stopping criteria: fixed-length stopping, where a

fixed amount of search time is allocated for the initial access phase, and variable-length stopping

where the search is conducted over a random stopping time. The contributions of the chapter

include:

• We formulate the initial beam alignment for massive MIMO as active learning of the AoA

through multiple sequential and adaptive search beams. Our approach draws heavily from

our prior work on algorithms for noisy search [14], active learning [28], and channel coding

with feedback [23].

• We propose a new adaptive beamforming strategy utilizing the hierarchical beamform-

ing codebook of [21]. The proposed adaptive strategy, hierarchical Posterior Matching
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(hiePM ), accounts for the measurement noise and selects the beamforming vectors from

the hierarchical beamforming codebook based on the posterior of the AoA. The design

and analysis of hiePM extend our prior work of sorted posterior matching [14] and [23]

for noisy search in that it restricts the search and the measurements to the practical and

hierarchical beamforming patterns of [21].

• We analyze the proposed hiePM strategy and give an upper bound on the expected

acquisition time of a variable-length hiePM search strategy required to reach a fixed

(predetermined) target resolution and error probability in the AoA estimate. Even when the

measurements are hard detected (1-bit quantized measurements) the achievable AoA acqui-

sition rate and the error exponent of hiePM are shown (Corollary 4.2) to be significantly

better than those for the search methods of [21] and the random hashing of [25] in all raw

SNR regimes.

• We show, via extensive simulations that hiePM is suitable for both fixed-length and

variable-length initial beam alignment and significantly outperforms the state-of-art search

strategies of [21] and [25]. The numerical simulation shows that hiePM is capable of

reaching a proper resolution and error probability even in a low (< 5dB) SNR regime with

reasonable search time overhead, demonstrating the possibility of stand-alone mmWave

communication for the first time

4.2 System Model

We consider a sectorized cellular communication system operating in EHF (30-300 GHz)

bands, where a sector is formed by the BS serving users in a range of angles [θmin, θmax] as depicted

in Fig. 4.2. We focus on the model with one sector and a single user, where the interference from

other sectors is assumed to be negligible. This assumption is justified due to high pathloss in the
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Figure 4.2: Base Station Serving sector [30o, 150o]

EHF bands [18], and the orthogonality (in time or code) of the transmissions from other users

within the sector.

We consider a hardware architecture consisting of multiple antenna elements with a single

RF chain [29] on both the BS and the user sides. The BS applies beamforming on the antenna

elements such that the power gain due to beamforming may compensate the high pathloss in the

mmWave communication system. We use a pilot-based procedure where the users send out pilots

to the BS while the BS combines the signal from the antenna elements to the RF chain by the

beamforming vector wt ∈ CN . We focus on the procedure of obtaining a suitable beamforming

vector at the BS, while we assume a fixed beamforming vector at the user which allows us to

model the user’s antennas as a single virtual antenna.

Let N be the number of antennas at the BS,
√
P be the combined effect of the transmit

power and the large-scale fading (pathloss and shadowing), and h ∈ CN be the small-scale

frequency flat fading vector, i.e., hi is the small-scale fading between the single virtual antenna

of the user and the ith antenna element at the BS. For small-scale channel modeling, we use
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the stochastic multi-path modeling (see Ch.7 in [30]) assumption with a single dominant path.

Furthermore, we assume that the user’s mobility is negligible, i.e., the channel vector h is time

invariant. In summary, we have the following assumption:

Assumption 4.1. The small-scale channel can be described as:

h = αa(φ), (4.1)

where α ∈ C is the fading coefficient and

a(φ) := [1, ej
2πd
λ

sinφ, ..., ej(N−1) 2πd
λ

sinφ] (4.2)

is the array manifold created by the Angle-of-Arrival (AoA) φ ∈ [θmin, θmax] with antenna spacing

d. Furthermore, we assume that the fading coefficient, α, and the AoA, φ, are static in time.

Let time index t = 1, 2, ... be the time frame in which the BS can adapt the beamforming

vector wt. Each beamforming slot consists of I samples of finer granularity either of time (e.g.

CDMA) or of frequencies (e.g. OFDM subcarriers). Orthogonal spreading sequences sk of length

I are sent by each of the K users. In other words, we assume:

Assumption 4.2.

sHk sk′ =


0 for k = k′

1 for k 6= k′
(4.3)

With the assumption of orthogonality among users, correlating the pilot codes we can

write the code-matched signal from a particular user as

yt=
√
PwH

t (
K∑
k′=1

hk′s
T
k′)s

∗
k + wH

t Nts
∗
k

(a)
= α
√
PwH

t a(φ) + wH
t nt,

(4.4)
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where Nt is the N × I spatially uncorrelated AWGN noise matrix across the antenna elements

(rows) and samples (columns). Note that in (a) we used single-path channel model (Assump-

tion 4.1) and orthogonality of codes (Assumption 4.2) from different users as well as the static

nature of the channel, h, over the code resource I . Finally, nt := Nts
∗
k ∼ CN (0N×1, σ

2I) is the

equivalent noise vector at the antenna array at the output of the code-matched filter, i.e. such that

yt has a raw SNR equal to P/σ2 when no beamforming is applied.

In many practical scenarios, only partial information about yt is available to the BS. As a

result, we consider the available signal to BS, zt, be of the form

zt = q(yt), (4.5)

where q(·) represents a practically motivated partial information processing such quantization

function. With the received signal model in (4.4) and (4.5), we are now ready to describe the

sequential beam search problem which adaptively designs the beamforming vectors wt.

4.3 Active Learning and Hierarchical Posterior Matching

In this section, we present our main result. In subsection 4.3.1, we lay out the framework

of active learning for sequential beam alignment. In subsection 4.3.2, we describe the hierarchical

beamforming codebook. In subsection 4.3.3, we describe our proposed algorithm: Hierarchical

Posterior Matching for sequentially selecting the beamforming vector from the codebook. Lastly,

in subsection 4.3.4, we describe the posterior update for several measurement models.

4.3.1 Sequential Beam Alignment via Active Learning

A sequential beam alignment problem in the initial access phase consists of a beam-

forming design strategy (possibly adaptive), a stopping time τ , and a final beamforming vector
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design. Specifically, we consider a stationary beamforming strategy as a causal (possibly random)

mapping function from past observations to the beamforming vector: wt+1 = γ(z1:t,w1:t). Subse-

quently, the final beamforming vector selection b(·) is a (possibly random) mapping determining

the final beamforming vector to be exploited for communication, ŵ = b(z1:τ ,w1:τ ), as a function

of the sequence of the observations gathered during the initial access phase [1 : τ ]. To reduce

the reconfiguration time of the beamforming vector from wt to wt+1, we use a pre-designed

beamforming codebook:

Assumption 4.3. The beamforming vector is chosen from a pre-designed beamforming codebook

WS with finite cardinality.

Based on the nature of the protocol, we consider two criteria for selection of the length of

the initial access phase:

Fixed-length stopping time: the user transmits a pre-determined number of frames

during which the base station uses the beamforming vectors w1,w2, ...,wT . After the total

pre-determined number of frame, T, the BS makes a prompt decision on the final beamforming

vector ŵ

Variable-length stopping time: the user sends out the initial access signal continually

until a specific target link quality can be achieved by the final beamforming vector ŵ with high

probability. Under a variable-length setup, the BS sends an ACK to the user and ends the initial

access phase.

In Sec. 4.4, we propose an adaptive beam alignment algorithm with both types of stopping

rules, while our analysis in subsection 4.4 focuses on the variable-length stopping time τ . Our

numerical studies consider the performance under both stopping rules.

The best beamforming vector, ŵ = a(φ), can boost the SNR by a factor of N , and

the fading coefficient α can also be estimated and equalized if the SNR at the RF chain (after

antenna combining) is high enough. Therefore, under Assumption 4.1, one of the primary goals

of the initial access phase is to learn the AoA φ so that BS can form a proper beam toward that
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direction. Therefore, we can treat the sequential beam alignment problem by the methods of

active learning [28, 31], as shown in Fig. 4.1, where the beamforming vector wt is equivalent to

the query point and yt the response in the learning problem. The adaptivity of wt reflects that the

learner chooses the query points actively as considered in the active learning tasks.

The quality of the established link, under a single-path channel model h = αa(φ), is

determined by the accuracy of the final point estimate φ̂(y1:τ ,w1:τ ) of φ. In particular, a point

estimate φ̂ together with a confidence interval δ provides robust beamforming with certain outage

probability. Hence we measure the performance by the resolution and reliability of the final

estimate ŵ:

Definition 4.1. Under Assumption 4.1, a sequential beam search strategy with an adaptive

beamforming design γ, stopping time τ , and final AoA estimation φ̂ is said to have resolution 1
δ

with error probability ε if

P( | φ̂− φ | > δ) ≤ ε. (4.6)

We note that, given a sufficiently large number of antennas, one can increase the resolution

1/δ and decrease the error probability ε by increasing the time of sample collection τ or equiva-

lently by prolonging the initial access phase. In other words, the expected number of samples

τε,δ necessary to ensure a resolution 1/δ and error probability ε measures the effectiveness of an

initial access algorithm. From an information theoretic viewpoint, one can think of a family of

sequential adaptive initial access schemes that achieves acquisition rate R and reliability E:

Definition 4.2. Under Assumption 4.1, a family of sequential adaptive initial access schemes

achieves acquisition rate-reliability (R,E) if and only if

R := lim
δ→0

log(1
δ
)

E[τε,δ]
, E := lim

ε→0

log(1
ε
)

E[τε,δ]
. (4.7)

Remark 4.1. The final beamforming vector (hence the quality of the established link) is deter-

mined by both the target resolution and the error (δ, ε), written as ŵ(z1:τ ,w1:τ , ε, δ). Given a
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total communication time frame T , the expected spectral efficiency, under the final beamforming

vector ŵ, is given as

E
[
T − τ
T

log

(
1 +

P | αŵ(z1:τ ,w1:τ , ε, δ)
Ha(φ) |2

σ2

)]
, (4.8)

and is an important performance metric from a system point of view. This performance metric,

however, requires a further system optimization over the length of the initial access phase, τ ,

and the length of the communication phase, T , which is outside the scope of this dissertation.

