
UC Davis
UC Davis Electronic Theses and Dissertations

Title
Advancing Reinforcement Learning: Multi-Agent Optimization, Opportunistic Exploration,
and Causal Interpretation

Permalink
https://escholarship.org/uc/item/88h744ps

Author
Wang, Xiaoxiao

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/88h744ps
https://escholarship.org
http://www.cdlib.org/

Advancing Reinforcement Learning: Multi-Agent Optimization, Opportunistic Exploration, and
Causal Interpretation

By

XIAOXIAO WANG

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Xin Liu, Chair

Zhi Ding

Prasant Mohapatra

Committee in Charge

2024

i

© Xiaoxiao Wang, 2024. All rights reserved.

Abstract

Reinforcement learning (RL), a critical subfield of machine learning, effectively models sequen-

tial decision-making scenarios for agents operating in various environments. Despite its extensive

applications, RL encounters significant challenges in real world settings, particularly regarding lim-

ited data availability, the exploration-exploitation trade-off, and the lack of explainability. In this

dissertation, I explore these issues through three distinct lenses. Firstly, I improve data efficiency

in situations involving multiple agents or tasks [1,2,3]. Secondly, I propose opportunistic learning

algorithms in environments with varying exploration costs [4, 5]. Thirdly, I interpret the agent’s

learned policy through causal explanations [6,7].

The following sections outline the contributions. Initially, I study online global optimization

in multi-agent situations. Cellular network configuration is a suitable application area experienc-

ing these challenges, including the scarcity of diverse historical data, constrained experimental

budgets imposed by network operators, and highly complex and unknown network performance

functions. To overcome these challenges, I introduce an online-learning-based joint-optimization

algorithm combining neural network regression with Gibbs sampling, which considerably outper-

forms distributed Q-learning in overall performance and ramp-up time. By leveraging similarities

among tasks/base stations, I propose a kernel-based multi-task contextual bandit algorithm with

the similarity estimated via conditional kernel embedding. These algorithms notably outperform

the default cellular network configuration and the respective baseline algorithms.

Next, I focus on opportunistic learning, where the exploration cost in RL varies based on differ-

ent environmental conditions. Given that exploration cost directly impacts the regret of selecting

a sub-optimal action, I design the learning strategy to explore more when the cost is low and

exploit when the cost is high. I propose an AdaLinUCB algorithm for opportunistic contextual

bandits to balance the exploration-exploitation trade-off adaptively. My algorithm significantly

ii

outperforms existing contextual bandit algorithms in scenarios with large exploration cost fluctu-

ations. I further develop two algorithms OppUCRL2 and OppPSRL for the finite-horizon episodic

Markov decision process, demonstrating the benefits of opportunistic RL. My algorithms balance

the exploration-exploitation trade-off dynamically through a variation factor dependent optimism,

leading to superior performance. These results are supported by theoretical regret bound analyses

ensuring their performance.

Lastly, I aim to enhance RL’s interpretability by providing causal explanations. My approach

quantifies the causal influence of states on actions and their temporal impact, thereby surpassing as-

sociative methods in RL policy explanation. I propose a mechanism to quantify the individual-level

causal counterfactual path-specific importance score for a structural causal model. This mechanism

effectively evaluates causal influence in decision chains, allowing us to comprehend better how a

specific decision variable influences an outcome variable.

iii

Acknowledgments

This dissertation and the work invested in it would not have been possible without the support

and nurturing of many individuals.

First and foremost, I would like to express my deepest appreciation to my advisor, Prof. Xin

Liu. Her insightful inspiration and kind encouragement motivated me to overcome challenges and

keep moving forward. I am truly grateful for her help in selecting research directions, discussing

technical details, revising manuscripts, and providing financial support. Beyond her academic

advising, she has also offered considerable assistance and support in my personal life.

My sincere appreciation also extends to Prof. Zhaodan Kong and Prof. Xin Chen (Georgia

Institute of Technology) for their valuable feedback on my research, enriching my work with diverse

perspectives. I am equally thankful to my dissertation and qualification committee members,

Prof. Zhi Ding, Prof. Prasant Mohapatra (University of South Florida), Prof. Ian Davidson and

Prof. Lifeng Lai, for their insightful comments and guidance throughout my qualifying exam and

dissertation.

I would like to express my heartfelt thanks to my family members, Huimin Wang, Huifang

Wang, and Xing Wei. Their unwavering support and encouragement have been the cornerstone

of my journey. Their presence and belief in me have been a source of strength and motivation,

enabling me to persevere through both challenges and triumphs.

Lastly, I would like to thank all my friends and colleagues at the University of California,

Davis, especially Xueying Guo, Jiaxin Ding, Husen Wu, Fanyu Meng, Shahbaz Rezaeii, Jeonghoon

Kim, Rex Liu, Yongshuai Liu, Chao Huang, Taeyeong Choi, Albara Ramli, Ziwen Kan, Songyang

Zhang, and Xingcan Li. Their companionship and support have significantly enriched my academic

journey.

iv

Contents

Abstract ii

Acknowledgments iv

Chapter 1. Introduction 1

1.1. Contributions 2

1.2. Related Work 10

Chapter 2. Multi-Agent Learning-Based Joint Optimization: A Cellular Network

Configuration Application 15

2.1. Introduction 15

2.2. Related Work 17

2.3. System Model and Problem Formulation 19

2.4. Learning Utility Function 22

2.5. Online-Learning-Based Joint Optimization 27

2.6. Numerical Results 36

2.7. Conclusion 42

2.8. Appendix 42

Chapter 3. Kernel-Based Multi-Task Contextual Bandits 45

3.1. Introduction 45

3.2. Related Work 48

3.3. System Model and Problem Formulation 49

3.4. Methodology 52

3.5. Theoretical Analysis 60

3.6. Evaluation 63
v

3.7. Conclusion 69

Chapter 4. Opportunistic Learning for Contextual Bandits 70

4.1. Introduction 70

4.2. Related Work 72

4.3. System Model 73

4.4. Adaptive LinUCB 75

4.5. Performance Analysis 77

4.6. Numerical Results 83

4.7. Conclusions 86

4.8. Appendix 86

Chapter 5. Opportunistic Learning for Episodic Reinforcement Learning 107

5.1. Introduction 107

5.2. Related Work 109

5.3. Problem Formulation 109

5.4. Opportunistic Reinforcement Learning Algorithm 111

5.5. Regret Analysis for OppUCRL2 114

5.6. Experimental Evaluation 117

5.7. Discussion 120

5.8. Conclusion 120

Chapter 6. Causal Explanation for Reinforcement Learning: State and Temporal Importance121

6.1. Introduction 121

6.2. Related Work 123

6.3. Preliminaries 124

6.4. Problem Formulation 126

6.5. Explanation 127

6.6. Evaluation 132

6.7. Discussions 139

6.8. Conclusion 141
vi

6.9. Appendix 142

Chapter 7. Causal Path-Specific Importance in SCM 153

7.1. Introduction 153

7.2. Preliminaries 155

7.3. Causal Effect along Different Pathways 157

7.4. Properties of Path-Specific Counterfactual Importance Score 159

7.5. Efficient Algorithm for the Most Important Path 161

7.6. Evaluation 163

7.7. Related Works 167

7.8. Discussions 169

7.9. Conclusion 170

7.10. Appendix 170

Chapter 8. Conclusion and Future Work 176

8.1. Conclusion 176

8.2. Future Work and Limitations 177

Bibliography 179

vii

List of Figures

1.1 The structure of the dissertation. .. 1

1.2 Cellular network. ... 3

1.3 An Online-Learning-Based Joint-Optimization Algorithm. ... 4

1.4 A Kernel-Based Multi-Task Contextual Bandits Algorithm.. 5

1.5 Causal graph between the state and action. .. 8

2.1 An illustration of cellular network configuration. .. 15

2.2 Online prediction accuracy for the cell utility function. .. 37

2.3 Total network throughput for different configuration algorithms. 40

2.4 Performance of configuration algorithms in a different setting.................................... 41

3.1 Cellular network. ... 46

3.2 Multi-task online learning.. 47

3.3 Similarity v.s MSE in 2-task regression. .. 65

3.4 Multi-task learning in synthetic data. ... 66

3.5 Similarity matrix among 105 BSs. ... 67

3.6 Multi-task learning v.s. Independent learning in real data. .. 68

4.1 Regret under Synthetic Scenarios. ... 84

4.2 Rewards for Yahoo! Today Module. .. 85

4.3 Regret under binary-valued variation factor.. 101

4.4 Regret under beta distributed variation factor with a single threshold....................... 102

4.5 Regret under beta distributed variation factor with different values of l(−)................ 102

4.6 Regret under beta distributed variation factor with different values of l(+)................ 103

4.7 Performance Comparison with KernelUCB. .. 105
viii

4.8 Performance comparison with different l(−) and l(+) values on Yahoo! Today Module.106

4.9 Normalized variation factor demonstration. .. 106

5.1 Regret under binary variation factor scenarios.. 115

5.2 RL environment: River Swim. ... 117

5.3 RL environment: Cliff Walking. .. 118

5.4 RL environment: Frozen Lake. .. 118

5.5 Regret under Beta variation factor scenarios... 119

6.1 Causal graph of the crop irrigation problem. .. 122

6.2 Example causal graph between the state and action. .. 128

6.3 Example of a one-step MDP. ... 131

6.4 The importance vector for the crop irrigation problem. .. 134

6.5 The collision avoidance problem and its corresponding SCM skeleton. 134

6.6 Trajectory and importance on the collision avoidance problem................................... 135

6.7 The skeleton of the Blackjack SCM... 136

6.8 A trajectory of a blackjack game and the result from running our mechanism........... 137

6.9 The Q-value-based temporal importance on A4. ... 138

6.10 Importance vector for state in crop irrigation problem. .. 143

6.11 The policy we use for the blackjack game. .. 144

6.12 The skeleton of the cascading SCM for a 5-step blackjack game................................. 144

6.13 The causal structure of lunar lander that includes previous state and actions............ 146

6.14 A lunar lander trajectory instance... 147

6.15 The importance vector on lunar lander. .. 148

6.16 Difference between our method and the saliency map method for current-step features.148

6.17 The importance vector of S(1). .. 149

6.18 Sensitivity analysis on the collision avoidance problem... 150

6.19 Sensitivity analysis on the lunar lander environment. ... 151

6.20 Sensitivity analysis on the Blackjack environment. ... 152

6.21 The skeleton of SCM of the one step MDP. .. 152
ix

7.1 The causal graph of job hiring for the physical demanding job................................... 154

7.2 The causal counterfactual path-specific importance score in job hiring problem. 165

7.3 Job hiring problem with different values of wC ... 166

7.4 The causal graph of smoking effect on blood pressure. ... 166

7.5 Average effect for each path at the population level. ... 167

7.6 The causal counterfactual path-specific importance score in smoking impact problem.168

x

List of Tables

2.1 Features of Sample Data. 24

2.2 Coefficient of Determination for Different Selections of Features. 25

2.3 Coefficient of Determination for Regression Methods. 26

2.4 Coefficient of Determination for Hyper-parameters. 26

2.5 Prediction accuracy for existing solutions. 38

3.1 Sample Data. 66

6.1 Importance vector on the environment in Fig. 6.3 132

xi

List of Abbreviations

Abbreviations Definition

3GPP 3rd Generation Partnership Project

BS Base Station

CKE Conditional Kernel Embedding

CQI Channel Quality Indicator

DAG Directed Acyclic Graph

DQN Deep Q-Network

GIS Geographic Information System

GPS Global Positioning System

GPC-UCB Gaussian Process Upper Confidence Bound

HCN Hyper-Cellular Network

HLCS High-Level Critical Situations

IoT Internet of Things

i.i.d. Independently and Identically Distributed

LTE Long-Term Evolution

MABs Multi-armed Bandits

MCMC Markov Chain Monte Carlo

MDP Markov Decision Process

MIMO-NOMA Multiple Input Multiple Output - Non-Orthogonal Multiple Access

MSE Mean Square Error

NUM Network Utility Maximization

OFU Optimism in the Face of Uncertainty

PCIs Physical Cell Identifiers

PSRL Posterior Sampling for Reinforcement Learning

QoS Quality of Service

RKHS Reproducing Kernel Hilbert Space

xii

Abbreviations Definition

RL Reinforcement Learning

RLUs Rectified Linear Units

RSRP Reference Signal Received Power

RSRQ Reference Signal Received Quality

SCM Structural Causal Model

SDU Service Data Unit

SINR Signal-to-Interference-plus-Noise Ratio

SVR Support Vector Regression

TCA Transfer Component Analysis

TS Thompson Sampling

UCB Upper Confidence Bound

WCDMA Wideband Code Division Multiple Access

XAI Explainable Artificial Intelligence

XRL Explainable Reinforcement Learning

xiii

CHAPTER 1

Introduction

Reinforcement learning (RL), a subfield of machine learning, has revolutionized the way we

approach sequential decision-making problems [8]. The paradigm of RL, where agents continu-

ally learn optimal actions through interactions with their environment and resultant rewards or

penalties, has been successfully utilized in a variety of applications, including game playing, such

as AlphaGo from Google’s DeepMind [9], robotics [10], and power system controls [11].

Reinforement
Learning

(RL)

Data
Efficiency

Exploration-
Exploitation

Trade-off
Policy

Interpretability
Opportunistic

Learning
Casual

Explanations

Contextual
Bandits Episodic RL

AdaLinUCB OppUCRL2 Action-Based
Importance

Q-Value-Based
Importance

Temporal
Importance

Structural
Causal Model

(SCM)

Path-Specific
Importance

Score

Online-Learning-Based Joint-
Optimization Algorithm with

Gibbs Sampling

Kernel-Based Multi-Task
Contextual Bandit Algorithm

Cellular Network
Configuration
Optimization

RL policy (SCM)

Charpter 2

Charpter 4 Charpter 5 Charpter 6 Charpter 7

Charpter 3

 OppPSRL

Clustered Agents Similarity Among Tasks

Charpter 1

Introduction

Charpter 8

Conclusion, Future Work

Idea

Challenge

Charpter

Model

Algorithm

Application

Multi-Agent/Task
Optimization

Figure 1.1. The structure of the dissertation.

1

However, real-world RL applications pose several formidable challenges, such as training with

limited offline data, managing high-dimensional spaces, adhering to safety constraints, and provid-

ing real-time, explainable decision-making strategies, and accounting for multi-agent or multi-task

scenarios [12]. This dissertation aims to address these challenges through three unique perspectives:

bolstering data efficiency, implementing opportunistic exploration, and offering causal explanations

as show in Fig. 1.1. Specifically, we enhance data utilization in multi-agent/task optimization by

clustering agents and leveraging similarity among tasks. Our methods demonstrated effectively

in optimizing cellular network configurations. Next, we propose opportunistic learning to balance

exploration and exploitation in environments with fluctuating exploration costs. Finally, our work

intends to shed light on RL policy decisions through causal explanations, quantifying the temporal

causal influence of states on actions. Each of these components will be discussed in greater detail

in the subsequent sections.

1.1. Contributions

1.1.1. Multi-Agent/Task Optimization with Application in Cellular Network Con-

figuration. In contrast to deep reinforcement learning research conducted in simulated environ-

ments [13, 14], real-world systems do not provide distinct training and evaluation environments.

Training data is solely procured from the actual system, thereby eliminating the possibility for

a separate exploration policy during this process. Given that all exploratory actions bear their

own costs, it is imperative for the agent to act both satisfactorily and safely throughout its learn-

ing trajectory. For a systems, this necessitates limited exploration, leading to the generation of

low-variance data - data encompassing a minimal state space. Many real-world systems are slow-

moving, fragile, or expensive enough to render the data they produce valuable, thus demanding

data-efficient policy learning.

In multi-agent or multi-task scenarios, these instances may be correlated and similar, thereby

providing the potential for utilizing data or features from other agents or tasks to improve data

efficiency. In this study, we adapt and apply learning algorithms to real network applications,

specifically addressing the network configuration problem - the task of optimizing network perfor-

mance by configuring the parameters of base stations, given the dynamics of the network.
2

Implementing online learning-based cellular network configuration in real-world systems presents

distinct challenges, as illustrated in Figure 1.2. The traditional manual adjustment approach,

guided by engineers’ experience, often results in static configurations and fails to leverage the

varying environments and conditions of different base stations. The pursuit of automation and

optimization through online learning-based algorithms is complicated by the intricate, dynamic re-

lationship between network configuration and performance, and the distinct characteristics of each

base station. Moreover, operators must grapple with the exploitation-exploration trade-off; balanc-

ing the use of the best-known configurations for immediate gains against the need to experiment

with novel configurations that may offer long-term performance improvements. This is further com-

plicated by the disruptive nature of testing in cellular networks, where suboptimal configurations

can lead to poor user experiences, aligning with the real-world reinforcement learning systems’ de-

mand for limited exploration and data-efficient policy learning. To address the challenges inherent

in real-world system configurations, we introduce two online learning-based approaches that cater

BSs as multiple agents or tasks:

-BS

- User

Figure 1.2. Cellular network.

(1) An Online-Learning-Based Joint-Optimization Algorithm This algorithm harnesses

the capabilities of neural network regression and Markov Chain Monte Carlo (MCMC) methods,

more specifically, Gibbs-sampling—an MCMC algorithm well-suited to the structure of cellular

networks (Figure 1.3). The algorithm strives to maximize the overall network utility over time,

acknowledging the impact of neighboring base stations (BSs). Recognizing the interaction among a
3

BS and its neighboring BSs, the utility function of a BS is defined based on its network state vector

and network control within the same cluster, to enhance data efficiency. As maximizing overall

network utility over time necessitates sequential decisions, the problem naturally falls within the

domain of reinforcement learning. However, conventional reinforcement learning algorithms grapple

with the broad state space and action set inherent in the cellular network configuration problem.

To address this, we developed an online framework that integrates neural network regression with

Gibbs-sampling theory, demonstrating prompt convergence to a local optimum. Evaluation on

an industrial-grade cellular network simulator encompassing 87 BSs revealed that our proposed

algorithm outperforms distributed Q-learning methods.

Network Utility
Model

History
data

Step 1 Learning

Interaction
Joint

Optimization
Wireless

Environment

Step 2 Optimization

New
data

Model Update

Step 3 Online learning

Figure 1.3. An Online-Learning-Based Joint-Optimization Algorithm in Cellular
Network Configuration

(2) A Kernel-Based Multi-Task Contextual Bandits Algorithm This algorithm, illus-

trated in Figure 1.4, jointly considers multiple BSs and formulates the associated configuration

problem within a multi-task online learning framework. The primary aim is to use information

from multiple BSs to conjointly learn a model that maps the network state and configuration to

performance. This model is then adapted to each BS based on its unique characteristics. The

similarity among BSs is gauged by conditional kernel embedding. Additionally, the model enables

BSs to balance the trade-off between the exploration and exploitation of different configurations.

The algorithm’s effectiveness was evaluated using both synthetic data and real industrial trace

data comprising 105 BSs, outperforming bandits algorithms that do not employ multi-task learn-

ing by up to 70.8% and 64.8%, respectively. In related research [15], we proposed a collaborative
4

contextual bandits algorithm and demonstrated that transfer learning can significantly reduce pre-

diction errors. Leveraging this theoretical result, we developed a practical algorithm that divides

the learning model into a common homogeneous model, learned using all BSs’ data, and a BS-

specific feature that encapsulates the heterogeneous behavior of each individual BS. A live field

test conducted in a metropolitan cellular network with over 1700 cells yielded a notable network

performance improvement exceeding 20%.

Figure 1.4. A Kernel-Based Multi-Task Contextual Bandits Algorithm.

1.1.2. Opportunistic Learning. Sequential decision-making problems such as contextual

bandits (special case of RL) [16,17,18,19] and reinforcement learning (RL) [20,21] present inherent

challenges, including the delicate trade-off between exploration (discovering new information) and

exploitation (utilizing current knowledge). These issues become even more complex in opportunistic

learning scenarios, where the exploration cost is not static, but rather, it varies over time and is

situation-dependent.

To illustrate this, consider the case of a sequential recommender system in e-commerce. This

system continually proposes a sequence of candidate products to users based on their preferences

and browsing history, aiming to maximize the total click-through rate (i.e., the probability that

a user will accept the recommendation). It is noteworthy that the actual monetary return from

a successful recommendation can vary due to numerous factors, such as the differing purchasing

power of users or their loyalty status (for instance, a diamond vs. a silver status). In this scenario,

the ultimate goal is to maximize the overall monetary reward. It follows intuitively that when

the potential monetary return from a recommendation is low, the monetary regret resulting from
5

suggesting a suboptimal product is likewise low, leading to a lower exploration cost. Conversely,

high returns lead to high regret and high exploration cost. Given these unique dynamics, we

proposed two novel learning frameworks.

(1) Opportunistic Contextual Bandits Opportunistic Contextual Bandits operate within

a context where the exploration cost (or regret) fluctuates due to an external, time-varying factor,

referred to as the variation factor. This factor is revealed before an arm is pulled, allowing the

learning agent to adapt its approach accordingly. While this can be viewed as a special case of

contextual bandits—with the variation factor forming part of the context—the general contextual

bandit algorithms do not take advantage of the opportunistic nature of this problem, potentially

leading to suboptimal performance.

As suggested by its name, in opportunistic contextual bandits, the variation of this external

variation factor can be leveraged to reduce the actual regret. Further, besides the previous two

examples, opportunistic contextual bandit algorithms can be applied to other scenarios that share

these characteristics. We propose an Adaptive Upper-Confidence-Bound algorithm for opportunis-

tic contextual bandits with Linear payoffs (AdaLinUCB). The algorithm is designed to dynamically

balance the exploration-exploitation trade-off in opportunistic contextual bandits. To be best of

our knowledge, this is the first work to study opportunistic learning for contextual bandits. We

focus on the problem-dependent bound analysis here, which is a setting that allows a better bound

to be achieved under stronger assumptions. To the best of our knowledge, such a bound does

not exist for LinUCB in the existing literature. We prove problem-dependent bounds for both

the proposed AdaLinUCB and the traditional LinUCB algorithms. Both algorithms have a regret

upper bound of O
(
(log T)2

)
, and the coefficient of the AdaLinUCB bound is smaller than that

of LinUCB. Furthermore, using both synthetic and real-world large-scale dataset, we show that

AdaLinUCB significantly outperforms other contextual bandit algorithms, under large exploration

cost fluctuations.

(2) Opportunistic Reinforcement Learning We propose and study opportunistic reinforce-

ment learning, a new paradigm of reinforcement learning problems where the regret of executing

a suboptimal action depends on a varying cost referred to as variation factor, associated with the

6

environmental conditions. When the variation factor is low, so is the cost/regret of picking a sub-

optimal action and vice versa. Therefore, intuitively, we should explore more when the variation

factor is low and exploit more when the variation factor is high. As its name suggests, in oppor-

tunistic RL, we leverage the opportunities of variation factor’s dynamic to achieve a lower regret.

we propose and study opportunistic reinforcement learning - a new variant of reinforcement learning

problems where the regret of selecting a suboptimal action varies under an external environmental

condition known as variation factor. When the variation factor is low, so is the regret of selecting

a suboptimal action and vice versa. Our intuition is to emphasize exploitation when the variation

factor is high, and explore more when the variation factor is low. We demonstrate the benefits of

this novel framework for finite-horizon episodic MDPs by designing and evaluating OppUCRL2 and

OppPSRL algorithms. Our algorithms dynamically balance the exploration-exploitation trade-off

for reinforcement learning by introducing variation factor-dependent optimism to guide exploration.

