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Abstract

Background: All-versus-all BLAST, which searches for homologous pairs of sequences in a database of proteins, is used to
identify potential orthologs, to find new protein families, and to provide rapid access to these homology relationships. As
DNA sequencing accelerates and data sets grow, all-versus-all BLAST has become computationally demanding.

Methodology/Principal Findings: We present FastBLAST, a heuristic replacement for all-versus-all BLAST that relies on
alignments of proteins to known families, obtained from tools such as PSI-BLAST and HMMer. FastBLAST avoids most of the
work of all-versus-all BLAST by taking advantage of these alignments and by clustering similar sequences. FastBLAST runs in
two stages: the first stage identifies additional families and aligns them, and the second stage quickly identifies the
homologs of a query sequence, based on the alignments of the families, before generating pairwise alignments. On 6.53
million proteins from the non-redundant Genbank database (‘‘NR’’), FastBLAST identifies new families 25 times faster than
all-versus-all BLAST. Once the first stage is completed, FastBLAST identifies homologs for the average query in less than
5 seconds (8.6 times faster than BLAST) and gives nearly identical results. For hits above 70 bits, FastBLAST identifies 98% of
the top 3,250 hits per query.

Conclusions/Significance: FastBLAST enables research groups that do not have supercomputers to analyze large protein
sequence data sets. FastBLAST is open source software and is available at http://microbesonline.org/fastblast.
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Introduction

Protein BLAST (basic local alignment search tool [1]) is often

used to identify homologs for every sequence in the database, or

‘‘all-versus-all’’ BLAST. The resulting pairwise homologies are

used to annotate protein sequences, to identify potential orthologs,

and to identify new protein families. Another advantage of

running all-versus-all BLAST and storing the results is so that users

do not need to wait when they wish to view the BLAST results for

a protein of interest: BLASTing a single protein against Genbank

can take several minutes.

Unfortunately, all-versus-all BLAST is becoming computationally

intractable. Analyzing a single metagenomics data set of 28.6 million

protein sequences with all-versus-all BLAST required over 1 million

hours of CPU time [2]. A research group with a cluster of 100 CPUs

would have to wait over a year for the result. Because finding all pairs

of homologous sequences in a database of N sequences takes O(N2)

time, this problem will be even more severe in the future.

The sheer size of the output from all-versus-all BLAST is also a

problem, as this also grows with square of the size of the database. We

estimate that all-versus-all BLAST on the non-redundant subset of

Genbank (‘‘NR’’), which currently contains about 6.5 million proteins

and 2.2 billion amino acids, would generate 37 billion pairwise

homology relationships and 1.8 terabytes of tab-delimited output.

One way to reduce the computational time for BLAST is to cluster

similar sequences together first, as with CD-HIT [3]. CD-HIT uses a

greedy approach to cluster unaligned sequences, and it quickly tests if

two sequences are similar by counting the number of shared k-mers

before trying to align them. If CD-HIT compares two sequences and

finds that they are similar, it keeps the longer one as an ‘‘exemplar’’

for the cluster, and it need not compare the shorter one to other

sequences. Thus, CD-HIT takes O(NM) time, where N is the number

of sequences and M is the number of resulting clusters.

CD-HIT is orders of magnitude faster than BLAST for

identifying sequences that are 65–99% identical. (CD-HIT can

cluster at lower identity thresholds as well, but not as quickly.) As

of July 2008, clustering the 6.23 million known proteins at 50%

(‘‘uniref50’’, ftp://ftp.ebi.ac.uk/pub/databases/uniprot/uniref/

uniref50) yields 1.99 million clusters. We estimate that computing

these clusters required over 10,000 CPU-hours (scaling by O(NM)

from test runs or from the results of [4]). Even after clustering,

running all-versus-all BLAST on uniref50 would take another

<6,000 CPU-hours (data not shown).

Another alternative to all-versus-all BLAST is to compare the

sequences to models of known families instead of to each other. Each

family is typically described by a position-specific PSI-BLAST matrix

[1,5] or a hidden Markov model (HMM) [6]. PSI-BLAST profiles

and HMMs are available for many protein families [7,8]. Comparing
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sequences to known families scales much better than all-versus-all

BLAST: it takes O(NF) time, where F is the number of models

(currently about 53,000 between InterPro and COG combined).

