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In supercooled liquids, dynamical facilitation refers to a phenomenon where micro-
scopic motion begets further motion nearby, resulting in spatially heterogeneous
dynamics. This is central to the glassy relaxation dynamics of such liquids, which
show super-Arrhenius growth of relaxation timescales with decreasing temperature.
Despite the importance of dynamical facilitation, there is no theoretical understanding
of how facilitation emerges and impacts relaxation dynamics. Here, we present a theory
that explains the microscopic origins of dynamical facilitation. We show that dynamics
proceeds by localized bond-exchange events, also known as excitations, resulting in
the accumulation of elastic stresses with which new excitations can interact. At low
temperatures, these elastic interactions dominate and facilitate the creation of new
excitations near prior excitations. Using the theory of linear elasticity and Markov
processes, we simulate a model, which reproduces multiple aspects of glassy dynamics
observed in experiments and molecular simulations, including the stretched exponential
decay of relaxation functions, the super-Arrhenius behavior of relaxation timescales as
well as their two-dimensional finite-size effects. The model also predicts the subdiffusive
behavior of the mean squared displacement (MSD) on short, intermediate timescales.
Furthermore, we derive the phonon contributions to diffusion and relaxation, which
when combined with the excitation contributions produce the two-step relaxation
processes, and the ballistic–subdiffusive–diffusive crossover MSD behaviors commonly
found in supercooled liquids.

supercooled liquids | glassy dynamics | dynamical facilitation | elasticity theory

Glassy dynamics refers to the dramatic slowdown of microscopic motion in supercooled
liquids below an onset temperature To (1). The slowdown is accompanied by dynamical
heterogeneity (2), a phenomenon where microscopic motion is clustered into regions
of high and low mobility (3). In contrast to the slow and heterogeneous dynamics,
the structure of supercooled liquids is homogeneous in space and varies little with
temperature (4, 5). Such a contrast between structure and dynamics differs from how
we understand relaxation dynamics in normal liquids, where structural information, e.g.,
the radial distribution function (RDF) g(r), plays a foundational role (6). Thus, despite
the ubiquity of supercooled liquids, the microscopic mechanisms behind their glassy
dynamics remain poorly understood.

Over the years, molecular dynamics (MD) simulations have revealed key microscopic
observations relevant to understanding how dynamics proceed spatially in supercooled
liquids. At short timescales, microscopic motion progresses by the emergence of sparse and
spatially localized mobile regions, herein referred to as excitations (3). These excitations
populate the system at an average rate c� that is Arrhenius below To, i.e., c� ∼ e−�J�
where J� is the activation energy (3, 5). This is followed by the emergence of dynamical
facilitation, where regions of high mobility spread over time due to motion begetting
nearby motion (3, 7–9). The notion of dynamical facilitation is more apparent in a recent
MD study (10), where algorithmic advances allow equilibration of supercooled liquids
and their long-time simulations at ultralow temperatures. These observations inspire
dynamical facilitation (DF) theory (11, 12) to use the idea of facilitating excitations,
implemented in kinetically constrained models (13), to describe different facets of
glassy dynamics. But despite their well-known observations and use in DF theory, the
microscopic origins behind excitations and facilitation as emergent phenomena have yet
to be discovered.

Recent works (5, 14) have delved into the origin of excitations and the onset
temperature for glassy dynamics by the linear elasticity theory (15) and the theory
of defect-mediated phase transitions (16–20). The work in ref. 5 demonstrates that
excitations are localized motions connecting nearest neighboring inherent states (ISs),
which are energy-minimizing configurations of the supercooled liquid. These excitations
are further shown to be localized pure-shear deformations driven by elementary bond-
exchange events, e.g., T1 transitions breaking a bond between a pair of particles in the
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Fig. 1. (A) Glassy dynamics as a hopping process in a multidimensional
potential energy landscape (PEL) whose minima are denoted as the ISs. (B)
Any transition between two nearest neighbor ISs in the PEL occurs via bond-
exchange events, or excitations, where particles break an existing bond and
form a new one (cyan). Shown in the middle is a model transition state
with arrows indicating the displacements of the particles involved in the
bond-exchange event. These bond-exchange events are T1 transitions in 2D
systems.

first solvation shell and forming a new bond in another pair
(Fig. 1). Given the pure-shear nature of the strain fields, linear
elasticity theory (15) allows us to compute the energy barriers
for motion J� using the RDF g(r) and the inherent-state shear
modulus. Building from ref. 5, the work in ref. 14 constructs
a theory of onset temperature To for glassy dynamics in 2D
supercooled liquids, where excitations are viewed as defects in
an amorphous medium (21). This defect picture gives rise to
a melting scenario for the onset of glassy dynamics, where
supercooled liquids lose their inherent rigidity at temperatures
T > To. In 2D, the melting transition fits the Kosterlitz–
Thouless–Halperin–Nelson–Young(KTHNY)scenario(16–20),
providing a connection between the physics of 2D glassy and
crystalline materials.

Even though there exists now the notion of excitations, what
remains an open question is the microscopic basis behind the
emergence of dynamical facilitation and its impact on the overall
relaxation of supercooled liquids. In this work, we use ideas from
linear elasticity theory to understand how and why excitations
facilitate their own spread in supercooled liquids. To this end,
we put forward a theory to show that facilitation emerges
from the elastic interaction of an excitation with the stresses
accumulated by a history of excitations. By implementing a
model for relaxation based on elastically interacting excitations,
the theory accounts for the following behaviors of supercooled
liquids that any theory of glassy dynamics must explain:

• The stretched exponential decay of relaxation functions, such
as the self-intermediate scattering function Fs(k, t) for a
wavevector k, and the bond-order autocorrelation function
Cb(t).

• The crossover from high-temperature Arrhenius to super-
Arrhenius growth of equilibrium relaxation timescales �eq
below the onset temperature To.

• The subdiffusive behavior of the mean-squared displacement
(MSD) preceding the long-time diffusion limit.

• In two dimensions (2D), the finite-size effects in relaxation in-
cluding the contributions from the Mermin–Wagner phonon
fluctuations.

• The role of phonon fluctuations in mediating structural
relaxation and diffusion, distinguished from the excitations.

Together with ref. 5, this work presents a self-consistent micro-
scopic picture of glassy dynamics based on emergent facilitation,
specializing in two dimensions (2D).

Theory and Model

Theory of Emergent Facilitation. To begin, we describe how
glassy dynamics may be understood as a hopping process in a
PEL (22–24). The PEL is a landscape in the high-dimensional
configuration space composed of multiple local minima, where
the energy-minimizing configurations are referred to as ISs. The
hopping process involves the system moving across different ISs
in the configuration space, as illustrated in Fig. 1A. Connecting
two nearby ISs is a transition state, which the system can
cross on an average hopping timescale �hop (5). Starting from
an initial IS, previous work (5) indicates that the supercooled
liquid experiences a bond-exchange event when crossing a
transition state, as illustrated in Fig. 1B. We refer to these bond-
exchange events as excitations, and their formation reorganizes
the surrounding medium via pure shear (5, 25). Within timescales
of O(�hop), the characteristics of excitations are insensitive to
the choice of initial IS and so shifting the time origin allows us to
observe similar excitations. The full relaxation process, however,
operates on a timescale �eq � �hop. Therefore, a theory of glassy
dynamics should be able to describe relaxation based on a series
of excitations or bond-exchange events connecting nearby ISs.

