
UC Irvine
ICS Technical Reports

Title
Process model customization for technical and non-technical users

Permalink
https://escholarship.org/uc/item/88g218d0

Authors
Young, Patrick S.
Taylor, Richard N.

Publication Date
1994-03-02
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/88g218d0
https://escholarship.org
http://www.cdlib.org/


Process Model Customization for

Technical and Non-Technical Users

Technical Report UCI94-60

March 2,1994

Patrick S. Young and Richard N. Taylor

pyoung@ics.uci.edu taylor@ics.uci.edu

(714) 856-4101 (714) 856-6429

Department of Information and Computer Science

University ofCalifomia, Irvine CA 92717-3425'

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

t3
ho .



SifiT

:.d x"::

m.^. ir^idiyLjOO sip
i ,u.O.U i t ••"•' • f



Process Model Customization for

Technical and Non-Technical Users

Technical Report UCI 94-60

March 2,1994

Patrick S. Young and Richard N. Taylor

pyoung@ics.uci.edu taylor@ics.uci.edu

(714) 856-4101 (714) 856-6429

Department of Information and Computer Science

University ofCalifomia, Irvine CA 92717-3425*

This paper focuses on two important requirements which must be satisfied before
widespread use of process programming in industrial settings becomes a reality. First, a
process programming language must be customizable, allowing the user to fit the language
into the existing environment, rather than requiring the user to change existing work
environments, work procedures, or corporate culture to meet the language's worldview.
Second, the process programming language should be accessible to all project personnel,
both technical and non-technical. This paper presents the Teamware category object
model, a new object model which has been developed to help meet these key
requirements. This object model supports development of customized activity types,
resource types, and artifact types to support the needs of a particular corporation or
project. These new types are presented to non-technical end users as part of a "pre
existing" language. The paper shows how the model differs from traditional class systems.
It also compares the customization support provided in Teamware with that of other
existing process systems and shows how Teamware's category model allows definition of
a higher level of abstraction.

Process programming has the potential to improve the software process, reduce product
development times, and increase product quality. A number of vital research issues must
be addressed, however, before process programming can deliver on these promises. This
paper focuses on two of these issues: providing support for corporate- and project-specific

1. This material is based upon work sponsored by the Advanced Research Projects Agency under Grant
Number MDA972-91-J-1010. The content of the information does not necessarily reflect the position or the
policy of the Government and no official endorsement should be inferred.

Process Model Customization for Technical and Non-Technical Users



customization and making process programming accessible to both technical and non
technical users.

The processes usedin different companies and in different projects vary considerably.
Work procedures may differ depending on both corporate culture and project size and
complexity. Some companies, for example, may want a tightly-controlled process with
management involvement at each step, while others may support a more laissez-faire
approach. Development environments will differ. Some projects may require extensive
interaction with a wide range of sophisticated tools, while others may work with a bare-
bones compiler and file system. Moreover the amounts and types of information specified
as part of the process will vary. Companies or personnel with considerable process
experience may want to store extensive information includingan activity's tool interactions
and pre- and post-conditions. In contrast, users just beginning to work with process
concepts may want to limit their process specifications to simple activity descriptions,
listing only activity inputs and outputs. Because individual project needs cannot be
anticipated in advance, a process programming system should be customizable. Users
should be able to extend the system to support different company work procedures,
including differences in reporting procedures and communications. The language should
allow the user to specify as much or as little information as desired.

Software engineering projects involve both technical and non-technical workers. If we
expect a process programming language and system to document and guide the
development process, it must be accessible to all project personnel including managers,
programmers, customer representatives, domain experts, and support staff (e.g., marketing,
accounting). Many of those involved will not be able to spend the time and effort necessary
to learn a complex new programming language, and some may lack the necessary
background.

Unfortunately, while a wide variety of important problems are being studied by the
process community (e.g., dynamism, analysis), these two issues remain largely
unaddressed. However, both issues are vital to successful widespread introduction of
process programming in industrial work environments.

The Teamware process programming system is designed to improve coordination and
control of software engineering teams. It allows users to define a prescriptive specification
of the software development process and supports process enactment. Teamware provides
approximately the same level of detail as Process Weaver [1], FUNSOFT [2], and
SLANG [3]. This paper describes the Teamware category object model—one component
of Teamware coordination and control solution. This new object model allows
development of corporate-or project-specific activity, artifact, and resource types. While a
variety of complex behavior can be defined in these types, the category object model's
abstraction mechanisms provide a method for hiding this complexity. This allows the
category object model to support both technical and non-technical users.