Therefore, in our analysis, we focus on the parameters ε and δ. For a practically relevant

comparison of different initial beam search algorithms, the system performance of (4.8) is also

evaluated in the numerical simulations for some nominal choice of τ and T .

4.3.2 Hierarchical Beamforming Codebook

We adopt the hierarchical beamforming codebookWS proposed in [21] with S levels of

beam patterns such that the corresponding beams divide the space dyadically in a hierarchical

manner such that the disjoint union of the beams in each level is the whole region of interest

. The codebook consists of S different levels, i.e. WS = ∪Sl=1Wl where Wl is all the beam

patterns whose main beam has a width |θmax−θmin|
2l

. More specifically, for each level l,Wl, contains

2l beamforming vectors which divide the sector [θmax, θmin] into 2l directions, i.e.,

[θmax, θmin] =
2l−1⋃
m=0

Hm
l , (4.9)

each associated with a certain range of AoA Hm
l . The beamforming vector w(Hm

l ) is designed

such that the beamforming gain |w(Hm
l )Ha(φ)| is almost constant for AoA φ ∈ Hm

l and almost

zero for φ /∈ Hm
l .

Note thatWS can be represented as a binary hierarchical tree, where each level-l beam has
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Figure 4.3: The first 2 levels of hierarchical beamforming codebook
The codebook is constructed by practical beam patterns formed by uniform linear array with 64

antenna

two descendants in level l + 1 such that each level-l beam is the union of two disjoint beams, i.e.,

Hm
l = H2m

l+1 ∪H2m+1
l+1 . This binary tree hierarchy is illustrated in Fig. 4.3 with the beam patterns

of the first two levels of the codebook. Note that, without loss of generality, the beamforming

vectors in the codebook are assumed to have unit norm ‖w‖2 = 1.

4.3.3 Hierarchical Posterior Matching

In this section, we propose a search mechanism based on the connection between initial

access beamforming, noisy search [14], active learning [28], and channel coding with feedback

[23], with the caveat that the beamforming vector is constrained to the practically feasible

beamforming codebook of [21] as in set WS . Instead of using all past observations wt+1 =

γ(z1:t,w1:t), hiePM selects wt+1 based on the posterior of the AoA φ at time t, which is a

sufficient statistic. We discretize the problem by assuming that the resolution 1
δ

is an integer and
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that the AoA φ is from

φ ∈ {θ1, ..., θ1/δ}, θi = θmin + (i− 1)× δ × (θmax − θmin). (4.10)

Such discretization approaches the initial beam alignment problem as δ → 0. To support

resolution 1/δ, the corresponding size of the hierarchical beamforming codebook

S = log2(1/δ) (4.11)

is used. With this discretization, the posterior distribution can be written as a 1
δ
-dimensional

vector π(t), where the ith component is of the form

πi(t) := P(φ = θi | z1:t,w1:t), i = 1, 2, ...,
1

δ
. (4.12)

The posterior probability of the AoA φ being in a certain range, say, Hm
l , can be computed as

πHm
l

(t) :=
∑
θi∈Hm

l

πi(t). (4.13)

Now we are ready to present the proposed hiePM algorithm. The proposed adaptive

beamforming strategy, hierarchical Posterior Matching, hiePM , chooses a beamforming vector

at each time t from the hierarchical beamforming codebookWS . The main idea of hiePM is

to select wt+1 ∈ WS by examining the posterior probability πHm
l

(t) for all l = 1, 2, ..., S and

m = 0, 1, 2, ..., 2l − 1. Specifically, let

l∗t = arg max
l

{
max
m

πHm
l
≥ 1

2

}
, (4.14)

the proposed hiePM algorithm selects a codeword at either level l∗t or l∗t + 1 according to Alg. 1

below. Given a snapshot of posterior at time t, the selection rule is illustrated in Fig. 4.4. The
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Figure 4.4: Illustration of the hierarchical posterior matching algorithm.
In this example, we search down the tree hierarchy to levels 2 and 3, where level 3 has the first
codeword that contains posterior lesser than half. Between level 2 and level 3, the codeword in

level 2 of posterior 0.55 is selected since it’s closer to half (0.55 v.s. 0.4).

algorithm runs for a fixed length of time (fixed-length stopping) or until a certain error probability

ε for resolution 1/δ is achieved (variable-length stopping). The final choice of beamforming

vector is determined by the ε and δ. The details of hiePM are summarized in Algorithm 1 below.

Remark 4.2. The hiePM algorithm can be thought of as a noisy generalization of a bisection

search where the posterior is used to create almost equally-probable search subsets subject to the

codebookWS . Compared with the vanilla bisection method proposed in [21], hiePM allows for

significantly lower SNR search outcomes whose reliability is dealt with over time, which can also

be viewed as water-filling in the angular domain.

Remark 4.3. See [23, 24] for a detailed description of the connection between our beam search

problem and a channel coding problem in data transmission. In this light, the vanilla noise-

compensated bisection method of [21] can be viewed as a repetition coding strategy which is

known to have zero rate, while hiePM can be viewed as a constrained (subject to hierarchical
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Algorithm 4.1: Hierarchical Posterior Matching for Beamforming
1 Input: target resolution 1

δ
, target error probability ε, codebookWS (S = log2(1/δ)),

fixed stopping time n, stopping-criterion, algorithm-type
2 Initialization: πi(0) = δ for all i = 1, 2, ..., 1/δ,
3 for t = 1, 2, ... do
4 # Codeword selection fromWS:
5 k = 0;
6 for l = 1, 2, ..., S do
7 if πHm

l
(t) > 1/2 then

8 l∗t = l; m← arg max m′∈{2m,2m+1} πHm′
l+1

(t);

9 else
10 (lt+1,mt+1) = arg min (l′,m′)∈{(l∗t ,b

m
2
c),(l∗t+1,m)} |πHm′

l′
(t)− 1

2
|; break;

11 # Codeword selection result
12 wt+1 = w(H

mt+1

lt+1
)

13 # Take next measurement
14 yt+1 = α

√
PwH

t+1a(φ) + wH
t+1nt+1; zt+1 = q(yt+1)

15 # Posterior update by Bayes’ Rule (Sec. 4.3.4)
16 π(t+ 1)← zt+1,π(t)
17 case: stopping-criterion = fixed length (FL)
18 if t+ 1 = n then
19 break (to final beamforming);

20 case: stopping-criterion = variable length (VL)
21 if maxi πi(t+ 1) > 1− ε then
22 break (to final beamforming);

23 τ = t+ 1 (length of the initial access phase)
24 # Final beamforming vector design
25 case: algorithm-type = fixed resolution (FR)
26 (l̂, m̂) = (S, arg max m πHm

S
(τ))

27 case: algorithm-type = variable resolution (VR)
28

l̂ =

{
1, maxm πHm̂

1
(τ) < 1− ε

max{l : maxm πHm̂
l

(τ) ≥ 1− ε}, o.w.
m̂ = arg max

m
πHm

l̂
(τ)

(4.15)

29 ŵ = w(Hm̂
l̂

)
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codebook WS) approximation to the capacity achieving posterior matching feedback coding

scheme of [8].

4.3.4 Posterior Update

Let γh : π(t)→WS be the hiePM sequential beamforming design given in Algorithm

1, i.e. let wt+1 = γh(π(t)). By the measurement model, the posterior update in Algorithm 1 in

general can be written as

πi(t+ 1) =
πi(t)f(zt+1|φ = θi,wt+1 = γh(π(t)))∑
j 6=i πj(t)f(zt+1|φ = θj,wt+1 = γh(π(t)))

, (4.16)

where f(zt+1|φ = θi,wt+1 = γh(π(t))) is the conditional distribution of zt+1 and depends on the

function q(·) as well as the channel state information (e.g. the fading coefficient α) known to the

BS. Here we give a few examples:

1. Full measurement zt = yt:

In the case of static channel (zero mobility), we may assume that the fading coefficient α

is known to the BS. With full measurement zt = yt, the conditional distribution of zt is a

complex Gaussian, written as

f(zt+1|φ = θi,wt+1 = γh(π(t)))

= CN (zt+1;α
√
PwH

t+1a(θi), σ
2)

(4.17)

In the case where α is not known, the algorithm is assumed to use an estimate α̂:

f(zt+1|φ = θi,wt+1 = γh(π(t)))

≈ CN (zt+1; α̂
√
PwH

t+1a(θi), σ
2)

(4.18)

for the posterior update.
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2. 1-bit measurement zt = 1 (|yt| > vt):

For practical high speed ADC implementation, we consider an extreme quantization

function of a 1-bit [26, 32] measurement model zt = 1 (|yt| > vt), where at each time

instance t the BS only has 1-bit of information about whether or not the received power

passes the threshold vt. Equivalently, we can write the measurement model as

zt = 1(φ ∈ Hmt
lt

)⊕ ut(φ), ut(φ) ∼ Bern(pt(φ)) (4.19)

where ut(φ) is the equivalent Bernoulli noise with flipping probability pt(φ), and⊕ denotes

the exclusive OR operator. The setting of the threshold vt and the corresponding flipping

probability pt(φ) is given in Lemma 4.1. In this case, the conditional distribution of zt can

therefore be written as

f(zt+1|φ = θi,wt+1 = γh(π(t)))

= Bern(zt+1 ⊕ 1(θi ∈ Hmt
lt

); pt+1(θi)).

(4.20)

4.4 Analysis

Our analysis for hiePM focuses on the variable-length stopping criteria with a fixed

resolution and a fixed target error probability ε, where by Algorithm 1 the variable-length stopping

time τε,δ can be written as

τε,δ = min{t : 1−max
i
πi(t) ≤ ε}. (4.21)

We will also focus on the 1-bit measurement model described in Sec. 4.3.4. Furthermore, we

make the assumption of an ideal hierarchical beamforming codebook for the analysis:
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Assumption 4.4. The beam formed by the beamforming vector w(Hm
l ) ∈ WS has constant

beamforming power gain for any signal of AoA φ ∈ Hm
l and rejects any signal outside of Hm

l ,

i.e.

|w(Hm
l )Ha(φ)| =


Gl, if φ ∈ Hm

l

0, if φ /∈ Hm
l

. (4.22)

Remark 4.4. Assumption 4.4 is mainly for better presentation. This assumption is approximately

true when we have a massive number of antennas N � 1
δ
. The deterioration of performance due

to the imperfect beamforming, such as that resulting from sidelobe leakage, is not the focus of

our analysis. In our numerical simulations, however, we remove this assumption by investigating

the performance of the algorithms under the actual beamforming pattern with a finite number of

antennas.