Linear elasticity theory provides a mechanism for which multi-
ple excitations mediate glassy relaxation dynamics in supercooled
liquids. To see this, we examine the aftermath of an initial
excitation in a supercooled liquid, i.e., when the system crosses
the first transition state. In this case, the ensuing bond-exchange
event leaves behind mechanical stresses with respect to the initial
IS. The presence of these stresses impacts the formation of
a new bond-exchange event through elastic interactions with
the previous excitation, thus changing the cost to form new
excitations. At very low temperatures, these elastic interactions
strongly influence the overall energy barriers to relax the system
via the creation of multiple excitations and thus determine the
most probable relaxation pathway of the system. Given a model
for relaxation that captures these elastic interactions, we may then
observe the emergence of facilitation and glassy dynamics.

A mathematical framework that can capture such a relaxation
pathway is a Markov process (26). As applied to supercooled
liquids, the Markov process models stochastic jumps between
ISs, occurring on a timestep of O(�hop) so that glassy behavior
may emerge on timescales �eq � �hop; see Fig. 1A for illustration.
At time t = t0, where t0 is an initial time, the system begins with
an empty state with no excitations, representing an arbitrary
reference IS, and excitations emerge as time progresses. Unlike
spins in a lattice model, whose population is preserved at
equilibrium, the population of excitations begins at zero and
grows as time progresses. Denoting a state via an index �, we can
write the master equation describing the time evolution of the
probability p�(t) to be in state � (26) as follows:
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Fig. 2. (A) Schematic of a transition from an empty state to a state with one excitation. The transition state for creating excitation 1© (red arrows) can be
represented by a pair of force dipoles with magnitude f ‡ leading to a bond-exchange event as in Fig. 1B. Once the system completes its transition, excitation 1©
induces mechanical stresses in the medium with the same set of force dipoles (black arrows) but with magnitude 2f ‡, corresponding to the full bond-exchange
event. (B) Transition from a state with one excitation to another with two excitations. The transition state for creating excitation 2© (red arrows) involves elastic
interactions with the mechanical stresses induced by the prior excitation 1 (black arrows). Once the transition is complete, the system enters a new state with
two excitations, each of which induces mechanical stresses corresponding to two pairs of force dipoles with magnitude 2f ‡ (black arrows). (C) A schematic of
the force-dipole configuration describing the elastic interactions given by Eq. 12. (D) Various configurations minimizing the free-energy barriers associated with
elastic interactions in Eqs. 11 and 12, indicating emergent facilitation at low temperatures.

dp�(t)
dt

=
∑
�′

w��′p�′(t)− w�′�p�(t) , [1]

where w�′� is the rate to transition from state � to �′, with an
empty state as an initial condition (� = 0), i.e., p�(t0) = ��0.
Initiating from an empty state and letting t0 be arbitrary are
crucial to preserve time translational symmetry since excitations
in supercooled liquids are always detected with respect to a
reference configuration and consistently emerge with the same
statistics regardless of the time origin (3).

The form of transition rates w�′� is given by transition state
theory (TST) (27),

w�′� = �0e−�ΔF
‡
�′� , [2]

where �0 is a frequency prefactor, which is assumed to be
constant in this work, and ΔF ‡

�′� is the free-energy barrier.
From detailed balance, the potential energy difference ΔU�′�
between two ISs can also affect Eq. 2. In what follows, we may
assume that ΔU�′� ≈ 0. However, we may also justify this
assumption when comparing energy differences ΔU IS between
ISs with that of the barriers ΔU ‡ connecting nearby ISs. To
that end, when dynamics progress up to the average timescale
�hop ∼ e�J� for observing an excitation, we know that Nexc-many
excitations emerge spatially, where Nexc ∼ Nc� with c� ∼ e−�J�
being the concentration of excitations and N the system size
(5). The energy cost to produce these excitations is ΔU ‡

∼

NexcJ� ∼ Ne−�J� J� . If we assume that ΔU IS is proportional
to the SD in IS energies, then ΔU IS

∼
√
kBT 2cIS

v N , where
cIS
v is the IS heat capacity and changes weakly with temperature

(28). Comparing the energy difference and barriers, we then
find ΔU IS/ΔU ‡

∼
√
kBT 2cIS

v N/(Ne−�J� J�) ∼ O
(

1/
√
N
)

,
and thus, the IS potential energy differences are negligible

compared to the barriers in the thermodynamic limit. While this
criterion can be checked in molecular simulations, our analytical
arguments show that the system size N � cIS

v
kB(�J�)2 e2�J� , and

thus may require extensive simulations. Nevertheless, this result
suggests that we may set ΔU�′� ≈ 0, modeling a system that
hops between energy wells of equal depths but with different
energy barriers, which we now address in detail.

Following previous works (5, 14), we use linear elasticity
theory to compute the barrier ΔF ‡

�′� , which can be written as
a superposition of two parts: 1) the cost to create an excitation,
denoted as J� , and 2) the interaction of an excitation with the
stresses T �

ij present at the current state �, with i, j ∈ {1, 2}. The
stress componentsT �

ij build over time due to accumulated stresses
induced by past excitations. In the framework of linear elasticity,
the formula for ΔF ‡

�′� can be written using the superposition
principle as

ΔF ‡
�′� = J� +

∫
d2x T �

ij d
‡
ij , [3]

where d‡
ij = �‡

ij−
1
2�

‡
kk�ij is the deviatoric part of the strain tensor

�‡
ij arising from a new bond-exchange event leading to the new

state �′. The energy cost J� for a single excitation follows from
our previous work (5) where we developed a theory of localized
excitations in supercooled liquids, and is written as

J� =
1
2

∫
d2x d‡

ijC
IS
ijkld

‡
kl , [4]

with C IS
ijkl being the IS elasticity tensor, whose formula can be

derived from first principles (5, 29, 30). Note that Eq. 3 may
be viewed as a modification of J� by allowing it to change as
excitations accumulate stresses over time.