The paper begins with a brief overview of the Teamware language and system. This is
followed by a detailed discussion of the category object model. The discussion includes a
technical description of the category object model, a comparison between the category

Process Model Customization for Technical and Non-Technical Users



model and other traditional object models (e.g., classes), and a detailed example. A survey
of related research follows. The paper concludes with a discussion of validation activities
and a summary.

1.0 Overview of Teamware

Some understanding of Teamware is necessary in order to provide a context for discussing
the category object model. This section provides a brief overview of the Teamware
language, system, and users. A more detailed description can be found in [4].

1.1 Teamware Language

The Teamware language allows users to formally specify their software development
process. It includes constructs for defining the activities, resources, and artifacts of the
software development process and their inter-relationships.

Activities, Resources, and Artifacts

Activities in Teamware represent an action or set of actions which are carried out as part
of the software development process. Activities described in the Teamware language
include information on the artifacts used by the activity, the artifacts produced by the
activity, and the resources needed to carry out the activity. As we shall see, additional
information (e.g., pre- and post-conditions, tools) may be provided. Typically, the actions
will be carried out by one or more team members, although, an activity may also be
completely automated.

Teamware resources represent resources in the classic management sense of the word.
They are corporate personnel and assets which have been assigned to the project and which
in turn are assigned to carry out or enable individual Teamware activities. Teamware
resources can represent consumable assets—a budget, for example—or may represent
fixed or renewable assets—^project personnel or meeting rooms, for example.

Artifacts represent objects provided as inputs to the project (e.g., a request for proposal)
or generated by the activities in the project (e.g., design documents, code, test cases).
Artifacts combine both the actual data produced and information about the data (e.g.,
ownership, versioning information).

Activities, resources, and artifacts in Teamware are based on the category object model
which will be described in Section 2.0.

Activity Networks

Teamware defines key relationship between activities, resources, and artifacts through the
use of activity networks. An activity network defines the relationship between a parent
activity and its subactivities, the control relationships between the subactivities, definition

Process Model Customization for Technical and Non-Technical Users



FIGURE 1

User Level

• graphtcal depiction of Teamware process programs

• graphicai editing of Teamware process programs
• parsing of textual descriptions of Teamware process programs
• user interface for System Level functions

buiit-on-top-of

System Level

•programmatic interface for definition of Teamware programs

• interpretation of Teamware programs
' process-based information retrieval
' annotation of Teamware programs
•historical data storage and retrieval

Foundation Level

• muiti-iingual support

• mechanisms to support dynamism
• meta-process support

• mechanisms for concurrency
• distribution of objects
• persistence of objects
• implementation of objects

buiit-on-top-of

The Teamware Multi-Level Design

of the data flows between the parent activities and subactivities, data flows between the
subactivities, and assignment of resources from the parent activity to subactivities.

1.2 The Teamware System

The Teamware system has three distinct components (see Figure 1). For the discussion in
this paper, only the middle system level is important. The system level provides the
following capabilities:

Process Definition — The system level provides a programmatic interface to allow
definition and modification of Teamware programs. This interface can be accessed
either by a parser, to load Teamware programs from a text file, or by a user interface,
providing users with interactive program definition and modification.

Process Interpretation — The system level includes an interpreter for Teamware
programs. This interpreter uses the Teamware program to coordinate execution of the
actual software development process. The interpreter interacts with outside agents

Process Model Customization for Technical and Non-Technical Users



(including team members) to guide them in carrying out the process as specified. It also
handles routing of information and artifacts to appropriate personnel or tools.
Deviations from the expected process are noted and appropriate agents (e.g., managers)
are notified.

Process-Based Information Retrieval — The system level supports information retrieval
based on the Teamware process programs. For example, given an activity, the system
level can retrieve its associated artifacts and resources.

Annotation of Teamware Programs — In addition to retrieval of existing process-based
information, the Teamware system also supports annotation of Teamware programs.
This facility supports, in particular, the attachment of activity-specific computer-
supported cooperative work artifacts (e.g., attachment of e-mail and computer
conferences to activities).

Historical Data Storage and Retrieval — The system level supports automated
archiving of process information during the interpretation of the process program and
provides services for retrieving this information for use in later analysis.

1.3 Teamware Users

Three distinct groups of users are identified:

System Programmers — A number of technical users, called system programmers,
customize the Teamware system to meet individual project and corporate needs. The
system programmers integrate Teamware with the pre-existing development
environment and tools. These system programmers are experts both in Teamware and
in the installation-specific environment and tools with which they are integrating
Teamware.