Under the 1-bit measurement zt = 1 (|yt| > vt) with Assumption 4.4 and the optimal

choice of the threshold vt in Lemma 4.1, the flipping probability pt(φ) of the Bernoulli noise

in (4.19) is independent of the AoA φ and only depends on the beamforming codeword level lt

selected at time t. In particular, we have

pt(φ) = p[lt] :=

∫ vt

0

Rice(x;PG2
l , σ

2) dx, (4.23)

where p[l] > p[l+ 1] and p[l]→ 0 since Gl < Gl+1 and Gl →∞ as l→∞ (assuming unlimited

number of antenna) by the design of the codebook. Furthermore, we assume that log2(1/δ) is

an integer. Now we are ready to give an upper bound of the expected stopping time τε,δ with

resolution 1
δ

and outage probability ε of the proposed hiePM sequential beam search algorithm:

Theorem 4.1. By using codebook WS with S = log2(1/δ) levels and assuming the perfect

beamforming assumption (Assumption 4.4) and the 1-bit measurement model zt = 1 (|yt| > vt)

with the optimal choice of vt in Lemma 4.1, the expected stopping time of hiePM , of resolution
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1
δ

and error probability ε, can be upper bounded by

E[τε,δ] ≤
log(1/δ)

Rh

+
log(1/ε)

Eh
+ o(log(

1

δε
)), (4.24)

where Eh = C1(p[log2(1/δ)]), Rh = I(1/3, p[l′]) with l′ =
⌊K0dlog log 1

δ
e

log 2
− 1
⌋

and K0 is a

constant defined in Lemma A.3.

Proof. The 1-bit quantization in section 4.7, the problem is equivalent to Theorem 2.2 in Chapter

2.

Corollary 4.1. Let, E[τε,δ] = n. For all values of δ such that δ ≤ 2−nRh , the error probability of

hiePM can be approximately upper bounded by

P( | φ̂− φ | > δ) / exp

(
−nEh

(
1− log(1/δ)

nRh

))
(4.25)

when δ is small enough.

Corollary 4.2. Under the same conditions and by Theorem 4.1, hiePM achieves acquisition

rate

lim
δ→0

log(1/δ)

E[τε,δ]
≥ lim

δ→0
Rh

= lim
δ→0

I(1/3, p∗(δ, ε)) = 1

(4.26)

for arbitrarily small error ε > 0, and error exponent

lim
ε→0

log(1/ε)

E[τε,δ]
≥ lim

ε→0
Eh = C1(p[log2(1/δ)]) (4.27)

for any δ > 0.

Remark 4.5. The integer assumption of log2(1/δ) is for notational simplicity. If the desired

resolution 1/δ is not of power of 2, one can simply take a higher resolution 1/δ′ = 2dlog2(1/δ)e.
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The corresponding upper bound in Theorem 4.1 can be written accordingly and the conclusion in

Corollary 4.2 remains true.

Remark 4.6. The rate one in equation (4.26) implies that hiePM performs asymptotically

(δ → 0) in the same manner as a noiseless bisection search which is the optimal usage of the

hierarchical beamforming codebookWS . The asymptotically noiseless behavior is due to the fact

that hiePM shrinks the AoA Dm
l quickly, together with Assumption 4.4 that an unlimited number

of antennas allow the beamforming gain |w(Hm
l )Ha(φ)|2 = π

|Dml |
→∞ as l →∞. Compared

with other beam alignment algorithms, non-adaptive random coding based strategies [25] are

not able to shrink the AoA region of the search beam. Therefore, the corresponding acquisition

rate of [25] rate is strictly lesser than 1. On the other hand, the adaptive noisy vanilla bisection

algorithm in [21] has rate zero, albeit the AoA region of the search beam shrinks over time. This

phenomenon is because the noisy bisection of [21] in effect employs the repetition coding, which

has rate zero even with feedback (adaptivity).

Remark 4.7. To further compare our theoretical result of hiePM with prior works, we plot

Corollary 4.2 together with error probability upper bounds of [21] and [25] in Fig. 4.5 with E[τ ] =

28, 1/δ = 128 and |θmax − θmin| = 120o and the ideal beamforming assumption (Assumption 4.4).

For the bisection algorithm of [21], we take the upper bound from the author’s analysis for equal

power allocation with fixed fading coefficient α = 1. While for the random hashing of [25], we

take an optimization of the number of directions over Gallager’s random coding bound of BSC as

Pe ≤ min
q

exp (−28× ERC(q)) , (4.28)

where ERC(q) = max0≤ρ≤1

(
E0(ρ, q)− ρ× log2(128)

28

)
and

E0(ρ, q) = − log
((

q(pq)
1

1+ρ + (1− q)(1− pq)
1

1+ρ

)1+ρ

+
(
q(1− pq)

1
1+ρ + (1− q)(pq)

1
1+ρ )

)1+ρ ) (4.29)
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with

p(q) :=

∫ vt

0

Rice(x;P
3

2q
, σ2) dx, (4.30)

where again vt is optimally chosen according to Lemma 4.1. The illustration of Corollary 4.2

in Fig. 4.5 predicts the superior performance of hiePM over the prior works [21] and [25].

We note that for these upper bounds, hiePM and random hashing of [25] assumes a 1-bit

quantizer, whereas the bisection method of [21] is favorably given the unquantized amplitude

information. We further show in numerical simulation (Fig. 4.7) that with practical beam patterns

and unquantized measurements, the actual performance of hiePM not only is indeed better than

the prior works but achieves a significantly smaller error probability than our theoretical upper

bound. Furthermore, we will see that the non-adaptive random hashing based method in [25], in

fact, outperforms the adaptive bisection in [21] due to the lack of a good coding of [21].

4.5 Numerical Results

In this section, we compare the performance of our proposed hiePM algorithms against

the bisection algorithm of [21], and an optimized random-code-based strategy, which is taken

as an upper bound on the performance of the random hash-based solution of [25]. Before we

proceed with this performance analysis, however, we first provide a summary of the simulation

setup and parameters.

4.5.1 Simulation Setup and Parameters

We use the hybrid analog/digital system architecture described in 4.2, where the BS has

N = 64 antenna elements of uniform linear array with antenna spacing λ
2
, and the user has a

single (virtual) antenna. Furthermore, due to the use of orthogonal spreading sequences, we

focus on the single user case K = 1. The channel consists of a single path with the fast fading
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Figure 4.5: Comparison of the theoretical upper bounds on error probability
We compare between hiePM , random coding, and the bisection algorithm of [21] as a function
of raw SNR. The upper bound on hiePM is given by Corollary 4.1. While the upper bound on
random coding is given by Gallager’s bound as in (4.28), and the upper bound on the bisection

algorithm is provided by [21].
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coefficient α. The rule-of-thumb [33] estimate of channel coherence time given by

Tc ≈
0.432

fm
=

0.432c

fcv
, (4.31)

where c is the speed light, fc is the carrier frequency, and v is the user speed. So even for mmWave

communication with 73GHz, at walking speed (< 3 km/hour) the coherence time is

Tc =
0.432× 3× 109 (m/s)

73× 109 (Hz) × 3 (km/hour)
≈ 8.127 millisecond. (4.32)

Note that, additionally, narrow beamforming and the existence of a dominated sub-path (e.g., Line-

Of-Sight) can both increase the coherence time significantly [34]. Therefore, in subsection 4.5.3,

we assume that the fading coefficient α is static during the entire initial access duration of 2

milliseconds. We consider both the case when the fading coefficient α is known exactly α̂ = α,

and the case when it is estimated with the estimation inaccuracy modelled as α̂ ∼ CN (α, σ2
α).

In subsection 4.5.4, we further study the robustness of hiePM with a static estimate of the

time-varying fading coefficient αt of a Rician AR-1 model with a coherence time corresponding

to higher user mobility. Finally, we consider learning the AoA with an angular resolution of 1/

δ = 128, and an (expected) stopping time of E[τ ] = 28, i.e., with E[τ ] selections of beamforming

vectors, hence, samples.

To provide a sense for the normalized parameters, let us consider some candidate PHY

layer solutions. In particular, when using the 5G new radio Physical Random Access Channel

(PRACH) format B4 [35], the E[τ ] = 28 samples translate to less than 2 ms acquisition time for

sub-1-degree angular resolution within a [0, 120] sector. We present our results as a function of

raw SNR P
σ2 to get a sense for reasonable values of SNR. In Fig. 4.6 we compute and illustrate

the expected distance at which a raw target SNR is obtained. Under 3GPP TR 38.901 UMi LOS

pathloss channel model (summarized in [36]), with 23 dBm maximum user power, -174 dBm/Hz

thermal noise density, 5 dB receiver noise figure at BS, with a bandwidth of 100 MHz. As seen in
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Fig. 4.6, one can argue that given our selection of this PHY layer and parameters, the practical

raw SNR regime of interest is within −15 dB to 10 dB.
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Figure 4.6: Relationship between raw SNR P/σ2 and distance from BS to user
This relationship is generated by the 3GPP TR 38.901 UMi LOS pathloss channel model
(summarized in [36]), with 73GHz carrier frequency, 23 dBm maximum user power, -174

dBm/Hz thermal noise density, 5 dB receiver noise figure at BS, and a bandwidth of 100 MHz.

4.5.2 Algorithm Details and Parameters

The proposed algorithm hiePM is based on sequential beam refinement but implements

additional coding techniques; thus we focus our comparison to that of the bisection refinement

of [21] to highlight that the use of this coding strategy differentiates hiePM from existing beam

refinement strategies. For the bisection algorithm of [21], the number of beamforming vectors in

each level is 2, and the power is allocated according to the equal power distribution strategy.