With the general formula in Eq. 3, we now study in the
following sections how different scenarios for bond-exchange
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events modify the overall energy barrier, and thereby give rise to
facilitation.
Empty state→ one excitation. We begin with the simplest case,
involving a transition from an initially empty state (� = 0)
to one with a single excitation (�′ = 1). In this case, the
system experiences a bond-exchange event with zero initial
stresses, i.e., T 0

ij = 0, and thus the free-energy barrier for this
transition is ΔF ‡

10 = J� . In 2D, we can compute J� from
Eq. 4 using the two nonzero components of the deviatoric strain
tensor d‡

ij . In particular, given a symmetric tensor such as d‡
ij ,

we can decompose it in terms of its hydrostatic component
d‡

1 = −
(
d‡

11 + d‡
22

)
/
√

2, which vanishes to zero by definition,

and the deviatoric components d‡
2 =

(
d‡

22 − d‡
11

)
/
√

2 and

d‡
3 =

√
2d‡

12. For an isotropic elastic system, Eq. 4 can then
be rewritten as

J� =
∫

d2x GIS
[(

d‡
2

)2
+
(
d‡

3

)2
]
, [5]

where GIS is the IS shear modulus (SI Appendix, section 1).
Within the linear elasticity theory, the work in ref. 5 shows

that a pure-shear excitation can be represented by two pairs of
opposing point forces, referred to as force dipoles (31); see also
refs. 32 and 33 for describing a localized shear deformation as a
force dipole and its connection to super-Arrhenius behavior. The
force dipoles are arranged so that an excitation induces localized
pure shear corresponding to the bond-exchange event, as seen in
Fig. 2A. Each point force has a magnitude f ‡ associated with the
transition state, and every pair is separated by a distance twice
the excitation radius Rexc. Given the free-body diagram shown
in Fig. 2A, we can compute the deviatoric stress tensor S‡

ij =

T ‡
ij −

1
2�ijT

‡
kk associated with the force-dipole configuration in

the transition state (5). By definition, the hydrostatic component
S‡

1 = 0 and the remaining components can be written as

S‡
2(r, �; ) =

√
2f ‡Rexc

(�IS + 1)
�r2 cos(4� − 2 ) , [6]

S‡
3(r, �; ) = −

√
2f ‡Rexc

(�IS + 1)
�r2 sin(4� − 2 ) , [7]

where �IS is the IS Poisson’s ratio, (r, �) are the polar coordinates
and  is the orientation angle of the excitation; see SI Appendix,
section 1 and ref. 5 for derivations. The magnitude f ‡ can
be expressed as a function of the eigenstrain �c, i.e., f ‡ =
√

2�RexcGIS�c
1+�IS (5), where �c determines the extent of uniform

inelastic deformation inside the excitation radius (34, 35). Using
the formula for f ‡, the constitutive relation S‡

ij = 2GISd‡
ij , Eqs.

6 and 7, we can write the corresponding deviatoric strain fields as

d‡
2 (r, �; ) =

�cR2
exc

r2 cos(4� − 2 ) , [8]

d‡
3 (r, �; ) = −

�cR2
exc

r2 sin(4� − 2 ) . [9]

Substituting Eqs. 8 and 9 into Eq. 5, we obtain

J� = GIS�2
c�R

2
exc , [10]

which indicates that J� is the energy required to reorganize an
elastic medium by shearing a small region of radius Rexc with a
uniform strain �c.

In 2D systems, �c and Rexc can be computed by associating the
localized pure-shear deformation with a T1 transition event (5).
During a T1 transition, particles participate in a bond-exchange
event by pushing an initial bond connecting the nearest neighbors
beyond a critical displacement u‡ corresponding to the transition
state, leading to the formation of a new bond (Fig. 1B). The
geometry of the particle configuration allows �c and Rexc to
be estimated as a function of u‡, the value of which is further
determined from the local structure, i.e., the inherent-state RDF
(5). Together withGIS, J� can thus be computed using only static
equilibrium properties.∗
One excitation → two excitations. Once the first excitation is
created, the bond-exchange event completes its full transition,
imposing mechanical stresses T 1

ij onto the surrounding medium.
These stresses arising from the full bond-exchange event involve
double the critical displacement magnitude u‡ at the transition
state and therefore correspond to imposing a pair of force dipoles
of magnitude 2f ‡ (Fig. 2B). The next bond-exchange event,
which corresponds to a new pair of force dipoles with magnitude
f ‡, will be influenced by the imposed stresses T 1

ij . Consequently,
the next transition from a state with one excitation (� = 1) to a
state with two excitations (� = 2) involves a nonzero interaction
term in the energy barrier. As shown in the free-body diagram
in Fig. 2B, the transition state now consists of a pair of force
dipoles with magnitude f ‡, which is the new excitation, and
another pair of force dipoles from the previous excitation with
magnitude 2f ‡ that exerts the stress field T 1

ij . In the context of
linear elasticity theory, this results in a modified energy barrier
containing long-range elastic interactions arising from Eq. 3:

ΔF ‡
21 = J� + v21

int , [11]

where v21
int is the elastic interaction,

v21
int =

�J�
(q̃21)2 cos

(
2 2 + 2 1

− 4�21) [12]

with  2 and  1 being the orientation angles of excitations 2©
and 1©, respectively, q̃21 = q21/(2Rexc) is the pair distance q21

between the two excitations normalized by the diameter of the
excitation 2Rexc, �21 is the polar angle of the pair distance vector
q21, and � = 2

1+�IS adjusts the interaction strength relative to
J� ; see Fig. 2C for a diagram and SI Appendix, section 2 for the
derivation.

The elastic interaction in Eq. 11 is the key to emergent
facilitation as temperature T → 0. To see this, we look
for the most probable excitation at low temperatures, which
corresponds to minimizing the modified energy barrier in Eq. 11.
Let q̃21∗ = q̃21∗[cos �21∗, sin �21∗] be the energy-minimizing
position of excitation 2© relative to excitation 1© and  2∗

be the corresponding orientation angle of excitation 2©. The
equations defining the energy minima can be written as follows
(SI Appendix, section 3):

 2∗ = 2�21∗ + �
(
n +

1
2

)
−  1, q̃21∗ = 1 , [13]

∗For more details regarding the derivation of J� and testing the formula on MD simulations
of many polydisperse glass formers, see ref. 5.
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Fig. 3. Schematic of transitions indicating revertibility of excitations. (A) A transition depicting the backward version of Fig. 2A, where the bond exchange event
reverts, taking the system back to its previous state. The transition state for this event amounts to reducing the force magnitude of excitation 2© from 2f ‡ to
f ‡. (B) The free-body diagram describing the transition state for the event in (A) amounts to adding a pair of force dipoles in the reverse direction (blue arrows).
(C) A series of excitations, beginning from the final state of Fig. 2B, that takes the system from a state with two excitations to another distinct IS with the same
number of excitations. The first transition involves creating excitation 3© while the second transition reverts excitation 1©, indicating the reorganization of
regions that have already relaxed.

where n is an integer. For every choice of polar angle �21∗,
Eq. 13 guarantees an orientation angle  2∗ that allows the two
excitations to be as close as possible; see Fig. 2D for examples
of energy-minimizing configurations. On the other hand, the
probability of finding a new excitation at high temperatures
is uniform in space since such probability is proportional to
e−�v