Process Programmers — Process programmers are the many users who use Teamware to
specify software development processes. Process programmers may or may not have a
technical background. They include managers, corporate process experts, and
individual team members. Process programmers may also be system programmers.

Process Executors — Once specified, the software development process is carried out by
members of the software development team. These users interact with Teamware to
find out their work assignments, to find the artifacts, tools, and resources involved in
each work assignment, and to understand the overall project along with their position
within the process. This group, called process executors, may include members who are
also process and system programmers.

The role of each type of user, and in particular the distinction between system and process
programmer will become clearer as the details of the Teamware category object model are
provided in the remainder of this paper.

Process Model Customization for Technical and Non-Technical Users



2.0 The Category Object Model

The desire to support non-technical users while allowing corporate- and project-specific
customizations is, to some extent, contradictory. Mechanisms allowing users to customize
many aspectsof a system are likely to add considerable complexity. Teamware's category
object model is designed to address this tension.

This section begins with an overview of thecategory object model. Thisis followed by
a technical description of the category model. The model is then compared to existing
object models such as class and metaclassmodels. An extendedexample illustrates use of
thecategory object model to support activities. The section concludes by briefly discussing
use of categories to support resources and artifacts.

2.1 Overview of the Category Object Model

The category model can be understood by analogy with two types of abstractions found in
programming. Language designers provide one set of abstractions by developing a high-
level language. These abstractions simplify the task of programmers using the language.
Programmers, while defining programs, develop a second set of abstractions by defining
procedures (procedural abstraction) and data types (data abstraction). Teamware provides
mechanisms for defining both these levels of abstractions.

The Teamware system programmer defines sets of activity, resource, and artifact
categories. These categories act as corporate- or project-specific abstractions. To the non
technical process programmer, they appear to be elements of the process programming
language. Thus, for example,a Teamwaresystemprogrammermight define three separate
activity categories, one for general assigned activities, one for meeting activities, and one
for review activities. The meeting activity category might encapsulate interaction with a
corporate meeting room scheduling program or interaction with team members' personal
calendar or personal information manager (PIM) systems. The review activity might
interact with the project's electronic mail system to automatically forward documents to
participants for review. In each case, the behavior of the category is defined by the system
programmer. From the process programmer's point-of-view, however, these three activity
categories are parts of a pre-defined programming language—the implementation of their
behavior is hidden from the process programmer.

Teamware provides a second set of abstractions, called specifications. This level of
abstraction corresponds to the procedures and abstract data types an application
programmerdefines as part of a program. The Teamware process programmer can define
an activity, resource, or artifact specification and use that specification in different places
within the process. Thus, for example, the process programmer could define an
"implement-module" activity specification. This specification would define the inputs,
outputs, and resources needed to implement a module. It might also include an activity
network defining the sub-activities needed to carry out the implementation. The process
programmer could then use this specification in different parts of the process, just as he or
she would define a procedure in a traditional programming language and then call that
procedure from different parts of a program. The same "implement-module" specification

Process Model Customization for Technical and Non-Technical Users 6



could be used as the activity defmition for the implementation of a system's "database"
module, the implementation of its "user interface" module, and the implementation of its
"arithmetic functions" module.

2.2 Technical Description of Category Object Model

The category object model has three major components: categories, specifications, and
instances. There is a one-to-many relationship between a category and a set of
specifications, and a one-to-many relationship between a specification and a set of
instances. A given specification is said to be based on a particular category. Similarly an
instance is said to be based on a particular specification.

2.2.1 Instances

Each object instance has an associated set of data values. These values are organized into
fields which are further divided into typed elements. Each element corresponds to a single
data value of the specified type. Each field can contain zero or more data elements.

Object instances communicate through the use of events and requests. In Teamware,
both events and requests provide point-to-point communications—each has a single sender
and a single recipient. Events occur asynchronously and allow data to pass from sender to
recipient. An event call can be viewed as a procedure call with input parameters only.
Requests are synchronous and data can pass from recipient to sender as well as from sender
to recipient. A request call can be viewed as a procedure call with both input and output
parameters.

2.2.2 Categories

Each category provides zero or more field schemas in order to define the fields present in
each corresponding instance. Field schemas can be one of three kinds:

Single-Element — A single-element field schema signifies that a field with a single
element may be present in each instance. Each single-element field schema must
include a field name, a field family (see below), and a field type. The schema also
indicates whether the field is required (i.e., present in all instances) or optional. In
addition the schema may include a default value.

Shared-Element — A shared-element field schema signifies that a single-element field
may be present in each instance. However, in this case, the value of the single-element
field will be shared by all instances that are based on the same specification (see
Section 2.2.3). Each shared-element field schema must include a name, a field family,
and a field type. It should indicate if the field is optional and may also provide a default
value.