The OppUCRL2 can significantly outperform the UCRL2 [22] in the simulation and have the same

theoretical guarantee with respect to the regret. The opportunistic RL concept is also easy to gen-

eralize for other reinforcement algorithms. To demonstrate it, we design the OppPSRL algorithm

based on PSRL [23]. It also achieves better performance compared with the original version in the

simulation. To the best of our knowledge, this is the first work proposing and studying the concept

of opportunistic reinforcement learning. We believe this work will serve as a foundation for the

opportunistic reinforcement learning concept and help further address the exploration-exploitation

trade-off.

1.1.3. Causal Interpretability of Reinforcement Learning. The growing use of RL in

sectors such as healthcare, transportation, and finance, which have significant societal and safety

implications, has led to raised concerns around trust, bias, and explainability. The main concerns

are about understanding how an RL agent reaches a decision and why a particular policy performs

well. These challenges emerge primarily due to two factors: the intricacy and opaqueness of deep

neural network-based RL algorithms, and the learning procedure of RL, which entails an agent’s

repeated interaction with its environment to ascertain a policy that ensures maximal long-term

reward. The inherent temporality in RL, marked by crucial state relationships at disparate time

instances, introduces an additional level of complexity surpassing that of supervised learning.
7

Existing explainable RL (XRL) strategies typically derive from methods such as the saliency

map, a tool employed in supervised learning to elucidate image classifiers by highlighting relevant

pixels for image classification. Analogously, these XRL methods strive to explain an RL agent’s

decisions by generating maps that spotlight “important” state features. However, there are at

least two significant limitations with the current XRL methods. Primarily, they mostly espouse

an associational viewpoint, gauging the significance of a feature by computing its correlation with

an action. This approach, however, overlooks the fundamental difference between correlation and

causation, which could potentially yield misleading explanations, thereby engendering user skepti-

cism and potentially leading to the rejection of the RL system. Secondly, these techniques typically

overlook temporal information, such as the interaction between states and actions over time - a

vital aspect of RL. Our proposed solution integrates causality into the interpretability challenge of

RL.

Figure 1.5. Example causal graph between the state and action. S
(i)
t is the i-th

dimension of the interested state S at time t.

(1) Causal Explanation for Reinforcement Learning: State and Temporal Impor-

tance We formulated Markov Decision Process (MDP) as a Structural Causal Model (SCM), as

depicted in Fig. 1.5. Our proposed XRL mechanism circumvents the limitations mentioned above

in the following ways. First, our method is capable of generating fundamentally causal explanations.

Second, our method is designed to quantify the temporal relationship between actions and states.

In contrast, associational methods, including saliency maps, are unable to quantify how prior state
8

features might influence the current action because these models solely formulate the association

between state and action at a single time-step, disregarding temporal correlations. Our XRL mech-

anism represents the inaugural effort to explain RL policies by causally elucidating their actions

based on the state’s causal and temporal importance. The proposed XRL mechanism can quantify

the causal impact of states on actions, including their importance over time. Through a series of

simulation studies - encompassing scenarios like crop irrigation, Blackjack, collision avoidance, and

lunar lander - we illustrate how our mechanism outperforms existing state-of-the-art associational

methods in explaining RL policies. Our XRL mechanism represents a pioneering effort in explaining

RL policies by causally interpreting their actions based on both state and temporal importance.

(2) Causal Path-Specific Importance in Structural Causal Model To further leverage

causality for improved explainability of learning models, we investigate individual-level path-specific

effect analysis within a general SCM. Our goal is to develop a method that enables a more nuanced

understanding of how a specific decision variable impacts an outcome variable. We introduce a

novel definition of the causal counterfactual path-specific importance score. This proposed defini-

tion bears three key advantages. First, it can quantify individual-level impact through a specific

pathway from the source vertex to the target vertex. Second, in cases of paths with multiple edges,

the effect can be broken down into individual edges, making it more comprehensible for humans.

Lastly, compared to the computationally intensive classical path-specific effect calculation, which

necessitates independent evaluation of each path, the computation of our proposed definition is

efficient. The classical approach becomes particularly burdensome in complex causal graphs, where

the number of pathways increases exponentially with the number of edges. Evaluating all pathways

from the source vertex to the target vertex in these contexts can prove costly. Our score possesses

several desirable attributes, including adherence to the chain rule and consistency Capitalizing on

these properties, we also present an effective algorithm that identifies the top-k most significant

paths with the highest importance scores in a causal graph. In summary, our contributions encom-

pass the introduction of a new metric for causal inference at the individual level, showcasing its

mathematical robustness, and proposing an efficient algorithm for its computation and application

in identifying impactful paths in a causal graph.

9

1.2. Related Work

Cellular Network Configuration: Various aspects of network parameter configuration have

been studied in the literature, such as pilot power configuration, spectrum, handoff threshold,

etc. Traditional approaches derive analytical relationship between network configuration and its

performance based on communication theory, such as [24, 25, 26, 27]. Such approaches are often

prohibitively complex, involve various approximations, and require a significant amount of input

information (such as the number of users, the location of each user, etc.). For instance, in [24],

the authors have studied the problem of minimizing pilot power consumption while maintaining

service coverage. The problem is formulated as integer programming and solved via a Dantzig-Wolfe

decomposition method. Further, even with a known analytical model, most studies on pilot power

configuration such as [25, 26] focus on the design of heuristic policies. Recently, learning-based

methods are proposed [1,28,29,30]. In [28], the authors propose a tailored form of reinforcement

learning to adaptively select the optimal antenna configuration in a time-varying environment.

In [30], the authors use Q-learning with compact state representation for traffic offloading. In [29],

the authors design a generalized global bandit algorithm to control the transmit power in the cellular

coverage optimization problem. In all these papers, BS similarities are not considered, and thus

require more exploration. In [31], the authors formulate the anti-jamming power control problem

of secondary users in cooperative cognitive radio networks as a Stackelberg game, and introduce

RL to the source and relay node. In [32], the authors study into the power allocation problem of

a BS in a MIMO-NOMA system. The problem is formulated as a zero-sum game against a smart

jammer, and the Q-learning based power allocation scheme is used to adapt to the dynamic NOMA

transmission game. Most of the existing work in RL-based network configuration treats all relevant

factors of the whole network as state or action in the RL algorithms. However, in a large-scale

network, general RL algorithms can suffer from large state spaces and action sets, which leads to

extremely bad prediction accuracy and convergence rate. To address this scalability problem in

RL-based network configuration, multiagent solutions are proposed. In [30], the authors employ

Q-learning with compact state representation for a Hyper-Cellular Network (HCN) to decide traffic

offloading strategy to improve network energy-efficiency, and further propose a distributed learning

solution where the macro BSs are designed to make local decisions but learn in a cooperative way.

10

In [33], the authors propose a distributed RL algorithm to configure the power allocation of all BSs

with the objective of improving network performance. In essence, this line of work uses multiagent

reinforcement learning [34,35].

Multi-Armed Bandits: Multi-armed bandits (MABs) [36] is a sequential decision problem,

which is a special case of reinforcement learning, where the reward of a decision is immediately

observed. Well-known algorithms include UCB [37] and Thompson Sampling [38]. Further, with

side information provided before decision making, the classic MAB is generalized to contextual

bandit problems [17, 39]. In wireless networks, bandit algorithms have been applied in several

application scenarios. In downlink scheduling problems, the bandit algorithms, especially Whittle

Index policy, have been employed to deal with the curse of dimension of Markov Decision Pro-

cess [40, 41, 42]. In vehicular networks, bandits have been applied to design learning-based task

offloading [43,44]. Further, emerging literature demonstrates the potential of contextual bandit in

network configuration problems [1].

Contextual Bandits: Contextual bandit [19] is an extension of classic multi-armed bandit

(MAB) problem [45]. In contrast to the classic K-arm bandit problem [46, 47], side information

called context is provided in contextual bandit problem before arm selection [16, 17, 18, 19]. The

contextual bandits with linear payoffs was first introduced in [16]. In [48], LinUCB algorithm

is introduced based on the “optimism in the face of Uncertainty” principal for linear bandits.

The LinUCB algorithm and its variances are reported to be effective in real application scenarios

[48, 49, 50, 51, 52]. Compared to the classic K-armed bandits, the contextual bandits achieves

superior performance in various application scenarios such as news article recommendation [53],

clinical trials [54]. Although LinUCB is effective and widely applied, its analysis is challenging. In

the initial analysis effort [17], instead of analyzing LinUCB, it presents an O(
√
T ln3(T)) regret

bound for a modified version of LinUCB. The modification is needed to satisfy the independent

requirement by applying Azuma/Hoeffding inequality. In another line of analysis effort, the authors

in [18] design another algorithm for contextual bandits with linear payoffs and provide its regret

analysis without independent requirement. Although the algorithm proposed in [18] is different

from LinUCB and suffers from a higher computational complexity, the analysis techniques are

helpful.

11

Transfer Learning and Multi-Task Learning: Transfer learning and multi-task learning

are powerful methods that improve the learning efficiency by using the data samples from multiple

sources [55, 56, 57]. They have been successfully applied to many fields, such as text sentiment

classification [58] and image classification [59]. In [60], the authors re-weight the instances in multi-

source to address both marginal and conditional distribution differences between the source and

target domains. In [61], the authors consider transfer learning via dimensionality reduction. They

learn a low-dimensional latent feature space where the distributions between the source domain

data and the target domain data are the same or close to each other. Similarly, [62] proposes a

feature transformation approach for domain adaptation called Transfer Component Analysis (TCA)

to discover common latent features that have the same marginal distribution across the source and

target domains while maintaining the intrinsic structure of the original domain data. A common

way is using a kernel function to define the similarity among tasks, e.g., in [63,64,65]. In [65], the

authors design an algorithm that can transfer information among arms in the contextual bandit.

Opportunistic Learning: Optimism in the face of uncertainty (OFU) is a popular paradigm

for the exploration-exploitation trade-off in RL. Here, each pair of states and actions is assigned

an optimism bonus. The agent then chooses a policy that is optimal under this ”optimistic”

model of the environment. To learn efficiently, the agent maintains control over its uncertainty

by assigning a larger optimism bonus to potentially informative states and actions. This bonus

can stimulate and guide the exploration process. Most OFU algorithms provide strong theoretical

guarantees [22,66,67,68,69]. An alternate approach is inspired by Thompson sampling (TS) [70].

In RL, TS approaches [71] maintain a posterior distribution over the reward function and the

transition kernel, then compute the optimal policy for a randomly sampled MDP from the posterior.

One of the well-known TS algorithms in literature is the Posterior Sampling for Reinforcement

Learning (PSRL) [23,72].

The opportunistic learning has been introduced in [73] for classic K-armed bandits. However,

we note that opportunistic learning exists for any sequential decision making problem. In [74],

the authors study into contextual bandits with HLCS (High-Level Critical Situations) set, and

proposes a contextual-ϵ-greedy policy, a policy that has an opportunistic nature since the ϵ (explo-

ration level) is adaptively adjusted based on the similarity to HLCSs (importance level).However,

12

it only introduces a heuristic algorithm, and does not present a clearly formulation of opportunistic

learning. Furthermore, the policy design in [74] implicitly makes the assumption that the contexts

in HLCS have already been explored sufficiently beforehand, which is not a cold-start problem.

Explainable RL (XRL): Based on how an XRL algorithm generates its explanation, we can

categorize existing XRL methods into state-based, reward-based, and global surrogate explana-

tions [75, 76, 77]. State-based methods explain an action by highlighting state features that are

important in terms of generating the action [78, 79]. Reward-based methods generally apply re-

ward decomposition and identify the sub-rewards that contribute the most to decision making [80].

Global surrogate methods generally approximate the original RL policy with a simpler and trans-

parent (also called intrinsically explainable) surrogate model, such as decision trees, and then

generate explanations with the surrogate model [81]. In the context of state-based methods, there

are generally two ways to quantify feature importance: (i) gradient-based methods, such as simple

gradient [82] and integrated gradients [83], and (ii) sensitivity-based methods, such as LIME [84]

and SHAP [85].

Causal Explanation: Causality has already been utilized in XAI, mainly in supervised learn-

ing settings. Most existing studies quantify feature importance by either using Granger causal-

ity [86] and average or individual causal effect metric [87] or by applying random valued inter-

ventions [88]. Two recent studies [89] and [90] are both focused on causal explanations in an RL

setting. Compared with [89], the main difference is that we provide a different type of explanation.

Our method involves finding an importance vector that quantifies the impact of each state feature,

while [89] provides a causal chain starting from the action. We also demonstrate the ability of

our approach to provide temporal importance explanations that can capture the impact of a state

feature or action on the future state or action.

Path-Specific Analysis: Path-specific analysis has seen significant attention in academic

research. Most existing work focuses on non-parametric settings, identifiability, or informational

decomposition of SCMs [91,92,93]. These approaches are anchored in a well-defined SCM model.

Related research proposed causal effect definitions such as incremental causal effects and marginal

treatment effects [94, 95, 96]. These definitions employ a comparable constraint format for the

13

perturbation value δ. Their research predominantly concentrates on total effects and population-

level analysis There exists a significant body of literature focused on population-level causal effects.

The studies by Janzing et al. [97, 98] and Wang et al. [99] define and measure causal strength

(effect) using Shapley values. Janzing et al. assess causal influence based on the distributional

change that results from the removal of a “causal arrow”. Further, their concept of intrinsic causal

contribution [97] allows separating intrinsic information added by each vertex from information

drawn from its ancestors. Meanwhile, Wang et al. [99] attribute credit to edges, providing an

interpretation of the entire causal graph.

14

CHAPTER 2

Multi-Agent Learning-Based Joint Optimization: A Cellular

Network Configuration Application

2.1. Introduction

In this work, we study cellular network configuration. As illustrated in Fig. 2.1, a cellular

network consists of a number of base stations (BSs), each covering a certain geographic area,

called a cell. In each cell, the BS has a large number of parameters to configure, including those of

spectrum band, power configuration, antenna setting, user handover, etc. The configuration of these

BS parameters has a significant impact on the overall performance, and thus network configuration

is critical. Current practice is mostly based on field experience and manual adjustment. The process

is labor-intensive, error-prone, and far from optimal. In this work, we propose a learning-based

joint-optimization approach to automate and optimize cellular network configuration.

-BS

- User

Figure 2.1. An illustration of cellular network configuration. A red solid line
means that a mobile user is associated with the BS (i.e., the BS serves the user),
and a blue dash line means that the mobile user can receive the BS’s signal, but is
not served by it.

15

The goal of network configuration is to optimize network utility that measures service quality,

such as network throughput and user delay. Network utility is typically defined as the sum of the

utility of all cells. Because of the geographic contiguity of cells, the utility of one cell is affected

not only by the configuration of its own BS, but also by those of its neighboring BSs. Thus, to

optimize its network utility, the network should jointly configure all BSs.

The extensive literature on traditional network utility maximization (NUM) has focused on

abstract closed-form utility functions, which often exhibit nice mathematical properties. However,

in network configuration, the impact of a control parameter on network utility can be highly

complex and thus the utility function is difficult to derive from analysis. Therefore, a natural step

is to learn an appropriate utility function based on available network data, and then to optimize

over the learned function. This approach faces a few specific challenges:

• Limited data availability: Because current network operation does not often change net-

work configuration parameters unless performance problems occur, each cell contains only

a limited amount of data for learning its utility function.

• Convoluted sample data: The sample data collected in networks is reported in the format

of network status, BS configuration, and the corresponding utility value. The caveat is

that the network status depends not only on hidden environmental states that we do not

directly observe, but also on the current configuration. Thus, we need to carefully extract

appropriate features from the network status to learn the utility model.

• Joint optimization among cells: The utility of a cell depends not only on the configuration

of its BS, but also on those of its neighboring BSs. Therefore, to maximize the network

utility, we should consider all cell configurations jointly. This joint configuration is difficult

because of the complexity of the learned utility function and the high dimensionality of

the control variables.

• Time-varying network dynamics: Because of inherent network dynamics (e.g., traffic vari-

ation and user mobility), the utility function is time-varying, as discussed in Sec. 2.3.3.

Therefore, it is essential to design an online algorithm that adapts promptly to network

dynamics.
16

To address these challenges, we propose an approach based on online learning and joint opti-

mization for cellular network configuration. Our contributions are multi-fold:

• To learn the appropriate utility function, we develop a neural-network-based model that

addresses the convoluted sample data issue and achieves good accuracy. The learned utility

function is used to formulate a global network configuration optimization problem.

• To solve this high-dimensional non-concave maximization problem, we design a Gibbs-

sampling-based algorithm that converges to the optimal solution when a temperature

parameter is small enough. However, when the temperature parameter is small, the con-

vergence time of the algorithm increases dramatically. To address this challenge, in par-

ticular, in the context of network dynamics, we further design an online algorithm that

converges to a local optimal promptly.

• To illustrate the idea, we use the case study of pilot power configuration. Numerical results

show the effectiveness of the proposed approach. The proposed approach can be applied

to similar cellular network configuration problems.

The rest of the paper is organized as follows. The related work is in Sec. 2.2. We present

the system model and problem formulation in Sec. 2.3. The learning-based utility prediction is

conducted in Sec. 2.4. Based on the model learned, an online-learning-based joint-optimization

method for cellular network configuration is proposed in Sec. 2.5. We demonstrate the numerical

results in Sec. 2.6, and conclude in Sec. 3.7.

2.2. Related Work

Most existing studies on pilot power configuration assume known models based on communi-

cation theories [24, 25, 26, 27, 100]. For instance, in [24], the authors have studied the problem

of minimizing pilot power consumption while maintaining service coverage. The problem is formu-

lated as integer programming and solved via a Dantzig-Wolfe decomposition method. The main

limitation of this approach is that the modeling requires a significant amount of real-time infor-

mation, such as user locations and wireless channel conditions, at any time. Further, even with a

known analytical model, most studies on pilot power configuration such as [25, 26] focus on the

design of heuristic policies.
17

Data-driven wireless communication has been drawing increasing attention recently [101,102,

103]. In [101], the authors provide an overview of mobile big data, and highlight the great potential

of mobile big data mining for diverse applications including network resource planning. In [102],

the authors introduce the features, sources, and applications of mobile big data in a comprehensive

manner and discuss several distinctive characteristics of mobile big data such as spatio-temporal

features. The authors in [103] consider mobile big data as an unprecedented opportunity to re-

design wireless networking for potential performance gains. They also discuss the difficulties in

big-data-aware network design such as scalability and complexity.

We note that our problem falls into the general scope of reinforcement learning (RL). We

discuss the existing work on RL-based network configuration next. In [28], the authors propose a

tailored form of RL to configure the antenna parameters in a single femto-cell so as to minimize

the transmission power. In [31], the authors formulate the anti-jamming power control problem

of secondary users in cooperative cognitive radio networks as a Stackelberg game, and introduce

RL to the source and relay node. In [32], the authors study into the power allocation problem of

a BS in a MIMO-NOMA system. The problem is formulated as a zero-sum game against a smart

jammer, and the Q-learning based power allocation scheme is used to adapt to the dynamic NOMA

transmission game. Most of the existing work in RL-based network configuration treats all relevant

factors of the whole network as state or action in the RL algorithms. However, in a large-scale

network, general RL algorithms can suffer from large state spaces and action sets, which leads to

extremely bad prediction accuracy and convergence rate. We illustrate this issue numerically in

Sec. 2.6.1.

To address this scalability problem in RL-based network configuration, multiagent solutions

are proposed. In [30], the authors employ Q-learning with compact state representation for a

Hyper-Cellular Network (HCN) to decide traffic offloading strategy to improve network energy-

efficiency, and further propose a distributed learning solution where the macro BSs are designed

to make local decisions but learn in a cooperative way. In [33], the authors propose a distributed

RL algorithm to configure the power allocation of all BSs with the objective of improving network

performance. In essence, this line of work uses multiagent reinforcement learning [34, 35]. Along

18

this line, we have also designed a distributed Q-learning algorithm, where each BS runs a local Q-

learning algorithm with a cooperative reward capturing the dependencies among neighboring BSs.

In it, we have carefully designed local state and action to be used, as well as function approximation

model, activation function, and learning rate. However, distributed RL algorithms are non-trivial

in design and usually rely on heuristic. In addition, when the state space and action set are large, as

in our problem, they can still suffer from slow convergence. As a result, we treat the distributed Q-

learning algorithm as a comparison baseline with the details provided in Appendix 2.8.2. As shown

in Sec. 2.6.2, our online-learning-based joint-optimization approach outperforms the distributed

Q-learning algorithm in both the overall performance and the ramp-up time.

2.3. System Model and Problem Formulation

2.3.1. Pilot Power Configuration. In cellular networks, pilot power is one of the most

important parameters to be configured. Specifically, pilot power signal is used by mobile devices to

estimate channel quality, to select cells to associate with, and to select neighboring cells to handover

to. Therefore, the strength of the pilot power signals determines the coverage area of the cell and

impacts the network throughput and quality of service. In this work, the goal of the pilot power

configuration is to maximize network throughput, which is the sum of the throughput of all cells.

Specifically, pilot power affects network throughput in two ways.

First, in general, when the pilot power of a BS increases, the received signal strength of mobile

devices in its vicinity increases, and thus these mobile devices are more likely to associate with this

BS or handover to this BS. Therefore, the number of users associated with this BS increases, and

the number of users associated with its neighboring BSs decreases. In other words, pilot power

affects the total throughput by affecting the number of users in its cell and that in its neighboring

cells. In general, if a cell has too few users, its service capacity cannot be fully utilized, which

results in a relatively low throughput. On the other hand, if a cell has too many users, its service

capacity cannot satisfy the demand of all users; meanwhile, since its neighboring cells may have

under-utilized capacity, the overall system performance is not optimized.

Second, the total power, consisting of pilot power and transmission power, is fixed at a BS.

When the pilot power increases, the transmission power for actual data transmission decreases.
19

The capacity of a cell is determined by the transmission power. Therefore, when the pilot power

increases, the throughput of a cell first increases when the demand is smaller than the capacity, and

then decreases when the demand is higher than the available capacity supported by the transmission

power.

We note that pilot power configuration also affects network coverage; e.g., if pilot power is

small, certain areas may not be covered by any BSs. Coverage issue is typically considered in the

network planning stage, and addressed by deciding appropriate BS locations and a proper range of

pilot power. Here the pilot power is chosen between 30dBm to 36dBm. In discussion of network

configuration, we assume that the coverage requirement is satisfied and thus we do not further

consider it in this paper.

2.3.2. Problem Formulation. We formulate the problem next. We use bold font to represent

vectors. Consider a cellular network of N BSs. Each BS provides service for a corresponding cell.

The time is discretized. For each time slot t, the network state vector is denoted by S(t) =

(S
(t)
1 , S

(t)
2 , · · · , S(t)

N), where S
(t)
n is the state for BS n in slot t. Examples of network state include

user density, and uplink/downlink traffic load level, etc. The network control is denoted by A(t) =

(A
(t)
1 , A

(t)
2 , · · · , A(t)

N) where A
(t)
n represents the control variables for BS n in slot t, and its value is

chosen from the BS action set A. Pilot power is the control variable we consider in this work, which

takes discrete values from 30dBm to 36dBm with a granularity of 0.5dBm.