21
int → 1 as T → ∞. Thus, we see how the strength

of elastic interactions grows from high temperatures, where
the next excitation can be formed anywhere in space, to low
temperatures, where dynamical facilitation emerges in the sense
that an excitation leads to further excitations nearby.
Revertibility of excitations. In supercooled liquids, we often
encounter bond-exchange events that either 1) reverse previous
bond-exchange events, thus returning the system to its previous
state or 2) emerge at the same spot as where the previous bond-
exchange events are, thus taking the system to a new state.
The latter case amounts to reorganizing the region that has
already relaxed (10). In the Markov process, however, both
cases correspond to reverting existing excitations. Computing
the free-energy barrier for such excitations can also be done via
free-body diagrams. For instance, suppose we study the first case
corresponding to the backward transition in Fig. 2A, i.e., hopping
from state � = 2 to �′ = 1 (Fig. 3A), which models the event
where a new bond-exchange event reverts and brings the system
back to its previous state. This reversal event can be modeled via a
free-body diagram shown in Fig. 3B, where the reverse excitation
is put on top of the second excitation to produce a pair of force
dipoles with magnitude f ‡. Since the transition state we obtain
is identical to the one from the forward transition (Fig. 2A), the
barrier for this transition is ΔF ‡

21 = ΔF ‡
12.

Next, let us consider excitations that occur at the same spot
where the previous excitations are and yet bring the system
to a new state. This corresponds to studying a series of two
transitions depicted in Fig. 3C. Starting with an initial state
� = 2 with excitations 1© and 2©, suppose the system creates
a new excitation 3© taking it to state � = 3. The free-energy

barrier for this transition from Eq. 3 is ΔF ‡
32 = J� + v31

int + v32
int

according to the free-body diagram. Suppose the next hopping
event creates further reorganization at excitation 1©, which
amounts to reverting excitation 1©. Such a transition leads to
a final state � = 4 that is different from the initial state � = 2,
despite having the same number of excitations. The transition
state for this event amounts to studying the free-body diagram
obtained by adding a reverse excitation on excitation 1© shown
in Fig. 3C, from which we can deduce that the energy barrier
is ΔF ‡

43 = J� + v12
int + v13

int. Note, however, that the backward
version of this transition, where the system creates excitation 1©
in the presence of excitations 2© and 3©, also leads to the same
transition state, and thus ΔF ‡

43 = ΔF ‡
34.

General forward and backward transitions. The use of free-body
diagrams involving pairs of force dipoles leads us to conclude that
given a state � with n-many excitations, the free-energy barrier
to add a new excitation (labeled �) leading to a new state �′ is
via superposition principle

ΔF ‡
�′� = J� +

∑
�′ 6=�

v��
′

int , [14]

v��
′

int =
�J�

(q̃��′)2 cos
(

2 � + 2 �
′

− 4���
′
)

. [15]

Furthermore, the backward transition involving reverting the
excitation � passes through the same transition state as the
forward one, leading to

ΔF��′ = ΔF�′� , [16]

which is also consistent with the equal energy well picture.

Model Implementation. The theory described until now cor-
responds to excitations that appear anywhere in continuous
real space. However, known algorithms for simulating Markov
processes are well suited in a discrete real space, e.g., the kinetic
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Monte Carlo (kMC) algorithm (36). To that end, we triangulate
the 2D continuous real space with a lattice lengthscale `d, where
excitations occupy N`-many lattice sites, each of which is labeled
� so that the set of lattice site positions is {x�}

N`

�=1. This new
lengthscale is typically on the order of the excitation diameter, i.e.,
`d ∼ O(2Rexc), and thus, an occupied lattice site approximately
represents an excitation with excluded volume. It can also be
used to satisfy the nonoverlap condition of the elastic interaction
between two excitations, which can now be rewritten as

v��
′

int =
�̂J�

(q̂��′)2 cos
(

2 � + 2 �
′

− 4���
′
)
, [17]

where �̂ = �(2Rexc/`d)2 is the new effective interaction strength
and q̂��

′

= q��
′

/`d. Due to the spatial discretization, the
transition rates are also modified into

ŵ�′� = A�0e−�ΔF
‡
�′� , [18]

where A is an additional prefactor that accounts for the
translational entropy of creating an excitation. The prefactor
A =

√
3

2 (`d/2Rexc)2 when we insert a new excitation and A = 1
otherwise; see SI Appendix, section 4.1 for derivations.

Given Eq. 18, we use the kMC algorithm (36) to simulate the
Markov process. As applied to our model, the kMC algorithm
generates stochastic jumps of the Markov process, creating a
trajectory of excitations that uses an empty state as the initial
condition. At every k-th jump, we perform two steps: 1) sample
a new state �k+1 based on the discrete probability distribution
p(�k+1; �k) = ŵ�k+1�k/Ŵ�k , where Ŵ�k =

∑
�′ ŵ�′�k is the

total transition rate, and 2) sample a new waiting time �k based
on an exponential distribution, with the rate parameter being
Ŵ�k . The output of the kMC algorithm is a relaxation pathway
containing a series of states and arrival times {�k, tk}, which we
can use to probe relaxation behaviors arising from the model. For
more details on implementing the kMC algorithm to our model
of elastically interacting excitations, see SI Appendix, section 4.

Results

We now discuss several results obtained from the kMC sim-
ulations, demonstrating the ability of the model to reproduce
key elements of glassy dynamics. Unless otherwise noted, all
simulation results use the lattice lengthscale as `d/� = 4/3, and
the system size as L = 15`d. Details on the model parameters
used in the kMC simulations can be found in SI Appendix,
section 4.3. The code for kMC simulations may be found in
ref. 37.

Emergence of Dynamical Facilitation. We begin by understand-
ing how dynamics within the model proceed in space and time.
To this end, we use the persistence variable p�(t) and the
displacement field u(x, t). The persistence variable p�(t) tracks
the activity of a lattice site; p�(t) = 1 if an excitation has arrived at
least once at lattice position x� before time t, and zero otherwise.
The displacement field u(x, t) can be computed given the set
of excitation positions {q�}, orientation angles { �}, and arrival
times {t�} as follows:

u(x, t) =
Nexc(t)∑
�=1

uexc(x − q�; �)Θ(t� − t) , [19]

whereNexc(t) is the total number of excitations at time t, uexc(x−
q�; �) is the elastic displacement field associated with a single
excitation and Θ(s) is the Heaviside function; see SI Appendix,
section 5 for a derivation of uexc.