For both hiePM and the bisection algorithm of [21], the finite set of beamforming

vectorsWS are designed with a hierarchical structure where individual beamforming vectors
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w(Dml ) ∈ Wl are designed with the objective of near-constant gain for directions φ ∈ Dml and

zero otherwise (Assumption 4). In other words, each beamforming vector solves

AH
BSw(Dml ) = CsGDml , (4.33)

where ABS is the N × (1/δ) matrix of array manifolds

ABS = [a(φ1), a(φ2), . . . a(φ1/δ)] (4.34)

Cs is a normalization constant, and GDml is an 1/δ × 1 vector indicating probed directions

GDml =


1, if φ ∈ Hm

l

0, if φ /∈ Hm
l

. (4.35)

An approximate solution to (4.33), obtained using the pseudo inverse is

w(Dml ) = Cs(ABSAH
BS)−1ABSGDml . (4.36)

The resulting beamforming weight vectors, applied with phase and gain control at each element,

produce beam patterns with improved sidelobe suppression and near-constant gain in the intended

search directions. We can use these vectors in our simulations to ensure that our analytic

Assumption 4.4 is a matter of analytic simplicity but is not consequential in a realistic setting.

To represent non-adaptive algorithms that are a variation of random coding, such as the

random hashing algorithm of [25], we compare to the random search algorithm that randomly

scans the region of interest. The random search algorithm uses a codebookW q
n of size |W q

n | =(
n
q

)
which consists of all possible beam patterns with total width q

n
|θmax − θmin|, where the region

of interest |θmax − θmin| has been divided into n non-overlapping directions, and q directions
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are probed in each beam pattern. At any time instant t, the random search algorithm randomly

selects a beamforming vector wt+1 from the pre-designed codebookW q
n . A fixed number of

measurements τ are taken. The discretization parameter is set to n = 1/δ = 128, we set τ = 28,

and we plot various values of q. The performance of hiePM over the optimized choice of q is

important as it provides a first order insight into “adaptivity gain.”

4.5.3 Simulation Results

In this section, we provide a comparative analysis of our proposed hiePM algorithm against

prior work [21] and [25]. In particular, Fig. 4.7 plots the error probability as a function of raw

SNR. In summary, Fig. 4.7 shows that both fixed-length and variable-length stopping variations

of hiePM outperform the bisection algorithm of [21] as well as random coding, or random-

hash based solutions of [25]. We also note that random beamforming codebooks outperform

the bisection algorithm of [21] as expected by our analysis in Remark 4.6. By optimizing the

coding rate q, and comparing against hiePM one can also fully characterize the adaptivity gain.

Finally, we note that our analytic upper bound (in Fig. 4.5) is rather loose and hiePM performs

significantly better than our analysis predicted.

Probability of Error versus Raw SNR

For the system and channel described above, we conduct the simulation scenario where

the average error probability as a function of raw SNR is analyzed. We take the error probability

of the AoA estimation to be the probability of selecting an erroneous final beamforming vector

Prob{ŵ(z1:τ ,w1:τ , ε, δ) 6= w({φ})}.

For clarity, from now on we use the naming convention hiePM(stopping-criterion,

resolution-criterion) to specify the case selections of stopping criteria and resolution-criteria in

the proposed hiePM algorithm (detailed in algorithm 1). To ensure a reasonable comparison, we

first discuss hiePM(FL, FR) which is most comparable to the bisection algorithm of [21] and the
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Figure 4.7: Comparison of the error probability (static fading).
We compared hiePM, the random search algorithm, and the vanilla bisection algorithm of [21] as

a function of raw SNR. Initial access length τ = 28, achieved under 2 ms using the 5G NR
PRACH format B4 [35] (E[τ ] = 28 for variable-length stopping type), is used for acquiring the

AoA with resolution 1/δ = 128.
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random search algorithm described above. Fig. 4.7 shows the superior performance of hiePM(FL,

FR) with fixed and known fading coefficient α = 1 over both the bisection algorithm of [21]

and the random search algorithm. We also notice that under reasonable tuning of parameter q,

even the non-adaptive random search algorithm achieves better performance than the adaptive

bisection algorithm of [21]. As we expected from Remark 4.6, the best performance is achieved

by hiePM due to its sequential coding strategy, while the performance of the bisection algorithm

of [21] suffers as it resembles a repetition code.

Improvements in the probability of error are further demonstrated by hiePM(VL, FR)

with targeted error probability ε selected such that E[τ ] = 28. The benefit of allowing a variable

stopping time is evident in that it causes a sharp drop in the error probability at approximately -10

dB raw SNR. The error probability upper bound (Corollary 4.1) on hiePM(VL, FR) is also plotted.

We see in Fig. 4.7 that this upper bound predicts the sharp slope of hiePM(VL, FR), theoretically

guaranteeing a significant performance improvement in error probability for hiePM(VL, FR)

over the bisection algorithm of [21] and the random search algorithm for large SNR. Further

exploration of this sharp transition in the low (< 0 dB) raw SNR regime is beyond the scope of

this dissertation.

Investigating effects of imperfect channel knowledge

The bisection algorithm of [21] learns the AoA without any knowledge of the channel.

It combines the procedures of AoA estimation and channel estimation. On the other hand, our

proposed algorithm, hiePM, requires the knowledge of the fading coefficient α in the posterior

update. While a channel estimation procedure can be used to learn α preceding hiePM, perhaps

in a short preliminary phase, we explore the performance achieved using an estimate for the

fading coefficient α̂ instead. We find that the improved performance by hiePM over the bisection

algorithm of [21] and the random search algorithm holds even without full knowledge of the fading

coefficient α. To see this, we consider the case of a mismatched update rule with an estimate for
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the fading coefficient α̂ = CN (α, σ2
α). We see that even under a reasonably mismatched estimate

of the fading coefficient (σ2
α = 0.05), all hiePM based algorithms still achieve a lower probability

of error than the bisection algorithm of [21]. In other words, the degradation due to estimation

error is far less significant, saturating in error probability only at high SNR (> 5 dB). As we can

see in Fig. 4.7 using a mismatched estimate of the fading coefficient α causes the performance

of probability of error to saturate at large SNR (> 0 dB). This phenomenon reflects the events

when the estimate of the fading coefficient α is very inaccurate, which occurs with a constant

probability regardless of the SNR value, due to our modeling of α̂. In practice, the accuracy of

the estimate α̂ improves as SNR increases. However, this is beyond the scope of this dissertation,

and we refrain from investigating such effects.

Spectral efficiency versus Raw SNR

Practically speaking, a more efficient AoA learning algorithm is advantageous in that

it both reduces communication overhead and increases the accuracy of the final beamforming

vector. Next, we empirically analyze the overall performance of a communication link established

by the proposed algorithm hiePM in terms of the data spectral efficiency. The spectral efficiency

is evaluated according to equation (4.8), using the final beamforming vector ŵ(z1:τ ,w1:τ , ε, δ)

resulting from each algorithm. Due to its dependence on the final beamforming vector, ŵ,

the spectral efficiency encompasses both the design parameters ε and δ, and also the total

communication time. We set the total communication time frame to T = 100 × E[τ ] (further

optimization of this parameter beyond the scope of this dissertation).

Fig. 4.8 shows the gain in spectral efficiency obtained by various implementations of

the proposed algorithm hiePM over both the bisection algorithm of [21] and the random search

algorithm for the system and channel described above as a function of raw SNR. We also provide

spectral efficiency without beamforming for reference. Fig. 4.8 shows that all variants of hiePM

outperform the bisection algorithm of [21] significantly in the SNR regime of (-5dB to 5dB). On
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Figure 4.8: Comparison of the spectral efficiency (static fading)
We compare the spectral efficiency obtained by hiePM, the random search algorithm, and the
vanilla bisection algorithm of [21] as a function of raw SNR P/σ2. Initial access time τ = 28,
achieved under 2 ms using the 5G NR PRACH format B4 [35] (E[τ ] = 28 for variable-length

stopping). The spectral efficiency is given by (4.8) with the final beamforming vector ŵ designed
by the respective algorithm.
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the other hand, the performance of the bisection algorithm of [21] approaches the performance of

hiePM as SNR grows beyond 7dB or so. Fig. 4.8 also shows the benefits of opportunistically

selecting the resolution of the final beam as is done under hiePM(FL, VR) according to (4.15).

This advantage is particularly important in a low SNR regime (-15dB to -7dB) where hiePM(FL,

VR) adapts the final beamforming vector to the final posterior distribution at time τ , hence setting

the angular resolution of the communication beam opportunistically. Moreover, this significant

performance improvement is robust to channel estimation error and a mismatched estimate of

the fading coefficient α̂. To understand this phenomenon, we refer to Fig. 4.7, where the error

probability of finding the correct beam with resolution 1/δ, when SNR is less than -5dB, is

non-negligible under hiePM(FL, FR), and hiePM(VL, FR).

4.5.4 Time varying channel

In this subsection, we discuss the channel coherence time and how our initial beam

alignment algorithm works in a time-varying channel scenario. We verify our framework by

extending our algorithms to be adapted to a simple Rician AR-1 model. Let us consider a Rician

AR-1 fading channel of factor Kr with perfect knowledge of the operating SNR (large-scale

fading) as well as perfect frequency/phase synchronization, i.e., the fading coefficient is given as

αt =

√
Kr

1 +Kr

µ+

√
1

1 +Kr

βt, t = 0, 1, 2, ..., τ. (4.37)

where µ = 1 and βt ∼ CN(0, 1) is the complex Gaussian diffusion AR process given as

βt+1 = βt
√

1− g + et
√
g, t = 0, 1, 2, ..., τ, (4.38)

where et ∼ CN (0, 1) is the independent noise term. The correlation parameter g is set such that

1− (1− g)14Tc = 0.5, (4.39)
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Rician AR-1 fading with factor Kr=10, g=0.024451

Figure 4.9: Comparison of the error probability (time-varying fading)
We compared hiePM, the random search algorithm, and the vanilla bisection algorithm of [21] as
a function of raw SNR P/σ2 under Rician AR-1 fading with factor Kr = 10, and g = 0.024451
(i.e. Tc = 2). Initial access length τ = 28, achieved under 2 ms using the 5G NR PRACH format

B4 [35] (E[τ ] = 28 for variable-length stopping type), is used for acquiring the AoA with
resolution 1/δ = 128.
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Rician AR-1 fading with factor Kr=10, g=0.024451

Figure 4.10: Comparison of the spectral efficiency (time-varying channel)
We compared the spectral efficiency obtained by hiePM and the vanilla bisection algorithm
of [21] as a function of raw SNR P/σ2 under Rician AR-1 fading with factor Kr = 10, and
g = 0.024451, (i.e. Tc = 2). Initial access time τ = 28, achieved under 2 ms using the 5G NR
PRACH format B4 [35] (E[τ ] = 28 for variable-length stopping). The spectrum efficiency is

given by (8) - in original manuscript with the final beamforming vector ŵ designed by the
respective algorithm.
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where Tc is the 50% time of the diffusion βt in ms (recall that we assume a system with 14 beam

slots in 1ms). Combining (4.37) and (4.38), the Rician AR-1 model can be written as

αt+1 =

√
Kr

1 +Kr

µ+

(
αt −

√
Kr

1 +Kr

µ

)√
1− g

+ et

√
g

1 +Kr

, t = 0, 1, 2, ..., τ.