Let R
(t)
n denote the utility of cell n in slot t and define rn(·) as the cell utility function of cell

n that satisfies,

R(t)
n = rn(S

(t),A(t)).(2.1)

That is, the utility of each cell (i.e., throughput of each cell) is determined by the network states

and control variables. In the pilot power configuration problem, the utility is the throughput, and

the object is to maximize the network throughput by choosing appropriate control variables for all

BSs at each time slot. That is,

max
A(t)∈AN

T∑
t=1

N∑
n=1

rn(S
(t),A(t)).(2.2)

20

Note that a more rigorous explanation of Eq. (2.2) and the cell utility function in (2.1) is as

follows. In general, in networks, there are “hidden” factors that are not recorded as network state,

either because they are not readily available or because there are too many of them. For example,

networks do not track detailed mobility of each user nor the application types of each flow. Because

of these hidden factors, given S(t) and A(t), R(t)
n can be random. Therefore, the definition of cell

utility function in (2.1) is indeed rn(S
(t),A(t)) = E[R

(t)
n | S(t),A(t)], where the expectation is taken

over the “hidden” factors. Similarly, the optimization problem defined in Eq. (2.2) is the summation

of expected cell utilities accordingly. For presentation simplicity, in the following, we use the earlier

equation in the rest of the paper.

In addition, note that in Eq. (2.1), the utility value depends on all states and control variables.

The complexity of this function is thus high. To make the problem more tractable, we utilize

the inherent property of wireless transmission that signal strength attenuates significantly over

distance. Therefore, the performance of a BS is mainly affected by the network states and control

variables of itself and its neighbors. Thus, we make the following approximation:

rn(S
(t),A(t)) ≈ rn(S

(t)
N (n),A

(t)
N (n)),(2.3)

where N (n) = {n}∪{i| BS i is BS n’s neighbor} includes BS n and its neighbors; S(t)
N (n) is a vector

which includes all S
(t)
i such that i ∈ N (n); A

(t)
N (n) is a vector which includes all A

(t)
i such that

i ∈ N (n).

For example, in the pilot power configuration problem, we choose the neighbors of BS n as the

cells that have the most impact on cell n’s utility. Note that the neighborhood relationship may

not be symmetric. That is, i ∈ N (n) does not necessarily imply n ∈ N (i).

To further simplify the problem, we make the assumption that network state vector S(t) does

not depend on historical actions A(t−1), · · · ,A(1). To satisfy the assumption, we need to choose

network states appropriately, that is, network states should only depend on latent environment

features such as user density, user location, traffic type, and mobility pattern, which do not depend

on actions. Because of this assumption, the problem defined in (2.2) can be simplified: at each

time slot t, we can choose the action that maximizes the current network utility
∑

n rn(S
(t),A(t)).

21

As a result, substituting (2.3) into (2.2), we have the following optimization problem at each slot t,

max
A(t)∈AN

N∑
n=1

rn(S
(t)
N (n),A

(t)
N (n)), given network state S(t).(2.4)

Note that, in contrast, our implemented baseline algorithm, a distributed Q-learning algorithm,

still uses the aggregated throughput as the reward as in Eq. (2.2).

The network operates as follows: At the beginning of each slot t, network state vector S(t)

is observed, then based on S(t), the network control A(t) at time t is decided by a configuration

policy to maximize the sum of the utilities of all cells. The process goes on for each time slot

in a centralized manner. Note that the configuration policy can be updated based on historical

information: S
(τ)
n , A(τ)

n , R(τ)
n , for ∀n, ∀τ < t.

2.3.3. Network Dynamics. We note that networks exhibit time-varying characteristics, which

implies that we need online algorithms to capture such dynamics. Network utility is affected by

many network factors, such as traffic type and volume, arrival and departure pattern, and user mo-

bility. As discussed in Sec. 2.3.2, some factors are “hidden” because a network typically does not

and cannot collect all information. Therefore, when such “hidden” factors change in the network,

the expression of cell utility functions, i.e., rn(·), can change over time. To capture such dynamics,

we need an online learning algorithm to train and update the model for the utility function, as well

as a fast converging algorithm to optimize the configuration.

2.4. Learning Utility Function

In this section, we choose an appropriate regression model to predict the utility of each cell

based on the network state vector and network control in the neighborhood of the cell. That is to

say, we choose an appropriate regression model to learn the cell utility function rn(S
(t)
N (n),A

(t)
N (n))

by a data-driven approach, so as to provide a good foundation to solve the problem in (2.4). Note

that based on the regression model chosen here, we can build a framework to learn and control

in an online manner, discussed in Sec. 2.5. To learn a good utility function for the network

configuration problem, we need to address two specific challenges: limited data availability and

convoluted sample data, discussed as follows.
22

2.4.1. Data Aggregation. One obstacle in estimating the utility function is the limited data

availability in cellular networks. This may sound surprising at first glance given that networks col-

lect a large amount of data during operation. The caveat is that most of the data is collected under

a fixed network configuration parameter. Current practice is highly conservative - one typically

does not change network configuration unless performance issues occur, such as insufficient cover-

age or a high call-drop rate. Current network operators are also reluctant to conduct experiments

in the field because a poor configuration can negatively affect performance. As a result, we may

have a large number of samples for a given configuration, but few for others, in a given cell.

To fully utilize the limited data, we notice that a cellular network typically consists of cells with

similar structures. Thus, we assume that the cell utility functions rn(·) of different cells have the

same expression, denoted by r(·). Thus, the problem defined in (2.4) can be approximated by the

following, at each time slot t,

max
A(t)∈AN

N∑
n=1

r(S
(t)
N (n),A

(t)
N (n)), given network state S(t).(2.5)

With this unified cell utility function, we can aggregate data from all cells to learn the utility

function. This approach alleviates the data scarcity issue, especially when the algorithm needs to

adapt to network dynamics.

Remark 2.4.1. To consider the impact of the difference between cells and the impacts of

neighboring cells as well as dynamic environmental factors, the input features of the unified cell

utility function should be carefully designed, so as to include these impacts to some degree. There

is clearly a balance between data availability and the impact of the difference between cells. The

feature selection procedure is discussed in Sec. 2.4.2.

Remark 2.4.2. Note that in scenarios when data is abundant, each cell can train a separate

utility function rn(·) based on its own data. Then, the joint network configuration algorithms in

Sec. 2.5 including Module 1 and Module 2 still apply using these separate cell utility functions.

2.4.2. Feature Selection with Convoluted Sample Data. The sample data is collected

from an industrial-grade cellular network simulator that is described in Sec. 2.6, based on a random

policy for pilot power configuration in this section. Sample data is illustrated in Table 2.1, where
23

“Cell” is the cell ID; “Pilot” is the current pilot power of the BS in this cell; “Utility” is the

throughput of the corresponding cell with the unit of Kbit; “Users” is the number of users in the

cell, and “Cluster” includes the cell IDs of the 5 neighboring cells that have the most impact on

this cell’s throughput.

Table 2.1. Features of Sample Data.

Cell Pilot Load Utility Users Cluster
101 30 0.5934 616.3 19 233;184;202;185;171;
102 30 0.1458 63.2 2 101;177;180;184;172;
107 33 0.8991 357.8 19 211;115;114;219;113;

An important problem in feature selection is that sample data is convoluted as shown in Ta-

ble 2.1. Specifically, the values of the load and the number of users in the sample data depend not

only on latent environmental states that we do not directly observe (such as user density), but also

on the current control variables, i.e. the pilot powers.

Note that our final goal is not the prediction itself, but to optimize network configuration based

on the learned cell utility function. Consequently, because of this convolution, we cannot naively

use the items in the sample data as features to train the utility function. Otherwise, the resulting

utility function is not useful in the control problem defined in Eq. (2.4) because S
(t)
N (n)is not known

until A(t)
N (n)is decided.

As a result, we need to carefully select state features so that they 1) extract latent environment

information as much as possible, and 2) are as independent as possible from the control variables.

We note that another consideration is that we have limited data availability, and thus the

number of features cannot be too large.

Considering these two factors, we have tested the prediction accuracy of several sets of features,

as summarized in Table 2.2, based on a neural network regression model discussed in Sec. 2.4.3.

We measure prediction accuracy by the coefficient of determination R2 as,

R2 = 1− ηss
ηvarMsp

,(2.6)

where ηss is the sum of squared prediction errors, ηvar is the variance of the target, and Msp is the

total number of samples. The larger the value of R2, the better the model can capture the observed

outcomes. Note that R2 ≤ 1. Here, we compare the prediction accuracy on both training data
24

Table 2.2. Coefficient of Determination for Different Selections of Features.

Features Training Data Cross Validation
Pilot Powers, Load, Number of Users 0.729630 0.728747

Pilot Powers, Time-Average Load, Time-Average Number of Users 0.758423 0.717136
Pilot Powers, Cluster-Average Load, Cluster-Average Number of Users 0.127370 0.113907

and cross validation set, and use the latter one as the criterion to choose an appropriate model,

since the training data prediction accuracy can be overly optimistic, as discussed in [104].

The first feature set includes the pilot powers of the target BS and its neighbors, the current

load of the target BS, and the current number of users in the target BS, as shown in the first row

of Table 2.2. This directly uses the items from the sample data. The prediction accuracy of this

feature set is about 0.73. However, as stated above, the load and the number of users depend on

the current pilot powers, and thus this model is not useful in pilot power configuration. It only

serves as a benchmark for prediction accuracy.

To address this convolution issue, we consider two other feature sets, as shown in the second

and third rows of Table 2.2. The second feature set includes time-average load and time-average

number of users in the target cell, and the third one includes cluster-average load and cluster-

average number of users, instead of the load and number of users as in the first one. Here, the

cluster average means that we average the load or the number of users among the target cell and

its neighboring cells. These two new feature sets alleviate the dependency of state features on

the control variables by averaging over time slots or over mutually interfering cells. As shown in

Table 2.2, the prediction accuracy of the second feature set is similar to that of the first feature set

while the prediction accuracy of the third one is low. Therefore, we choose the second feature set,

i.e., we choose time-average load and time-average number of users as the state features.

Note that in the beginning of each slot t, we only know the historical data until slot t−1. Also,

to keep the data updated, we only use the most recent data through an exponential moving average

with a parameter of 1/lcache, where lcache is chosen to ensure stability and to allow prompt update.

We choose lcache = 300 in our numerical evaluations in Sec. 2.6.

2.4.3. Model Selection. We compare several learning methods summarized in Table 2.3,

including the 2nd degree polynomial regression, and epsilon-support vector regression (SVR). It can
25

be seen that the neural network model outperforms the other methods. Note that SVR achieves

the second best performance, however SVR is much slower in online training and prediction, which

is a severe limitation in our case.

Table 2.3. Coefficient of Determination for Regression Methods.

Regression Method Training Data Cross Validation
Linear Regression 0.542157 0.529733
Lasso Regression 0.541470 0.530069

Polynomial Regression 0.625649 0.610161
Epsilon-SVR 0.671278 0.657081

Neural Network Regression 0.730046 0.693995

For the neural network model, it is also important to select appropriate hyper-parameters. We

choose only one hidden layer because there are only 8 input features (i.e., 6 pilot powers from

the target cell and its 5 neighbors, the time-average load, and time-average number of users, as

explained in Sec. 2.4.2.) Also, we compare the performance of different number of neurons in the

hidden layer, as shown in Table 2.4. We choose 25 for its best performance.

Table 2.4. Coefficient of Determination for Hyper-parameters.

Number of Neurons Training Data Cross Validation
10 0.690083 0.684574
15 0.689096 0.687062
20 0.691792 0.684915
25 0.702833 0.690766
30 0.734662 0.672190
35 0.797004 0.611949

2.4.4. Summary of Cell Utility Function Regression Model. Here, in summary, a

neural-network-based regression model is chosen to predict the throughput of a cell based on the

states and control variables of itself and its neighbors. To address the limited data availability

problem as discussed in Sec. 2.4.1, a unified cell utility function is chosen for all cells utilizing

structure similarity of cells. The learned model predicts the throughput of the cell. The 8 input

features of the learning model are 1) the pilot power of the BS in the target cell, 2) the pilot powers

of the BSs in 5 neighboring cells that have the most impact on the target cell, 3) time-average load,

and 4) time-average number of users in the target cell. The input features are carefully selected to
26

address the convoluted sample data problem, as discussed in Sec. 2.4.2. The time-average features

are estimated using exponential moving average method. In addition, based on the experiment

results, a neural network model with one hidden layer and 25 neurons are selected for its best

performance among different regression models.

2.5. Online-Learning-Based Joint Optimization

After estimating the cell utility function r(·), we proceed to solve the optimization problem

formulated in Eq. (2.4). This step is challenging because of the huge state and action spaces

for network configuration. Let the number of possible values for the control variable of BS n be

|A|. Then, the cardinality of network action space is |A|N , which increases exponentially with the

number of BSs. When a cellular network has hundreds of BSs to configure, the action space is

immense. Even when we limit the impact of a BS to its neighborhood, the optimization space is

still exponential. Specifically, the action of a BS affects the performance of itself and its neighbors,

which affects the action of the neighbors, and so on. This ripple effect fuses the optimization of the

entire network together. In this section, we design an online algorithm based on Gibbs sampling

to solve this joint optimization problem.

2.5.1. Gibbs Sampling Primer. We first introduce the intuition to apply Gibbs sampling

and then provide Gibbs sampling primer.

By considering the values of the pilot powers of the whole network as a random field and

regarding the utility of the whole network as the global energy function of a possible configuration,

we want this random field (i.e., the pilot powers of the whole network) to follow a specific joint

distribution such that the random field value (i.e., a specific pilot power configuration of the whole

network) of the maximal global energy function (i.e., utility of the whole network) has a dominant

probability. To achieve this goal, a joint distribution of the random field based on the value of

network utility can be designed. Meanwhile, Markov Chain Monte Carlo (MCMC) can be applied to

sample the resulting high dimensional multi-variate probability distribution. Note that by MCMC,

a Markov chain of random field is constructed (i.e., the state of the Markov chain is the value of the

random field), which has a steady state distribution equivalent to the targeting joint distribution

of the random field.
27

Among MCMC algorithms, Gibbs sampling is widely used. In Gibbs sampling, the constructed

Markov chain transits based on conditional distributions. In addition, if the targeting joint distri-

bution of Gibbs sampling satisfies a certain property, the transition probabilities of the designed

Markov chain can be purely based on local specification, which potentially leads to update by sim-

ple local interactions in some special cases. Specifically, if the targeting joint distribution is based

a global energy function that is derivable from a potential, i.e., a sum over cliques on the random

field with a neighborhood structure, the Markov chain in Gibbs sampling can be updated by local

specification. This requirement is restrictive and if the original neighborhood structure of the cel-

lular network is used, the network utility (which is the global energy function here) cannot satisfy

it. However, with a judiciously designed two-hop neighborhood, the cellular network configuration

can satisfy this constraint and further the network utility function can be maximized by simple

local interacts.

To make the paper self-contained, here we also briefly introduce Gibbs sampling. Consider a

random field Â, which can be viewed as a vector of dimension N defined on an undirected graph.

That is, the n-th element of Â corresponds to the n-th node on the undirected graph. Then, Â is

said to have a Gibbs distribution if its probability distribution can be written as:

Pr{Â = a} ∝ exp

[
1

ν
F (a)

]
, ∀a,(2.7)

where F (a) satisfies the condition that there exists a function VC(aC) for each clique C of the

undirected graph such that,

F (a) =
∑
C

VC(aC),(2.8)

where aC is a vector including all ai (which is the i-th element of vector a) with i ∈ C (i.e., the

i-th node of the undirected graph is in clique C).

To relate to our problem, Â represents the pilot power configuration of the whole network. In

Eq. (2.7), F (a) can be viewed as a network utility function of configuration a for the random field

Â. The VC(aC) is the utility function of a clique C in the undirected graph with configuration a.

That is, by Eq. (2.8), the utility function F (a) contains functions on the cliques of the undirected

graph.

28

The key insight is that when ν, ν > 0, is small enough, the configuration a with the highest

utility function can have a dominant probability. Furthermore, we can obtain this probability by

Gibbs sampling, discussed next.

By Gibbs-Markov equivalence, it can be shown that when a random field has a Gibbs distribu-

tion, it is a Markov random field with a well-designed local specification [105], and the distribution

of the random field is equivalent to the steady state distribution of a Markov chain on the Markov

random field. Further, by reversible Markov chain theory, algorithms such as Gibbs sampler can de-

sign transition probabilities for the Markov chain, which relates to the local specializations. When

this Markov chain approaches its steady state distribution, the Gibbs distribution is obtained. The

readers can refer to the Chapter 7 of [105] for details.

However, this theory is limited to the case when function F (·) is a sum of functions on cliques of

the undirected graph, as in (2.8). A recent study [106] considering locally coupled system extends

the results to the case when F (·) consists of functions on neighborhoods of each node. We adopt

this approach in our algorithmic design.

2.5.2. Gibbs-Sampling-Based Network Configuration. In this subsection, we focus on a

single time slot t, and solve the problem defined in (2.4) for a given network state S(t). We omit

the superscript (t) in this section when no confusion is incurred.

We next define F (·) and Â in our problem context. We define F (·) as the network utility

function:

F (a) =
N∑

n=1

rn(SN (n),aN (n)), ∀a ∈ AN .(2.9)

Define Â as a random vector on the action space satisfying the probability distribution Pr[Â =

a] = πν(a) with,

πν(a) =
exp

[
F (a)
ν

]
∑

z∈AN exp
[
F (z)
ν

] , ∀a ∈ AN ,(2.10)

where ν > 0 in (2.10) is called the temperature parameter.

We first introduce the following neighborhood concepts. Note that the neighborhood N in our

problem is not necessarily a mutual concept, as discussed in Sec. 2.3. Thus, we further define the
29

interaction neighborhood N (1) as,

N (1)(n) = {i|n ∈ N (i)} ∪ N (n).(2.11)

That is, N (1)(n) includes both the BSs that affect cell n’s utility, i.e. N (n), and the cells that are

affected by BS n. We further define two-hop neighborhood N (2) as in [106],

N (2)(n) = ∪i∈N (1)(n)N
(1)(i).

That is, N (2)(n) is the union of the interaction neighborhoods of all interaction neighbors of BS n.

Then, by a similar argument as in [106], we can define an undirected graph based on the

neighborhood concept of N (2) so that (2.10) is the distribution of a Markov random field on this

undirected graph of neighborhood N (2), and the local specification of the Markov random field is,

Pr{Ân = an|ÂN (2)(n)\n = aN (2)(n)\n}

=
exp

[
1
ν

∑
i∈N (1)(n) ri(SN (i),aN (i))

]
∑

λ∈A exp
[
1
ν

∑
i∈N (1)(n) ri(SN (i), λ, aN (i)\n)

] ,
where N (2)(n) \ n is a set including all the BSs in N (2)(n) but excluding n.

Module 1 Gibbs-Sampling-Based Network Configuration
Input: ν, Ã(0); N , N (·), S(t), A and rn(·) for each n.
Output: Ã(τ) for each iteration τ .

1: Init: Calculate N (1)(n) for each BS n by (2.11);
2: for each iteration τ do
3: Ã(τ) = Ã(τ−1);
4: Pick i uniformly at random from {1, 2, · · · , N};
5: Update Ã

(τ)
i by picking its value from the action set A according to the following probability,

∀µ ∈ A, Pr{Ã(τ)
i =µ}(2.12)

=
exp
[
1
ν

∑
j∈N (1)(i) rj(S

(t)
N (j), µ, Ã

(τ−1)
N (j)\i)

]
∑

λ∈Aexp
[
1
ν

∑
j∈N (1)(i) rj(S

(t)
N (j), λ, Ã

(τ−1)
N (j)\i)

] ;
6: end for

As a result, inspired by the Gibbs sampling algorithm, we have Module 1. Module 1 aims at

solving the problem for one time slot t with a given network state S(t) using an iterative algorithm.
30

In this iterative algorithm, in each iteration τ , a vector Ã(τ) = (Ã
(τ)
1 , Ã

(τ)
2 , · · · , Ã(τ)

N) is generated,

leading to a sequence of output vectors Ã(τ), τ = 1, 2, · · · . In Module 1, first in Line 1, based on

N (·), the undirected interfering neighborhood N (1) is constructed. Then, in each iteration τ , Ã(τ)

is generated by updating Ã(τ−1) according to the following rules:

i) Randomly select a BS i to update Ã
(τ)
i , as in Line 4.

ii) Update Ã
(τ)
i according to the probability in (2.12), as in Line 5. That is, for each value µ in

A, assign probability as in (2.12) to it, and then select a value from A randomly according to

the corresponding probabilities.

Note that ν, ν > 0, is the temperature parameter as in (2.10). The following results hold.

Theorem 2.5.1. The sequence Ã(τ) generated by Module 1 forms a time-homogeneous, irre-

ducible, aperiodic, and reversible Markov chain. In addition, for any initial Ã(0),

Ã(τ) d−→ Â,

and the network utility F (Ã(τ)) satisfies,

1

τ

τ−1∑
τ ′=0

F (Ã(τ ′))
as−→ E

[
F (Â)

]
,

where Â is the random vector with the probability distribution in (2.10), and d−→ and as−→ denote

convergence in distribution and almost sure convergence, respectively.

Proof. See Appendix 2.8.1. □

Now, let πν(A
(t)
⋆) denote the probability that we choose one of the optimal solutions of the

problem in (2.4). Then the following result holds due to the property of Gibbs distribution. (See

[105] for details.)

Theorem 2.5.2. The probability πν(A
(t)
⋆) is a monotonically decreasing function of parameter

ν, and,

lim
ν→0

πν(A
(t)
⋆) = 1.

31

Remark 2.5.1. It follows from Theorem 2.5.1 and Theorem 2.5.2 that Ã(τ) in Module 1 has

a steady-state distribution that chooses the optimal solution of the problem defined in (2.4) with a

probability arbitrarily close to one, if the temperature parameter ν is sufficiently small.

2.5.3. Accelerate Convergence. While it has nice theoretical properties, Module 1 has two

practical limitations. First, when implementing Module 1, if ν is too small, computational chal-

lenges exist due to numerical overflow because the exponential factors in (2.12) can be extremely

large. Second, as stated in Remark 2.5.1, when the temperature parameter ν is small enough,

Ã(τ) in Module 1 will converge to the optimal solution. However, a smaller ν leads to a longer

convergence time for the corresponding Markov Chain [106] in Module 1. In fact, when ν is small

enough, the convergence time (i.e., the mixing time of Markov chain) can be prohibitively long.

However, a fast algorithm to solve the problem in (2.4) for one slot t is critical for online network

configuration. Clearly, the solution of the problem in (2.4) for each time slot t should be computed

within the length of one time slot, while the length of one time slot will not be long since we want

to adjust network configuration promptly according to the network state.

For this reason, in this subsection, we focus on a single slot t, and design a fast converging

algorithm that converges to a local optimum of the problem in (2.4) for a given network state S(t).

Here, the local optimum is defined as follows.

Definition 1. A network control configuration a is a local optimum solution of the problem

defined in (2.4) for a given network state S(t) if F (a) ≥ F (a′) holds for any a′ such that ∃i satisfying

an = a′n, ∀n ̸= i.