Fig. 4 A and B show sample trajectories visualized by the
persistence variable p�(t) and displacement field u(x, t) at
two different temperatures. At high temperatures (�J� = 1,
Fig. 4A), excitations or bond-exchanges arise as random events
in space—a behavior closely resembling a Poisson point process
(26)—and continue to do so as time progresses (Movie S1). In
contrast, as the temperature is lowered as shown in Fig. 4B for
�J� = 5, dynamics proceed in two stages. In the first stage,
excitations sparsely populate the system, similar to the high-
temperature process. This is followed by the next stage, where
excitations occur near the previous excitations, leading to spatial

A B

C D

Fig. 4. Snapshots of the persistence variable tracking the activity of a region with time at high (A) and low (B) temperatures corresponding to �J� = 1 and
�J� = 5, respectively. At high temperatures, we see a Poisson point process where excitations arrive randomly in space and time. However, at low temperatures,
we see the emergence of dynamical facilitation with clustered mobile regions that grow in time. Also shown are the displacement fields for the corresponding
high (C) and low (D) temperatures. Simulations correspond to a system size of L = 100`d and an interaction strength � = 1/2. The color code in (C) and (D)
indicate the magnitude of particle displacements relative to particle diameter �.
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clustering of dynamics. These clusters then grow in size as more
excitations arrive over time (Movie S2). The same is reflected
in the displacement behaviors, where at high temperatures the
displacement fields develop in a spatially uncorrelated manner
(Fig. 4C ; see Movie S3). In contrast, we see the displacement
fields at low temperatures are increasingly concentrated in
regions of clustered excitations (Fig. 4D); see also Movie S4.
Furthermore, we also observe the development of branched-
liked patterns in the displacement field at such low temperatures,
a typical signature of dynamical heterogeneity as seen in MD
simulations (2, 3).

The two-stage behavior at low temperatures can be explained
as follows. At short times, excitations arrive at a rate proportional
to e−�J� with barrier J� , and thus are in small concentrations at
low temperatures. Since excitations interact very little at such low
concentrations, they essentially behave as a Poisson point process.
As time progresses, however, the number of excitations increases,
and thus elastic interactions grow stronger. In particular, these
elastic interactions attract new excitations to the previous ones,
resulting in the clustering of excitations and subsequent spreading
of high-mobile regions—all of which are signatures of emergent
facilitation. Note that these emergent behaviors are consistent
with recent MD simulation studies (10), where tracking bond-
exchange events in a supercooled polydisperse fluid reveals the
clustering and spreading of high-mobility regions.

Exponential to Stretched Exponential Relaxation Behaviors.
The emergence of dynamical facilitation also quantitatively
impacts relaxation dynamics. To explore this, we compute the
bond-order autocorrelation function Cb(t) and self-intermediate
scattering function Fs(k, t), both of which are common measures
for extracting relaxation timescales. The bond-order function
Cb(t) encodes rotational relaxation of the system and can be
computed as

Cb(t) :=
1
N`

N∑̀
�=1

E
[
ei6�(x� ,t)

]
, [20]

�(x, t) =
Nexc(t)∑
�=1

�exc(x − q�; �)Θ(t� − t) , [21]

where E [. . .] is an ensemble average over trajectories, and
�(x, t) measures the rotational strain induced by excitations
with �exc = 1

2

(
∂yuexc

x − ∂xuexc
y

)
and uexc

x and uexc
y being the

x- and y-component, respectively, of uexc. Fig. 5 A and B show
Cb(t) for varying temperatures, with respect to an Arrhenius
timescale �arr ∼ e�J� , corresponding to the average hopping
time between ISs (�hop) or the average time for the arrival of an
excitation. The bond-order function decays exponentially at high
temperatures at all times. In contrast, we see the emergence of a
long-time stretched exponential decay at low temperatures, i.e.,
Cb(t)∼ e−(t/�b)

a
, where �b is the temperature-dependent bond-

relaxation time and the stretching exponent a ≈ 0.33 to 0.38.
Similar behaviors are also observed in the self-intermediate

scattering function Fs(k, t), which is computed as

Fs(k, t) :=
1
N`

N∑̀
�=1

E
[
eik·u(x� ,t)

]
, [22]

where we choose |k| = 2�/� with � being a characteristic
particle diameter. Here, Fig. 5 C and D again show a crossover

A B

C D

Fig. 5. Relaxation functions computed from kMC simulations for L = 15`d
and � = 1/2: (A and B) bond-order autocorrelation function Cb(t) and
(C and D) the self-intermediate scattering function Fs(k, t). From red to blue,
the inverse temperature �J� ∈ [0,3.86]. Both relaxation functions exhibit a
crossover from exponential to stretched exponential relaxation behaviors
from high to low temperatures. For every temperature, kMC simulations are
run for different decades of time, producing multiple curves and allowing
us to resolve the relaxation process at a computationally tractable sampling
rate. We show all curves for completeness even though the longest run is
sufficient.

from a high-temperature exponential decay to a low-temperature
stretched exponential decay, i.e., Fs(k, t) ∼ e−(t/�s)a for |k| =
2�/�, with �s the structural relaxation time and the correspond-
ing stretching exponent in the same range as that ofCb(t). The ex-
istence of a stretched exponential decay in bothCb(t) and Fs(k, t)
at low temperatures is a vital signature of glassy relaxation and
has been observed in numerous experiments and MD simulations
(1). In addition, we compute the dynamic susceptibility function
�4(k, t) (SI Appendix, Fig. S11, Right), which is a key feature of
dynamical heterogeneity observed in glassy dynamics (2). When
choosing |k| = 2�/�, �4(k, t) measures the correlation between
two relaxation events, occurring at a microscopic particle scale
�, separated at all possible distances, thereby quantifying the
spatial heterogeneity of dynamics (38). As shown in SI Appendix,
Fig. S11, Right, we see that the peak of�4(k, t) grows and reaches
a maximum height around t = �s consistent with observations
commonly found in molecular simulations of supercooled
liquids (2).

Understanding the crossover from an exponential to a
stretched exponential decay in Cb(t) goes back to the emergence
of dynamical facilitation. At short timescales, excitations arrive as
a Poisson point process, with negligible elastic interactions. The
characteristic time �arr for this process is the timescale needed for
the concentration of excitations c� to reach c� ∼ e−�J� . At high
temperatures, c� → 1 on timescales of �arr, which implies that
the initial Poisson point process can lead to the accumulation of
excitations or bond-exchange events that relax the entire system
without facilitation. In this case, for independent excitations, we
may use the formalism of random point processes (26), which
results in the following bond-relaxation function:
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Cb(t) = e−t/�arr , [23]

�arr =
√

2(1 + �IS)
6�2�c�0

e�J� . [24]

Fig. 5A and B show that Eq. 23 is in good quantitative agreement
with the kMC simulations at sufficiently high temperatures. As
the temperature decreases, the concentration at the characteristic
Arrhenius timescale c� → 0 and, consequently, a Poisson process
is insufficient to fully relax the system. Here, the relaxation
function is consistent with Eq. 23 only for short timescales when
t < �arr. For timescales beyond �arr, facilitation emerges from
the elastic interactions and is thus responsible for any deviation
from the Poissonian behavior. We do not yet have an analytical
theory to derive the form of the stretched exponential decay from
the model and leave such an endeavor to future work.