(4.40)

Fig. 4.9 demonstrates the robustness of hiePM to the Rician AR-1 fading channel model

described above with coherence time Tc = 2 ms of the AR process βt, and a Rician factor

Kr = 10 (this is a reasonable value for, e.g. indoor mmWave channel models [37]). We again use

an erroneous/mismatched and fixed estimate of the fading coefficient α̂t = α̂0 ∼ CN (α0, σ
2
α) for

t = 1, 2, . . . , τ . In particular, we compare the performance achieved by our hiePM algorithms

with different degrees of knowledge of the fading estimate (i.e., σ2
α = 0, 0.05, 0.1) against the

performance obtained by the bisection algorithm of [21]. As expected, the performance of the

probability of error worsens for both algorithms in a time-varying fading, as compared to the

static model α = 1 in Fig. 4.7. However, even under a mismatched and fixed estimate of the

fading coefficient α̂t, our main conclusions still hold. In particular, the performance degradation

in spectral efficiency due to time-varying channel is almost negligible, as we show in Fig. 4.10

(note that this is the effect of time-varying channel during initial access, where for communication

phase the spectral efficiency is calculated by (4.8) as our focus is the impact of a time-varying

channel on the initial beam alignment). Our variable resolution algorithm hiePM (FL,VR) (with

opportunistic choice of final beamwidth) is unaffected in terms of spectral efficiency, while the

hiePM (FL,FR) and hiePM (VL,FR) cases incur a small loss of spectral efficiency due to the

degree of the mismatched estimate (i.e., correlated to the severity of σ2
α).
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4.6 Conclusion and Future Work

In this chapter, we addressed the initial access problem for mmWave communication with

beamforming techniques. With a single-path channel model, the proposed sequential beam search

algorithm hiePM demonstrates a systematic way of actively learning an optimal beamforming

vector among the hierarchical beamforming codebook of [21].

Using a single-path channel model, we characterize the performance of the proposed

learning algorithm hiePM by the resolution and the error probability of learning the AoA, which

are closely related to the link quality established by the final beamforming vector. We analyze

hiePM by giving an upper bound of the expected search time τε,δ required to achieve a resolution

1
δ

and error probability ε in Theorem 4.1. As a corollary, we provide an upper bound on the error

probability achieved with a search time E[τε,δ], and resolution 1
δ

for hiePM in Corollary 4.1. We

also specialize our analysis and compare the error exponent obtained by hiePM and the bisection

method in [21]. A higher error exponent is shown across a wide range of SNR even when only

1-bit of information about the measurement is available to hiePM . The numerical simulations

show a significant improvement on the communication rate over the previous vanilla bisection

algorithm of [21] and the random search algorithm from [25], demonstrating the first work of

possibilities of standalone mmWave communication.

The future direction of this work includes generalizing the channel model and considering

multiple paths, as well as learning the fading coefficient together with the direction during the

beam search. On the theoretical end, closing the gap between the upper bound of error probability

and its actual performance (demonstrated in Fig. 4.7) is worth pursuing of theoretical interest. On

the practical side, reducing the computation complexity of posterior and the need of the statistics

is helpful for implementation purpose.
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4.7 Optimal Threshold for 1-bit measurement model

The complete 1-bit measurement model in Sec. 4.3.4 is written as

yt+1 = α
√
PwH

t+1a(φ) + wH
t+1nt+1

zt+1 = 1(|yt+1|2 > vt)

= 1(φ ∈ Hmt
lt

)⊕ ut(φ), ut(φ) ∼ Bern(pt(φ))

(4.41)

Lemma 4.1. The threshold vt that minimizes the maximum flipping probability pt(φ) for all φ is

given by the solution of the following equation

∫ vt

0

Rice(x;PG, σ2) dx =

∫ ∞
vt

Rice(x;Pg, σ2) dx, (4.42)

where

G := min
φ∈Hmt

lt

|wH(Hmt
lt

)a(φ)|2

g := max
φ∈[θmin,θmax]\Hmt

lt

|wH(Hmt
lt

)a(φ)|2.
(4.43)

Proof. Since |yt| ∼ Rice(P |wH
t a(φ)|, σ2), we can write the flipping probability pt(φ) as:

if φ ∈ Hmt
lt

,

pt(φ) =

∫ vt

0

Rice(x;P |wH(Hmt
lt

)a(φ)|2, σ2) dx

≤
∫ vt

0

Rice(x;PG, σ2) dx,

(4.44)

and if φ /∈ Hmt
lt

,

pt(φ) =

∫ ∞
vt

Rice(x;P |wH(Hmt
lt

)a(φ)|2, σ2) dx

≤
∫ ∞
vt

Rice(x;Pg, σ2) dx,

(4.45)

where the upper bound in (4.44) and (4.45) is reached by the minimizer and maximizer in 4.43,

respectively. Since (4.44) is increasing in vt and (4.45) is decreasing in vt, setting them equal
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gives the minimax optimizer.

Chapter 4, in full, has been submitted for publication as Sung-En Chiu, Nancy Ronquillo

and Tara Javidi, Active Learning and CSI Acquisition for mmWaveInitial Alignment, available on

arXiv:1812.07722. The dissertation author was the primary investigator and author of this paper
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Chapter 5

Conclusions and Future Works

In this dissertation, we formulated the query-dependent noisy search problem with prac-

tical metrics motivated by many applications in networking [10], robotics [13] and wireless

communication [38]. We proposed three novel search strategies sortPM , dyaPM and hiePM .

The expected query time complexity is analyzed under a unified framework of the EJS divergence.

We show that sortPM , dyaPM both achieve asymptotic optimality in expected search time,

whereas hiePM achieves a sub-optimal time complexity. Low computational and Memory

complexity implementation of dyaPM and hiePM is given in details in Algorithm 2.3 and

2.2, showing a logarithmic reduction over prior works [6, 39]. Furthermore, not only the low

complexity of the proposed strategies but also query geometry of the strategies is shown to be

suitable for practical applications. The connected query geometry of dyaPM is suitable for

applications in visual search [6]. The hierarchical query geometry of hiePM (H) is suitable

for applications such as heavy hitter detection [10], hierarchical beamforming [38] and bit-wise

feedback coding [16]. Numerically, we show that all the proposed search strategies have superior

non-asymptotic performance.

We addressed the application of the proposed algorithm hiePM on the data transmission

problem with noiseless feedback in Chapter 3, which demonstrated a simple adaptive encoding
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scheme and allowed a bit-wise encoding. We also considered the application of hiePM in the

initial beam alignment problem in 5G mmWave communication using beamforming in Chapter

4. With a single-path channel model, the problem is reduced to actively searching the Angle-

of-Arrival (AoA) of the signal sent from the user to the Base Station (BS). hiePM is applied

to adaptively and sequentially choose the beamforming from the hierarchical beamforming

codebook. The proposed algorithm is compared to prior works of initial beam alignment that

employs linear beam search, repeat binary search, or random beam search, respectively, and

gives the state-of-art performance in terms of both AoA estimation error at the end of the initial

alignment, and the spectral efficiency during the communication phase.

5.1 Multi-Dimension Extension

By the hierarchical query geometry, hiePM offers a natural generalization to a higher

dimension or any structure that can be bisected. Fig. 5.1 illustrates an example of two-dimensional

search. hiePM is therefore readily applicable to the visual search problem with the abstract

formulation in [6]. Applying hiePM to more practical settings such as a target localization using

drone [40] is one of interesting extension of this dissertation. On the other hand, by Theorem 2.2,

we know that the (expected) number of queries grows only linearly in the number of dimensions.

This benefit also renders hiePM suitable for active learning problem where a learner tries to

learn a classifier in multi-dimension by actively querying examples for labels.

5.2 Multiple Targets

Generalizing the work in this dissertation to deal with the case of multiple targets is also

an important research direction. Search problem that involves multiple targets are in the scope of

Group Testing [41] and/or Compressive Sensing.
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Figure 5.1: Hierarchical Query Set in 2D

As opposed to non-adaptive noisy group testing, no known algorithm can achieve the

converse bound in the number of tests (queries) of adaptive noisy group testing. One of the

difficulties is that it unclear incorporate the observations into the design of the test. A simple

extension of the proposed algorithms in this dissertation to noisy adaptive group testing is to

track the posterior of the locations of the multiple targets and then apply the Posterior Matching.

However, tracking such a high dimensional posterior can be problematic. Simplifying tracking of

the posterior by the hierarchical structure of hiePM provides a possible approach of solving the

open problem in noisy adaptive group testing, as well as providing practical algorithms for noisy

group testing.

On the other hand, in some applications such as the initial beam alignment in Chapter

4, the measurements from multiple users or multiple sub-paths may create destructive adding.

Randomness in phase or amplitude may offer an advantage over constant amplitude within the
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query area. A combination of the query size reduction by hiePM and the amplitude/phase

randomness from Compressive Sensing may be a proper solution for such an issue.
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Appendix A

Asymptotic Analysis for Expected Query

Time Complexity

A.1 Preliminaries: Average Log-Likelihood and the Extrinsic

Jensen-Shannon Divergence

In this subsection, we review some useful concepts in [13]. The average log-likelihood of

the posterior is defined as

U(t) ≡ U(π(t)) :=

1/δ∑
i=1

πi(t) log
πi(t)

1− πi(t)
, (A.1)

with the following property:

1. U(t) is a submartingale with drift EJS.

E[U(t+ 1) | π(t)] = U(t) + EJS(π(t), γ), (A.2)
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where EJS is the Extrinsic Jensen-Shannon divergence, defined as

EJS(π(t), γ) =

1/δ∑
i=1

πi(t)D
(
Pyt|i,St+1

∥∥∥Pyt+1|6=i,St+1

)
(A.3)

with
Pyt+1|i,St+1 := P(Yt+1 = yt+1 | θ = i;St+1 = γ(π(t)))

= P(Yt+1 = yt+1 | Xt+1 = 1(i ∈ St+1))

(A.4)

and
Pyt+1|6=i,St+1 := P(Yt+1 = yt+1 | θ 6= i;St+1)

=
∑
j 6=i

πj(t)

1− πi(t)
Pyt+1|j,St+1 .