Multi-Element — A multi-element field schema signifies that a field with multiple
elements will be present in each instance. The actual elements present in an instance is
determined by the instance's specification. Each multi-element field schema must
include a field name, a field family, and a field type.

Process Model Customization for Technical and Non-Technical Users



Each field's name is used to access the field and the element or elements within the field.
A field's type limits the type of values which can be stored in the field. The T\&\d family
determines how the Teamware interpreter interacts with the field and also acts as a
secondary means of accessing the element or elements within the field.

A category defines the event and request handling routines that its corresponding
instances will use in order to respond to event and request messages. These handlers are
procedures written in languages integrated with the Teamware system (Common Lisp in
the current prototype). The eventor request handler can perform the following actions:

• Access or modify the data element or elements in a given data field. Note, however, that
the event or request handler is not familiar with individual element names, only field
names. It can access the element corresponding to a single-element field, or it can
iteratively perform the same action on all elements in a multi-element field. It cannot,
however, selectively access or modify a particular individual element in a multi
element field.

• Access all data elements in fields based on a given field family and iteratively perform
the same action on them.

• Send events or requests to other objects (assuming that the instance has access to the
object).

• Explicitly call an event or request handler defined in one of the category's
supercategories (see discussion on inheritance below).

• Perform typical actions in the handler's language.

Categories form a multiple-inheritance hierarchy. Each category is based on zero or
more parent categories. Theparentcategories for a given childcategory arestrictly ordered
and form a category precedence listsimilar toCLOS' class precedence list [5]. A category
is said to be a subcategory of one or more supercategories. The multiple-inheritance
hierarchy must form a directed acyclic graph (DAG). A subcategory inherits all fields
defined in its supercategories. If multiple fields are defined with the same name, the field
from the highest precedence supercategory is used. A subcategory also inherits the event
and request handlers of its supercategories. When an instance receives anevent or request,
itscategory ischecked foranappropriate handler. If none is defined for thecategory itself,
the category's supercategories are checked, beginning with the highest precedence
category. The first handler found is used.

2.2.3 Specifications

Each specification is based on a category. The specification provides a field definition for
each field schema in its corresponding category. For a single-element field, if the field is
optional as described in the category, the specification determines whetheror not the field
will be present in corresponding instances. For a multi-element field, the specification
defines the actual elements which will bepresent. The specification provides a name and a
type for each element and may additionally provide a default value. The specification may
also provide values for shared-element fields defined in thecategory.

Process Model Customization for Technical and Non-Technical Users



2.3 Comparison between Categories and Other Object Models

The category object model differs considerably from existing object models.

In a traditional class model an instance's data and behavior are both determined by its
corresponding class. C++ [6], Smalltalk-80 [7], and Object Pascal [8] all follow this model.
In contrast, in the category model an instance's behavior is determined by its category, but
much of its data is determined by its specification. A category is also different from a
metaclass. In a class model with metaclasses (e.g., Smalltalk-80), each class is itself an
instance of a metaclass. At first glance, it appears that Teamware categories can be mapped
to metaclasses and Teamware specifications can be mapped to classes. However, the
analogy breaks down. Teamware specifications are designed to provide the non-technical
user with a simple model and thus do not define behavior. As a consequence, they cannot
be mapped to the classes designed for use by traditional programmers.

CLOS [5] follows a different approach. In CLOS, a class defines only the data found in
instances. In CLOS messages are not sent to particular recipients, instead a function is
called and the response is determined by the combined classes of its arguments. Teamware
behavior is organized by categories. Thus Teamware's behavioral model is much more
similar to the message/recipient model found in traditional classes.

Prototype-based models provide an alternative to the class approach. In a prototype
language (e.g.. Self [9], Garnet [10]), all data and behavioral information is stored in
instances. No classes or metaclasses are provided. The category object model is much
closer to class models as it includes categories and specifications which combine to provide
the definition for a set of instances.

2.4 Extended Example

The category object model will now be illustrated with an extended example.
Section 2.4.1 defines an activity category. Section 2.4.2 presents a specification based on
the category, and Section 2.4.3 describes an instance based on the specification.

2.4.1 Time-Limited Activity Category

The time-limited-activity category supports activities which must be completed
within a preset time limit. If the activities are not completed within the prescribed time
limit, the manager responsible for the activity is notified. The category's fields and events
and event handlers are summarized in Figure 2—this category has no requests or request
handlers.