Unfortunately, the standard tools for HMM search, such as

HMMer 2.3 (http://hmmer.janelia.org), are about 50 times slower

than BLAST or PSI-BLAST (data not shown). PSI-BLAST is

much faster than HMMer because it uses an index of k-mers to

find short matches, and it only considers alignments around

regions that contain two such short matches. HMMer 3 (due in

late 2008) will also use this type of heuristic and is expected to be

about 200 times faster than HMMer 2, or even faster than PSI-

BLAST (http://hmmer.janelia.org). In the meantime, we use

FastHMM to quickly identify members of known families (http://

microbesonline.org/fasthmm). FastHMM uses PSI-BLAST with

sensitive settings to find candidate members of a family and then

uses HMMer 2 to select true hits and to align those candidates to

the HMM. FastHMM is about 30 times faster than HMMer 2.3

and the resulting hits cover 98% of the amino acids that the

HMMer hits cover (Supplementary Table S1).

The key limitation of the known families is that they are not

complete: some proteins belong to families that are not yet

described by a PSI-BLAST profile or an HMM. There are also

some families that are so diverse that they are difficult to model

accurately, and some members of these families are likely to be

missed by the models. In practice, about a third of sequenced

proteins have BLAST homologs that are not described by the

families (see below). Thus, to find all of the homology

relationships, BLAST is still required.

Results

Our Approach
We have developed FastBLAST, a more scalable replacement

for all-versus-all BLAST. FastBLAST starts with members of

known families and with a multiple sequence alignment for each

family. FastBLAST uses the known families and their alignments

to avoid doing unnecessary work, and it uses fast clustering to

further reduce the amount of work.

The known families allow us to avoid work because they already

capture most of the homology relationships. Two genes that

belong to the same family are homologous, and there is no need to

run BLAST to discover this. Conversely, most pairs of genes are

not homologous, so we assume that if two genes belong to different

families, then there is no need to compare them. We will show that

this assumption works well in practice. Although the HMMs are

imperfect, if two homologous regions are misclassified into

different families by one source of models, they will usually be

classified as homologs by a model from another source or by one

of the additional families that FastBLAST creates.

FastBLAST runs in two stages (Figure 1). First, it identifies ‘‘ad

hoc’’ families that capture homology relationships that are missed

by the known families. These ad hoc families are based on ‘‘seeds,’’

or unassigned regions that do not belong to any known family.

The members of an ad hoc family are the homologs (from BLAST)

of the seed. FastBLAST uses fast sequence clustering to identify

these ad hoc families and their members quickly and to reduce the

number of seeds. In the first stage, FastBLAST also creates

multiple sequence alignments for the ad hoc families.

In the second stage, FastBLAST quickly finds the top homologs

for a given gene by inspecting the alignments for the families that

the query belongs to (both known families and ad hoc families).

FastBLAST runs BLAST on just those top homologs instead of on

the entire database. Thus, FastBLAST produces the same bit

scores and pairwise alignments that NCBI BLAST does, and in the

same output formats. However, if the families or their alignments

are misleading, then FastBLAST may not identify all of the

homologs that BLAST identifies.

Notice that we compute ‘‘top’’ homologs, rather than all

homologs. Like BLAST, FastBLAST has a parameter that defines

the number of homologs that are desired. However, unlike

BLAST, FastBLAST runs more quickly if fewer homologs are

desired. We recommend limiting the number of homologs

identified to 1 per 2,000 sequences in the database: this should

include all potential orthologs and all sequences with well-

conserved functions. More distant homology relationships are

better described using the domain families rather than with

pairwise alignments. Our limit of 1/2,000 may not seem stringent,

but some proteins are homologous to over 1/100 of all proteins

(e.g., gi 16121781 has 107,873 homologs at 45 bits or above,

which represents about 2% of Genbank NR).

Below, we describe FastBLAST in more detail, especially the

key steps of identifying ad hoc families and selecting the top

homologs of a gene. We then report the results of testing

FastBLAST on NR.