Arrhenius to Super-Arrhenius Relaxation Timescales. The im-
pact of emergent facilitation can also be seen in how relaxation
timescales increase with decreasing temperature. To this end,
we define the bond-orientational and structural relaxation times
�b and �s, respectively, as Cb(�b) = Fs(k, �s) = 0.1. Fig. 6 A
and C show the Arrhenius plot of relaxation timescales �b and
�s for various interaction strengths �. We observe a crossover
from the high-temperature Arrhenius behavior toward the low-
temperature super-Arrhenius behavior, with larger � leading to
a more dramatic increase in relaxation timescales. The Arrhenius
behavior arises from the independent and Poissonian nature of
the arrival of the excitation events leading to �b, �s ∼ �arr.

The super-Arrhenius behavior arises primarily from the re-
vertibility of excitations during the stage of emergent facilitation,
wherein the system constantly destroys and forms new excitations
in the same spot where the initial excitation is (Movie S5).
This amounts to repeated reorganization of the regions that
have already relaxed, traversing the system through new ISs in

A B

C D

Fig. 6. The relaxation timescales �b (A) obtained from Cb(t) for various
interaction strengths � ∈ [3/8,1/2,2/3], where the color code from light blue
to dark blue corresponds to an increase in �. The collapse of relaxation
timescales �b (B) upon an appropriate rescaling. The relaxation timescale �s
(C) obtained from Fs(k, t) for varying interaction strengths as in (A) along with
its collapse (D). Here, L = 15`d. Collapse of the relaxation timescales indicates
super-Arrhenius behaviors are mediated by elastic interactions.

the configuration space. These repeated bond-exchange events
lead to slow growth of the cluster of excitations and therefore
resulting in slow coarsening of the highly mobile regions and
dramatic slowdown of the relaxation process compared to the
high-temperature Arrhenius regime. This observation can be
further tested in the model, wherein we switch off the ability
of the system to revert the excitations. In this case, facilitation
still persists at low temperatures, where excitations arrive near
previous excitations due to elastic interactions. However, the
coarsening of the highly mobile regions occurs via a growth
process proportional to the barrier J� , resulting in a relaxation
time proportional to the Arrhenius timescale �arr ∼ e�J� even
at low temperatures (SI Appendix, Fig. S10). Note also the
change in the nature of the relaxation function Cb(t) from
the stretched-exponential to an exponential decay (SI Appendix,
Fig. S10). This shows that the super-Arrhenius and stretched-
exponential behaviors in supercooled liquids result from an
exploration of the high-dimensional configuration space, due
to repeated reorganization of previously relaxed regions during
the facilitation stage.

Furthermore, Fig. 6 B and D show the universal collapse
of the relaxation behaviors, by rescaling the relaxation times
with respect to �arr and the dimensionless inverse temperature
with �. This shows that the deviation from the Arrhenius
behaviors is mediated by the elastic interactions, indicating that
different materials exhibit varying degrees of super-Arrhenius
relaxation corresponding to their elastic interaction strengths.
Such a collapse is another signature of glassy dynamics, which
can be found in most supercooled liquids (1, 39).

Finite Size Effects. In 2D, elastic fields cause finite-size effects
that substantially affect relaxation. It is now well-known that
Mermin–Wagner fluctuations, which arise from the elastic
vibrational motion of supercooled liquids, lead to a system-
size dependence in the relaxation dynamics (14, 40–43). Here,
we demonstrate how excitations can also result in additional
finite-size effects and temporarily postpone the discussion of the
impact of vibrational motion. Fig. 7 shows relaxation times �b
and �s for various system sizes, by again using the definition
Cb(�b) = Fs(k, �s) = 0.1. Here, we find that �b is independent
of system size while �s decreases as system size increases, consistent
with relaxation time observations in MD simulations of 2D
model glass formers (40).

At present, understanding the finite-size effects analytically
is only possible in the high-temperature limit. Beginning with
�b, we know from Eq. 24 that limT→∞ �b = �arr, which is
independent of system size. This result can be understood when
computing �b from a Poisson point process at high temperatures,
which to leading order for small rotational strains yields �−1

b ∼∫
d2x �2

exc. Since the excitation rotational strain �exc decays as
1/r2 (SI Appendix, section 5), we have �−1

b ∼
∫ L
`d

drr
r4 ∼ O(1),

indicating that �exc decays sufficiently fast that no finite-size
effects can emerge. On the other hand, to leading order for small
displacements at high temperatures, �−1

s ∼
∫

d2x (k · uexc)2.
The excitation displacement field uexc is long-ranged and decays
as 1/r (SI Appendix, section 5), which results in �−1

s ∼
∫ L
`d

drr
r2 ∼

O(ln L), thus yielding a finite-size dependence analogous to
Mermin–Wagner fluctuations where the relaxation proceeds
faster by increasing system size. Indeed, applying the logarithmic
finite-size scaling to Fig. 7B leads to a universal collapse of �s
for all system sizes in the Arrhenius regime when �J� ≤ 2 (SI
Appendix, Fig. S11, Left). These finite-size effects produced by
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A B

Fig. 7. Relaxation times �b (A) and �s (B) obtained from Cb(t) and Fs(k, t),
respectively, for various system sizes. Here, � = 1/2 and L is the linear
system size, measured in units of lattice spacing length. The color code
from red to blue corresponds to an increase in the system size, with
L ∈ {30`d ,60`d ,100`d ,200`d}. There exist no finite-size effects in the bond-
relaxation times, while the structural relaxation times show significant
system-size effects and decrease as the system size increases.

the model further support the standard practice in studying 2D
glass formers, where Cb(t) is the preferable relaxation function
to compute compared to Fs(k, t) (10, 40, 43).

Crossover Behaviors in the Mean Squared Displacement. In
addition to the relaxation functions, glassy dynamics also display
their characteristic behavior in the mean-squared displacement
(MSD). To that end, we compute an MSD by spatially averaging
the square of the elastic displacement field, i.e.,

MSDel(t) =
1
N`

N∑̀
�=1

E
[
|u(x�, t)|2

]
. [25]

We shall refer to Eq. 25 as the elastic MSD, which is shown for
three different temperatures in Fig. 8A. At short times, the MSD
is linear in time and collapses when rescaled with the Arrhenius
timescale �arr. As mentioned before, early-time dynamics proceed
as a Poisson point process, which leads to the following short-time
limit of Eq. 25:

lim
t→0

MSDel(t) = 4DPt , [26]

DP =
�0(�u‡)2

8

(
5 +

(
�IS
)2
− 2�IS

)(
ln

L
Rexc

+
1
2

)
e−�J� ,

[27]
which is in quantitative agreement with the kMC simulations
(Fig. 8A). Note that the early-time dynamics are not ballistic
as is commonly observed in realistic MSD, since the model only
predicts the behaviors associated with IS transitions and therefore
describes inherent-state dynamics.