(A.5)

2. Initial value U(0) = − log(1
δ
− 1) is directly related to the logarithm of resolution and

hence the targeting rate

3. Level crossing of U is directly related to the error probability, since πi(t) < 1− ε ∀i ⇒

U(t) < log 1−ε
ε
.

Analyzing the random drift from time 0 with the initial value U(0) up to the first crossing time

ν := min{t : U(t) ≥ log 1
ε
} is closely related to the expected drift given by EJS. In particular,

we can then establish an upper bound for the expected targeting time E[τε,δ] in terms of the

predefined error probability ε and the resolution δ. Specifically we have the following theorem:

Fact A.1 (Theorem 1 in [13]). Define

π̃ := 1− 1

1 + max{log(1/δ), log(1/ε)}
. (A.6)

For adaptive search strategy with search region St, if

EJS(π(t), γ) ≥ R ∀t ≥ 0 (A.7)
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and

EJS(π(t), γ) ≥ π̃E ∀t ≥ 0 s.t. max
i
πi(t) ≥ π̃, (A.8)

we have the expected targeting time associated with error probability ε and resolution δ bounded

by

E[τε,δ] ≤
log(1/δ)

R
+

log(1/ε)

E
+ fR,E(ε, δ) (A.9)

where fR,E(ε, δ) =
log log 1

δε

R
+ 1

E
+ 96

RE
(1−p[δ]

p[δ]
)2.

Proof. The proof of Fact A.1 follows similarly the proof of [Theorem 1, [13]].

Fact A.2. For both search strategies sortPM and dyaPM with resolution 1/δ and reliability ε,

we have

EJS(π(t), γ) ≥ I(1/2, p[δ|St+1|]), ∀ t (A.10)

EJS(π(t), γ) ≥ π̃C1(p[δ]), ∀max
i

πi ≥ π̃, (A.11)

where π̃ := 1− 1
1+max{log(1/δ),log(1/ε)} .

Proof. The proof of Fact A.2 follows along the proof of [Proposition 3, [13]].

Fact A.3. The absolute difference between U(π(t+ 1)) and U(π(t)) is bounded by the entropy

of π(t), written as

|U(π(t+ 1))− U(π(t))| ≤ log
1− pmin

pmin
+H(π(t)) + e, (A.12)
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Proof.

|U(π(t+ 1))− U(π(t))|

=

1/δ∑
i=1

πi(t+ 1) log
πi(t+ 1)

1− πi(t+ 1)
−

1/δ∑
i=1

πi(t) log
πi(t)

1− πi(t)

≤
1/δ∑
i=1

πi(t+ 1)

∣∣∣∣log
πi(t+ 1)

1− πi(t+ 1)
− log

πi(t)

1− πi(t)

∣∣∣∣+

1/δ∑
i=1

|πi(t+ 1)− πi(t)|
∣∣∣∣log

πi(t)

1− πi(t)

∣∣∣∣
(a)

≤ log
1− pmin

pmin
+
∑

πi(i)<
1
2

πi(t)(1− πi(t)) log
1− πi(t)
πi(t)

+
∑

πi(i)≥ 1
2

πi(t)(1− πi(t)) log
πi(t)

1− πi(t)

≤ log
1− pmin

pmin
+H(π(t)) + max

x
x log

1

x
,

(A.13)

where (a) is by lemma 6 in [13] and that p[·] ≥ pmin.

Fact A.4 (Lemma 2 in [13]). The EJS divergence is lower bounded by the Jensen Shanon (JS)

divergence :

EJS(π(t), γ) ≥ JS(π(t), γ), (A.14)

where

JS(π(t), γ) =

1/δ∑
i=1

πi(t)D
(
Pyt|i,St+1

∥∥∥Pyt+1|St+1

)
(A.15)

with Pyt+1|St+1 :=
∑

i π(t)Pyt+1|i,St+1 .

Fact A.5. Using the search strategy hiePM with resolution 1/δ and reliability ε on codebook

WL with L = log2(1/δ), we have

EJS(π(t), γh) ≥ I(1/3, p[δ|Dlt+1|]), ∀ t (A.16)

EJS(π(t), γh) ≥ π̃C1(pmin), ∀max
i

πi ≥ π̃, (A.17)

where π̃ := 1− 1
1+max{log(1/δ),log(1/ε)} .

Proof. The proof of Fact A.5 is a modification from proof of [Proposition 3, [13]] by using Fact
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A.4. We first prove equation (A.17). By the selection rule of hiePM , the last level codebook

St+1 = D(lt+1=log2( 1
δ

)) is used whenever maxi πi(t) ≥ π̃ > 1/2. Therefore,

EJS(π(t), γh) =

1/δ∑
i=1

πi(t)D
(
Pŷt+1|i,γh

∥∥∥Pŷt+1|6=i,γh

)
≥ π̃D

(
Pŷt+1|i,γh

∥∥∥Pŷt+1|6=i,γh

)
= π̃D(Bern(1− p[S])‖Bern(p[S]))

= π̃C1(p[log2(1/δ)]).

(A.18)

It remains to show equation (A.16). For notational simplicity, let

ρ ≡ πDlt+1 (t) :=
∑

i∈Dlt+1

πi(t) (A.19)

and B0 ≡ Bern(p[lt+1]), B1 ≡ Bern(1− p[lt+1]). We separate the proof into two cases:

If ρ > 2/3, we know that lt+1 = log2(1
δ
) by the selection rule of hiePM . Therefore, the

set Dlt+1 is of the smallest size 1. Let Dlt+1 = { it+1}, we have

EJS(π(t), γh) =

1/δ∑
i=1

πi(t)D
(
Pŷt+1|i,γh

∥∥∥Pŷt+1|6=i,γh

)
= ρD

(
B1
∥∥B0

)
+
∑
i 6=it+1

πi(t)D

(
B0
∥∥∥ ρ

1− πi(t)
B1 +

1− ρ− πi(t)
1− πi(t)

B0

)
(a)

≥ D

(
B0
∥∥∥1

2
B1 +

1

2
B0

)
= I(1/2, p[lt+1]) ≥ I(1/3, p[lt+1]),

(A.20)

where (a) is by the fact that D(B1‖B0) = D(B0‖B1) and that D(B0‖αB1 + (1 − α)B0) is

increasing in α for 0 ≤ α ≤ 1, together with ρ
1−πi(t) > 2/3 > 1/2.
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For the other case where ρ ≤ 2/3, again by the selection rule of hiePM , we have 1/

3 ≤ ρ ≤ 2/3. Now we can lower bound the EJS as

EJS(π(t), γh)
(a)

≥ JS(π(t), γh)

= ρD
(
B1
∥∥∥ρB0 + (1− ρ)B1

)
+ (1− ρ)D

(
B0
∥∥∥ρB0 + (1− ρ)B1

)
= I(ρ, p[lt+1])

(b)

≥ I(1/3, p[lt+1])

(A.21)

where (a) is by Fact A.4 and (b) is by the concavity of the mutual information with respect to

the input distribution, the symmetric of I(ρ, p[lt+1]) around ρ = 1/2 for symmetric channels, and

together with 1/3 ≤ ρ ≤ 2/3. This concludes the assertion.

A.1.1 Upper-bounding the Expected Search Time with Query-Dependent

Noise

From the expected search time upper bound via the use of EJS (Fact A.1) and the search

size δ|St+1| dependent lower bound of EJS given in Fact A.2 and Fact A.5, we see that intuitively

we need I(1/2, p[δ|St+1|]) or I(1/3, p[δ|St+1|]) to be large, or equivalently the size of the search

region |St+1| to be small, in a certain sense. In particular, we can handle the search size shrinkage

in a probabilistic manner by providing an exponentially decay tail. Indeed, we have the following

proposition:

Proposition A.1. Given any search strategy γ with δ|St+1| ≤ 1/2 and

EJS(π(t), γ) ≥ R(δ|St+1|), ∀ t (A.22)

EJS(π(t), γ) ≥ π̃E, ∀max
i

πi ≥ π̃, (A.23)
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for some R(δ|St+1|) > 0 increasing in δ|St+1| and E > 0. If further

P(δ | St+1 | > α) ≤ k0e
−tE0 , ∀ t > T0 (A.24)

for some 1/2 > α > δ, k0 > 0, E0 > 0, and T0 > dlog log( 1
δε

)e, the expected time of the strategy

γ achieving resolution 1/δ and reliability ε can be upper bounded by

E[τε,δ] ≤
log(1/δ)

R(α)
+

log(1/ε)

E
+ gR,E(ε, δ), (A.25)

where

gR,E(ε, δ) :=
k0e
−E0

(1− e−e0)(log 1
δε

)E0

(
dlog log

1

δε
e+

log 1
δ

R(1/2)
+

log 1
ε

E
+ fR(1/2),E(ε, δ)

)
+

k0e
−2E0

(1− e−e0)2(log 1
δε

)2E0
+ dlog log

1

δε
e+ fR(α),E(ε, δ)

(A.26)

is of o( 1
δε

) as δ → 0 or ε→ 0.