Identifying Families. FastBLAST begins with known

families and their alignments. FastBLAST can use families from

any source that allows us to align the members to the family (e.g.,

HMMer or PSI-BLAST). In practice, we use raw HMM hits, as

identified by FastHMM, to the families in Gene3D, PANTHER,

Pfam, PIRSF, SMART, SUPERFAMILY, and TIGRFAMs [9–

15]. We also use PSI-BLAST hits to COGs [8,16]. For each family

in the input, FastBLAST creates a multiple sequence alignment

based on the profile-sequence alignments from FastHMM or PSI-

BLAST. Positions that match the same profile position are aligned

to each other, and positions that do not match the profile are

removed. (In other words, insertions in the sequences, relative to

the profile, are trimmed from the alignment.)

To identify the remaining families, FastBLAST finds homologs

for unassigned regions that do not belong to any of the known

families. The intuitive idea is to cluster the unassigned regions to

obtain sequences that are potential seeds for new families, to use

BLAST to find homologs for the seeds, and to create multiple

sequence alignments for the resulting ad hoc families from the

pairwise alignments to the seeds. If the HMMs were perfect

models of the families, then we would only need to compare the

seeds to other unassigned regions, but in practice, we need to

compare the seeds to members of known families as well.

FastBLAST uses clustering to reduce the number of sequences

within the known families before it does this comparison.

The data flow of FastBLAST is shown in Figure 1. First,

FastBLAST identifies unassigned regions that do not belong to any

of the known families.

Next, to identify redundant sequences in the unassigned regions,

FastBLAST uses CD-HIT [3] and BLAST. FastBLAST runs CD-

HIT in two passes, first to cluster at 90% identity (with 5-mers) and

then to cluster at 65% identity (with 4-mers). FastBLAST runs all-

versus-all BLAST on the exemplars of the CD-HIT clusters and

greedily clusters together sequences that are over 40% identical

(see Methods for details). The sequences that remain after BLAST-

based clustering are potential seeds for ad hoc families, and the

BLAST hits (if any) of these seeds are members for these ad hoc

families.

To identify redundant subsequences among the regions that

belong to known families, FastBLAST uses a greedy approach to

identify clusters of similar sequences. This method is similar to

CD-HIT, but instead of counting k-mers, FastBLAST estimates

sequence identity from the multiple sequence alignment. Fas-

tBLAST clusters together sequences whose aligned positions are

FastBLAST
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over 33% identical (see Methods for details). FastBLAST also

chooses an exemplar from each cluster. If overlapping regions of

the same gene are exemplars for different families, then

FastBLAST merges those regions. This is helpful because the

databases of known families are highly redundant and many

families overlap. For a given family, FastBLAST’s alignment-

based reduction is over an order of magnitude faster than CD-

HIT and also gives a greater reduction (data not shown). Over all

the families, FastBLAST should be even faster because Fas-

tBLAST only does comparisons within each family and need not

compare members of different families to each other.

FastBLAST then uses BLAST to compare the non-redundant

subset of unassigned regions (the seeds) to the merged non-

redundant members of known families. Once this is complete,

FastBLAST has homologs for the seeds from the seed’s CD-HIT

cluster, from the non-redundant unassigned regions, and from the

merged non-redundant members of known families. Each unas-

signed region that has homologs other than itself (either from

BLAST or from CD-HIT) is considered to define an ad-hoc family.

FastBLAST estimates the members of each ad hoc family by

collecting the members of the seed’s cluster, the seed’s homologs,

and the members of those homologs’ clusters. FastBLAST then

uses BLAST to compare each seed sequence to all of these

potential members of the ad hoc family. This verifies that the

genes are homologous to the seed and also gives pairwise

alignments to the seed. Much like with the known families,

FastBLAST uses these pairwise alignments to generate multiple

sequence alignments. The final output of the first stage of

FastBLAST comprises alignments for both known and ad-hoc

families, the list of families for each gene, and indexes for rapid

access to the list of families for a gene or to the alignment for a

family (see Methods).

Selecting Top Homologs. To identify the top homologs of a

gene, FastBLAST relies on the known families, the ad-hoc

families, and the alignments. Naively, one could just select all

potential homologs – genes that share a known family or an ad-

hoc family with the query gene – and use BLAST to create

pairwise alignments and select the top hits. This scheme works well

for most genes, but for genes with very large numbers of homologs,

it takes a long time to compute all the pairwise alignments.