The algorithmic design is presented in Module 2. It is inspired by the insight from Gibbs

sampling: In Module 1, a smaller temperature parameter ν leads to a larger probability of selecting

a local optimum solution of the problem in (2.4), while a larger parameter ν leads to a larger

probability of escaping from the trap of a local optimum.

Specifically, instead of randomly choosing one BS to update in each iteration as in Line 4 of

Module 1, Module 2 updates the corresponding control variable for each BS in turn in Lines 4-6. In

addition, after selecting a BS, Module 2 chooses the value of the control variable of the selected BS

in a deterministic way in Line 5. This differs from Module 1 which assigns a probability for each
32

possible value of the control variable of the selected BS, and chooses its configuration according to

these assigned probabilities in Line 5 of Module 1. However, to see the link between Module 2 and

Module 1, note that the value of the control variable chosen for a selected BS in Line 5 of Module 2

is the one that maximizes the probability in (2.12) in Line 5 of Module 1 if the same BS is selected.

(This can be shown by noticing that the denominator of the probability in (2.12) in Module 1 is

the same for different values of Ã(τ)
i .) This is roughly equivalent to setting the temperature ν to 0

in Module 11.
Module 2 Fast Converging Network Configuration

Input: a
(old)
init ; N , N (·), S(t), A and rn(·) for each n.

Output: A(t).
1: Init: Let a(old) = a

(old)
init , and calculate N (1)(·) by (2.11);

2: repeat
3: a(new) = a(old);
4: for n = 1 to N do
5: a(new)

n = argmax
A

∑
i∈N (1)(n)

r(S
(t)
N (i),a

(new)
N (i));

6: end for
7: until a(old) == a(new);
8: A(t) = a(new);

Note that in Line 5 of Module 2, ties can be broken by any deterministic rule. Further, with any

deterministic tie-breaking rule employed in Line 5, the repeat-until loop in Lines 2-7 of Module 2

terminates within a finite number of iterations. To see this, we first note that upon each update for

a(new) in Line 5, F (a(new)) increases or remains the same. This is because the impact of an on F (a)

is only manifested through ri(S
(t)
N (i),aN (i)), with i ∈ {j|n ∈ N (j)} (recall (2.9)). Then, in Line 5,

the change for the n-th element of a(new) cannot decrease the value of F (a(new)). By combining this

with the deterministic tie-breaking rule, the following holds: Either a(old) equals a(new) which leads

to the termination of the repeat-until loop in Line 7, or F (a(old)) < F (a(new)). That is, the values

of a(old) in different iterations of the repeat-until loop are different and F (a(old)) keeps increasing.

Thus, the a(old) in different iterations can form a sequence of variables without repetition. Since

the number of possible values for a(old) is finite, the repeat-until loop terminates in a finite number

of iterations. Then, the following holds.
1There is a slight difference when there are two or more values of the control variable Ã

(τ)
i that achieve the maximum

probability in (2.12), but still one of these optimal values will be chosen when ν is set to 0.

33

Theorem 2.5.3. The output A(t) in Module 2 is a local optimum solution of the problem defined

in (2.4) on one time slot t for a given network state S(t).

Proof. We prove this by contradiction. First, we assume that A(t) is not a local optimum

solution. By Module 2, A(t) must be the a(old) in the last repeat-until loop. As a result, the a(old)

in the last iteration for the repeat-until loop in Lines 2-7 is not a local optimum solution.

Then, by Definition 1, there exists a′ and n such that the last a(old) in the repeat-until loop

satisfies, a(old)n ̸= a′n, a(old)i = a′i for ∀i ̸= n, and that F (a(old)) < F (a′).

Note that the impact of an on F (a) is only manifested through ri(S
(t)
N (i),aN (i)) with i ∈ {j|n ∈

N (j)}. As a result, combining the above with (2.11) and Line 5 in Module 2, we have a(new) ̸= a(old)

in the last iteration in the repeat-until loop. However, this contradicts the termination condition

of the repeat-until loop in Line 7. Thus, the conclusion holds. □

Remark 2.5.2. By comparing Remark 2.5.1 and Theorem 2.5.3, we note that Module 2 speeds

up the optimization procedure by trading off the performance from a global optimum to a possible

local optimum.

Remark 2.5.3. Further, in Sec. 2.6, we find that the repeat-until loop in Module 2 is typically

short, e.g., 3-4 steps.

2.5.4. Online-Learning-Based Joint Network Configuration. Now, we combine Sec. 2.4

and Sec. 2.5.2 to design online-learning-based joint network configuration in Algo. 1. In Algo. 1,

let N (t, n) be the neighborhood of node n in slot t. Note that the neighborhood concept is decided

by the impact on one cell’s utility (recall the discussion below Eq. (2.3)), and it may change over

time. Then, given a network state S(t) (which includes time-average features that are extracted

as discussed in Sec. 2.4.2), we obtain control variables A(t) by the fast converging algorithm in

Module 2 for each time slot t. Note that the underlying condition for the algorithm to perform

well is that the state in one time slot remains the same. Due to network dynamics, this requires an

adequately short length for the time slot, i.e., the necessity to design a fast-converging configuration

algorithm, as discussed in Sec. 2.5.3.

Also, in Lines 6-7 of Algo. 1, we use mini-batch to train the cell utility model r(·) (which is

a unified model for all cells, recall Sec. 2.4.1) by stochastic gradient descent. (Specifically, the
34

Algorithm 1 Online-Learning-Based Joint Network Configuration

Input: A(0), N , Bmax, initial cell utility model r(·), and observe N (t, n), S(t)
n , R(t)

n for each n in
each slot t.

Output: A
(t)
n for each BS n in each slot t.

1: Init: Mini-batch B = ∅;
2: for each time slot t do
3: Observe neighborhood structure, let N (·) = N (t, ·), and observe state S(t);
4: By Module 2, obtain A(t), with setting a

(old)
init = A(t−1) and rn(·) = r(·) for each n;

5: Observe cell utility R
(t)
n for each BS n;

6: Add the tuples (S
(t)
N (n),A

(t)
N (n), R

(t)
n) for n = 1, 2, · · · , N to the mini-batch B; if the size of B

exceeds Bmax, drop the oldest tuples in it;
7: Update the cell prediction model r(·) by stochastic gradient descent to minimize the loss

function on the mini-batch;
8: end for

Adam method is used due to its strong performance [107].) Details about the training model and

hyper-parameters are provided in Sec. 2.4.3.

Remark 2.5.4. Then, by Theorem 2.5.3, the output A(t) in Algo. 1 is a local optimum solution

of the problem defined in (2.5) for a given network state S(t) on each slot t.

To make it clear, we summarize the key steps of pilot power configuration process shown in

Algo. 1:

• At the beginning of each time slot t, we observe sample data including raw network status

and neighborhood structure2. Also, based on raw features, the time-average features can

be obtained by moving average, as discussed in Sec. 2.4.2. Then, local network state S
(t)
N (n)

for each n is extracted. This process to extract current network state is shown in Line 3

of Algo. 1.

• Then, based on current network state S(t), the current network control A(t) can be de-

termined by the joint network configuration module in Module 2. Note that to apply the

joint configuration module, the up-to-date cell utility function r(·) is used. This process to

determine the current network control based current network state and cell utility function

is shown in Line 4 of Algo. 1.

2 Note that the neighborhood is the 5 neighboring cells that have the most impact on this cell’s throughput, as
discussed in Sec. 2.4.2.

35

• Then, the cell utility R
(t)
n for each BS n can be observed from the network, as shown in

Line 5 of Algo, 1. Note that the cell utilities depend on the current network state S(t) and

the current network control A(t). As a result, the tuples (S
(t)
N (n),A

(t)
N (n), R

(t)
n) for all n can

serve as training data of the cell utility function r(·).

• Consequently, at the end of each time slot, the new training data of tuples (S(t)
N (n),A

(t)
N (n), R

(t)
n)

are used to update the mini-batch B, which collects historical data for online cell utility

function training. Then, the cell utility function r(·) are updated by stochastic gradient

descent on the updated mini-batch B. Note that the cell utility function r(·) has a neural-

network–based learning model, as studied in Sec. 2.4. This procedure for online training

of cell utility function is shown in Lines 6-7 of Algo. 1

Remark 2.5.5. Note that although we are motivated by the pilot power configuration problem,

Algo. 1 can be a general method for the online cellular network configuration.

2.6. Numerical Results

We evaluate the performance of the proposed approach on an industrial-grade cellular network

simulator, Huawei U-Net. U-Net is an integrated component of Huawei’s rich wireless network

planning and design over years. It follows 3GPP standards and can support various scenarios. To

accurately simulate wireless network, U-Net utilizes highly accurate geographic information system

(GIS). It builds in high-precision propagation models, such as commonly used models for macro

cellular networks in dense urban areas, common urban areas, suburban areas, and rural areas, as well

as ray tracing models. It also integrates accurate models for network elements (NEs) and antennas,

as well as functions such as MIMO and multi-section splitting. It can plan network resources such

as neighboring cells, frequencies, scrambling codes, and PCIs (physical cell identifier). In addition,

data of live networks can be imported on the U-Net.

Several methods developed using this industrial-grade network simulation tool has been applied

to real networks, such as adding more than 2300 newly planned sites across China, as well as other

network problems including refarming planning, network optimization by operators in countries

such as China, Norway, United States and United Kingdom.
36

The simulation scenario here includes 87 cells, reproducing their geographical relationship of

a metropolitan area. The scenario is a 3G WCDMA cellular network including typical voice and

data traffic. The simulation scenario includes thousands of users. Number of users in each cell are

based on data extracted from live network traffic statistics, while the location of each user in a cell

is randomized. In the simulation, the total power constraint at each BS is 43dBm, i.e., the sum

of the transmission power and the pilot power should be no greater than 43dBm. The pilot power

of each BS is chosen from 30dBm to 36dBm with a granularity of 0.5dBm. This sophisticated

simulator takes a relatively long time to run, for example, a trace of 900 time slots here can take

up to three days to complete.

2.6.1. Learning the Utility Function Online. We first evaluate the prediction accuracy of

our online utility training procedure. As shown in Algo. 1, the cell utility function r(·) is updated

at the end of each time slot (recall Line 7). Using the utility function updated at the end of slot

t−1, based on S
(t)
N (n)and A

(t)
N (n), we predict the utility at slot t, i.e., r(S(t)

N (n),A
(t)
N (n)), and compare

it with its true value R
(t)
n obtained at the end of slot t for all cells. Here, the prediction accuracy

is calculated at each time slot for all cells, and measured by the coefficient of determination, i.e.,

R2 defined in (3.21). The result is shown in Fig. 2.2.

0 100 200 300 400 500 600 700 800 900

Time Slot t

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

C
o

e
ff

ic
ie

n
t

o
f

D
e

te
rm

in
a

ti
o

n

Figure 2.2. Online prediction accuracy for the cell utility function.

37

Table 2.5. Prediction accuracy for existing solutions.

Joint Network State and Action
Coefficient of Determination -57.9404

Fig. 2.2 shows that after the initial warm-up period, R2 fluctuates around 0.75, within the

range of [0.6, 0.85]. This is comparable to the offline prediction accuracy in Sec. 2.4 which is

around 0.7. Therefore, our online learning procedure sets a good foundation to conduct the pilot

power configuration.

We select the size of the mini-batch B for the online training of the cell utility function r(·)

(recall Line 6 of Algo. 1) by comparing the prediction accuracy of the online cell utility function

trained with different mini-batch sizes. In Fig. 2.2, this size, i.e. Bmax, is selected as 700. Further,

with Bmax = 700, considering that there are in total 87 BSs, we note that the mini-batch can

be fully updated within 9 time slots. This illustrates how a unified cell utility function r(·) can

accelerate the data collection and thus online training.

In Fig. 2.2, we use the offline data generated by the random policy to train the initial r(·) in

Algo. 1. At the initial slots, the coefficient of determination is still well above 0.5. This indicates

that Algo. 1 can use the sample data of existing algorithms in the system to speed up the learning.

However, note that there is still a gap between the prediction accuracy in the initial slots and

that in the subsequent slots. One reason for this performance gap is that the best cell utility

function changes due to time-varying network dynamics, as discussed in Sec. 2.3.3, which is not

captured in the offline model. Another reason is that the best cell utility function r(·) can be

different for different network configuration policies as they generate different distributions of the

input features for the model learned.

Table 2.5 compares the prediction accuracy of existing solutions. In most existing work for

learning-based network configuration, such as [28,31,32], all relevant features of the entire system

are treated as state or action. Thus, in this pilot power configuration problem with 87 cells,

using the existing solutions, the network state is a 174-dimensional vector (2 × 87 = 174), which

includes load and number of users in each cell. The network action is a 87-dimensional vector

that includes pilot powers of all cells. To illustrate the prediction accuracy of such a solution,

we train a neural-network-based regression model with the 174-dimensional state vector and 87-

dimensional action vector, to predict the total throughput of the network. However, in this method,
38

the data aggregation in Sec. 2.4.1 cannot be used, which leads to data scarcity: in this 900 iteration

simulation, there are in total 900 data points, i.e., 900 combinations of state/action vectors and the

corresponding training target (i.e., total throughput). To relieve the data scarcity, for this learning

model with joint network state and action vectors, we only provide off-line prediction accuracy

achieved in the following manner: For each iteration t, the learning model is trained based on all

the history and future data points, i.e., the data collected in all slots τ ̸= t, and then, the total

network throughput in slot t is predicted based on the network state in slot t by this off-line trained

model. Last, based on the resulting prediction of all the 900 time slots, we calculated the coefficient

of determination of this method3.

However, as shown in Table 2.5, the prediction accuracy of this learning model is extremely

poor, despite that the future data and current exact network state are provided. Clearly, the poor

performance is due to the huge action/state space, as well as the limited data availability: For

the 87-dimensional joint network action, the total action space is 1387 = 8.186 × 1096, and the

174-dimensional joint network state leads to a even larger state space. Meanwhile, there are only

900 data samples available. As a consequence, it is impossible to use the existing solutions to

build a reliable learning model for our network configuration problem. This result motivates the

need for our proposed online-learning-based joint-optimization framework that intelligently selects

state/action space and address data scarcity.

We further design a distributed Q-learning algorithm based on multiagent reinforcement learn-

ing theory [34,35] as a comparable baseline, which is discussed in next section and Appendix 2.8.2.

2.6.2. Conducting Online-Learning-Based Configuration. Now, we compare network

utility performance for different configuration algorithms. We consider two baselines. One is a

random policy that selects pilot power uniformly at random; the other is a distributed Q-learning

algorithm, motivated by the fact that our problem falls into the general scope of reinforcement

learning. If conventional Q-learning that treats all BSs as a whole is used, the action and state

space is immense: Since there are 13 possible choices for each BS’s pilot power configuration and

there are in total 87 BSs, the size of the action space for this network configuration problem is

1387 = 8.186 × 1096, and the size of the state space can be even larger. For this reason, we use

3To the readers who are familiar with statistical learning, this is in essence leave-one-out cross validation.

39

distributed Q-learning. The idea is that each BS runs a local Q-learning algorithm based on its

local information: the state includes the local state and the pilot power of the BS, while the reward

is the average of the cell’s reward and its neighbors’ rewards. As a result, the pilot power in the

next time slot of each BS is controlled by its own Q-learning algorithm. More details about our

distributed Q-learning design are shown in Appendix 2.8.2.

The results of different algorithms are shown in Fig. 2.3. Our Algo. 1 outperforms distributed

Q-learning, in terms of both the overall performance and the ramp-up time. It is better in overall

performance since it jointly optimizes network control, while in the distributed Q-learning algorithm

each cell makes decision locally. Furthermore, Algo. 1 has a much shorter ramp-up time compared

to the distributed Q-learning algorithm. This benefits from that Algo. 1 uses data aggregation to

learn a unified cell utility function r(·). This enables it to collect more data within each time slot,

thus boosting the learning procedure.

In addition, when running the experiments for Fig. 2.3, we found that in each time slot, Algo. 1

typically achieves the local optimum (recall Theorem 2.5.3) within 3-4 iterations. That is, the

repeat-until loop in Module 2 typically ends in 3-4 iterations. This illustrates the efficiency of

Algo. 1 on quickly deciding the network configuration.

0 200 400 600 800 1000 1200

Time Slot t

2.4

2.6

2.8

3

3.2

3.4

T
o

ta
l
T

h
ro

u
g

h
p

u
t

(K
b

p
s
)

10
4

Random

Distributed Q-Learning

Algo. 1

Algo. 1 with Module 1

Figure 2.3. Total network throughput for different configuration algorithms.

40

We have also tested the performance of Algo. 1 with Module 1, as shown in Fig. 2.3. In this

algorithm, instead of implementing Module 2 in Line 4 of Algo. 1, the Module 1 is implemented.

Here, for this algorithm, we terminate the for loop in Module 1 after 87000 (i.e., 1000×87 where 87

is the total number of BSs) iterations, and use the Ã(τ) in the last iteration as A(t). Further, the

initial cell utility function r(·) in this algorithm is the model trained offline on the data generated by

Algo. 1. Also, to deal with the limitations of Module 1 as discussed in Sec. 2.5.3, the temperature

parameter ν is set to be the smallest one that does not cause numerical overflow. It can be seen

that our Algo. 1 still approaches this Module 1-based algorithm (which is slow and with well-trained

initial utility model).

To illustrate the robustness of our online-learning-based framework, we have also conducted

experiments in other settings with different random user locations, as shown in Fig. 2.4. The result

is similar to that in Fig. 2.3 and our Algo. 1 still outperforms distributed Q-learning in both the

overall performance and the ramp-up time.

0 200 400 600 800 1000 1200

Time Slot t

2.4

2.6

2.8

3

3.2

3.4

T
o

ta
l
T

h
ro

u
g

h
p

u
t

(K
b

p
s
)

10
4

Random

Distributed Q-Learning

Algo. 1

Algo. 1 with Module 1

Figure 2.4. Performance of configuration algorithms in a different setting.

41

2.7. Conclusion

In the context of cellular network configuration, a learning-based approach needs to address

a few specific challenges, namely, limited data availability, convoluted sample data, highly com-

plex optimization due to interactions among neighboring cells, and the need to adapt to network

dynamics. In this work, we develop an online-learning-based joint-optimization approach. In our

approach, to learn an appropriate utility function, we develop a neural-network-based model that

addresses the convoluted sample data issue and achieves good accuracy based on data aggregation.

Based on the utility function learned, we formulate a global network configuration optimization

problem. To solve this high-dimensional non-concave maximization problem, we design a Gibbs-

sampling-based algorithm that converges to an optimal solution when a temperature parameter

is small enough. To speed up its convergence, we further design an efficient algorithm that con-

verges to a local optimum promptly. To adapt to network dynamics, we develop an online scheme

that updates the learned utility function and solves the corresponding optimization problem as the

network changes. To illustrate the idea, we use the case study of pilot power configuration. The

simulation results show that our online utility model achieves a good prediction accuracy, and our

online scheme outperforms a benchmark based on a distributed Q-learning algorithm.

The proposed approach has the potential to be applied to other network configuration problems

with similar characteristics, such as handoff threshold configuration, antenna adjustment, and

transmission power allocation. Future research also includes other feature selection mechanisms for

convoluted sample data, incorporating network change detection mechanisms, and generalizing the

framework to self-organizing networks (SON).

2.8. Appendix

2.8.1. Proof of Theorem 2.5.1. After we construct the interaction neighborhood N (1), the

problem is similar to that in [106]. Also, the proof for the homogeneous, irreducible and aperiodic

property of Ã(τ) follows the same argument as that in [106], and thus is omitted. However, since

our Module 1 differs in the selection of the BS to update, i.e., Line 4, the proof of reversibility is

different and is provided as follows.
42

To prove that the Markov chain Ã(τ) is reversible and that its steady state distribution is (2.10),

by reversible Markov chain theory [108], we only need to show that Ã(τ) satisfies,

πν(a)Pr
{
a′|a

}
= πν(a

′)Pr
{
a|a′

}
(2.13)

where πν(a) is as in (2.10), and Pr {a′|a} is the transition probability from state a to state a′, i.e.,

Pr
{
Ã(τ+1) = a′|Ã(τ) = a

}
. We prove (2.13) by considering the following three cases:

i) If a = a′, Eq. (2.13) follows directly.

ii) If a and a′ differ in more than one element, by Module 1, Pr {a′|a} = Pr {a|a′} = 0, leading

to (2.13).

iii) If a and a′ differ in exactly one element, we assume it is the n-th element without loss of

generality. That is, an ̸= a′n and ai = a′i, ∀i ̸= n. Then, Pr {a′|a} =

1

N
·

exp
[
1
ν

∑
j∈N (1)(n) rj(SN (j),a

′
N (j))

]
∑

λ∈A exp
[
1
ν

∑
j∈N (1)(n)rj(SN (j), λ, a

′
N (j)\n)

] ,(2.14)

where 1/N is the probability that node n is picked (recall Line 4 in Module 1), and the remaining

multiplier in (2.14) is the probability that value a′n is picked (recall Line 5 in Module 1). Similarly,

Pr {a|a′} =

1

N
·

exp
[
1
ν

∑
j∈N (1)(n) rj(SN (j),aN (j))

]
∑

λ∈A exp
[
1
ν

∑
j∈N (1)(n)rj(SN (j), λ, aN (j)\n)

] .(2.15)

By combining (2.14), (2.15) with (2.10), (2.9), we have Eq. (2.13).

Having proved the above properties for the Markov chain Ã(τ), the convergence results follow

from standard Markov chain theory (see [108]).

2.8.2. Design of Distributed Q-learning Algorithm. For the distributed Q-learning al-

gorithm, each cell conducts its own local Q-learning as follows:

• The local state is the cell’s pilot power. (We also tried an alternative local state definition,

using the cell’s pilot power and the average number of users of the cell and its neighbors.

The performance does not change much.)
43

• The local action consists in changing the local pilot power. Because we work with discrete

actions, we usually allow for 3 actions: {-1, 0, +1}. Here, action -1 means a reduction by

0.5 dBm; action 0 denotes no change at all; action +1 means an increase by 0.5 dBm. (We

also tried more actions, e.g., {2, -1, 0, +1, +2} to allow for a wider range of decreases or

increases, which however does not affect performance in any significant way.)

• The local reward is the tricky part. If we just define the local reward to be the cell’s local

throughput, then we cannot capture the dependencies among neighboring cells. To alle-

viate this, we define the local reward as the average of the cell’s reward and its neighbors’

rewards.

For each local Q-learning, we use a neural network function approximation to represent the

local Q-function. Since the action and state space is not large, we are using a neural network

with a single hidden layer consisting of just 5 nodes. We experimentally found that the activation

function of rectified liner activations units (RLUs) works the best. For the output layer, we just use

a single node with a linear activation function to represent the Q-value. The input layer consists

of nodes for the state and the action.

We train the neural network using stochastic gradient descent with learning rate 0.01. Finally,

regarding the Q-learning we are using a discount factor γ = 0.7 and ϵ-greedy exploration with

probability ϵ = 0.1. That is, we follow the action that maximizes the Q value with probability

1 − ϵ = 0.9, and a random action with probability ϵ = 0.1. We fine-tuned these values using grid

search.