Proof. We prove this proposition via the total probability theorem and the re-start of the time

homogeneous Markov chain π(t). Specifically, let us define the “bad” event Et = {δ|St+1| > α}

and the “good” event Fn =
⋃∞
t=nEt. For every n, by total probability theorem and the union
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bound, we have

E[τε,δ] =

∫
Ω

τε,δ dP ≤
∞∑
t=n

∫
Et

τε,δ dP +

∫
FCn

τε,δ dP

=
∞∑
t=n

∫
Et

E[τε,δ | π(t)] dP +

∫
FCn

τε,δ dP

(a)

≤
∞∑
t=n

P(Et)

(
t+

log 1
δ

R(1/2)
+

log 1
ε

E
+ fR(1/2),E(ε, δ)

)
+

∫
FCn

τε,δ dP

(b)

≤
∞∑
t=n

P(Et)

(
t+

log 1
δ

R(1/2)
+

log 1
ε

E
+ fR(1/2),E(ε, δ)

)
+ n+

log 1
δ

R(α)
+

log 1
ε

E
+ fR(α),E(ε, δ),

(A.27)

where fR,E(ε, δ) is as defined in Fact A.1. Here (a) follows from the time homogeneity of the

Markov Chain π(t) re-starting at time t, together with Fact A.1 and δ|St+1| ≤ 1/2, written as

E[τε,δ | π(t)] ≤ t+
log 1

δ

R(1/2)
+

log 1
ε

E
+ fR(1/2),E(ε, δ). (A.28)

Similar argument can be made for (b) with δ|St+1| ≤ α for t ≥ n under event FC
n . Now, plugging

the assumption P(Et) = P(δ | St+1 | > α) ≤ k0e
−tE0 into (A.27) with some algebra, we have

E[τε,δ] ≤
k0e
−nE0

1− e−E0

(
n+

e−nE0

1− e−E0
+

log 1
δ

R(1/2)
+

log 1
ε

E
+ fR(1/2),E(ε, δ)

)
+ n+

log 1
δ

R(α)
+

log 1
ε

E
+ fR(α),E(ε, δ).

(A.29)

Letting n = dlog log 1
δε
e, we have the assertion of the proposition.

By proposition A.1, we can see that for proving Theorem 2.1,2.3,2.2, it is sufficient to

provide exponential decay tail probability of a large search size P(δ | St+1 | > α) for each of

the proposed algorithm St+1 = γ(π(t)). The main idea of studying the event {δ|St+1| > α} is to
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group the region into coarse bins of size α according to each of the search algorithm. And by

the nature of each algorithm the event {δ|St+1| > α} is equivalent to the event that one coarse

bin has posterior larger than half. By further considering a similar submartingale of an average

log-likelihood as in (A.1) but over the coarse bin posterior, the problem is then transformed to be

the tail probability of a level crossing of a strictly positively drifted submartingle, where we can

bound it by the Azuma’s Inequality (Lemma A.4). Now let us provide the details:

Proof of Theorem 2.1

Along with the operation of sortPM , we first sort the posterior, and then group into bins

with size δ|bin(q)| = α, written as

παq (t) :=
∑

i∈bin(q)

π↓i (t), q = 1, 2, ..., 1/α, (A.30)

where π↓ is the sorted posterior, bin(q) := {α
δ
(q − 1) + 1, α

δ
(q − 1) + 2, ..., α

δ
q}. For notational

simplicity, we deal with the case where 1/α and α/δ are both integer (the proof follows similarly

for non-integer case). Let us further define the average log-likelihood of the binned sorted

posterior

Uα(t) := U (πα(t))

=

1/α∑
q=1

παq (t) log
παq (t)

1− παq (t)
.

(A.31)

By the search set selection rule in Algorithm 2.1 together with the definition of Uα(t), under

sortPM strategy we have

P(δ | St+1 | > α) ≤ P
(
πα1 (t) <

1

2

)
≤ P(Uα(t) < 0).

(A.32)
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Now, by fact A.3 and lemma A.1, Uα(t) is a submartingale with bound difference

|Uα(t+ 1)− Uα(t)|

≤ Bα := log(1/α) + log
1− pmin

pmin
+ e.

(A.33)

Further note that Uα(0) = − log(1/α− 1) < − log(1/α) and together with lemma A.4, we have

P(δ | St+1 | > α) ≤ P(Uα(t) < 0)

≤ kse
−t K2

s
2(Bα+Ks)2 ∀t >

log( 1
α

)

Ks

,

(A.34)

where ks = e
Ks log(1/α)
Ks+Bα . Since α > (e log 1

δε
)−Ks and therefore log(1/α)

Ks
< dlog log 1

δε
e, by proposi-

tion A.1, we conclude the assertion.

Proof of Theorem 2.2 and 2.3

Without loss of generality, we may assume that the resolution δ is such that L = log2(1/δ)

is an integer. If otherwise, we can choose a smaller δ′ such that log2(1/δ′) is an integer and

the analysis will follow similarly without affecting the asymptotic conclusions. One of the key

attribute of dyaPM and hiePM is the nested resolution due to the natural bisection. To analyze

it, we introduce the posterior vector π{l}(t) of a nested resolution level l < L with length 2l

where its elements are defined as

π{l}q (t) :=
∑

i∈bin(q)

πi(t), q = 1, 2, ..., 2l, (A.35)
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where bin(q) := {(q − 1)2L−l + 1, (q − 1)2L−l + 2, ..., q2L−l}. Further, we can also define the

average log-likelihood on π{l} as

U{l}(t) :=
2l∑
q=1

π{l}q (t) log
π
{l}
q (t)

1− π{l}q (t)
. (A.36)

We have

P(δ | St+1 | > 2−l) ≤ P
(

max
q
π{l}q (t) <

1

2

)
≤ P

(
U{l}(t) < 0

)
.

(A.37)

The proof then follows similarly as in the proof of Theorem 2.1: Applying proposition A.1 with

α = 2−l, where the corresponding submartingale properties of U{l}(t) is by Lemma A.2 and

Lemma A.3 for dyaPM and hiePM , respectively, hence we omitted the rest.

A.1.2 Technical Lemmas

Lemma A.1. Using sortPM with resolution δ, the coarse binned sorted log-likelihood Uα(t)

defined by (A.30) and (A.31) is a submartigale with respect to π(t). In particular, we have

E[Uα(t+ 1) | π(t)]− Uα(t)

≥ Ks := max

{
1

2
D

(
1

4
B1 +

3

4
B0

∥∥∥B0

)
,
1

8
D

(
B1

∥∥∥3

4
B1 +

1

4
B0

)} (A.38)

for all t > 0 where B1 = Bern(1− p[1/2]) and B0 = Bern(p[1/2]).

Proof. Let σt be the permutation such that σt(π(t)) = π↓(t). To emphasize the effect of the

different permutations at different time t, for a given permutation σ we define πσ(t) := σ(π(t))

and
Uσ
α (t) := U(πα,σ)

=

1/α∑
q=1

πα,σq (t) log
πα,σq (t)

1− πα,σq (t)
,

(A.39)
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where

πα,σq (t) :=
∑

i∈bin(q)

πσi (t), q = 1, 2, ..., 1/α. (A.40)

By definition, we have Uα(t) ≡ Uσt
α (t). Now, we can lower bound the expected drift as

E[Uα(t+ 1) | π(t)]− Uα(t) = E[Uσt+1
α (t+ 1) | π(t)]− Uσt

α (t)

(a)

≥ E[Uσt
α (t+ 1) | π(t)]− Uσt

α (t)

(b)
=

1/α∑
q=1

πσt,αq (t)D
(
P σt
yt+1|bin(q),St+1

∥∥∥P σt
yt+1|/∈bin(q),St+1

)
,

(A.41)

where
P σt
yt+1|bin(q),St+1

:=
1

πα,σtq (t)

∑
i∈bin(q)

πσti (t)Pyt+1|σt(i),St+1

P σt
yt+1|/∈bin(q),St+1

:=
∑
q′ 6=q

πσt,αq′ (t)

1− πσt,αq (t)
P σt
yt+1|bin(q),St+1

(A.42)

and Pyt+1|·,St+1 is as defined in (A.4). Here the inequality (a) follows from πσt,α(t + 1) �

πσt+1,α(t + 1 ) and that U(π) is Schur-convex with respect to π. And (b) is a similar manipulation

using Bayes’s rule as was done in the proof of [Theorem 1 in [13]].

We now further lower bound (A.41) by positivity and convexity of the KL divergence. We

seperate the discussion into two cases:

1. If q∗ = 1:

By the selection rule of k∗ in sortPM , we have πα1 (t) ≥ 1/2 and πσt[1,k∗](t) ≥ 1/4.
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Therefore,

(A.41) ≥
1/α∑
q=1

πσt,αq (t)D
(
P σt
yt+1|bin(q),St+1

∥∥∥P σt
yt+1|/∈bin(q),St+1

)
(c)

≥ πσt,α1 (t)D

(
πσt[1,k∗](t)

πα1 (t)
B1 +

πσt[k∗+1,α
δ

](t)

πα1 (t)
B0

∥∥∥∥∥ B0

)
(d)

≥ 1

2
D

(
1

4
B1 +

3

4
B0

∥∥∥B0

)
,

(A.43)

where (c) is by positivity of KL divergence and (d) is by πα1 (t) ≥ 1/2 and πσt[1,k∗](t) ≥ 1/4.

2. If q∗ > 1:

By the selection rule of k∗ in sortPM , we have πσt[1,k∗](t) ≤ 3/4.

WLOG, we assume that k∗ < max bin(q∗) otherwise it reduces to the case of Fact A.2.

Together with the selection rule of k∗, we have πσt,α[1,q∗](t) ≥
1
2
. By sorting we aslo have

πσt,α[1,q∗−1](t) ≥ πσt,αq∗ (t). Therefore πσt,α[1,q∗−1](t) ≥
1
4
.

Now can proceed the lower bound as

(A.41) ≥
1/α∑
q=1

πσt,αq (t)D
(
P σt
yt+1|bin(q),St+1

∥∥∥P σt
yt+1|/∈bin(q),St+1

)
(e)

≥ πσt,α[1,q∗−1](t)D(B1‖πσt[1,k∗]B1 + πσt
[k∗+1, 1

δ
]
B0)

(f)

≥ 1

4
D

(
B1

∥∥∥3

4
B1 +

1

4
B0

)
,

(A.44)

where (e) is by Fact A.4 and positivity of the KL divergence, and (f) is from πσt,α[1,q∗−1](t) ≥
1
4

and πσt[1,k∗](t) ≤ 3/4.