To reduce the number of potential homologs considered,

FastBLAST uses a heuristic based on the families’ multiple

sequence alignments. The assumption is that the top homologs of

the gene should be top homologs according to the alignments. The

Figure 1. Overview of FastBLAST.
doi:10.1371/journal.pone.0003589.g001

FastBLAST

PLoS ONE | www.plosone.org 3 October 2008 | Volume 3 | Issue 10 | e3589



alignments are imperfect and also do not cover all positions of the

sequences, but we will show that this assumption works well in

practice. FastBLAST computes a BLAST-like alignment score for

the pairwise alignments between the query and its homologs that

are implied by the families’ alignments, and it selects the top 2.5h

homologs, where h is the desired number of top homologs and 2.5

is an arbitrary safety factor.

Another complication is that some genes belong to many

families with overlapping membership. In particular, the SUPER-

FAMILY and Gene3D databases contain many HMMs with

overlapping specificity. The ad-hoc families are also likely to be

redundant, as we only cluster the seeds to 40%. Thus, to save time,

FastBLAST considers only the top few families for each region

based on the bit scores of the hits (see Methods for details).

Once FastBLAST has selected the potential top homologs, it

obtains their sequences from the BLAST database and runs

BLAST to compute pairwise alignments and bit scores.

Testing FastBLAST on NR
Performance of the First Stage on NR. To demonstrate

that FastHMM and FastBLAST scale to large data sets, we ran

them on the non-redundant Genbank database (‘‘NR’’). As of May

15, 2008, NR contained 6.53 million sequences of an average

length of 342 amino acids, for a total of 2.23 billion amino acids.

FastHMM identified members of known families in 8,552 CPU-

hours; the time for PSI-BLAST to find hits to COGs was

negligible, under 400 CPU-hours; and the first stage of

FastBLAST took 5,509 CPU-hours. Together, these jobs took

about 8 days to complete on a computer cluster with 160–192

CPUs available.

Most of the CPU time for the first stage of FastBLAST was in

reducing the known families (<1,000 CPU-hours), reducing the

unassigned regions (<1,500 CPU-hours), and comparing the

potential seeds to the reduced regions from known families

(<2,300 CPU-hours). The third round of BLAST (aligning the

seeds to the expected members of the ad hoc families) took less

than 300 CPU-hours. The non-parallel steps took a total of

23 hours. The main bottlenecks were the two passes of CD-HIT

clustering on the unassigned regions, which took a total of

15 hours. Optimizing the parallel version of CD-HIT might

eliminate this bottleneck (we did not use the parallel version of

CD-HIT because it did not reduce the elapsed time).

To compare the performance of FastBLAST to that of all-

versus-all BLAST, we ran BLAST with 3% of NR as the query

and NR as the database. This took 3,794 CPU-hours, so we

estimate that all-versus-all BLAST on NR would take 3,794/

0.03<126,000 CPU-hours, or 23 times more work than the first

stage of FastBLAST. This comparison does not include the time

for FastHMM and PSI-BLAST to compare the database to the

known families, but we think that this is justified because the family

homologies are of great value in themselves.

We can estimate how much less work FastBLAST does, as

compared to all-versus-all BLAST, from the size of the reduced

forms of the NR database (Table 1). FastBLAST uses BLAST to

compare the unassigned regions, clustered at 65%, to each other

(14.1%?14.1% = 2.0% of the work of all-versus all BLAST).

FastBLAST then compares the BLAST-clustered unassigned

regions to the clustered/merged representatives of known families

(11.3%?31.3% = 3.5% of the work of all-versus-all BLAST). The

total work is 5.5%, so we would expect FastBLAST to be 18-fold

faster (not considering the additional overhead of finding clusters,

etc.). We believe that FastBLAST outperforms this theoretical

speedup because there are relatively few significant alignments to

find once the known families and the closely related sequences

have been removed. FastBLAST produces only 17.8 million hits

during the reduced BLAST runs, and 17.4 million total entries in

the ad-hoc families, while all-versus-all BLAST would produce

37.1 billion hits. As the databases become larger and more

redundant, the relative speed of FastBLAST should increase

further, because the number of clusters should grow more slowly

than the total database size.

The first stage of FastBLAST was much faster than using CD-

HIT to reduce the data set (we estimate that CD-HIT would take

tens of thousands of CPU-hours) and about as fast as running all-

versus-all BLAST on a reduced data set (we estimate that all-

versus-all BLAST on uniref50 would take 6,000 CPU-hours).

FastBLAST is faster than running CD-HIT on the entire data set

because it does not compare sequences from different families to

each other and because it uses a faster method to cluster sequences

within a family.