Once the system passes the Poissonian regime at t ∼ �arr, a
subdiffusive regime appears coinciding with the emergence of
the facilitation process, where MSD ∼ t(T ) with the exponent
(T ) < 1. While we do not have an analytical theory for the
exponent, the subdiffusion behavior can be qualitatively under-
stood as follows. Physically, we know that subdiffusion may arise
from anticorrelations in particle displacements, i.e., a forward
motion is followed with high probability by a backward motion
and vice versa (44). In the facilitation regime, a mechanism for
such anticorrelation exists from the excitations that are constantly
reforming within the same regions in space. It is plausible this
process may result in elastic restorative forces that oppose the

previous motion, likely causing the anticorrelations leading to
subdiffusive MSD—a possibility that is left to be explored in
future work. At longer times, however, the elastic MSD saturates
to a plateau, unlike the diffusion behavior expected in an MSD.
Such behavior emerges as a by-product of the model construction;
at long times, excitations occupy almost all lattice sites and cannot
accumulate further to relax the system beyond the relaxation
timescale �b when Cb(�b) ≈ 0.1. Thus, one cannot observe the
long-time diffusive behavior, i.e., a postrelaxation process that
emerges beyond �b, from computing just the elastic MSD.

Despite the model limitations, we may still study the long-time
diffusive limit within the same model by constructing a special
probe. In particular, we imagine a particle probe that can diffuse
through the system via the following steps:

1. A probe starts at a reference position R0 while the system
starts at an empty state at time t = t0.

2. For every k-th step of the kMC simulation, the probe gets
convected by the excitation displacement field, i.e.,

Rk = R0 + u(x = R0, tk) . [28]

3. However, if an excitation arrives at a lattice site closest to R0
at the k-th step, reset the reference position R0 → Rk and
the system state to an empty state wiping out all the current
excitations, restarting the relaxation process while keeping the
time t = tk.

4. Repeat step 2.

A

B

Fig. 8. The elastic MSD (A) and probe MSD (B) from inherent-state dynamics
obtained at three different temperatures, where � = 2/3, and L = 15`d.
The elastic MSD displays short-time diffusion-like behavior arising from
excitations arriving as random events in the Arrhenius timescale (�arr ∼ e�J� ).
The behavior crosses over into subdiffusion at intermediate timescales
(t > �arr), also coinciding with the emergence of dynamical facilitation. The
probe MSD in (B), which requires resetting the relaxation process, shows the
emergence of long-time diffusive behavior around the relaxation times.
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Step 3 is crucial as it allows the probe to reset its initial
reference position and continue building its trajectory beyond
the relaxation timescale; see Movie S6 for an example trajectory
of a probe particle at low temperatures (�J� = 3.0). We note that
the average resetting time in Step 3 corresponds to a timescale
for any arbitrary region to undergo a bond-exchange event. This
resetting time also provides another measure of the relaxation
time that we find commensurate with the earlier definition for �b.

The probe MSD is then computed from an ensemble average
over trajectories as

MSDpr(t) = E
[
|R(t)|2

]
, [29]

where R(t) = Rk when the time t falls within the arrival
time range tk ≤ t < tk+1. Fig. 8B shows the probe MSD
for three different temperatures consistent with the elastic MSD
at short and intermediate timescales. Note the clear nature of
the emergent subdiffusive behaviors in the probe MSD, scaling
as t(T ). We also see the emergence of a second cross-over from
subdiffusive to diffusive behaviors around the relaxation times,
indicating that the long-time diffusive behavior is a postrelaxation
process. In conclusion, the probe MSD transitions from Poisso-
nian diffusion→ subdiffusion→ the long-time diffusion. These
behaviors predicted by the model are consistent with recent works
(10, 45), which, through MD simulations, have demonstrated
the existence of both the Poissonian and subdiffusive behavior
in the inherent-state dynamics, and the postrelaxation crossover
to long-time diffusion. It would be interesting to compare these
results with the random barrier model (46), which also displays
subdiffusion behaviors at intermediate timescales but misses the
early-time Poissonian regime.

The Role of Phonons. In supercooled liquids, microscopic motion
consists of vibrational fluctuations, i.e., phonons, around ISs
and excitation-mediated hopping between such states. The
combination of excitations and phonons provides the complete
picture of how a supercooled liquid relaxes at all timescales. To
see this, suppose that a supercooled liquid behaves as a fluctuating
linear elastic solid when it vibrates around an IS. This assumption
leads to the following phononic MSD for a liquid with density �:

MSDph(t) =
kBT
4��

[(
1
c2
s

+
1
c2
p

)
ln

L
�

+
1
c2
s

[
Ci
(

4�cst
�

)
− Ci

(
4�cst
L

)]
+

1
c2
p

[
Ci
(

4�cpt
�

)
− Ci

(
4�cpt
L

)]]
, [30]

where cs and cp are the speed of shear and pressure waves,
respectively, and Ci(s) is the cosine integral; see SI Appendix,
section 6.1 for derivations. If phonon and excitation fluctuations
are statistically independent, we may then write the overall MSD
as

MSD(t) = MSDexc(t) + MSDph(t) , [31]

where the superscript “exc” denotes excitation contributions
from Eq. 29.

Fig. 9 shows the overall MSD obtained from combining Eq. 30
with the kMC data from Fig. 8 at �J� = 3, choosing the
frequency prefactor to be �0 = 0.1 and J� = 1.71. At early
times, we see that phonon contributions dominate those from

Fig. 9. The combined effect of phonon and excitation fluctuations in the
MSD (black) along with the phonon (red) and the excitation part (blue), where
the excitation part is obtained from Fig. 8B at �J� = 3 and � = 2/3. The overall
MSD shows the ballistic–subdiffusive–diffusive crossover behaviors typical of
a supercooled liquid.

excitations providing the initial ballistic regime of the overall
MSD, given by Eq. 30 as t → 0 yielding MSDph(t) = 2�kBT

��2 t2.
The phonon part then plateaus to the equilibrium MSD of the

solid, i.e., as t → ∞, MSDph(t) = kBT
4��

(
1
c2
s

+ 1
c2
p

)
ln L

� . The

presence of the logarithm scaling with system size L indicates
the effect of Mermin–Wagner fluctuations (41, 42). Meanwhile,
the excitation contributions take over the phonon contributions
at longer timescales, leading to an overall subdiffusion behavior
at intermediate timescales, ultimately reaching the long-time
diffusion behaviors around the relaxation times (Fig. 9). In effect,
the overall MSD exhibits the ballistic–subdiffusive–diffusive
crossover behaviors that are an important characteristic of the
supercooled liquids (1). Note that as the temperatures are further
lowered, the long-time asymptotic behavior of the phonons
persists leading to a longer plateau-like behavior of the overall
MSD, again consistent with observations (10, 47).