44

CHAPTER 3

Kernel-Based Multi-Task Contextual Bandits

3.1. Introduction

With the development of mobile Internet and the rising number of smart phones, recent years

have witnessed a significant growth in mobile data traffic [109]. To satisfy the increasing traffic

demand, cellular providers are facing increasing pressure to further optimize their networks. Along

this line, one critical aspect is cellular base station (BS) configuration. In cellular networks, a BS is

a piece of network equipment that provides service to mobile users in its geographical coverage area

(similar to a WiFi access point, but much more complex), as shown in Figure 3.1. Each BS has

a large number of parameters to configure, such as spectrum band, power configuration, antenna

setting, and user hand-off threshold. These parameters have a significant impact on the overall

cellular network performance, such as user throughput or delay. For instance, the transmit power

of a BS determines its coverage and affects the throughput of all users it serves.

In current practice, cellular configuration needs manual adjustment and is mostly decided based

on the field experience of engineers . Network configuration parameters typically remain static for a

long period of time, even years, unless severe performance problems arise. This is clearly not optimal

in terms of network performance: different base stations have different deployment environments

(e.g., geographical areas), and the conditions of each BS (e.g., the number of users) also change

over time. Therefore, as shown in Figure 3.1, setting appropriate parameters for each deployed BS

based on its specific conditions could significantly help the industry to optimize its networks. A

natural way of achieving this goal is to apply online-learning-based algorithms in order to automate

and optimize network configuration.

Online-learning-based cellular BS configuration faces multiple challenges. First, the mapping

between network configuration and performance is highly complex. Since different BSs have dif-

ferent deployment environments, they have different mappings between network configuration and

45

Figure 3.1. Cellular network.
performance, given a BS condition. Furthermore, for a given BS, its condition also changes over

time due to network dynamics, leading to different optimal configurations at different points in

time. In addition, for a given BS and given condition, the impact of network configuration on

performance is too complicated to model using white-box analysis due to the complexity and dy-

namics of network environment, user diversity, traffic demand, mobility, etc. Second, to learn this

mapping and to optimize the network performance over a period of time, operators face a funda-

mental exploitation-exploration tradeoff: in this case, exploitation means to use the best known

configuration that benefits immediate performance but may overlook better configurations that are

unknown; and exploration means to experiment with unknown or uncertain configurations which

may have a better performance in the long run, at the risk of a potentially lower immediate per-

formance. Furthermore, running experiments in cellular networks is disruptive - users suffer poor

performance under poor configurations. Thus, providers are often conservative when running ex-

periments and would prefer to reduce the number of explorations needed in each BS. Fortunately,

in a cellular network, BSs usually have similarities, even though they are not identical. Therefore,

it would be desirable to effectively leverage data from different BSs by exploiting such similarities.

To address these challenges, we consider multiple BSs jointly and formulate the corresponding

configuration problem as a multi-task on-line learning framework as shown in Figure 3.2. The key

46

Figure 3.2. Multi-task online learning.
idea is to leverage information from multiple BSs to jointly learn a model that maps the network

state and its configuration to performance. The model is then customized to each BS based on

its characteristics. Furthermore, the model also allows the BSs to balance the tradeoff between

the exploration and exploitation of the different configuration. Specifically, we propose a kernel-

based multi-BS contextual bandits algorithm that can leverage similarity among BSs to automate

and optimize cellular network configuration of multiple BSs simultaneously. Our contributions are

multi-fold:

• We develop a kernel-based multi-task contextual bandits algorithm to optimize cellular

network configuration. The key idea is to explore similarities among BSs to make intelligent

decisions about networks configurations in a sequential manner.

• We propose a method to estimate the similarity among the BSs based on the conditional

kernel embedding.

• We present theoretical guarantees for the proposed algorithm in terms of regret and multi-

task-learning efficiency.

• We evaluate our algorithm both in synthetic data and real traces data and outperforms

bandits algorithms not using multi-task learning by respectively up to 70.8% and 64.8% .

The rest of the paper is organized as follows. The related work is in Sec. 3.2. We introduce the

system model and problem formulation in Sec. 3.3. We present a kernel-based multi-BS contextual

bandit algorithm in Sec. 3.4. The theoretical analysis of the algorithm is in Sec.3.5. We demonstrate

the numerical results in Sec. 3.6, and conclude in Sec. 3.7.
47

3.2. Related Work

Cellular Network Configuration Various aspects of network parameter configuration have

been studied in the literature, such as pilot power configuration, spectrum, handoff threshold,

etc. Traditional approaches derive analytical relationship between network configuration and its

performance based on communication theory, such as [24,25,27,110]. Such approaches are often

prohibitively complex, involve various approximations, and require a significant amount of input

information (such as the number of users, the location of each user, etc.).

Recently, learning-based methods are proposed [1, 28, 29, 30]. In [28], the authors propose a

tailored form of reinforcement learning to adaptively select the optimal antenna configuration in a

time-varying environment. In [30], the authors use Q-learning with compact state representation

for traffic offloading. In [29], the authors design a generalized global bandit algorithm to control

the transmit power in the cellular coverage optimization problem. In all these papers, BS simi-

larities are not considered, and thus require more exploration. In [1], the authors study the pilot

power configuration problem and design a Gibbs-sampling-based online learning algorithm so as

to maximize the throughput of users. In comparison, they make the assumption that all BSs are

equal while we allow different BSs to learn different mappings.

Contextual Bandits Contextual bandit [19] is an extension of classic multi-armed bandit

(MAB) problem [45]. One type of algorithm is based on upper confident bound(UCB), such as

Lin-UCB [53], Kernel-UCB [49], in which they assume the reward is a function of the context

and trade off between the exploitation and exploration based on upper confident bound of the

estimation [111]. The contextual bandit is also widely used in many application areas, such as

news article recommendation [53], clinical trials [54].

Multi-task Learning Multi-task learning has been extensively studied in many machine learn-

ing lectures [57]. A common way is using a kernel function to define the similarity among tasks,

e.g., in [63, 64, 65]. In [65], the authors design an algorithm that can transfer information

among arms in the contextual bandit. Compared with [65], in our problem, we define an in-

dividual contextual bandit problem for each BS and consider the multi-task learning among

different contextual bandit problems.

48

3.3. System Model and Problem Formulation

In this section, firstly, we describe the detail of the multi-BS configuration problem. Then we

formulate the problem as a multi-task contextual bandits model.

3.3.1. Multi-BS Configuration. We focus on the multi-BS network configuration problem.

Specifically, we consider a set of BSs M := {1, · · · ,M} in a network. The time of the system

is discretized, over a time horizon of T slots. At time slot t, ∀t ∈ T := {1, · · · , T}, for each BS

m ∈ M, its state is represented by a vector s
(m)
t in state space S ⊂ Rd. The state may include

the number of users in a BS, user mobility, traffic demand, and neighboring BS configuration. At

the beginning of each time slot t, the BS observes its state s
(m)
t , and chooses its configuration

c
(m)
t ∈ Caction ⊂ R using a network configuration algorithm, where Caction is a finite set. At the

end of time slot t, the BS receives a resulting reward r
(m)
ct,t ∈ R, which is a measure of network

performance. We note that c(m)
t can depend on all historical information of all BSs and the current

state s
(m)
t .

In practice, the configuration parameters can include pilot power, antenna direction, handoff

threshold, etc. The reward can be metrics of network performance, such as uplink throughput,

downlink throughput, and quality-of-service scores. Time granularity of the system is decided by

network operators. In the current practice, configurations can be updated daily during midnight

maintenance hours. To further improve network performance, network operators are moving to-

wards more frequent network configuration updates, e.g., on an hourly basis, based on network

states.

The goal of the problem is to find the configuration c
(m)
t , for all t and m that maximizes the

total cumulative reward over time, i.e.,

(3.1) max
c
(m)
t ∈Caction,∀t

M∑
m=1

T∑
t=1

r
(m)
ct,t

In this problem, for a given BS and a given state, we do not have a prior knowledge of the reward

of its action. We need to learn such a mapping during the time horizon. In other words, when

choosing c
(m)
t , one should consider the historical information of all BSs and current state, i.e.,

s
(m)
τ , c

(m)
τ , r

(m)
cτ ,τ , ∀τ < t, ∀m and s

(m)
t . The choice of c(m)

t and the corresponding reward also affect
49

future actions. Therefore, there exists a fundamental exploitation-exploration tradeoff: exploitation

is to use the best learned configuration that benefits the immediate reward but may overlook

better configurations that are unknown; and exploration is to experiment unknown or uncertain

configurations which may have a better reward in the long run, at the risk of a potentially lower

immediate reward.

Furthermore, we note that the action of one BS can be affected by the information of other BSs.

Therefore, the information from multiple BSs should be leveraged jointly to optimize the problem

in (3.1). Also, note that the BSs are similar but not identical. Therefore, the similarity of BSs

need to be explored and leveraged to optimize the network configuration.

In summary, the goal of multi-BS configuration problem is to choose appropriate actions for all

time slot and all BSs to maximize the the problem defined in Eq. (3.1).

3.3.2. Multi-Task Contextual Bandit. MAB [45] is a powerful tool in a sequential decision

making scenario where at each time step, a learning task pulls one of the arms and observes an

instantaneous reward that is independently and identically (i.i.d.) drawn from a fixed but unknown

distribution. The task’s objective is to maximize its cumulative reward by balancing the exploitation

of those arms that have yielded high rewards in the past and the exploration of new arms that have

not been tried. The contextual bandit model [19] is an extension of the MAB in which each arm

is associated with side information, called the context. The distribution of rewards for each arm

is related to the associated context. The task is to learn the arm selection strategy by leveraging

the contexts to predict the expected reward of each arm. Specifically, in the contextual bandit,

over a time horizon of T slots, at each time t, environment reveals context xat,t ∈ X from set X

of contexts for each arm a ∈ A from arms set A := {1, 2, · · · , N}, the leaner required to select one

arm at and then receives a reward rat,t from environment. At the end of the time slot t, learner

improves arm selection strategy based on new observation {xat,t, rat,t}. At time t, the best arm

is defined as a∗t = argmaxa∈A E(rat,t|xat,t) and the corresponding reward is ra∗t ,t
. The regret at

time T is defined as the sum of the gap between the real reward and the optimal reward through

the T time slots in Eq. (3.2). The goal of maximization of the accumulative reward
∑T

t=1 rat,t is
50

equivalent to minimizing the regret1.

(3.2) R(T) =

T∑
t=1

(ra∗t ,t − rat,t)

Based on the classical contextual bandit problem, we propose a multi-task contextual bandit

model. Consider a set of tasks M := {1, · · · ,M} , each task m ∈ M can be seen as a standard

contextual bandit problem. More specifically, in task m, at each time t, for each arm a ∈ A, there

is an associated context vector x
(m)
a,t ∈ Rp. If the arm a

(m)
t is pulled as time t for task m, it receives

a reward r
(m)
at,t . The detail is shown in Problem 1.

Problem 2 Multi-Task Contextual Bandit.
1: for t = 1 to T do
2: Environment reveals context x

(m)
a,t ∈ X for each arm a ∈ A and each task m ∈M

3: for ∀m ∈M do
4: Selects and pulls an arm a

(m)
t ∈ A

5: Environment reveals a reward r
(m)
at,t ∈ [0, 1]

6: end for
7: Improves arm selection based on new observations {(x(m)

at,t , r
(m)
at,t)|m ∈M}

8: end for

We also define the best arm as a
(m)∗
t = argmaxa∈A E(r(m)

at,t |x
(m)
at,t) and the corresponding reward

is r
(m)
a∗t ,t

. The regret over time horizon T is defined as the sum of the gap between the real reward

and the optimal reward through the T time slot among all M tasks in Eq. (3.3). The goal of the

problem is to minimize the regret.

R(T) =
M∑

m=1

T∑
t=1

(
r
(m)
a∗t ,t
− r

(m)
at,t

)
(3.3)

We can formulate the multi-BSs configuration problem as multi-task contextual bandit. We

regard the configuration optimization problem for one BS as one task. Specifically, for

each BS m, at time t, the context space X can be represented by a product of state space S and

action space Caction. And we index the finite set Caction by arms set A, i.e., use ca,t to represent

each possible configuration in time t. Then we define context associated with arm a is the

combination of the state and the action, i.e., x
(m)
a,t = (s

(m)
t , c

(m)
a,t), where s

(m)
t ∈ S and

1This is pseudo regret [112].

51

c
(m)
a,t ∈ Caction. Then the goal of finding the best arms which can maximize the total accumulative

reward in Eq. (3.1) is equivalent to minimizing the regret defined in Eq. (3.3).

3.4. Methodology

Most existing work on the contextual bandit problems, such as LinUCB [53], KernelUCB [49]

assume the reward is a function of the context, i.e., rat,t = f(xat,t). At each time slot t, these

algorithms use the estimated function f̂(·) to predict the reward of each arm according to the

context at time t, i.e.,{xat,t}a∈A. Based on the value and uncertainty of the prediction, they

calculate the upper confident bound (UCB) of each arm. Then they select the arm at that has the

maximum UCB value and then obtains a reward rat,t. Last, they update the estimated function

f̂(·) by the new observation (xat , rat,t).

In our multi-BS configuration problem defined in Eq. (3.1), if we model every BS as an indepen-

dent classical contextual bandit problem and use the existing algorithm to make its own decision,

it would lose information across BSs and thus is not efficient. Specifically, in the training process,

it would learn a group of function {f (m)|m ∈ M} independently and ignore the similarity among

them. In practice, the BSs that are configured simultaneously have lots of similar characteristics,

such as geographical location, leading to similar reward functions. Furthermore, in the real case,

since the configuration parameters have a large impact on the network performance, the cost of

experience is expensive. We need an approach to use the data effectively. So, motivated by this ob-

servation, we design the kernel-based multi-BS contextual bandits that can leverage the similarity

information and share experiences among BSs, i.e., tasks.

In this section, we propose a framework to solve the problem in Eq. (3.3). We start with

the regression model. Then we describe how to incorporate it with multi-task learning. Next, we

propose kernel-based multi-BS contextual bandits algorithm in Sec.3.4.3. In the last, we discuss

the details of task similarity for real data in Sec. 3.4.4.

3.4.1. Kernel Ridge Regression. For the network configure problem, we need to learn a

model from historical data that can predict the reward rat,t from the context xat,t. There are two

challenges. First, the learned model should capture the non-linear relation between the configura-

tion parameters, state (context) and the network utility (reward) in complex scenarios. Second,
52

since the learned model is used in the contextual bandit model, it needs to not only offer the mean

estimate value of the prediction but also a confidence interval of the estimation that can describe

the uncertainty of the prediction. This important feature is used later to trade off exploration and

exploration in the bandit model.

To address these two challenges, we use kernel ridge regression to learn the prediction model that

can capture non-linear relation and provide an explicit form of the uncertainty of the prediction.

Furthermore, intuitively, the kernel function can be regarded as a measure of similarity among

data points. which makes it suitable for the multi-task learning into it in Sec. 3.4.2. Let us briefly

describe the kernel regression model.

Kernel ridge regression is a powerful tool in supervised learning to characterize the non-linear

relation between the target and feature. For a training data set {(xi, yi)}ni=1, kernel method assumes

that there exists a feature mapping ϕ(x) : X → H which can map data into a feature space in which

a linear relationship y = ϕ(x)T θ between ϕ(x) and y can be observed, where θ is the parameter

need to be trained. The kernel function is defined as the inner product of two data vectors in the

feature space. k(x, x′) = ϕ(x)Tϕ(x′), ∀x, x′ ∈ X .

The feature space H is a Hilbert space of functions f : X → R with inner product k < ·, · >.

It can be called as the associated reproducing kernel Hilbert space (RKHS) of k, notated by Hk.

The goal of kernel ridge regression is to find a function f in the RKHS H that can minimize the

mean squared error of all training data, as shown in Eq. (3.4).

(3.4) f̂ = arg min
f∈Hk

n∑
i=1

(f(xi)− yi)
2 + λ||f ||2Hk

The solution of Eq. (3.4) is (detail derivation in [113])

(3.5) f(x) = kT
x (K + λI)−1y

where y = (y1, · · · , yn)T , K is the Gram matrix [114], i.e., Kij = k(xi, xj), kx = (k(x, x1), · · · , k(x, xn))T

is the vector of the kernel value between all historical data X and the new data, x.

This provides basis for our bandit algorithms. The uncertainty of prediction of the kernel ridge

regression is discussed in Sec.3.4.3.

53

3.4.2. Multi-Task Learning. We next introduce how to integrate kernel ridge regression into

multi-task learning which allows us to use similarities information among BSs.

In multi-task learning, the main question is how to efficiently use data from one task to another

task. Borrowing the idea from [57,65], we define the regression functions in the followings:

(3.6) f : X̃ → Y

where X̃ = Z × X , X is the original context space, Z is the task similarity space, Y is the reward

space. For each context x
(m)
at,t of BS m, we can associate it with the task/BS descriptor zm ∈ Z,

and define x̃
(m)
at,t = (zm, x

(m)
at,t) to be the augmented context. We define the following kernel function

k̃ in (3.7) to capture the relation among tasks.

(3.7) k̃((z, x), (z′, x′)) = kZ(z, z
′)kX (x, x

′)

where kX is the kernel defined in original context, and kZ is the kernel defined in tasks that

measures the similarity among tasks/BSs. Then we define the task/BS similarity matrix KZ as

(KZ)ij = kZ(zi, zj). We discuss the training of this similarity kernel and similarity matrix in

Sec.3.4.4.

In the multi-tasks contextual bandit model, at time t, we need to train an arm selection strategy

based on the history data we experienced, i.e.,{(x(m)
τ , r

(m)
aτ ,τ)|m ∈ M, τ < t}. We formulate a

regression problem in Eq. (3.8)

(3.8) f̂t = arg min
f∈Hk̃

M∑
m=1

t−1∑
τ=1

(f(x̃(m)
aτ ,τ)− r(m)

a,τ)2 + λ||f ||2Hk̃

where x̃
(m)
aτ ,τ is the augmented context of the arm aτ for task m, which is defined as the combination

of the task descriptor zm and original context x
(m)
at,t , i.e., x̃(m)

at,t = (zm, x
(m)
at,t).

Then we can get a similar result as Eq. (3.5) in Eq. (3.9) . The only difference is that we use

the augmented context x̃ and new kernel k̃ instead of the x and k.

(3.9) f̂t(x̃) = k̃T
t−1(x̃)(K̃t−1 + λI)−1yt−1

54

where K̃t−1 is Gram matrix [114] of [x̃(m)
aτ ,τ]τ<t,m∈M,

k̃t−1(x̃) = [k̃(x̃, x̃
(m)
aτ ,τ)]τ<t,m∈M, and yt−1 = [r

(m)
aτ ,τ]τ<t,m∈M. For the hyper parameter of kernel kX

and the regularization parameter λ, we can use maximum likelihood method to train them. Then

we can use Eq.(3.9) to predict the network utility (reward) based on the configured parameter and

network state (augmented context).

3.4.3. Kernel-based Multi-BS Contextual Bandits. Next, we introduce how to measure

the uncertainty of the prediction in Eq. (3.9). At time T , for a specific task, i.e., BS, m ∈ M, for

a given augmented context x̃
(m)
aT ,T of an arm, in order to estimate the uncertainty of the prediction

f̂T (x̃
(m)
aT ,T), we need to make an assumption that the reward at time T , i.e., r(m)

aT ,T and all historical

reward data, i.e., {r(m)
aτ ,τ)|m ∈ M, τ < T} are all independent random variables. Then we can

use McDiarmid’s inequality to get an upper confident bound of the predicted value. Since the

mathematical derivation of this step is the same as Lemma 1 in [65], we only make a minor

modification to obtain Theorem 3.4.1.

Theorem 3.4.1. For task ∀m ∈M, suppose the rewards r
(m)
aT ,T at time T and the history reward

{r(m)
aτ ,τ)|m ∈ M, τ < T} are independent random variables with means E[r

(m)
aτ ,τ |x̃

(m)
aτ ,τ] = f∗(x̃

(m)
aτ ,τ),

where f∗ ∈ Hk̃ and ||f∗||Hk̃
≤ c. Let α =

√
log(2((T−1)MN+1)/δ)

2 and δ > 0. With probability at least

1− δ
T , we have that ∀a ∈ A

(3.10) |f̂t(x̃(m)
a,t)− f∗(x̃

(m)
a,t)| ≤ (α+ c

√
λ)σ

(m)
a,t

where the width is

σ
(m)
a,t =

√
k̃(x̃

(m)
a,t , x̃

(m)
a,t)−k̃T

t−1(x̃
(m)
a,t)(K̃t−1 + λI)−1k̃t−1(x̃

(m)
a,t)(3.11)

Based on Theorem 3.4.1, we define the upper confident bound UCB for each arm for each task

in Eq. (3.12), where f̂t is obtained from Eq. (3.9), and β is a hyper parameter.

UCB(m)
a,t = f̂t(x̃

(m)
a,t) + βσ

(m)
a,t(3.12)

Then we propose Algorithm 1 to solve the multi-BS configuration problem.
55

Algorithm 1 Kernel-based multi-BS configuration.
1: for t = 1 to T do
2: Update the Gram matrix K̃t−1

3: for all BS m ∈M do
4: Observe system state at time t for BS m: s

(m)
t and determine the context feature x

(m)
a,t for

each a ∈ A
5: Determine the task/BS descriptor zm and get the augmented context x̃

(m)
a,t

6: for all arm a in A at time t do
7: ucb

(m)
a,t = f̂(x

(m)
a,t) + βσ

(m)
a,t

8: end for
9: For BS m, choose arm a

(m)
t = argmaxucb

(m)
a,t

10: Observe reward r
(m)
at,t

11: end for
12: Update yt by {r(m)

at,t |m ∈M}
13: end for

In Algorithm 1, at each time t, it updates the prediction model f̂t. Then for each task m ∈M,

it uses the model to obtain the UCB of each arm a ∈ A. Next it selects the arm that has the

maximum UCB. Algorithm 1 can trade off between the exploitation and exploration in the multi-

BS configuration problem. The intuition behind it is as following: if one configuration is only

tried for few times or even yet tried, its corresponding arm’s width defined in Eq.(3.11) is larger,

which makes its UCB value larger, then this configuration will be tried in following time with high

probability.

Independent Assumption Note that the independent assumption of Theorem 3.4.1 is not

true in Algorithm 1, because the previous rewards influence the arm selection strategy (prediction

function), then influence the following reward. To address it, we select a subset of them to make

this assumption hold true in Sec. 3.5.

High Dimensionality In Algorithm 1, it updates K̃t−1 in line 2 and recalculates (K̃t−1+λI)−1

in line 7 based on Eq. (3.9). Since at time t, the dimension of K̃t−1 is M(t−1) and the computation

complexity of inverse it is O(M3t3). It increases dramatically over time. To address this issue, we

use the Schur complement [115] as following to simplify it.

56

Theorem 3.4.2. For a matrix M =

A U

V C

, define Schur complement of block C as S :=

A− UC−1V . Then we can get

M−1 =

A U

V C

−1

=

 S−1 −S−1UC−1

−C−1V S−1 C−1V S−1UC−1 + C−1

(3.13)

Based on it, we can update (K̃t + λI)−1 by (K̃t−1 + λI)−1. It decreases the computation

complexity to O(Mt2).