Table 1. FastBLAST reduction of NR.

Step
in Fig. 1 Subset

%Identity Threshold for
Clustering

Sequences
(millions)

Size (billions of
amino acids)

Relative
size

Alignments
(millions)

– All sequences None 6.53 2.23 100.0% –

1 Known families None – 1.72d 77.2% 214.7

5 Known familiesa 33% 2.28 0.70e 31.3% –

2 Unassigned regionsb None 2.93 0.48 21.4% –

– Unassigned regionsc 90% 2.20 0.37e 16.6% –

3 Unassigned regionsc 65% 1.86 0.32e 14.1% –

4 Unassigned regionsc 40% 1.49 0.25e 11.3% –

8 Ad-hoc families None – 0.65d 29.2% 17.4

– All families None – 2.13d 95.7% 232.1

aSequence clusters from known families (clustered at 33% identity and merged).
bAll ‘‘unassigned’’ regions of at least 30 amino acids that do not belong to any of the known families. FastBLAST ignores short linkers between two regions that belong

to known families.
cSequence clusters not from known families, clustered with CD-HIT or by analyzing BLAST hits.
dTotal number of amino acids that belong to any of these families. Because of overlapping hits to families, this is far less than the total length of all the alignments.
eTotal length of the exemplars of the clusters.
doi:10.1371/journal.pone.0003589.t001
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Performance and Accuracy of the Second Stage on

NR. To test the second stage of FastBLAST, we used both

FastBLAST and BLAST to identify the top 3,250 hits for 2,000

randomly selected members of NR. (3,250 is 1/2,000 of the genes

in NR.) BLAST took 40.8 seconds per query, while FastBLAST

took 4.74 seconds per query, or 8.6 times faster. We believe that

this is fast enough for interactive use (instead of pre-computing

BLAST hits for every query). Among hits with scores of at least 70

bits, FastBLAST found 97.9% of the hits that BLAST found. As

shown in Figure 2, FastBLAST correctly identified the top hit for

every query (if the query had any homologs) and identified all

3,250 top homologs for all but 10.8% of the queries. For most of

the remaining queries, the missed hits are weak or far down in the

list. Thus, we doubt that the missed hits would be orthologs or

would be useful for annotating the query’s function.

If we did not use the ad-hoc families to select potential homologs

(e.g., did not perform the first stage of FastBLAST) then the results

would be dramatically worse: 33.4% of queries would have missing

hits and 12.7% of queries would miss their top hit. This illustrates

that although the known families capture the majority of the

homology relationships, there are many additional relationships

that are only captured by the ad-hoc families.

We examined in more detail the four queries for which

FastBLAST missed a hit that was within the top 10 hits and over

100 bits. These queries and their worst missed hit are listed in

Supplementary Text S1. One of the top hits would have been

missed by other approaches to reduce the work of BLAST by

clustering: a hit from A to B was missed because we clustered B

with C, and B and C are 41% identical over the relevant region,

and yet A does not hit C. For another top hit, the homologous

regions identified by BLAST are repeats of VxSxxHGT. The two

repeats have expanded independently, so we are not even sure if

the sequences are truly homologous, even though the alignment

score is 160 bits. The remaining two cases were relatively weak hits

(108 and 103 bits) that were not captured by the alignments to

known families. Improvements to the HMM search tools could

eliminate these misses.

Discussion

Future Work
FastBLAST Features. The major feature that FastBLAST

lacks is the ability to identify homologs for a query that is not in the

database. If you have a large number of new sequences, such as

newly sequenced genome(s), then FastHMM and FastBLAST can

efficiently add the new sequences to an existing database (see

Methods). However, FastBLAST does not have a way to quickly

find homologs for a single new query. In principle, this could be

done by comparing the query to the known and to the ad-hoc

families, and then using the resulting alignments to select potential

homologs. A query can be compared to ad-hoc families by running

BLAST against the seeds of the ad-hoc families, which is much

faster than running BLAST against the entire database (data not

shown). However, we do not know of an efficient way to compare

a single sequence to the known families. We experimented with

using reverse PSI-BLAST to do so, followed by confirming hits

with HMMer, but this was not much faster than running BLAST

against the database (data not shown). With the expected

performance gains from HMMer 3, this approach may become

more attractive.