Due to space restrictions, in this example, the time-limited-activity category is
defined as a stand alone category. In practice, the time-limited-activity category
would most likely be a subcategory of a more general assigned-activity category.
The time-limited-activity category would inherit most of its fields and event
handlers from the assigned-activity category, adding only timing specific
information and actions.

Process Model Customization for Technical and Non-Technical Users



Field Definition

The category uses a number of pre-defined field families (among several defined for all
activity categories):

Input-Family — Elements in input- family fields represent artifacts developed outside
of an activity which are needed to carry out the activity.

Output-Family — Elements in output-family fields represent artifacts produced (or
modified) by an activity.

Resource-Family — Elements in resource-family fields represent resources assigned
to the activity which are used to carry out the activity.

Other-Family — Elements in other-family fields are not directly accessed or
modified by the Teamware interpreter, but can be used by a category's event and
request handlers. However, as we shall see below, these handlers can explicitly pass the
field's contents to the interpreter.

Activity networks define the data flow relationships between an activity's inputs (as
determined by its fields based on input-family) and another activity's outputs (as
determined by its fields based on output-family). Activity networks also define the
relationship between the resources assigned to a parent activity (as determined by its fields
based on resource-family) and those assigned to its subactivities. During process
execution the Teamware interpreterensures that each activity instance receives the proper
data and is assigned the appropriate resources as determined by the activity network.

In addition to the pre-defined families above, a fifth family, the manager-family, is
defined for use in this example. This new family is added by the system programmer using
Teamware's family definition mechanisms (see [11] for more information on these
mechanisms). The manager-family inherits much of the characteristics of the
resource-family—the activity network can define the relationship between the
managers assigned to a parent activity and the managers responsible for each subactivity.
However fields based on the manager-family are distinct from fields based on the
resource-family; while a manager is responsible for an activity, he or she does not
necessarily participate in the activity itself.

Time-limited-activity category's fields can now be defined. Two specific data
elements must be present in every activity based on the time-limited-activity
category, they are (1) the manager of the activity and (2) the time limit of the activity.
Because these specific elements must be present, they will be represented by single-
element fields. The manager field will be of manager-family field family and type
team-member. The time-limit will be of other-family field family and type
integer. Both fields are required.

In addition to these specific data elements, activities based on the time-limited-
activity category will also have inputs, outputs, and personnel. However, in contrast to
the manager and time limit, the actual input, output, and personnel elements will vary from
activity specification to activity specification. Therefore, rather than representing them as
single-element fields, they will be represented by multi-element fields. The inputs.

Process Model Customization for Technical and Non-Technical Users



Category: Limited-Time-Activity
based on: None

Field Name Family
Type of
Element Comment

Manager Manager Team-

Member

Manager responsible for activity.

Time-Limit Other Time alloted before manager informed of
potential problem.

List of non-specialized input artifacts.

List of non-specialized output artifacts.

Inputs

Outputs

Personnel

Subnetwork

Event Handlers

Event Name

Enabled

Execute

Completed

Alarm-Tnggered

Input

Output

Resource

Artifact

Artifact

Team-

Member

List of team members.

Other Shared

(optional)
Activity-

Network

Activity network subdefinition for activity

Aotions

(1) Send Register-Alarm event to alarm system.
(2) Send self Execute event.

(1) Send resources Handle-Executing event.
(2) Check for subnetwork. If network exists, execute

(1) Send resources Handle-Completing event.
(2) Send Deactivate-Alarm event to alarm system.

Send e-mail message to Manager.

FIGURE 2 Limited-Time-Activity Category

outputs, and resources fields are of input-family, output-family, and
resource-family and types artifact, artifact, and team-member respectively.

Activities based on the time-limited-activity category may be further
subdefined with an activity network. In this simple example, the network used will be the
same for all activities based on the same specification. The network is therefore represented
as a shared-element field. The subnetwork field is of the other - family field family and
type activity-network. Because not all activity specifications will have a subdefinition
(some may be simple enough to be carried out directly) the field is optional. Note that the
one subnetwork per specification limitation is the choice of the category writer and is not
built into Teamware. The category could be defined, for example, to allow multiple
subnetworks for each specification with the actual network used chosen at run-time
depending on the activity's inputs.

Event and Event Handler Definition

Teamware interpreter supports a number of pre-defined events. The following three are
relevant for this example:

Enabled — Receipt of this event indicates that the activity may begin execution.
Depending on the event handler defined, activities which receive an enabled event
may begin execution or may perform some other action (informing the manager or
checking pre-conditions, for example).