For the issue of dealing with large dimension of Gram matrix K has been much studied in

Chapter 8 of [116]. Most of them are designed for the supervise learning cases. In our problem,

based on thr feature of online learning, Schur complement method is more suitable and efficiency.

3.4.4. Similarity. The kernel kZ(z, z′) that defines the similarities among the tasks/BSs plays

a significant role in Algorithm 1. When kZ(z, z
′) = 1(m = m′), where 1 is the characteristic

function, Algorithm 1 is equivalent to running the contextual bandit independently for each BS. In

this section, we discuss how to measure the similarity in real data if it is not provided.

Suppose the ground truth function for task i (i.e., BS i) is y = fi(x), we need to define

the similarity among different BSs based on the ground truth functions fi(x). From a Bayesian

view, y = fi(x) is equivalent to the conditional distribution P (Yi|Xi). Therefore, we can use

the conditional kernel embedding to map the conditional distributions to operators in a high-

dimensional space, and then define the similarity based on it. Let us start with the definition of

kernel embedding and conditional kernel embedding.

3.4.4.1. Conditional kernel embedding. Kernel embedding is a method in which a probabil-

ity is mapped to an element of a potentially infinite dimensional feature spaces, i.e., a reproducing

kernel Hilbert space (RKHS) [117]. For a random variable in domain X with distribution P (X) ,

suppose k : X × X → R is the positive definite kernels with corresponding RKHS HX , the kernel

embedding of a kernel k for X is defined as

(3.14) νx = EX [k(·, x)] =
∫

k(·, x)dP (x)

It is an element in HX .
57

For two random variable X and Y , suppose k : X ×X → R and l : Y ×Y → R are respectively

the positive definite kernels with corresponding RKHS HX and HY . The kernel embedding for the

marginal distribution P (Y |X = x) is:

(3.15) νY |x = EY [l(·, y)|x] =
∫

l(·, y)dP (y|x)

It is an element in HY . Then for the conditional probability P (Y |X), the kernel embedding is

defined as a conditional operator OY |X : HX → HY that satisfies Eq. (3.16)

(3.16) νY |x = OY |Xk(x, ·)

If we have a data set {xi, yi}ni=1, which are i.i.d drawn from P (X,Y), the conditional kernel em-

bedding operator can be estimated by:

(3.17) ÔY |X = Ψ(K + λI)−1Φ

where Ψ = (l(y1, ·), · · · , l(yn, ·)) and Φ = (k(x1, ·), · · · , k(xn, ·)) are implicitly formed feature ma-

trix, K is the Gram matrix of x, i.e., (K)ij = k(xi, xj)

The definition of conditional kernel embedding provides a way to measure probability P (Y |X)

as an operator between the spaces HY and HX .

3.4.4.2. Similarity Calculation. In this section, we use the conditional kernel embedding to

define the similarity space Z and augmented context kernel kZ in Eq. (3.7).

We define the task/BS similarity space as Z = PY|X , the set of all conditional probability

distributions of Y given X. Then for task/BS m, given a context x(m)
a,t for arm a at t, we define the

augmented context x̃
(m)
a,t as (PYm|Xm

, x
(m)
a,t).

Then we use the Gaussian-form kernel based on the conditional kernel embedding to define kZ :

(3.18) kZ(PYm|Xm
, PYm′ |Xm′) = exp(−||O(m)

Y |X −O
(m′)
Y |X)||2/2σ2

Z)

where || · || is Frobenius norm, OY |X is the conditional kernel embedding defined in Eq. (3.16) and

can be estimated by Eq. (3.17). The hyper parameter σZ can be heuristically estimated by the

median of Frobenius norm of all dataset. In Eq. (3.17), it can only be used in explicit kernels.

Next, we use the kernel trick to derive a form that does not include explicit features.
58

Given a group of data sets Dm = {(xi, yi)}nm
i=1, and k and l are respectively two positive definite

kernels with RKHS HX and HY , for data set Dm, we define Ψm = (l(y1, ·), · · · , l(ynm , ·)) and

Φm = (k(x1, ·), · · · , k(xnm , ·)) are implicitly formed feature matrix of y and x. Km = ΦT
mΦm

and Lm = ΨT
mΨm are Gram matrix of all x and y. and O(m)

Y |X for conditional kernel embedding.

According to Eq. (3.17), we have

O(m)
Y |X = Ψm(Km + λI)−1ΦT

m

||O(m)
Y |X −O

(m′)
Y |X ||

2 =tr(O(m)T
Y |X O

(m)
Y |X)− 2tr(O(m)T

Y |X O
(m′)
Y |X)

+ tr(O(m′)T
Y |X O

(m)
Y |X)

(3.19)

Define matrix Kmm′ and Lmm′ by (Kmm′)ij = k(xi, xj) and (Lmm′)ij = l(yi, yj), where (xi, yi) is

the i-th data in Dm and (xj , yj) is the j-th data in Dm′ , so as Kmm′ and Lm′m. Then for the second

term in Eq. (3.19),

tr(O(m)T
Y |X O

(m′)
Y |X) = tr(Ψm(Km + λI)−1ΦT

mΦm′(Km′ + λI)−1ΨT
m′)

= tr((Km + λI)−1ΦT
mΦm(Km′ + λI)−1ΨT

m′Ψm)

= tr((Km + λI)−1Kmm′(Km′ + λI)−1Lm′m)

After using the same trick for other terms, Eq. (3.19) can be written as

(3.20)

||O(m)
Y |X −O

(m′)
Y |X ||

2 = tr((Km + λI)−1Km(Km + λI)−mLm)

− 2 ∗ tr((Km + λI)−1Kmm′(Km′ + λI)−1Lm′m

+ tr((Km′ + λI)−1Km′(Km′ + λI)−1Lm′)

Then we can use Eq. (3.20) in Eq. (3.18) to measure the similarity between tasks. We denote

the conditional kernel embedding metric for measure similarity as CKE.

3.4.4.3. Other similarity metrics. In the above, the similarity is defined based on P (Y |X)

among tasks through conditional kernel embedding. In the practice, there are several ways to define

similarity.

The average R2 method: For example, for data set D1 and D2, we can train a regres-

sion model on D1 and test it on D2, then measure the similarity using the prediction accuracy.

59

Specifically, in the test set, we can measure prediction through the coefficient of determination R2

as,

R2 = 1− ηss
ηvarMsp

,(3.21)

where ηss is the sum of squared prediction errors, ηvar is the variance of the target, and Msp is the

total number of samples. The larger the value of R2, the better the model can capture the observed

outcomes. Switch the training and testing data, we obtain another R2. Then we can define the

similarity base on the average of these two R2.If the value is smaller than a negative threshold, we

can define the similarity as 0.

The hyper parameter method In work [63], it regards the similarity as a covariance ma-

trix among tasks, they train them with other hyper parameter in the model based on maximum

likelihood metric. This method needs more computation resource.

In practice, using different similarity definitions may have different results. The selection of the

method to define similarity is in general heuristic. In this problem, we have conducted experiments

using different similarity definitions in the evaluation section . It turns out that conditional kernel

embedding (CKE) has the best performance in this kernel-based multi-BS configuration problem,

and thus described in detail in this section.

3.5. Theoretical Analysis

In this section, we provide theoretical analysis of Algorithm 1 based on the classical bandit

analysis. The first part is about regret analysis and the second part is about the multi-task-learning

efficiency.

3.5.1. Regret Analysis. In Algorithm 1, at each time slot t, it uses the trained model to

make a decision for all BSs in parallel. This is not in the same form of classical bandit model. In

order to simply the analysis, we make an sequential version in Algorithm 2, in which at each time

t, it receives the context (state and action) of one BS with its BS ID, denoted by Vt, that is used to

identify the BS index m. Then algorithm 2 obtains the augment context using Vt and then makes

a decision for the BS. In this manner, Algorithm 2 makes a decision for all BSs sequentially. The

performance of parallel and sequential methods are similar when the number of BSs is moderate and
60

all BSs come in order, as in our case, since the difference of number of updates for the model in the

parallel and sequential cases is small. It is also shown from the simulation that their performances

are similar.

Algorithm 2 Sequential multi-BS configuration.
1: for t = 1 to T do
2: Update the Gram matrix K̃t−1

3: Observe the BS ID Vt and the corresponding context features at time t: xa,t for each a ∈ A
4: Determine the BS descriptor zm based on Vt and get the augmented context x̃a,t
5: for all arm a in A at time t do
6: ucba,t = f̂(x̃a,t) + βσa,t
7: end for
8: Choose arm at = argmaxucba,t for BS Vt

9: Observe reward rat,t
10: Update yt by rat,t
11: end for

The regret of Algorithm 2 is defined by

R(T) =
M∑

m=1

T∑
t=1

(r
(m)
a∗t ,t
− r

(m)
at,t)1(Vt = m)(3.22)

In Algorithm 2, the estimated reward r̂at,t at time t can be regarded as the sum of variables

in history [raτ ,τ]τ<t that are dependent random variables. It does not meet the assumption in

Theorem 3.4.1, thus we are unable to analysis the uncertainty of the prediction.

To address this issue, as in [45, 111], we design the base version (Algorithm 3) and super

version (Algorithm 4) of Algorithm 2 in order to meet the requirement of Theorem 3.4.1.These

algorithms are only designed too help theoretical analysis. In Algorithm 4, it constructs special,

mutually exclusive subsets {Ψ(s)}S of ts the elapsed time to guarantee the event {t ∈ Ψ
(s)
t+1} is

independent of the rewards observed at times in Ψ
(s)
t . On each of these sets, it uses Algorithm 3

as subroutine to obtain the estimated reward and width of the upper confident bound which is the

same as Algorithm 2.

The construction of Algorithm 3 and Algorithm 4 follow similar strategy of that in the proof of

KernelUCB (see Theorem 1 in [49] or Theorem 1 in [65]). Then we can get the following theorem

3.
61

Algorithm 3 Base sequential multi-BS configuration.
1: Input: β,Ψ ⊂ {1, · · · , t− 1}
2: Calculate Gram matrix K̃Ψ and get yΨ = [raτ ,τ]τ∈Ψ
3: Observe the BS ID Vt and corresponding context features at time t: xa,t for each a ∈ A
4: Determine the BS descriptor zm and get the augmented context x̃a,t
5: for all arm a in A at time t do
6: σa,t =

√
k̃(x̃a,t, x̃a,t)− k̃Ta,Ψ(K̃Ψ + λI)k̃a,Ψ

7: ucba,t = f̂(xa,t) + βσa,t
8: end for

Algorithm 4 Super sequential multi-BS configuration.
1: Input: β, T ∈ N
2: Initialize S ← log⌈T ⌉ and Ψ

(s)
1 ← ∅ for all s ∈ S

3: for t = 1 to T do
4: s← 1 and Â1 ← A
5: repeat
6: σa,t, ucba,t for all a ∈ Â(s) ← BaseAlg(Ψ(s)

t , β)
7: ωa,t = βσa,t
8: if ωa,t ≤ 1√

T
for all a ∈ Â(s) then

9: Choose at = argmaxa∈Â(s)
ucba,t

10: Φ
(s)
t+1 ← Φ

(s)
t for all s ∈ S

11: else if ωa,t ≤ 2−s for all a ∈ Â(s) then
12: Âs+1 ← {a ∈ Âs|ucba,t ≥ maxa′∈Âs

ucba′,t − 21−q}
13: s← s+ 1
14: else
15: Choose at ∈ Âs s.t. ωat,t > 2−q

16: Φ
(s)
t+1 ← Φ

(s)
t ∪ {t} and ∀s′ ̸= s,Φ

(s)
t+1 ← Φ

(s)
t

17: end if
18: until at is found
19: Observe reward rat,t
20: end for

Theorem 3.5.1. Assume that ra,t ∈ [0, 1], ∀a ∈ A, T ≥ 1, ||f∗||Hk̃
≤ ck̃, ∀x̃ ∈ X̃ and tasks

similarity matrix KZ is known. With probability 1− δ, the regret of Algorithm 4 satisfies,

R(T) ≤ 2
√
T + 10(

√
log(2TN(log(T) + 1)/δ))

2
+ c
√
λ)√

2d log(g([T])
√
T ⌈log(T)⌉

= O(
√

T log(g([T])))

(3.23)

where g([T]) =
det(K̃T+1+λI)

λT+1 and d = max(1,
ck̃
λ)

62

3.5.2. Multi-task-learning Efficiency. In this section, we discuss the benefits of multi-task

learning from the theoretical view point.

In the sequential setting, i.e., Algorithm 2 and Algorithm 4, because all BSs/tasks come in

order, at time t, each task happens n = t
M times. Let KXt be Gram matrix of [x(m)

aτ ,τ]τ≤t,m∈M i.e.,

original context, KZ be the similarity matrix. Then, following Theorem 2 in [65], the following

results hold,

Theorem 3.5.2. Define the rank of matrix KXT+1
as rx and the rank of matrix KZ as rz. Then

log(g([T])) ≤ rzrx log

(
(T + 1)ck̃ + λ

λ

)

According to Eq. (3.23), if the rank of similarity matrix is lower, which means all BSs/tasks

have higher inter-task similarity, the regret bound is tighter.

We make the further assumption that all distinct tasks are similar to each other with task

similarity equal to µ. Define gµ([T]) as the corresponding value of g([T]) when all task similarity

equal to µ. According to Theorem 3 in [65], we have

Theorem 3.5.3. If µ1 ≤ µ2, then gµ1([T]) ≥ gµ2([T])

This shows that given the assumption that all tasks comes in order and number of tasks is

fixed, when BSs/tasks are more similar, the regret bound is tighter. In our case, running all task

independently is equivalent to setting the similarity as an identify matrix, i.e., µ = 0. So, based on

the previous two theorems, we show the benefits of our algorithm using the multi-task learning.

3.6. Evaluation

In this section, we evaluate the performance of the proposed approach Algorithm 1. and

Algorithm 2. in both synthetic data and real network data.

3.6.1. Synthetic data evaluation. We use synthetic data to demonstrate the impact of sim-

ilarity in multi-task regression. Thereafter, we test our algorithm performance based on synthetic

data.
63

3.6.1.1. Similarity in regression. We generate the reward function of tasks with pre-defined

ground truth similarity based on Gaussian process. Then we train the regression model using

different similarity and measure the performance of regression. In detail, we generate 2-task data

sets in the following manner: (1) Each data set has 100 data points, D1 = {x1i , y1i }100i=1 and D2 =

{x2i , y2i }100i=1, and each xi is randomly sampled from [0, 1] × [0, 1] ⊂ R2 and y ∈ R. (2) The ground

truth similarity between two tasks is simg = 0.8. i.e., the similarity matrix KZ is a symmetric

2 × 2 matrix with 1s in the main diagonal and 0.8s in the anti-diagonal. (3) The kernel of x is

the Gaussian kernel with lengthscale 0.5. (4) y = [y11, y
1
2, · · · , y1100, y21, y22, · · · , y2100]T is sampled

from a multivariate normal distribution with zero mean and whose covariance is the Kronecker

product of similarity matrix KZ and the Gram matrix of x, KX added white noise, i.e., y ∼

N (0,KZ ⊗ KX + σ2
noiseI) with σ2

noise = 0.05. (5) We sampled Y for 100 times, and test the

regression for each sampled Y . (6) For each task, the size of train set is 5, other 95 data points are

test data.

In the training process, the hyper parameter of the kernel are the same as the ones in the data

generating process. For any similarity value simtrain ∈ [0, 1] with granularity 0.01 between two

tasks, we use Eq. (3.9) to train the regression function. The performance is measured by mean

square error (MSE) for all test data. The results is shown in Fig. 3.3. The MSE is the the average

of 100 samples y. It shows that the relation between MSE and similarity simtrain is a convex form

function. The case simtrain = 0 is to train two tasks independently, that is, no information is

shared between tasks; The case simtrain = 1 is to train two tasks with the combination of the two

data sets, that is, the difference between tasks is neglected. The best performance (minimum MSE)

is achieved, when simtrain = sumg = 0.8, that is, similarity used in training is equal to the ground

truth similarity. This is in accordance with our motivation to take the similarity measurement into

the multi-task learning.

3.6.1.2. Multi-task contextual bandit in synthetic data. We use synthetic data to test

the performance of Algorithm 1 based on different similarity metrics in Sec. 3.4.4, the CKE, the

average R2 method and the hyper parameter method. Suppose that we have 5 tasks and 5 arms

for each task, and define the context for each arm as x
(m)
at,t ∈ R2. To create the similar reward

function for each task, we assume that there exits a hidden parameter ut, which is randomly

64

0.0 0.2 0.4 0.6 0.8 1.0
similarity used in training simtrain

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

M
SE

MSE

Figure 3.3. Similarity v.s MSE in 2-task regression.
sampled from [0, 1] × [0, 1] ⊂ R2, and the context for each arm x

(m)
at,t is a projection of ut, and

the projection angle depends on the arm and task. Specifically, we use ut[0] and ut[1] to denote

vector ut’s first and second dimension. For task m, arm at ∈ A = {1, 2, 3, 4, 5}, the corresponding

x
(m)
at,t = [ut[0]cos(

π
2 (

at
5 + m

10)), ut[1]sin(
π
2
at
5)] and the reward is r

(m)
a,t = 1 − (ut[0] − at

5 + 0.3 − m
10)

2.

We conduct the experiment in multi-task learning in parallel manner (same as Problem 1). The

simulation result is shown in Fig.3.4. We compare the cumulative regret of Algorithm 1 with the

performance of conducting Kernel-UCB [49] on each task independently.

Here, the cumulative regrets shown in Fig.3.4 are the sum of the cumulative regrets of the

five tasks. Further, each data point is the average result of 10 individual simulations. It shows

that the regret of multi-learning grows slower than the one of the Kernel-UCB. After 1000 time

slots, the multi-task learning (Algorithm 1) using similarity base on CKE, the average R2 and the

hyper parameter method respectively decrease 70.8%, 64.2% and 36.7% of the regret compared to

Kernel-UCB. We also test the sequential case (Algorithm 2) in this setting, the performances are

similar.

65

0 200 400 600 800 1000

Time t

0

50

100

150

C
u
m

u
la

ti
v
e

re

g
re

t

Kernel-UCB

Muti-task (CKE)

Muti-task (Average R2)

Muti-task (Hyper parameter)

Figure 3.4. Multi-task learning in synthetic data.

Table 3.1. Sample Data.

BS ID # Active users % CQI %Small
packet
SDUs

%Small
packet
volume

Users Threshold
handover

%Users
through-
put
≥5Mbps

3714 0.083643988 0.342990 61.37669801 47.70435832 5.20244 -93 90.78014184
3714 0.163259998 0.606118 35.45774141 29.14181596 7.89750 -94 82.55813953
1217 1.471931100 0.242817 30.86999337 31.98075091 85.12305 -98 84.06884082
1217 1.479040265 0.437417 29.61262810 21.28883741 100.42472 -101 62.58613608

3.6.2. Real data evaluation. We start with the data collection and simulator construction

procedure, and then discuss about the numerical results.

3.6.2.1. Data Collection and Simulator Construction. We build a network simulator

based on data collected in real networks to provide interactive environment for bandit algorithms.

The data is collected in the real base station configuration experiments conducted by a service

provider in a metropolitan city. We employ 105 BSs within the region to collect 56580 data samples,

each for the statistics of a BS observed from 2pm to 10pm in 5 days. An example is illustrated in

Table 3.1. These statistics include network measurements, and configured parameter. The network
66

measurements include user number, CQI, average packet size, etc, as illustrated from Column 2 to

6, used as states in our experiment. The configured parameter is handover threshold, as shown

Column 7, employed as actions. To be specific, handover is a procedure for a BS to guarantee

the user experience in cellular network. If one BS observes the signal strength of a user it serves is

lower than the threshold, it will handover the user to another BS that has a better communication

quality. The range of the configured parameter values is from -112 dBm to -84 dBm, with 1 dBm

resolution. Each base station change its configured parameter randomly several times per day. The

reward is the ratio of users with throughput no less than 5 Mbps, as shown in Column 8.

With the data, we build our simulator. The input is the state and configured parameter (s, ca),

and the output is the corresponding reward r. In detail, when the simulator receives the input

(s, ca), it returns the average of the rewards of the top k nearest neighbors of (s, ca) in the data

set, by Euclidean distance.

3.6.2.2. Evaluation Setup and Results. In this experiment, the dimension of the state space

is 5. The action space is from -112 dBm to -84 dBm with 1 dBm resolution, that is, the number of

arms in our model is 29. The reward space is [0, 1]. We test 3 methods to measure the similarity

of 105 different BSs. In Fig. 3.5, each subplot corresponds to the similarity matrix KZ trained by

methods in Sec. 3.4.4, the CKE, the average R2 method and the hyper parameter method. The

value in Row i, Column j corresponds to the similarity between BS i and BS j.

0 20 40 60 80 100
BS ID

0
20

40
60

80
10

0
BS

 ID

(a) CKE

0 20 40 60 80 100
BS ID

0
20

40
60

80
10

0
BS

 ID

(b) Average R 2

0 20 40 60 80 100
BS ID

0
20

40
60

80
10

0
BS

 ID

(c) Hyper-parameter

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

−8

−4

0

4

8

Figure 3.5. Similarity matrix among 105 BSs.

We test the multi-task learning case for all 105 BSs in the sequential and the parallel cases based

on different similarity metrics. In Fig. 3.6 (a), the result for Algorithm 2 using similarity matrix KZ

67

in Fig. 3.5 is shown. We compare the cumulative regret of our algorithm with the performance of

conducting GPC-UCB [118] on each BS independently. To the best of our knowledge, GPC-UCB

is the best algorithm acting on clear definitions of states and actions, therefore, we choose it as our

baseline.

The cumulative regrets shown in Fig. 3.6 are the sum of the cumulative regrets of the all BSs.

Each data point is the average result of 10 individual simulations. It can be seen that, when our

algorithm is used, the regret increases much slower than the baseline. In sequential case, after 4000

time slots, our algorithm using similarity base on the CKE, the average R2 and the hyper parameter

method decreases 64, 8%, 53.2% and 35.3% of the regret compared to the baseline. For the parallel

case, in Fig. 3.6 (b) the result for Algorithm 1 using same similarity matrix KZ is shown. To make

a fair comparison, we rescale the time slots of the parallel case such that the size of the training

data is the same as the one in the sequential case. In the parallel case, after 4000 time slots, our

algorithm using similarity based on the CKE, the average R2 and the hyper parameter method

decreases 49.8%, 40.9% and 23.5% of the regret compared to the baseline. These figures show that

the algorithm in the sequential case has better performance than the one in the parallel case. This

is because the learning algorithm in sequential case can improve the model with the immediate

feedback reward from each BS, while in the parallel case the algorithm only improves the model

when all the feedback rewards from all BSs are collected.

0 500 1000 1500 2000 2500 3000 3500 4000

Time t

0

10

20

30

40

50

60

70

80

C
u
m

u
la

ti
v
e

re

g
re

t

GPC-UCB

Muti-task (CKE)

Muti-task (Average R2)

Muti-task (Hyper parameter)

(a) Sequential case

0 500 1000 1500 2000 2500 3000 3500 4000

Time t

0

10

20

30

40

50

60

70

80

C
u

m
u

la
ti
v
e

re

g
re

t

GPC-UCB

Muti-task (CKE)

Muti-task (Average R2)

Muti-task (Hyper parameter)

(b) Parallel case

Figure 3.6. Multi-task learning v.s. Independent learning in real data.