For gene-finding and for annotating metagenomics data, it is

desirable to use nucleotide sequences as queries, as in blastx [17].

Significant speed-ups over blastx might be achieved by comparing

the six-frame translation of the query to the known families (e.g.,

with the nucleotide mode of reverse PSI-BLAST) and then

masking out regions that have strong hits to a known family (e.g.,

analyzing those regions in only one frame).

Performance Improvements. It may be possible to speed

up the second stage of FastBLAST significantly. Identifying

potential homologs by inspecting the alignments of the families

takes an average of only 0.8 of the 4.7 seconds per query. Most of

the time is spent retrieving the sequences of the candidate

homologs and aligning them with BLAST. Retrieval time could be

greatly reduced by using an in-memory database instead of using

fastacmd to retrieve them from a BLAST database. The time to

align the homologs to the query might be reduced by using the

alignments implied by the families as a starting point to search for

local alignments, instead of using BLAST to realign the homologs

to the query.

In the first stage of FastBLAST, it should be possible to further

reduce the members of known families. On NR, the clusters from

known families are somewhat redundant because cluster exem-

plars are chosen separately for each family, and the families

themselves are redundant. Because similar exemplars will be

members of each others’ clusters, it may be possible to identify

these redundancies efficiently. However, comparing the potential

seeds to the known families was only 45% of the CPU time for the

first stage, so further reductions of the known families would not

yield a dramatic performance improvement.

A more promising approach to speeding up the first stage might

be to improve the models of known families. Many of the seeds are

probably unrecognized members of known families: about a third

of the regions that are members of ad hoc families are covered by

known families as well. Devising PSI-BLAST profiles for the larger

of the ad hoc families might also improve coverage: about half of

the hits to ad hoc families are from families with over 100

members, and these larger ad hoc families amount to only

<27,000 seeds. Identifying homologs for these seeds would take

around 300 CPU-hours and would reduce the uncovered regions

by around 25%, which should give a corresponding reduction in

effort during the first stage (<1,400 CPU-hours of savings).

FastBLAST would also need to reduce these additional families,
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Figure 2. FastBLAST misses mostly low-ranking hits and/or
weak hits. We show the cumulative proportion of queries that have a
miss within the top n hits. Note the log-scale for the x axis. The highest
proportion is 10.8% because FastBLAST identified all of the top 3,250
homologs at 70 bits or greater for the other 89.2% of queries. We also
show results if only higher-scoring hits are considered.
doi:10.1371/journal.pone.0003589.g002
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but the CPU time would be negligible, as these additional families

have an average of only 325 members.

Orthologs. Besides functional annotation, a major use of

BLAST hits is to identify potential orthologs. Orthologs are usually

identified from bidirectional best BLAST hits, which requires

doing all-versus-all BLAST. Although the resulting orthologs are

often spurious [18,19], more careful clustering-based analyses of

the BLAST hits yield better results [20,21]. Nevertheless, all-

versus-all BLAST will not scale to thousands of genomes, because

both the CPU time and the disk space required grow quadratically

with the number of genomes.

Instead, we recommend building a phylogenetic tree for every

family (including the ad-hoc families), and then using the trees to

identify potential orthologs and to propagate annotations (e.g.,

[22]). Although some families now have over 100,000 members,

trees of this size can be constructed in a few hours of CPU time

(http://www.microbesonline.org/fasttree). A potential challenge is

to reconcile the results from multiple families: the average gene in

NR belongs to 33 known families and 2.7 ad-hoc families.

Conclusions
We have shown that FastBLAST scales to databases with

millions of proteins. The first stage of FastBLAST identifies

additional families over 20 times faster than all-versus-all BLAST.

These additional families should be useful for improving the

databases of sequence families, either to suggest new families to

add or, if the ad-hoc family overlaps with a known family, to

improve the model of the family.

The second stage of FastBLAST identifies homologs for the

average protein in NR in an average of five seconds, which

supports rapid browsing of the sequence databases and eliminates

the need to pre-compute BLAST hits. Although FastBLAST

misses some of the homologies that are found by traditional

BLAST, these tend to be weak or low-ranking hits. In many

applications, these misses will not matter. Furthermore, Fas-

tBLAST finds most of the homologies that are not represented in

the protein family databases. As the family databases improve, the

sensitivity of FastBLAST and its speed relative to that of BLAST

should also improve.