Let

Ks := max

{
1

2
D

(
1

4
B1 +

3

4
B0

∥∥∥B0

)
,
1

4
D

(
B1

∥∥∥3

4
B1 +

1

4
B0

)}
, (A.45)

and by (A.43) and (A.43), we conclude the assertion of this lemma.
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Lemma A.2. Using dyaPM with resolution δ, the nested log-likelihood U{l}(t) of lower resolu-

tion level l < log2(1/δ)) defined in (A.36) is a submartigale. In particular, we have

E[U{l}(t+ 1) | π(t)]− U{l}(t)

≥ Kd := min
{

min
ρ∈(0,0.1]

max{f(ρ), g(ρ)}, 1

4
D

(
1

4
B1 +

3

4
B0

∥∥∥B0

)}
> 0,

(A.46)

for all t > 0, for any l < log2(1/δ), where B1 = Bern(1− p[1/2]), B0 = Bern(p[1/2])

f(ρ) = ρD
(
B1

∥∥(3/4)B1 + (1/4)B0

)
g(ρ) =


(1/2− ρ)D

(
(1− 4ρ)B1 + 4ρB0

∥∥∥(1/2 + ρ)B1 + (1/2− ρ)B0

)
, ρ ∈ [0, 0.1)

0, o.w,

.

(A.47)

Proof. By similar algebraic effort as in [Theorem 1 in [13]], the expected drift can be written as

E[U{l}(t+ 1) | π(t)]− U{l}(t)

=
2l∑
q=1

π{l}q (t)D
(
Pyt+1|∈bin(q),γ

∥∥∥Pyt+1|/∈bin(q),γ

)
,

(A.48)

where
Pyt+1|∈bin(q),γ :=

1

π
{l}
q (t)

×
∑

i∈bin(q)

πi(t)p
(
yt+1

∣∣θ = i, St+1 = γ(π(t))
) (A.49)

and
Pyt+1|/∈bin(q),γ :=

1∑
i/∈bin(q) πi(t)

×
∑

i/∈bin(q)

πi(t)p
(
yt+1

∣∣θ = i, St+1 = γ(π(t))
)
.

(A.50)

We drop (t) and write π ≡ π(t) in the proof frequently for notational simplification. We
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write the starting index of Hm∗t
l∗t

as d ≡ m∗t2
L−l∗t . Furthermroe, let the bin of level l that contains

k∗ be q∗, i.e. k∗ ∈ bin(q∗) and bm = min(bin(q∗)) and bM = max(bin(q∗)).

The case of l = log2(1/δ) is done by Fact A.2. For any given l < log2(1/δ), we separate

into two cases:

1. St+1 = γd(π(t)) contains at least one bin of level l, i.e. bin(q) ⊆ St+1 for some q:

E[U{l}(t+ 1) | π(t)]− U{l}(t)

=
2l∑
q=1

π{l}q (t)D
(
Pyt+1|∈bin(q),γ

∥∥∥Pyt+1|/∈bin(q),γ

)
(a)

≥ max
{
π[d,bm−1]D

(
B1

∥∥π[d,k∗]B1 + (1− π[d,k∗])B0

)
,

π
{l}
q∗ D

(
π[bm,k∗]

π
{l}
q∗

B1 +
π[k∗+1,bM ]

π
{l}
q∗

B0

∥∥∥π[d,k∗]B1 + (1− π[d,k∗])B0

)}
,

(A.51)

where we used
D
(
Pyt+1|q,γ

∥∥∥Pyt+1|6=q,γ

)
≥ D

(
Pyt+1|q,γ

∥∥∥Pyt+1|γ

)
D
(
Pyt+1|q,γ

∥∥∥Pyt+1|6=q,γ

)
≥ 0

(A.52)

in (a). Note that by the binary tree construction ofHm
l , we have [bm, k

∗] ⊆ bin(q∗) ⊆ H
2m∗t
l∗t+1.

Therefore,

π[bm,k∗] ≤ π
{l}
q∗ ≤ π

H
2m∗t
l∗t+1

≤ 1

2
. (A.53)

By the selection rule of k∗ and that πk ≤ 1/2, we also know that π[d,k∗] ≤ 3/4. Together

with (A.53) we can lower bound the first part in (A.51) as

π[d,bm−1]D
(
B1

∥∥π[d,k∗]B1 + (1− π[d,k∗])B0

)
≥ ρD

(
B1

∥∥(3/4)B1 + (1/4)B0

)
:= f(ρ)

(A.54)

where we used ρ ≡ π[d,bm−1] for further simplification of the notation.

On the other hand, without loss of generality we assume that k∗ < bM (otherwise if
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k∗ = bM , it reduces to the case of Fact A.2). By the selection rule of k∗ and that k∗ < bM ,

we have

0 ≤ 1

2
− π[d,k∗] ≤ π[d,bM ] −

1

2
(A.55)

which can be re-written as

0 ≤ 1

2
− ρ− π[bm,k∗] ≤ ρ+ π

{l}
q∗ −

1

2
. (A.56)

Therefore,
π[bm,k∗]

π
{l}
q∗

(b)

≥
1− π{l}q∗ − 2ρ

π
{l}
q∗

=
1− 2ρ

π
{l}
q∗

− 1
(c)

≥ 1− 4ρ,

(A.57)

where (b) is by (A.56) and (c) by (A.53). And again by (A.53) we also have

π[d,k∗] ≤ π[d,bM ] = ρ+ π
{l}
q∗ ≤ ρ+

1

2
. (A.58)

With (A.56), (A.57) and (A.58), the second part in equation (A.51) can then be lower

bounded as

π
{l}
q∗ D

(
π[bm,k∗]

π
{l}
q∗

B1 +
π[k∗+1,bM ]

π
{l}
q∗

B0

∥∥∥π[d,k∗]B1 + (1− π[d,k∗])B0

)

≥


(1/2− ρ)D

(
(1− 4ρ)B1 + 4ρB0

∥∥∥(1/2 + ρ)B1 + (1/2− ρ)B0

)
, ρ ∈ [0, 0.1)

0, o.w,

:= g(ρ).

(A.59)

Now, since f(ρ) > 0 for ρ ∈ (0, 1] and g(0) > 0, we have

(A.51) ≥ min
ρ∈(0,0.1]

max{f(ρ), g(ρ)} > 0. (A.60)
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2. St+1 = γd(π(t)) is within a bin of level l, i.e. St+1 ⊆ bin(q∗):

E[U{l}(t+ 1) | π(t)]− U{l}(t)

=
2l∑
q=1

π{l}q (t)D
(
Pyt+1|q,γ

∥∥∥Pyt+1|6=q,γ

)
≥ π

{l}
q∗ D

(
π[bm,k∗]

π
{l}
q∗

B1 +
π[k∗+1,bM ]

π
{l}
q∗

B0

∥∥∥B0

)}
.

(A.61)

By the selection rule of k∗ and that St+1 ⊆ bin(q∗), we know that π{l}q∗ ≥ πSt+1 ≥ 1/4 and

that π[bm,k∗]
π
{l}
q∗
≥ π[bm,k∗] = πSt+1 ≥ 1/4. Therefore,

(A.61) ≥ 1

4
D

(
1

4
B1 +

3

4
B0

∥∥∥B0

)
. (A.62)

The result is concluded by combining the two cases from (A.60) and (A.62)

Lemma A.3. Using hiePM with resolution 1
δ
, the nested log-likelihood U{l}(t) of lower resolu-

tion level l < log2(1/δ)) defined in (A.36) is a submartigale. In particular, we have

E[U{l}(t+ 1) | π(t)]− U{l}(t)

≥ Kh := min
{
I
(1

3
, p[

1

2
]
)
,
2

3
D
(1

3
Bern(1− p[1

2
]) +

2

3
Bern(p[

1

2
])
∥∥∥Bern(p[

1

2
])
)} (A.63)

for all t > 0, for any l < S.

Proof. Given any l < S, if the selected codeword D(lt+1) is such that lt+1 ≤ l, by Fact A.5

we conclude the results. If otherwise lt+1 > l, then we have D(lt+1) ⊆ bin(qt) for some qt.

For notational simplicity, let ρ ≡ πD(lt+1)(t) :=
∑

i∈D(lt+1) πi(t) and B0 ≡ Bern(p[2−lt+1 ]),
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B1 ≡ Bern(1− p[2−lt+1 ]). We have

E[U{l}(t+ 1) | π(t)]− U{l}(t)

=
2l∑
q=1

π{l}q (t)D
(
Pyt+1|q,γ

∥∥∥Pyt+1|6=q,γ

)
(a)

≥ 2

3
D(ρB1 + (1− ρ)B0‖B0)

(b)

≥ 2

3
D(

1

3
B1 +

2

3
B0‖B0)

≥ 2

3
D
(1

3
Bern(1− p[1

2
]) +

2

3
Bern(p[

1

2
])
∥∥∥Bern(p[

1

2
])
)}
.

(A.64)

where (a) and (b) are by the selection rule of hiePM that π{l}qt (t) > 2/3 whenever lt > l and that

1/3 ≤ ρ ≤ 2/3. This concludes the assertion.

Lemma A.4 (Azuma’s Inequality). Given a submartingale U(t) with U(0) < 0 with respect to

another random process π(t). If U(t) has bounded difference, i.e. |U(t + 1) − U(t)| < B for

some B ∈ R+, and that the expected difference is strictly positive, i.e.

E[U(t+ 1)− U(t) | π(t)] ≥ K > 0, (A.65)

then we have

P(U(t) < 0) < ke
−t K2

2(B+K)2 ∀t > −U(0)

K
(A.66)

where k = e
− KU(0)

(B+K)2 .

Proof. By the positive drift, U(t)− tK is also a submartingale with bounded difference

|U(t+ 1)− (t+ 1)K − (U(t)− tK)| ≤ B +K, (A.67)
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for all t ≥ 0. Applying Azuma’s inequality [42] on U(t)− tK, we have

P(U(t) < 0)

= P
(
U(t)− tK − U(0) < −U(0)− tK

)
≤ exp

(
−(U(0) + tK)2

2t(B +K)2

)
= exp

(
− K2t

2(B +K)2

)
exp

(
− KU(0)

(B +K)2

)
exp

(
− (U(0))2

2t(B +K)2

)
≤ e

− KU(0)

(B+K)2
− K2

2(B+K)2
t

(A.68)

for t > −U(0)
K

, concluding the results.
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