68

3.7. Conclusion

In this work, in order to address the multi-BS network configuration problem, we propose a

kernel-based multi-task contextual bandits algorithm that leverages the similarity among BSs effec-

tively. In the algorithm, we also provide an approach to measure the similarity among tasks based

on conditional kernel embedding. Furthermore, we present theoretical bounds for the proposed

algorithm in terms of regret and multi-task-learning efficiency. It shows that the bound of regret

is tighter if the learning tasks are more similar. We also evaluate the effectiveness of our algorithm

on the synthetic data and the real problem based on a simulator built by real traces. Future work

includes possible experimental evaluations in real field tests and further studies on the impact of

different similarity metrics.

69

CHAPTER 4

Opportunistic Learning for Contextual Bandits

4.1. Introduction

In sequential decision making problems such as contextual bandits [16,17,18,19], there exists

an intrinsic trade-off between exploration (of unknown environment) and exploitation (of current

knowledge). Existing algorithm design focuses on how to balance such a trade-off appropriately

under the implicit assumption that the exploration cost remains the same over time. However, in

a variety of application scenarios, the exploration cost is time varying and situation-dependent.

Such scenarios present an opportunity to explore more when the exploration cost is relatively low

and exploit more when that cost is high, thus adaptively balancing the exploration-exploitation

trade-off to reduce the overall regret. Consider the following motivating examples.

Motivating scenario 1: return variation in recommendations. Contextual bandits have been

widely used in recommendation systems [48]. In such scenarios, the candidate articles/products

to be recommended are considered as the arms, the features of users as the context, and the

click-through rate as the reward (i.e., the probability that a user accepts the recommendation).

However, note that the monetary return of a recommendation (if accepted) can differ depending

on 1) timing (e.g., holiday vs. non-holiday season) and 2) users with different levels of purchasing

power or loyalty (e.g., diamond vs. silver status). Because the ultimate goal is to maximize the

overall monetary reward, intuitively, when the monetary return of a recommendation (if accepted)

is low, the monetary regret of pulling a suboptimal arm is low, leading to a low exploration cost,

and correspondingly, high returns lead to high regret and high exploration cost.

Motivating scenario 2: load variation for network configuration. In computer networks, there

are a number of parameters that can be configured and have a large impact on overall network

performance. For example, in cellular networks, a cell tower can configure transmission power,

radio spectrum, antenna, etc., that can affect network performance such as coverage, throughput,

70

and quality of service. Contextual bandit can be applied in network configuration [15]. In such

problems, the goal of network configuration can be improving network performance for peak load

scenario. In such a scenario, a possible configuration of a cellular base station can be considered

as an arm, the characteristics of the cell station such as coverage area as the context, and network

performance such as throughput as reward. However, network traffic load fluctuates over time, and

thus the actual regret of using a suboptimal configuration varies accordingly.

Specifically, when the network load is low, dummy traffic can be injected into the network so

that the total load (real plus dummy load) is the same as the peak load. In this manner, we can

seek the optimal configuration under the peak load even in off-peak hours. Meanwhile, the regret of

using a suboptimal configuration is low since the real load affected is low. In practice, the priority

of the dummy traffic can be set to be lower than that of the real traffic. Because the network

handles high priority traffic first, low priority traffic has little or no impact on the high priority

traffic [119]. Thus, the regret on the actual load can be further reduced, leading to a low or even

negligible exploration cost.

Opportunistic Contextual Bandits. Motivated by these application scenarios, we study oppor-

tunistic contextual bandits in this paper, focusing on the contextual bandit setting with linear

payoffs. Specifically, we define opportunistic contextual bandit as a contextual bandit problem with

the following characteristic: 1) The exploration cost (regret) of selecting a suboptimal arm varies

depending on a time-varying external factor that we called the variation factor. 2) The variation

factor is revealed first so that the learning agent can decide which arm to pull depending on this

variation factor. As suggested by its name, in opportunistic contextual bandits, the variation of this

external variation factor can be leveraged to reduce the actual regret. Further, besides the previous

two examples, opportunistic contextual bandit algorithms can be applied to other scenarios that

share these characteristics.

We also note that this can be considered as a special case of contextual bandits, by regarding

the variation factor as part of context. However, the general contextual bandit algorithms do not

take advantage of the opportunistic nature of the problem, and can lead to a less competitive

performance.

71

Contributions. In this paper, we propose an Adaptive Upper-Confidence-Bound algorithm for

opportunistic contextual bandits with Linear payoffs (AdaLinUCB). The algorithm is designed to

dynamically balance the exploration-exploitation trade-off in opportunistic contextual bandits. To

be best of our knowledge, this is the first work to study opportunistic learning for contextual

bandits. We focus on the problem-dependent bound analysis here, which is a setting that allows

a better bound to be achieved under stronger assumptions. To the best of our knowledge, such

a bound does not exist for LinUCB in the existing literature. In this paper, we prove problem-

dependent bounds for both the proposed AdaLinUCB and the traditional LinUCB algorithms.

Both algorithms have a regret upper bound of O
(
(log T)2

)
, and the coefficient of the AdaLinUCB

bound is smaller than that of LinUCB. Furthermore, using both synthetic and real-world large-scale

dataset, we show that AdaLinUCB significantly outperforms other contextual bandit algorithms,

under large exploration cost fluctuations.

4.2. Related Work

Contextual bandit algorithms have been applied to many real applications, such as display

advertising [120] and content recommendation [48, 74]. In contrast to the classic K-arm bandit

problem [46, 47], side information called context is provided in contextual bandit problem before

arm selection [16, 17, 18, 19]. The contextual bandits with linear payoffs was first introduced

in [16]. In [48], LinUCB algorithm is introduced based on the “optimism in the face of Uncertainty”

principal for linear bandits. The LinUCB algorithm and its variances are reported to be effective in

real application scenarios [48,50,51,52]. Compared to the classic K-armed bandits, the contextual

bandits achieves superior performance in various application scenarios [121].

Although LinUCB is effective and widely applied, its analysis is challenging. In the initial

analysis effort [17], instead of analyzing LinUCB, it presents an O(
√
T ln3(T)) regret bound for a

modified version of LinUCB. The modification is needed to satisfy the independent requirement by

applying Azuma/Hoeffding inequality. In another line of analysis effort, the authors in [18] design

another algorithm for contextual bandits with linear payoffs and provide its regret analysis without

independent requirement. Although the algorithm proposed in [18] is different from LinUCB and

suffers from a higher computational complexity, the analysis techniques are helpful.
72

The opportunistic learning has been introduced in [73] for classic K-armed bandits. However,

we note that opportunistic learning exists for any sequential decision making problem. In [74], the

authors study into contextual bandits with HLCS (High-Level Critical Situations) set, and proposes

a contextual-ϵ-greedy policy, a policy that has an opportunistic nature since the ϵ (exploration

level) is adaptively adjusted based on the similarity to HLCSs (importance level). However, it

only introduces a heuristic algorithm, and does not present a clearly formulation of opportunistic

learning. Furthermore, the policy design in [74] implicitly makes the assumption that the contexts

in HLCS have already been explored sufficiently beforehand, which is not a cold-start problem. To

the best of our knowledge, no prior work has made formal mathematical formulation and rigorous

performance analysis for opportunistic contextual bandits.

The opportunistic linear contextual bandits can be regarded as a special case of non-linear

contextual bandits. However, general contextual bandit algorithms such as KernelUCB [49] do not

take advantage of the opportunistic nature of the problem, and thus can lead to a less competitive

performance, as shown in Appendix 4.8.5.3 for more details. Moreover, KernelUCB suffers from

the sensitivity to hyper-parameter tuning, and the extremely high computational complexity for

even moderately large dataset, which limits its application in real problems.

4.3. System Model

We use the following notation conventions. We use ∥x∥2 to denote the 2-norm of a vector

x ∈ Rd. For a positive-definite matrix A ∈ Rd×d, the weighted 2-norm of vector x ∈ Rd is defined

by ∥x∥A =
√
x⊤Ax. The inner product of vectors is denoted by ⟨·, ·⟩, that is, ⟨x, y⟩ = x⊤y.

Denote by λmin(A) the minimum eigenvalue of a positive-definite matrix A. Denote by det(A) the

determinant of matrix A. Denote by trace(A) the trace of matrix A.

Now, we present system model. We first introduce the setting of a standard linear contextual

bandit problem. The time is slotted. In each time slot t, there exists a set of possible arms, denoted

by set Dt. For each arm a ∈ Dt, there is an associated context vector xt,a ∈ Rd, and a nominal

reward rt,a. In each slot t, the learner can observe context vectors of all possible arms, and then

choose an arm at and receive the corresponding nominal reward rt,at . Note that only the nominal

reward of the chosen arm is revealed for the learner in each time slot t. Further, the nominal
73

rewards of arms are assumed to be a noisy version of an unknown linear function of the context

vectors. Specifically, rt,a = ⟨xt,a, θ⋆⟩ + ηt, where θ⋆ ∈ Rd is an unknown parameter, and ηt is a

random noise with zero mean, i.e., E[ηt|xt,at ,Ht−1] = 0, with Ht−1 = (x1,a1 , η1, · · · , xt−1,at−1 , ηt−1)

representing historical observations.

The goal of a standard contextual bandit problem is to minimize the total regret in T slots,

in terms of the nominal rewards. Particularly, the accumulated T -slot regret regarding nominal

reward is defined as,

Rtotal(T) =
T∑
t=1

Rt =

T∑
t=1

E[rt,a⋆t − rt,at],(4.1)

where Rt is the one-slot regret regarding nominal reward for time slot t, a⋆t is the optimal arm

at time slot t. Here, the optimal arm is the one with the largest expected reward, i.e., a⋆t =

argmaxa∈Dt E[rt,a]. To simplify the notation, we denote rt,⋆ = rt,a⋆t in the following. That is, rt,⋆
is the optimal nominal reward at slot t.

In the opportunistic learning environment, let Lt be an external variation factor for time

slot t. The actual reward r̃t,a that the agent receives has the following relationship with the

nominal reward:

r̃t,a = Ltrt,a, ∀t, ∀a ∈ Dt.

At each time slot, the learner first observes the context vectors associated with all possible arms,

i.e., xt,a, ∀a ∈ Dt, as well as the current value of Lt. Based on which the learner selects current arm

at, observes a nominal reward rt,at , and receives the actual reward r̃t,a = Ltrt,a.

This model captures the essence of the opportunistic contextual bandits. For example, in the

recommendation scenario, and Lt can be a seasonality factor, which captures the general purchase

rate in current season. Or Lt can be purchasing power (based on historical information) or loyalty

level of users (e.g., diamond vs. silver status). In the network configuration example, when the

nominal reward rt,a captures the impact of a configuration at the peak load, the total load (the

dummy load plus the real load) resembles the peak load. Then, Lt can be the amount of real load,

and thus the actual reward is modulated by Lt as Ltrt,a.

74

Algorithm 5 AdaLinUCB
1: Inputs: α ∈ R+, d ∈ N, l(+), l(−).
2: A← Id {The d-by-d identity matrix}
3: b← 0d
4: for t = 1, 2, 3, · · · , T do
5: θt−1 = A−1b
6: Observe possible arm set Dt, and observe associated context vectors xt,a, ∀a ∈ Dt.
7: Observe Lt and calculate L̃t by (4.3).
8: for a ∈ Dt do
9: at = argmaxa∈Dt θ

⊤
t−1xt,a + α

√
(1− L̃t)x⊤t,aA

−1xt,a
10: end for
11: Choose action at = argmaxa∈Dt pt,a with ties broken arbitrarily.
12: Observe nominal reward rt,at .
13: A← A+ xt,atx

⊤
t,at

14: b← b+ xt,atrt,at
15: end for

The goal of the learner is to minimize the total regret in T slots, in terms of the actual rewards.

Particularly, the accumulated T -slot regret regarding actual reward is defined as,

R̃total(T) =
T∑
t=1

E[RtLt] =
T∑
t=1

E[Ltrt,⋆ − Ltrt,at].(4.2)

In a special case, equation (4.2) has an equivalent form: when Lt is i.i.d. over time with mean

value L̄ and rt,at is independent of Lt conditioned on at, the total regret regarding actual reward

is R̃total(T) = L̄
∑T

t=1 E[rt,⋆] −
∑T

t=1 E[Ltrt,at]. Note that in general, it is likely that E[Ltrt,at] ̸=

L̄E[rt,at], because the action at can depend on Lt.

4.4. Adaptive LinUCB

We note that the conventional LinUCB algorithm assumes that the exploration cost factor does

not change over time, i.e., Lt = 1. Therefore, to minimize the the nominal reward is equivalent to

that of the actual reward. When Lt is time-varying and situation dependent as discussed earlier, we

need to maximize the total actual reward, which is affected by the variation factor Lt. Motivated

by this distinction, we design the adaptive LinUCB algorithm (AdaLinUCB) as in Algo. 5.

at = argmax
a∈Dt

θ⊤t−1xt,a + α
√

(1− L̃t)x⊤t,aA
−1xt,a

75

In Algo. 5, α is a hyper-parameter, which is an input of the algorithm, and L̃t is the normalized

variation factor, defined as,

L̃t =
(
[Lt]

l(+)

l(−) − l(−)
)
/
(
l(+) − l(−)

)
,(4.3)

where l(−) and l(+) are the lower and upper thresholds for truncating the variation factor, and

[Lt]
l(+)

l(−) = max{l(−),min{Lt, l
(+)}}. That is, L̃t normalizes Lt into [0, 1] to capture different ranges

of Lt. To achieve good performance, the truncation thresholds should be appropriately chosen to

achieve sufficient exploration. Empirical results show that a wide range of threshold values can lead

to good performance of AdaLinUCB. Furthermore, these thresholds can be learned online in practice

without prior knowledge on the distribution of Lt, as discussed in Sec. 4.6 and Appendix 4.8.5. Note

that L̃t is only used in AdaLinUCB algorithm. The actual rewards and regrets are based on Lt,

not L̃t.

In Algo. 5, for each time slot, the algorithm updates a matrix A and a vector b. The A is

updated in step 13, which is denoted as At = Id +
∑t

τ=1 xτ,aτx
⊤
τ,aτ in the following analysis. Note

that At is a positive-definite matrix for any t, and that A0 = Id. The b is updated in step 14, which

is denoted as bt =
∑t

τ=1 xτ,aτ rτ,aτ in the following analysis. Then, we have θt = A−1
t bt (see step 5),

which is the estimation of the unknown parameter θ⋆ based on historical observations. Specifically,

θt is the result of a ridge regression for estimating θ⋆, which minimizes a penalized residual sum of

squares, i.e., θt = argminθ

{∑t
τ=1 (rτ,aτ − ⟨θ, xτ,aτ ⟩)

2 + ∥θ∥22
}

.

In general, the AdaLinUCB algorithm explores more when the variation factor is relatively low,

and exploits more when the variation factor is relatively high. To see this, note that the first term

of the index pt,a in step 9, i.e., θ⊤t−1xt,a, is the estimation of the corresponding reward; while the

second part is an adaptive upper confidence bound modulated by L̃t, which determines the level of

exploration. At one example, when Lt is at its lowest level with Lt ≤ l(−), L̃t = 0, and the index

pt,a is the same as that of the LinUCB algorithm, and then the algorithm selects arm in the same

way as the conventional LinUCB. At the other extreme, when L̃t = 1, i.e., Lt ≥ l(+), the index

pt,a = θ⊤t−1xt,a, which is the estimation of the corresponding reward. That is, when the variation

factor is at its highest level, the AdaLinUCB algorithm purely exploits the existing knowledge and

selects the current best arm.

76

4.5. Performance Analysis

We first summarize the technical assumptions needed for performance analysis: i. Noise satisfies

Cnoise-sub-Gaussian condition, as explained later in (4.4); ii. The unknown parameter θ⋆ satisfies

||θ⋆||2 ≤ Ctheta; iii. For ∀t, ∀a ∈ Dt, ∥xt,a∥2 ≤ Ccontext holds; iv. λmin(Id) ≥ max{1, C2
context}; v.

the nominal reward rt,at is independent of the variation factor Lt, conditioned on at.

We note that assumptions i.-iv. are widely used in contextual bandit analysis [16,17,18,50,51].

Specifically, the sub-Gaussian condition in assumption i. is a constraint on the tail property of

the noise distribution, as that in [18]. That is, for the noise ηt, we assume that,

∀ζ ∈ R, E[eζηt |xt,at ,Ht−1] ≤ exp

(
ζ2C2

noise
2

)
,(4.4)

with Ht−1 = (x1,a1 , η1, · · · , xt−1,at−1 , ηt−1) and Cnoise > 0. Note that the sub-Gaussian condition

requires both (4.4) and E[ηt|xt,at ,Ht−1] = 0. Further, this condition indicates that Var[ηt|Ft−1] ≤

C2
noise, where {Ft}∞t=0 is the filtration of σ-algebras for selected context vectors and noises, i.e.,

Ft = σ(x1,a1 , x2,a2 , · · · , xt+1,at+1 , η1, η2, · · · , ηt). Thus, C2
noise can be viewed as the (conditional)

variance of the noise.

Examples for the distributions that satisfies the sub-Gaussian condition are: 1) A zero-mean

Gaussian noise with variance at most C2
noise; 2) A bounded noise with zero-mean and lying in an

interval of length at most 2Cnoise.

Assumption iv. can be relaxed by changing the value of A0 in Algo. 5 from the current identity

matrix Id to a positive-definite matrix with a higher minimum eigenvalue (see Appendix 4.8.1 for

more details).

Assumption v. is valid in many application scenarios. For example, in the network configuration

scenario, since the total load resembles the peak load, the network performance, i.e., the nominal

reward rt,at , is independent of the real load Lt, conditioned on configuration at. Also, in the

recommendation scenario, the click-through rate (i.e., reward rt,a) can be independent of the user

influence (i.e., variation factor Lt).

4.5.1. Problem-Dependent Bounds. We focus on problem-dependent performance analysis

here because it can lead to a tighter bound albeit under stronger assumptions. To derive the
77

problem-dependent bound, we assume that there are a finite number of possible context values,

and denote this number as N . Then, let ∆min denote the minimum nominal reward difference

between the best and the “second best” arms. That is, ∆min = mint
{
rt,⋆ −maxa∈Dt,rt,a ̸=rt,⋆ rt,a

}
.

Similarly, let ∆max denote the maximum nominal reward difference between arms. That is, ∆max =

maxt {rt,⋆ −mina∈Dt rt,a}.

As in existing literature for problem-dependent analysis of linear bandits [18], we assume that

single optimal context condition holds here. Specifically, for different time slot t = 1, 2, · · · , there

is a single optimal context value. That is, there exists x⋆ ∈ Rd, such that, x⋆ = xt,a⋆t , ∀t.

4.5.2. AdaLinUCB under Binary-Valued Variation. We first introduce the result under

a random binary-valued variation factor. We assume that the variation factor Lt is i.i.d. over time,

with Lt ∈ {ϵ0, 1 − ϵ1}, where ϵ0, ϵ1 ≥ 0 and ϵ0 < 1 − ϵ1. Let ρ denote the probability that the

variation factor is low, i.e., P{Lt = ϵ0} = ρ.

Firstly, we note that, for a δ̃ ∈ (0, 1), there exists a positive integer Cslots such that,

∀t ≥ Cslots, ρt−

√
t

2
log

δ̃

2
−

16C2
noiseC

2
theta

∆2
min

[
log(Ccontextt)

+ 2(d− 1) log
(
d log

d+ tC2
context
d

+ 2 log
2

δ̃

)
+ 2 log

2

δ̃

+ (d− 1) log
64C2

noiseC
2
thetaCcontext

∆2
min

]2
≥ 4d

∆2
min

.(4.5)

To see such an integer Cslots exists, note that for large enough t, in the left-hand side of the

inequality (4.5), the dominant positive term is O(t) while the dominant negative term is O(
√
t).

To interpret Cslots, it is an integer that is large enough so that during Cslots-slot period, enough

exploration is done in the time slots when variation factor is relatively low, such that to have a

relatively tight bound for the estimation of the optimal reward.

Then, we have the following results.

Theorem 4.5.1. Consider the opportunistic contextual bandits with linear payoffs and binary-

valued variation factor. With probability at least 1 − δ̃, the accumulated regret (regarding actual
78

reward) of AdaLinUCB algorithm satisfies,

R̃total(T) ≤ ϵ0 ·
16C2

noiseC
2
theta

∆min

[
log(CcontextT) + 2 log

2

δ̃

+ 2(d− 1) log
(
d log

d+ TC2
context

d
+ 2 log

2

δ̃

)
+ (d− 1) log

64C2
noiseC

2
thetaCcontext

∆2
min

]2
+ (1− ϵ1)

[(
∆maxCslots + 4d

N − 1

∆min

)
·
(
Cnoise

√
d log

2 + 2TC2
context

δ̃
+ Ctheta

)2]

R̃total(T) ≤
E
[
Lt|Lt≤ l(−)

]
O
(
(log T)2

)
∆min

+
E
[
Lt|Lt>l(−)

]
O (log T)

∆min

R̃total(T) ≤
ϵ0O

(
(log T)2

)
∆min

+
(1− ϵ1)O (log T)

∆min

R̃total(T) ≤
1− ϵ1 + ϵ0

2

O
(
(log T)2

)
∆min

where Cslots is a constant satisfying (4.5).

Proof Sketch: Although the proof for Theorem 4.5.1 is complicated, the key is to treat the slots

with low variation factor and the slots with high variation factor separately. For slots with low

variation factor, the one-step regret is upper bounded by the weighted 2-norm of the selected context

vectors, i.e., Rt1{Lt = ϵ0} ≤ 2α∥xt,at∥A−1
t−1

, and then the accumulated regret can be analyzed

accordingly. For the slots with high variation factor, by matrix analysis, we can show that when a

particular context value has been selected enough times, its estimated reward is accurate enough in

an appropriate sense. Further, it can benefit from regret bound for low variation factor slots that

the optimal context has been selected enough time with high probability. Then, we combine these

to prove the result. More details are shown in Appendix 4.8.2.

79

Remark 4.5.1. For the regret bound in Theorem 4.5.1, the first three lines cover the accumulated

regret that is incurred during time slots when the variation factor is relatively low, i.e., during slots

t with Lt = ϵ0, while the last two lines cover the accumulated regret that is incurred during time slots

when the variation factor is relatively high, i.e., during slots t with Lt = 1− ϵ1. Further, when T is

large enough, the dominant term for the first three lines is O
(
(log T)2

)
, while the dominant term for

the last two lines is O (log T). That is, the bound for the accumulated regret during slots when the

variation factor is relatively high actually increases slower than the bound for the accumulated regret

during slots when the variation factor is relatively low. This is in consistent with the motivation

of AdaLinUCB design: explore more when the variation factor is relatively low, and exploit more

when the variation factor is relatively high.

Furthermore, beside parameter T , which is the time horizon, the regret bound in Theorem 4.5.1

is also affected by problem-dependent parameters: it is affected by N , which is the number of possible

context values, ∆min, which is the minimum nominal reward difference between the best and the

“second best” arms, and ∆max, which is the maximum nominal reward difference between arms. In

general, a larger number of possible context values, i.e., a larger N , may lead to a larger ∆max and

a smaller ∆min, and in this way, results in a larger regret bound.