In combination with performance improvements to HMM

search (e.g., FastHMM or HMMer 3) and with scalable methods

for constructing phylogenetic trees (e.g., FastTree), FastBLAST

enables a wide variety of analyses on large protein sequence

databases, such as identifying orthologs, studying evolutionary

histories, and predicting protein functions. All of these tools run in

less than O(N2) time, and so it should continue to be feasible to run

these analyses on a modest-sized computer cluster, despite the

rapid growth of the sequence databases.

Source code for FastHMM and FastBLAST and results for the

May 15 2008 release of NR are available at http://microbesonline.

org/fastblast. FastBLAST is also being incorporated into the

MicrobesOnline web site.

Materials and Methods

FastBLAST implementation
FastBLAST is mostly implemented in Perl. Two performance-

critical steps are implemented in C: clustering the sequences in a

family’s alignment and identifying top hits to a gene given a

family’s alignment. FastBLAST requires about as much memory

as the size of the database (about 2 GB for NR). During the first

stage of FastBLAST, we use UNIX sort to avoid using a database

or loading large data sets into memory. For the second stage of

FastBLAST, which requires quick access to the alignment for a

family and the families for a gene, FastBLAST uses BerkeleyDB, a

light-weight open-source database, to store the indexes (http://

www.oracle.com/technology/products/berkeley-db).

The first stage of FastBLAST is highly parallel and uses

SunGridEngine’s qmake, a variant of GNU make, to coordinate

the execution of the jobs. If your compute cluster does not support

parallel make, you can still use GNU make to generate lists of

independent commands at each step.

FastBLAST reduction
Here we give technical details of the reduction steps. When

identifying unassigned regions, FastBLAST ignores unassigned

stretches of #30 amino acids, as these short stretches are of limited

use for finding homologs.

When using BLAST to cluster the unassigned regions, FastBLAST

examines the results of all-versus-all BLAST (in arbitrary order). If the

subject is over 40% identical to the query and the alignment covers at

least 80% of the subject, then the subject is clustered with the query,

and any homology relations involving the subject will be ignored. To

ensure that a sequence that has homologs is not removed,

FastBLAST keeps track of which sequences have been removed

due to which exemplars. For example, if B is clustered with A, and

then A is clustered with C, FastBLAST checks that B is a homolog of

C before ignoring A and its homologs.

When clustering sequences within a family’s alignment,

FastBLAST analyzes the sequences with the fewest gaps first,

and always uses the longest (fewest-gaps) sequence as the

exemplar. (This is analogous to CD-HIT analyzing the longest

sequences first.) When FastBLAST compares a potential cluster

member to an exemplar, it ignores positions that are gaps in both

sequences or just in the potential member (these can be thought of

as truncations). Positions that are gaps in the exemplar but not in

the potential cluster member are counted as differences. The

member is assigned to the cluster if the two sequences are over

33% identical. To eliminate problems due to domain shuffling,

FastBLAST also requires that both the N- and C-terminal 40

amino acids of the aligned regions be at least 30% identical.

Selecting top homologs
To select candidates for the top homologs for a query,

FastBLAST examines alignments for the query’s families.

However, to save time, FastBLAST does not examine every

family’s alignment. FastBLAST uses all hits from PFam,

TIGRFAMs, SMART, and PIRSF, and the best hit from COG.

FastBLAST adds other hits (best bit score first) until it reaches two

hits to known families per region. Similarly, FastBLAST uses up to

two hits to ad-hoc families per region. FastBLAST considers two

hits to be potentially redundant if they overlap by more than 50%.

Adding sequences to a FastBLAST database
Suppose that you already have a large FastBLAST database and

you wish to add newly sequenced genomes to it. The first step is to

run FastHMM and FastBLAST on the new sequences. Then, you

can use the merge feature of FastBLAST to merge the two

FastBLAST databases.

During a merge, FastBLAST uses BLAST to compare the

potential seeds from the first database (the non-redundant subset

of unassigned regions) to the non-redundant subset of the second

database (including both unassigned and assigned regions), and

vice versa. This gives potential new members of ad-hoc families,

including hits for potential seeds that did not have homologs

within their own database. Then, FastBLAST selects additional

potential members for these ad-hoc families, based on the clusters.