Process Model Customization for Technical and Non-Technical Users 11



Execute — Receipt of this event indicates that the activity should begin execution. The
event handler defined should take whatever actions are necessary to ensure that the
activity is properly executed. The execute event handlermight, for example, inform
team members that they should begin an activity or it might, for a fully automatable
activity, carry out the execution.

Completed — The activity receives this event when the activity has been completed. The
completed event handler should perform cleanup and handle any other actions
needed to conclude the activity (for example, releasing allocated resources and, if
desired, informing managers that the activity has been completed). This event may be
generated by a team member, signifying completion of an assigned activity, or by an
external process responsible for carrying out a fully automated activity.

In addition to the support provided by Teamware itself, the Time-Limited-
Activity categorydependson the existenceof two external systems.First, it requiresthe
services ofan electronic mail system.^ For the purposes ofthis example, we assume that a
system programmer has integrated the company's e-mail system with Teamware, and that
a Teamware event can be used to send e-mail to a given team member. Second, because
Teamware does not include intrinsic timing constructs, an alarm system must be defined.
This example assumes that the system programmer has built a simple alarm system. This
system accepts a register-alarm message which includes parameters for the length of
time before an alarm should be sounded and the recipient of the alarm. In addition, the
alarm system accepts a deactivate-alarm message which removes a previously
registered alarm. When an alarm is triggered, the alarm system sends an alarm-
triggered event to the designated recipient. Standard operating system services such as
UNIX's cron can be used to implement these services.

The Time-Limited-Activity category's event handlers can now be defined. The
enabled event handler sends a register-alarm message to the alarm system with the
value of the instance's single-element time-limit field as the length of time and
designating the activity instance itselfas the recipient of thealarm-triggered message.
The event handler then sends the activity itself an execute event. Upon receiving an
execute event, the activity's execute event handler sends each element in the
resources multi-element field a handle-executing event. The resources' response to
this event will vary from resource type to resource type (i.e., a team member resource will
respond differently from a budget resource) with the actual response determined by the
resource's category. The execute event handler then checks if the activity has a
subnetwork shared-element field. If it does, the event handler explicitly passes the
subnetwork to the Teamware interpreter for execution, otherwise the resources (e.g., team
members) are solely responsible for carrying out the activity. When the activity receives a
completed event, it notifies each resource in the resource multi-element field and then

sends the alarm system a deactivate-alarm event. Finally, if the activity receives an

2. Different organizations will usedifferent e-mail systems. Rather than forcing a specific mail system on an
organization, Teamware allows system programmers to integrate Teamware with a company's existing e-
mail system. The e-mail system is therefore considered external to Teamware.

Process Model Customization for Technical and Non-Technical Users



: Implement-Module
Time-Limited-Activity

Specification
of Category:

Field Name Element Name Element Type

Manager Manager Team-Member

Time-Limit Time-Limit Integer

Inputs Requirements Text File

Outputs Code Text File

Test-Results Text File

Personnel Chief-Programmer Team-Member

Asst-Programmer Team-Member

QA-Programmer Team-Member

Subnetwork Subnetwork Activity-Network

FIGURE 3

FIGURE 4

Implement-Module Activity Specification

Code-f^odule

—•-O—
Develop-Tests

—•fii

Test-Module

Revise-Code

—(aW-

Graphical Representation of Implement-Module Activity Network

alarm-triggered event, it accesses the value of the manager single-element field and
sends an e-mail message noting the passage of the allotted time.

2.4.2 Implement-Module Specification

The Implement-Module specification defines how modules will be implemented in a
given project (see Figure 3). It is based on the Time-Limited-Activity category. The
process programmer fills in the elements of each multi-element field. Activity instances
based on the specification will have a single input (Requirements), two outputs (Code
and Test-Results), and three personnel resources (chief-Programmer, Asst-
Programmer, and QA-Programmer). In addition the Implement-Module specification
defines the value of the Subnetwork shared-element field. This network is graphically
depicted, sans data flow and resource assignments, in Figure 4. Space does not allow
discussion of issues involved or techniques used in Teamware which enable non-technical
users to effectively build a subnetwork (see [4]).

2.4.3 Database Module Implementation Instance

Figure 5 showsan instance based on the implement-Module specification. The instance
has no name because instances are anonymous unless the category explicitly includes a
name field. The instance defines the actual manager, time limit, input artifacts, output
artifacts, and personnel associated with a module implementation activity.