In addition to the MSD, the phonon contributions influence
the relaxation functions. To that end, for independent phonon
and excitation fluctuations, the overall self-intermediate scatter-
ing function can be written as the product of the phonon and
excitation parts (SI Appendix, section 6.2):

Fs(k, t) = F exc
s (k, t)F ph

s (k, t) , [32]

F ph
s (k, t) = e−

k2
4 MSDph(t) . [33]

The phonon part only depends on the corresponding MSD, since
phonon fluctuations are Gaussian and all higher-order cumulants
contributing to the self-intermediate scattering function vanish
exactly. As time t → 0 the phonon part F ph

s (k, t) =
exp(−k2 �kBT

2��2 t2) exhibits a Gaussian decay, while its long-
time limit reaches a plateau value that scales as a power law
with linear system size L, i.e., F ph

s (k, t) =
( L
�
)−� with � =

k2 kBT
16��

(
1
c2
s

+ 1
c2
p

)
. Similar decomposition can also be performed

for the bond-order relaxation function (SI Appendix, section 6.3):
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Fig. 10. The combined effect of phonon and excitation fluctuations in
Fs(k, t) (Left) and Cb(t) (Right), which are shown in black. Both relaxation
functions exhibit the two-step decay commonly observed in supercooled
liquids at low temperatures. The excitation part is obtained from kMC
simulations at � = 3/8 and L = 15`d. Left and right black curves correspond
to �J� = 0.44 and �J� = 3.86, respectively. Also shown are green curves
representing the short-time Gaussian decays of the relaxation functions for
�J� = 3.86. The curves shown in red are the phononic contributions to the
relaxation functions saturating to corresponding plateau values at long times
for �J� = 3.86.

Cb(t) = C exc
b (t)Cph

b (t) , [34]

Cph
b (t) = e−18Θph(t) , [35]

Θph(t) =
kBT
8�c2

s

 �
�2 +

1− cos
(

4�cst
�

)
8�(cst)2 −

sin
(

4�cst
�

)
8�(cst)2

 .

[36]

Again, as t → 0, the short time limit exhibits a Gaussian decay
given by Cph

b (t) = exp(− 9�3kBT
��4 t2), while the long-time limit

reaches a constant plateau value of exp(− 9�kBT
4�c2

s �2 ) free of finite-size
effects.

Fig. 10 shows the combined relaxation functions at low and
high temperatures. At low temperatures, phonons provide the
initial decay (green) toward a plateau value (red), accompanied
by damped oscillations, before we observe the long-time decay
mediated by the excitations. At high temperatures, the separation
of timescales between the phonon and excitation part starts to
vanish as the system completely relaxes because of excitations, and
the two-step process becomes less apparent. The two-step process
shown in Fig. 10 is characteristic of the relaxation behavior of
supercooled liquids and is often observed in experiments and
MD simulations (1, 10, 47).

Discussion

In summary, our work presents a theory for how dynamical
facilitation emerges from excitations interacting elastically with
mechanical stresses accumulated by previous excitations. With
emergent facilitation, we reproduce key features of glassy
dynamics including 1) the stretched exponential decay of
relaxation functions, 2) the super-Arrhenius increase of relaxation
timescales and their finite size effects in 2D, and 3) the emergence
of subdiffusive behavior of MSD, all consistent with observations
from molecular simulations and experiments. We also derive the
phonon contribution to relaxation, which when added to the IS
dynamics reproduces the two-step decay of relaxation functions.

Our model can be compared to other models incorporating
facilitation. For instance, kinetically constrained models (KCMs)
(13) represent a class of spin-lattice models and are used as
coarse-grained models of supercooled liquids in the context of
DF theory (3), where spins correspond to the excitations. Unlike
standard lattice models, spin flips in KCMs only proceed around

nearest-neighboring spins—a constraint that puts facilitation by
hand. To obtain super-Arrhenius behavior, kinetics is further
constrained; each spin must possess a unit vector, and spin flips
only occur when the unit vector of neighboring spins has the same
directionality (11, 48). Such a constraint leads to anisotropic facil-
itation despite the largely isotropic spreading of glassy dynamics
observed in supercooled liquids (10). In contrast to KCMs, facil-
itation is an emergent property in our work, obtained solely from
elastic interactions with no constraints, yet leading to isotropic
mobility spreading (Fig. 4B) and super-Arrhenius behaviors at
low temperatures. Our work may also be viewed, alternatively, as
a refinement of the KCMs, wherein the stringent directionality
constraints are removed and replaced with a self-consistent
microscopic theory that leads to emergent facilitation and other
features of glassy dynamics that KCMs may also predict.

Another class of models that incorporate facilitation are
elastoplastic (EP) models, which view supercooled liquids as
solids that flow (49–52). Developed initially for understanding
plasticity in soft glassy materials (51), EP models have been
recently applied to understand relaxation in supercooled liquids
(53, 54). EP models use elastic fields induced by localized
plastic events, which arrive irreversibly, to determine how stresses
relax the system over time. To the best of our understanding,
facilitation emerges in EP models due to energy barriers that
decrease when stress accumulates and reaches their yield criteria,
thus allowing plastic events to cluster in space. Despite similar
use of elastic fields, EP models typically produce Arrhenius relax-
ation timescales and exponentially decaying relaxation functions
(53, 54). It is not yet clear how this class of models reproduces
the stretched-exponential relaxation, super-Arrhenius, and sub-
diffusive behaviors, which are defining features of equilibrium
supercooled liquids. Given the importance of revertibility in our
model, it may be possible that EP models yield these behaviors
once we incorporate revertibility; we leave both the conceptual
and implementation aspects of revertibility in the EPMs and
comparisons with our model to future works.

Future work should also focus on a quantitative comparison
of the model to the relaxation data from experiments and
molecular simulations. This depends on estimating the three
model parameters energy barrier J� , elastic interaction strength
�, and lattice length scale `d. There exist reasonable approximate
estimates of these parameters for model polydisperse systems
studied in MD simulations, with analytical formulas presented
in this work and ref. 5, upon which further refinements may be
made. Since there exists a wealth of experimental data for three-
dimensional (3D) systems, a quantitative comparison requires us
to extend the model to 3D. Such a task, however, requires us first
to understand the nature of localized excitations in 3D, thereby
building a theory to predict J� from the knowledge of structural
and IS elastic properties. Nevertheless, the current work and the
theory of localized excitations, applied in 2D and explored in
ref. 5, provide a blueprint for a microscopic-based theory of 3D
glassy dynamics.

Materials and Methods

The derivations for the theory and the relevant computational methods in this
work are detailed in SI Appendix.

Data, Materials, and Software Availability. Software data have been de-
positedinSoftwareforEmergentFacilitationandGlassyDynamics inSupercooled
Liquids (https://github.com/mandadapu-group/dynamical-facilitation) (37). All
other data are included in the manuscript and/or supporting information.
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