FastBLAST also removes redundant families: if seed sequence A

FastBLAST
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for an ad-hoc domain from the second database is at least 45%

identical to seed sequence B for an ad-hoc domain from the first

database, and if the alignment covers at least 85% of A, then ad-

hoc domain A is removed and its members are considered as

candidates for ad-hoc domain B. Given the candidates,

FastBLAST uses BLAST to confirm the membership of the

sequences in the ad-hoc families and to align them to the seeds.

Finally, it combines the alignments from the original FastBLAST

databases with the new alignments to produce a new FastBLAST

database. Because FastBLAST’s merge operates on reduced sets of

sequences as ordinary FastBLAST does, it should give a similar

speed-up over BLAST and similar accuracy.

To test FastBLAST merge, we ran it on a randomly selected

25% and 2.5% of NR. The merge took 122 CPU-hours for the

BLAST steps, followed by an hour for combining the databases. In

contrast, we estimate that BLASTing one database against the

other would have required about 790 CPU-hours. To verify that

the resulting database was correct, we ran FastBLAST on the

combined set of sequences as well, and we selected top homologs

for 2,000 genes using either FastBLAST database. The two

databases produced very similar results: for example, if we

considered only the top 100 hits and only hits at 100 bits or

higher, then for 99.5% of the queries, FastBLAST with the

merged database found all of the hits that were found by

FastBLAST with the combined database.

Identifying known families with FastHMM
To force PSI-BLAST to find very weak homologs, FastHMM

uses blastpgp with the options ‘‘-z 1e8 -Y 1e8 -e 10 -v 1000000 -

b 1000000.’’ The -Y option reduces the search space size and

hence PSI-BLAST will try to extend pairs of very weak hits. After

identifying candidate members of families with PSI-BLAST,

FastHMM uses fastacmd to extract the full gene sequences and

HMMer’s hmmsearch to validate the hits. FastHMM uses the -Z

option to scale the E-values up by the number of families within

each database. FastHMM’s thresholds are similar to those of

InterProScan: for Pfam, the gathering cutoff defined by the

curators; for TIGRFAMs, the trusted cutoff; for SMART, per-

protein ; for GENE3D and PANTHER, E,0.001; for SUPER-

FAMILY and PIRSF, E,0.02. For some families, blastpgp has

poor sensitivity, so FastHMM simply runs hmmsearch against all

sequences.

To find regions that are homologous to COGs, we used reverse

PSI-BLAST with an E-value cutoff of.

Computers
We ran FastHMM and the first stage of FastBLAST on a cluster

with 48 nodes and 192 CPUs. Each node has two dual-core 2.2 GHz

Opteron CPUs and 8–16 GB of RAM. We also ran HMMer on 3%

of NR and BLASTed 3% of NR versus NR on this cluster.

We ran the second stage of FastBLAST, and the corresponding

BLAST runs of those queries against NR, on a computer with a

2.4 GHz Intel Q6600 quad-core CPU and 8 GB of RAM. Both

runs used a single thread of execution. We did not use the cluster

because the nodes have only 60 GB of local disk space available,

and the FastBLAST database for NR requires 79 GB (mostly for

the alignments of the families). Because many of the family

alignments are quite large (tens of megabytes), running these

queries in parallel on the cluster would have overwhelmed the

cluster’s file server.

Versions of protein families and of software
We used NCBI BLAST version 2.2.17, HMMer 2.3.2, and CD-

HIT 2007. We used COG from Oct. 2006, Pfam version 20.0,

TIGRFAM version 6.0, SMART 06_07_2006, Panther version

6.0, PIRSF from Dec. 7 2006, SUPERFAMILY version 1.69, and

Gene3D from Dec. 11 2006.

Settings for BLAST
We ran BLAST with composition-based statistics (the default for

version 2.2.17), an effective database size of 108, an E-value cutoff

of 0.001 (corresponding to a minimum alignment score of 42 bits),

and an unlimited number of hits. We masked low-complexity

sequences for look-up but not for alignment (-F ‘‘m S’’).

Supporting Information

Table S1 Comparison of FastHMM to HMMer 2.3 on 3% of

NR

Found at: doi:10.1371/journal.pone.0003589.s001 (0.02 MB

PDF)

Text S1 Homology Relations Missed by FastBLAST

Found at: doi:10.1371/journal.pone.0003589.s002 (0.03 MB

PDF)
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