Process Model Customization for Technical and Non-Technical Users



Instance of [mplement-Moduie

Field Name Element Name Element Value

Manager Manager Mike-Brookings

Time-Limit Time-Limit 14 days

Inputs Requirements system/reqs/data.doc

Outputs Code system/code/data.ada

Test-Results system/tests/data.test

Personnel Chief-Programmer Chloe-Szkrybalo

Asst-Programmer Maria-Hemandez

QA-Programmer George-Sommerfield

FIGURE 5 An Activity based on the Implement-Module ActivitySpecification

2.5 Resource and Artifact Categories

While theprevious example illustrated useof thecategory object model foran activity, the
category model is also applicable to resources and artifacts. Resource categories, for
example, can be defined for meeting rooms, computers, and budgets. Artifact categories
can be defined to encapsulate a variety of behavior including security access (e.g., top-
secret, secret) and configuration management.

3.0 Comparison with Other
Process Systems

In the previous section, we have seen how the
Teamware category object model supports
definition of corporate- and project-specific
activity, resource, and artifact types and how
these types are made accessible to non-technical
users. In this section the support provided by
Teamware is compared to that found in other
similar process systems. The section begins with
an example highlighting the difference between
Teamware's category support for customization
and the more limited support found in some
graph-based process languages. This is followed
by a set of brief comparisons with specific
systems.

3.1 System Comparison Example

The difference between Teamware's approach to
customization and that found in other systems
can best be seen through an example. Figure 6
(taken from [12]) shows part of a SLANG
network defining a module coding activity. This

Process Model Customization for Technical and Non-Technical Users

module to

be edited

compiled
module

compilation
ok

ready
object code

^edit
request

cpmpilation
nbt ok

module being
tested

FIGURE 6 SLANG Network



network provides a good example of the kinds of customization supported by Process
Weaver, SLANG, or FTJNSOFT. The SLANG network represents a process to implement
a module. If the module implementation has not been completed in 5 days, the manager
will be sent e-mail. The network has a number of major limitations which are addressed by
the Teamware category object model.

The category object model provides better support for process reuse. For example, the
"limited time activity followed by e-mail to manager" behavior may be needed in several
different places in a process. In Process Weaver, SLANG, and FUNSOFT, repeating this
behavior in a different context requires the process specifier to duplicate the network in an
editor, and then to modify the copied network to fit the new situation. This procedure must
be repeated for every network inheriting the timing and e-mail behavior. Teamware
category mechanism, however, provides a method for encapsulating the behavior. A single
category can be defined and then reused in multiple contexts.

In both SLANG and FUNSOFT, the process specifier must be familiar with an
traditional programming language (e.g., C) in order to define the shaded transitions which
invoke the editor and compiler and to send e-mail. In Teamware, the tool invocation and e-
mail access can be encapsulated in an activity category (see [4] for an example of generic
tool invocation). The process specifier can simply specify the tools to execute and the team
member to which the e-mail should be sent, rather than worrying about the details of tool
invocation and e-mail system integration.

Process Weaver provides a number of pre-defined constructs including tool invocation
and interaction using a superset of the HP Softbench protocols. However, Process Weaver
does not provide a means of defining additional constructs at the Process Weaver language
level. Additional constructs can only be defined and accessed using the Co-Shell
language—a language comparable to UNIX shell languages in complexity. A timing
system, for example, is not provided in Process Weaver. An external system (similar to that
described in Section 2.4.1) can be defined in order handle this behavior. However,
interaction with this system will require the process specifier to directly access the timing
system via Co-Shell code. As we have seen in the limited-time-activity category
example, Teamware's category mechanism provides a level of abstraction which supports
time-limited behavior while hiding the timing system from the process programmer.

3.2 Additional Comparisons

This section describes additional similarities and differences between Teamware and three

graph-based process programming systems. In addition, Teamware is compared to PML,
an object-oriented process programming system.

Process Weaver

Process Weaver's default templates for terminal activities (see [13]) provide a few of the
capabilities of Teamware categories. Process Weaver, however, only supports the
definition of a single template, while Teamware provides for a potentially infinite number

ftocess Model Customization for Technical and Non-Technical Users



of templates. Moreover, Process Weaver's default template only supports terminal
activities whileTeamware categories can be used at any level in the activity hierarchy.

Process Weaver resources are limited to human team member; no support is provided
for defining new resource types. Process Weaver does not provide facilities for defining
artifact behavior comparable to Teamware artifact categories.

FUNSOFT

FUNSOFT's separation of jobs from agencies provides a first step towards supporting
abstraction on Teamware's level. However, as with Process Weaver, this only occurs at the
terminal activity level (as refined agencies do not have corresponding jobs). Moreover,
FUNSOFT jobs combine the properties of Teamware's categories and specifications into a
single entity. This means that either the manager works with a completely pre-defined set
of jobs, or the manager must be capable of defining new jobs. Unfortunately, the latter
option, as mentioned in Section 3.1, requires managers to be conversant in C. In contrast,
Teamware's activity specifications allow managers to define new "jobs" as long as their
behavior fits into that of a pre-existing category.

FUNSOFT only supports human resources. These resources are represented as roles,
which are essentially placeholders with no associated data or behavior beyond activity
assignment. FUNSOFT artifact types specify data only, no provisions are made for
defining custom behavior.

SLANG

SLANG does not explicitly represent resources (including team members). SLANG
artifacts are based on an object-oriented model and thus can include definition of data and
behavior. SLANG's object model, however, is based on traditional classes. No provisions
are made for shielding non-technical users from the complexities of behavioral definition.

PML

In contrast to the previously mentioned systems, PML [14] is object-oriented, rather than
graph-based. PML does not have activities in the same sense as the previouslymentioned
systems. Instead, each resource (role, in PML terminology), has a set number of
predefined activities (called actions) which it can perform. Unfortunately, definition of
each role requires the process specifier to understand a complex language—thus making
PML inappropriate for non-technical process specifiers. PML roles, can however, support
definition of both human and non-human resources. PML artifacts (called entities) appear
to support definition of data, but not behavior.

4.0 Validation Exercises

In order to validate the category object model, a number of typical usage scenarios were
identified and categories were then developed or modified to address the needs of each
scenario.

Process Model Customization for Technical and Non-Technical Users



Teamware's ability to automate parts of the process, for example, was demonstrated in
the development of a meeting activity category and meeting room resource category which
handle automatic scheduling of meetings, a review activity category which automatically
forwards review documents to team members, and an activity category which supports
fully automated activities. Teamware's ability to support a variety of organizations, ranging
from egoless groups to tightly-managed teams, was explored through development of a
variety of categories. These activity categories exhibit different reporting relationships,
depending on group structure. Categories supporting tool invocation show how the
category model can be used to hide details of the work environment from the process
programmer. Activity categories supporting pre-conditions demonstrate Teamware's
ability to provide different amounts of process specification sophistication.

These categories have been implemented in a prototype of the Teamware system built
on top of Common Lisp.

5.0 Conclusions

The Teamware category object model provides a means of defining corporate- or project-
specific custom behavior. The category abstraction hides implementation details of
complex behavior from non-technical process specifiers. This level of abstraction is not
found in existing process support systems. In addition, Teamware extends the work in
existing graph-based process system by allowing the user to define new resources and
artifact behaviors.

[1] C. Femstrom. Process Weaver: Adding Process Support to UNIX. In Proceedings of
the Second International Conference on the Software Process, 1993.

[2] Volker Gruhn. Validation and Verification ofSoftware Process Models. Ph.D. Thesis,
University of Dortmund, 1991.

[3] S. Bandinelli, A. Fuggetta, and S. Grigolli. Process Modeling in-the-large with
SLANG. In Proceedings of the Second International Conference on the Software
Process, 1993.

[4] P.S. Young. Customizable Process Specification and Enactment for Technical and
Non-Technical Users. Ph.D. Thesis, Department of Information and Computer
Science, University of California, Irvine, 1994.

[5] G.L. Steele, Jr. Common Lisp: The Language, Second Edition. Digital Press, 1990.

[6] B. Stroustrup. The C+-i- Programming Language, Second Edition. Addison-Wesley,
1991.

[7] A. Goldberg and D. Robson. Smalltalk-80: The Language and Its Implementation.
Addison Wesley, 1983.

[8] Think Pascal Object-Oriented Programming Manual. Symantec Corporation 1991.

[9] D. Ungar and R.B. Smith. Self: The Power of Simplicity. In OOPSLA '87
Proceedings, 1987.

[10] B.A. Myers, D.A. Giuse, and B.V. Zanden. Declarative Programming in a Prototype-
Instance System: Object-Oriented Programming without Writing Methods. In

Process Model Customization for Technical and Non-Technical Users



OOPSLA '92 Proceedings, 1992.

[11] P.S. Young. The Teamware Language Reference Manual, Version 1, 1994.
[12]S. Bandinelli, A. Fuggeta, C. Ghezzi, and S. Grigolli. Process Enactment in SPADE.

In Proceedings of the 2nd European Workshop on Software Process Technology,
1992.

[\3]Process Weaver: General Information Manual, Cap Gemini Innovation, 1992.
[14JR.F. Bruynooghe, J.M. Parker, and J.S. Rowles. PSS: A System for Process

Enactment. In Proceedings of the First International Conference on the Software
Process, 1991.

Process Model Customization for Technical and Non-Technical Users