4.5.3. AdaLinUCB under Continuous Variation. We now study AdaLinUCB in oppor-

tunistic contextual bandits under continuous variation factor. Under continuous variation factor,

it is difficult to obtain regret bound for general values of l(−) and l(+) because exploration and

exploitation mix in a complex fashion when l(−) < Lt < l(+). Instead, inspired by the insights

obtained from the binary-valued variation factor case, we illustrate the advantages of AdaLinUCB

for special case with l(−) = l(+).

In the special case of l(−) = l(+), the normalized variation factor L̃t in (4.3) is redefined as

L̃t = 0 when Lt ≤ l(−) and as L̃t = 1 when Lt > l(+) = l(−).

Theorem 4.5.2. In the opportunistic contextual bandits with linear payoffs and continuous

variation factor that is i.i.d. over time, under AdaLinUCB with P{Lt ≤ l(−)} = ρ > 0 and
80

l(−) = l(+), with probability at least 1− δ̃, the accumulated regret (regarding actual reward) satisfies,

R̃total(T) ≤E
[
Lt|Lt≤ l(−)

]16C2
noiseC

2
theta

∆min

[
log(CcontextT)

+ 2(d− 1) log
(
d log

d+ TC2
context

d
+ 2 log

2

δ̃

)
+(d−1) log

64C2
noiseC

2
thetaCcontext

∆2
min

+2 log
2

δ̃

]2
+ E[Lt|Lt > l(−)] ·

[(
∆maxCslots + 4d

N − 1

∆min

)
·
(
Cnoise

√
d log

2 + 2TC2
context

δ̃
+ Ctheta

)2]
,

where Cslots is a constant satisfying (4.5).

Proof. Recall that for the special case with l(+) = l(−), we have L̃t = 0 when Lt ≤ l(−)

and as L̃t = 1 when Lt > l(+). Thus, this theorem can be proved analogically to the proof of

Theorem 4.5.1, by noting the following: When Lt ≤ l(−), we have L̃t = 0 which corresponds to the

case of Lt = ϵ0 (L̃t = 0) in the binary-valued variation factor case; while when Lt > l(+) (L̃t = 1)

corresponds to the case of Lt = 1 − ϵ1 under binary-valued variation factor case. The conclusion

of the theorem then follows by using the fact that all variation factor below l(−) are treated same

by AdaLinUCB, i.e., L̃t = 0 for Lt ≤ l(−); while all variation factor above l(−) are treated same by

AdaLinUCB, i.e., L̃t = 1 for Lt ≤ l(+). □

Remark 4.5.2. Similar to Remark 4.5.1 for Theorem 4.5.1, the regret bound in Theorem 4.5.2

can be divided into two parts: the first three lines cover the accumulated regret that is incurred

during time slots when Lt ≤ l(−) and is O
(
(log T)2

)
, while the last two lines cover the accumulated

regret for time slots when Lt > l(−) and is O ((log T)). Furthermore, a larger N , i.e., a larger

number of possible context values, can lead to a larger regret bound.

4.5.4. Regret Bound of LinUCB. To the best of our knowledge, there exists no problem-

dependent bound on LinUCB. (The initial analysis of LinUCB presents a more general and looser

performance bound for a modified version of LinUCB. The modification is needed to satisfy the

independent requirement by applying Azuma/Hoeffding inequality [17].) Furthermore, we note
81

that one can directly apply LinUCB to opportunistic contextual bandits using the linear relation-

ship E[rt,a|xt,a] = ⟨xt,a, θ⋆⟩, which is called LinUCBExtracted in numerical results. Therefore, we

derive the regret upper bound for LinUCB here, both as an individual contribution as well as for

comparison purpose.

Theorem 4.5.3. In the opportunistic contextual bandits with linear payoffs and continuous

variation factor that is i.i.d. over time with mean L̄, with probability at least 1− δ, the accumulated

T -slot regret (regarding actual reward) of LinUCB satisfies,

R̃total(T) ≤
16L̄C2

noiseC
2
theta

∆min

[
log(CcontextT) + 2 log

1

δ

+ 2(d− 1) log
(
d log

d+ TC2
context

d
+ 2 log

1

δ

)
+ (d− 1) log

64C2
noiseC

2
thetaCcontext

∆2
min

]2
.

The regret bound for LinUCB under non-opportunistic case can be shown by simply having

L̄ = 1 in the above result. Here, note that problem-dependent bound analysis is a setting that

allows a better bound to be achieved with stronger assumptions. Recall that the assumptions are

discussed in Sec. 4.5.1. As a result, the problem-dependent bound of LinUCB is much better than

its general bound, such as the bound for a modified version of LinUCB in [17]. More results for

LinUCB and the proof of Theorem 4.5.3 can be found in Appendix 4.8.3.

Remark 4.5.3. Theorem 4.5.3 and Theorem 4.5.1 show that the problem-dependent regret

bounds (regarding actual reward) for LinUCB and AdaLinUCB are both O
(
(log T)2

)
. Further,

for binary-valued variation factor, the asymptotically dominant term for the bound of LinUCB

is 1−ϵ1+ϵ0
2 · 16C

2
noiseC

2
theta

∆min
(log T)2. In comparison, for AdaLinUCB, it is ϵ0 ·

16C2
noiseC

2
theta

∆min
(log T)2.

Because ϵ0 < 1−ϵ1, in the scenario of binary-valued variation factor, the AdaLinUCB algorithm has

a better asymptotic problem-dependent upper bound than that of the LinUCB algorithm. Similarly,

in scenario with continuous variation factor, the AdaLinUCB algorithm with l(+) = l(−) has a better

problem-dependent bound than LinUCB algorithm as long as E[Lt|Lt ≤ l(−)] < L̄, which holds in

most cases.
82

4.5.5. Discussions on the Disjoint Model. The seminal paper on LinUCB [48] introduces

different models for contextual bandits. The opportunistic learning applies to these different models.

One of them is the joint model discussed above. Another model is the disjoint model, which assumes

that, E[rt,a|xt,a] = ⟨xt,a, θ(a)⋆ ⟩, where xt,a is a context vector and θ
(a)
⋆ is the unknown coefficient

vector for arm a. This model is called disjoint since the parameters are not shared among different

arms. There is also a hybrid model that combines the joint model and the disjoint model.

In this paper, we focus on the design and analysis of opportunistic contextual bandits using

the joint model. However, it should be noted that, the AdaLinUCB algorithm in Algo. 5 can be

modified slightly and applied to the disjoint model, see Appendix 4.8.4 for more details. Also,

the analysis of the joint model can be extended to the disjoint one. Note that the disjoint model

can be converted to a joint model when the number of possible arms is finite. Specifically, for

an arbitrary disjoint-model opportunistic contextual bandit problem with θ
(a)
⋆ ∀a, an equivalent

joint-model problem exists with the joint unknown parameter as θ⋆ = ([θ
(1)
⋆]⊤, [θ

(2)
⋆]⊤, · · ·)⊤ and

the context vectors modified accordingly. Thus, the previous analytical results are valued for the

disjoint model with appropriate modifications.

4.6. Numerical Results

We present numerical results to demonstrate the performance of the AdaLinUCB algorithm

using both synthetic scenario and real-world datasets. We have implemented the following algo-

rithms: 1) AdaLinUCB in Algo. 5; 2) LinUCB(Extracted) in Sec. 4.5.4; 3) LinUCBMultiply,

another way to directly apply LinUCB in opportunistic case, where we use Lt · xt,a as context

vector; 4) E-AdaLinUCB, an algorithm that adjusts the threshold l(+) and l(−) based on the

empirical distribution of Lt. In all the algorithms, we set α = 1.5 to make a fair comparison.

We have also experimented LinUCBCombine algorithm, where we use x̃t,a = [Lt, x
⊤
t,a]

⊤

as context vector to directlty apply LinUCB, and find that LinUCBCombine has a much worse

performance compared to other algorithms.

Meanwhile, we also notice that the opportunistic linear contextual bandits can be regarded

as a special case of non-linear contextual bandits by viewing the variation factor Lt as a part of

context vector. Along this line of thinking, we have also experimented KernelUCB algorithm [49],
83

0 1 2 3 4 5

Time slot t 10
4

0

200

400

600

800
R

e
g

re
t

AdaLinUCB

LinUCBExtracted

LinUCBMultiply

(a) Binary-valued variation factor

0 1 2 3 4 5

Time slot t 10
4

0

200

400

600

800

R
e

g
re

t

AdaLinUCB

E-AdaLinUCB

AdaLinUCB(l(-)=l(+))

LinUCBExtracted

LinUCBMultiply

(b) Beta distributed variation factor

Figure 4.1. Regret under Synthetic Scenarios. In (a), ϵ0 = ϵ1 = 0, ρ = 0.5. In (b),
AdaLinUCB: l(−)= l

(−)
0 , l(+)= l

(+)
0 ; AdaLinUCB: (l(−)= l(+)), l(−)= l(+)= l

(−)
0.5

which is a general algorithm for non-linear contextual bandits. However, we find that KernelUCB

is less competitive in performance and suffers from extremely high computational complexity (see

Appendix 4.8.5.3 for more details). One reason is that a general contextual bandit algorithm such as

KernelUCB does not take advantage of the opportunistic nature of the problem, and can, therefore,

have a worse performance than AdaLinUCB.

4.6.1. Experiments on Synthetic Scenarios. The synthetic scenario has a total of 20 pos-

sible arms, each associated with a disjoint unknown coefficient θ
(a)
⋆ . The simulator generates 5

possible groups of context vectors, and each group has context vectors associated with all the

possible arms. At each time slot, a context group is presented before the decision. Further, each

unknown coefficient θ
(a)
⋆ and each context xt,a is a 6-dimension vector, with elements in each di-

mension generated randomly, and is normalized such that the L2-norm of θ(a)⋆ or xt,a is 1.

Fig. 4.1(a) shows the regret for different algorithms under random binary-value variation factor

with ϵ0 = ϵ1 = 0 and ρ = 0.5. AdaLinUCB significantly reduces the regret in this scenario.

Specifically, at time slots t = 5 × 104, AdaLinUCB achieves a regret that is only 10.3% of that of

LinUCBMultiply, and 17.6% of that of LinUCBExtracted.

For continuous variation factor, Fig. 4.1(b) compares the regrets for the algorithms under a beta

distributed variation factor. Here, we define l
(−)
ρ as the lower threshold such that P{Lt≤ l

(−)
ρ =ρ},

and l
(+)
ρ as the higher threshold such that P{Lt ≥ l

(+)
ρ = ρ}. It is shown that AdaLinUCB still

84

0 1 2 3 4 5

Time slot t 10
4

0

200

400

600

800

1000

1200

R
e

w
a

rd

AdaLinUCB

E-AdaLinUCB

LinUCBExtracted

LinUCBMultiply

RandomPolicy

Figure 4.2. Rewards for Yahoo! Today Module l(−) = l
(−)
0 , l(+) = l

(+)
0.3

outperforms other algorithms, and AdaLinUCB has a regret 41.8% lower than that of LinUCBEx-

tracted. Furthermore, its empirical version, E-AdaLinUCB has a similar performance to that of

AdaLinUCB. Even in the special case with a single threshold l(−)= l(+)= l
(−)
0.5 , AdaLinUCB still

outperforms LinUCBExtracted, reducing the regret by 28.6%.

We have conducted more simulations to evaluate the impact of environment and algorithm

parameters such as variation factor fluctuation and the thresholds for variation factor truncation,

and find that AdaLinUCB works well in different scenarios (see Appendix 4.8.5.1 and 4.8.5.2).

4.6.2. Experiments on Yahoo! Today Module. We also test the performance of the

algorithms using the data from Yahoo! Today Module. This dataset contains over 4 million user

visits to the Today module in a ten-day period in May 2009 [48]. To evaluate contextual bandits

using offline data, the experiment uses the unbiased offline evaluation protocol proposed in [120].

For the variation factor, we use a real trace - the sales of a popular store. It includes everyday

turnover in two years [122].

In this real recommendation scenario, because we do not know the ground truth; i.e., which

article is best for a specific user, we cannot calculate the regret. Therefore, all the results are

measured using the reward, as shown in Fig. 4.2. We note that AdaLinUCB increases the reward
85

by 17.0%, compared to LinUCBExtracted, and by 40.8% compared to the random policy. We note

that an increase in accumulated reward is typically much more substantial than the same decrease

in regret. We also note that E-AdaLinUCB, where one does not assume prior knowledge on the

variation factor distribution, achieves a similar performance. This experiment demonstrates the

effectiveness of AdaLinUCB and E-AdaLinUCB in practical situations, where the variation factor

are continuous and are possibly non-stationary, and the candidate arms are time-varying. More

details on the datasets and evaluation under different parameters can be found in Appendix 4.8.5.4.

4.7. Conclusions

In this paper, we study opportunistic contextual bandits where the exploration cost is time-

varying depending on external conditions such as network load or return variation in recommenda-

tions. We propose AdaLinUCB that opportunistically chooses between exploration and exploitation

based on that external variation factor, i.e., taking the slots with low variation factor as opportu-

nities for more explorations. We prove that AdaLinUCB achieves O
(
(log T)2

)
problem-dependent

regret upper bound, which has a smaller coefficient thatn that of the traditional LinUCB algo-

rithm. Extensive experiment results based on both synthetic and real-world database demonstrate

the significant benefits of opportunistic exploration under large exploration cost fluctuations.

4.8. Appendix

4.8.1. Preparatory Results for Analysis. We begin with some preparatory analysis results.

Lemma 1. Assume that the noise satisfies the Cnoise-sub-Gaussian condition in (4.4), and

assume that ||θ⋆||2 ≤ Ctheta. Then, the following results hold:

1) For any δ ∈ (0, 1), with probability at least 1−δ, for all t ≥ 0, θ⋆ ∈
{
θ ∈ Rd : ∥θt − θ⋆∥At

≤

det(Id)
1
2Ctheta +Cnoise

√
2 log

(
det(At)

1
2 det(Id)

− 1
2

δ

)}
.

2) Further, if ∥xt,a∥2 ≤ Ccontext holds for ∀t, ∀a ∈ Dt, then, with probability at least 1 − δ, θ⋆ ∈{
θ ∈ Rd : ∥θt − θ⋆∥At

≤ Ctheta + Cnoise

√
d log

(
1+tC2

context
δ

)}
.

Proof. it simply follows from the fact that θt is the result of a ridge regression, and that the

sub-Gaussian condition is assumed. The technique is as in [18] (specifically, Theorem 2 in [18]). □
86

Lemma 1 shows that the estimation θt is close to the unknown parameter θ⋆ in an appropriate

sense.

Lemma 2. For ∀t ≥ 1, ∀a ∈ Dt, the following result holds,

|⟨θ⋆, xt,a⟩ − ⟨θt−1, xt,a⟩| ≤ ∥θt−1 − θ⋆∥At−1 · ∥xt,a∥A−1
t−1

.

Proof. We have the following,

|⟨θ⋆, xt,a⟩ − ⟨θt−1, xt,a⟩|

=|(θ⋆ − θt−1)
⊤ xt,a|

=|(θ⋆ − θt−1)
⊤A

1
2
t−1A

− 1
2

t−1xt,a|

=
∣∣ ⟨A 1

2
t−1 (θ⋆ − θt−1) , A

− 1
2

t−1xt,a⟩
∣∣

≤∥A
1
2
t−1(θ⋆ − θt−1)∥2 · ∥A

− 1
2

t−1xt,a∥2

=

√
(θ⋆ − θt−1)⊤A

1
2
t−1A

1
2
t−1(θ⋆ − θt−1) ·

√
x⊤t,aA

− 1
2

t−1A
− 1

2
t−1xt,a

=∥θt−1 − θ⋆∥At−1 · ∥xt,a∥A−1
t−1

,

where the third equality holds by noting that a positive-definite matrix At−1 is symmetric; the

inequality holds by Cauchy–Schwarz inequality. □

Lemma 2 presents an upper bound on the estimation error of the reward corresponding to a

given context vector. Combining Lemma 1, the first term of this upper bound, i.e., ∥θt−1−θ⋆∥At−1 ,

can be upper bounded with a high probability. To further consider the property of the second term,

i.e., ∥xt,a∥A−1
t−1

, we bound the summation by the following result.

Lemma 3. Assume that ∥xt,a∥2 ≤ Ccontext holds for ∀t, ∀a ∈ Dt, and assume that λmin(Id) ≥

max{1, C2
context}, then the following results hold,

T∑
t=1

∥xt,at∥2A−1
t−1
≤ 2 log

(
det(AT)/ det(Id)

)
(4.6)

≤ 2

[
d log

(trace(Id) + TC2
context

d

)
− log det(Id)

]
.

87

Lemma 3 directly follows from [18] (specifically, Lemma 11 of [18]).

Remark 4.8.1. (Relax assumption iv. in Sec. 4.5.) Now, we briefly discuss the way to

relax the assumption λmin(Id) ≥ max{1, C2
context} in Lemma 3 and the theorems using this Lemma.

For this assumption, it can be relaxed by changing the initial value of matrix A in Algo. 5. Currently,

we have the initial matrix value A0 = Id, leading to the current results in Lemma 3. If the initial

value A0 is changed to a positive-definite matrix with a higher minimum eigenvalue, then with a

modified assumption λmin(A0) ≥ max{1, C2
context}, Lemma 3 still holds after substituting the matrix

Id by the new A0. One example of such a new A0 can be Ccontext · Id with Ccontext > 1. Also, we

note that Lemma 2 still holds after changing A0 to another positive-definite matrix. Further, when

changing A0 to another positive-definite matrix, the first statement of Lemma 1 still holds after

substituting the matrix Id by the new matrix A0, while the second statement following from the first

one and can be changed accordingly. Thus, for assumption λmin(Id) ≥ max{1, C2
context}, we can

modify the choice of A0 to relax this assumption.

4.8.2. Proof for Theorem 4.5.1. Firstly, note that we have some preparatory analysis re-

sults, as shown in Appendix 4.8.1.

We begin with some notations. Let R(low)
total (T) denote the accumulated regret regarding nominal

rewards when the variation factor is low, i.e., R(low)
total (T) =

∑T
t=1Rt1{Lt = ϵ0}, where 1{·} is the

indicator function. The R
(high)
total (T) is defined similarly as R

(high)
total (T) =

∑T
t=1Rt1{Lt = 1− ϵ1}.

Then, we have that,

R̃total(T) = ϵ0 ·R(low)
total (T) + (1− ϵ1) ·R(high)

total (T).

88

As a result, to prove this theorem, it is sufficient to prove that, with probability at least 1− δ̃, both

of the following results hold:

R
(low)
total (T) ≤

16C2
noiseC

2
theta

∆min

[
log(CcontextT) + 2 log

2

δ̃

+ 2(d− 1) log

(
d log

d+ TC2
context

d
+ 2 log

2

δ̃

)

+ (d− 1) log
64C2

noiseC
2
thetaCcontext

∆2
min

]2
,(4.7)

R
(high)
total (T) ≤

[
4d

N−1
∆min

(
Cnoise

√
d log

2+2TC2
context

δ̃
+Ctheta

)2

+∆maxCslots

(
Cnoise

√
d log

2+2TC2
context

δ̃
+Ctheta

)2
]
.(4.8)

4.8.2.1. Regret for slots with low variation factor: Firstly, we focus on R
(low)
total (T). For the

binary-valued variation factor, let the lower threshold l(−) = ϵ0. Then the variation factor Lt = ϵ0,

while the normalized variation factor L̃t = 0. As a result, the index pt,a in step 9 of Algo. 5 becomes,

pt,a = θ⊤t−1xt,a + α
√
x⊤t,aA

−1
t−1xt,a,

Then, for ∀t ≥ 1 with Lt = ϵ0, if α ≥ ∥θt−1 − θ⋆∥At−1 , we have,

Rt = ⟨xt,a⋆t , θ⋆⟩ − ⟨xt,at , θ⋆⟩

≤ ⟨xt,a⋆t , θt−1⟩+ α∥xt,a⋆t ∥A−1
t−1
− ⟨xt,at , θ⋆⟩

≤ ⟨xt,at , θt−1⟩+ α∥xt,at∥A−1
t−1
− ⟨xt,at , θ⋆⟩

= ⟨xt,at , θt−1⟩ − ⟨xt,at , θ⋆⟩+ α∥xt,at∥A−1
t−1

≤ ∥θt−1 − θ⋆∥At−1∥xt,at∥A−1
t−1

+ α∥xt,at∥A−1
t−1

≤ 2α∥xt,at∥A−1
t−1

,

89

where the inequality in the second line holds by Lemma 2 and α ≥ ∥θt−1−θ⋆∥At−1 ; the inequality in

the third line holds by the design of the AdaLinUCB algorithm, specifically, by step 11 of Algo. 5; the

inequality in the fifth line holds by Lemma 2, and the last inequality holds by α ≥ ∥θt−1− θ⋆∥At−1 .

As a result, we have,

Rt1{Lt = ϵ0} ≤ 2α∥xt,at∥A−1
t−1

,

with α ≥ ∥θt−1 − θ⋆∥At−1 . Then, we have,

R
(low)
total (T) =

T∑
t=1

Rt1{Lt = ϵ0} ≤
T∑
t=1

2α∥xt,at∥A−1
t−1

,(4.9)

with α ≥ ∥θT−1 − θ⋆∥AT−1
.

We also note that, by Lemma 1, with probability at least 1− δ̃
2 , for all t,

θ⋆ ∈
{
θ ∈ Rd : ∥θt − θ⋆∥At

≤ Ctheta + Cnoise

√
d log

(
2 + 2tC2

context
δ̃

)}
,(4.10)

which substitutes the δ in Lemma 1 by δ̃
2 .

Further, we note that,

Rtotal(T) =
T∑
t=1

Rt ≤
T∑
t=1

R2
t

∆min
,(4.11)

where the inequality holds since either Rt = 0 or ∆min <= Rt.

Then, by combining (4.9), (4.10), and (4.11), it follows from a similar argument as [18] (specif-

ically, the proof of Theorem 5 in [18]) that (4.7) holds with probability at least 1 − δ̃
2 . Note that

the proof procedure uses Lemma 3 and the single optimal context condition.

4.8.2.2. Regret for slots with high variation factor. Now, we focus on R
(high)
total (T). We begin

with some notations. The N possible values of context vectors are denoted by x(1), x(2), · · · , x(N)

respectively. Without loss of generality, we assume that x(1) is the optimal context value, i.e.,

x(1) = x⋆. Let mt,⋆ be the number of times that the arm with the optimal context value has

been pulled before time slot t, i.e., mt,⋆ =
∑t

τ=1 1{xτ,aτ = x⋆}. Similarly, let mt,(n) be the

90

number of times that the arm with context value x(n) has been pulled before time slot t, i.e.,

mt,(n) =
∑t

τ=1 1{xτ,aτ = x(n)}. In addition, let m
(low)
t,⋆ be the number of times when the variation

factor is low and the arm with the optimal context value x⋆ has been pulled during t-slot period,

i.e., m
(low)
t,⋆ =

∑t
τ=1 1{xτ,aτ = x⋆} · 1{Lτ = ϵ0}. Let m

(low)
t,all be the number of times when the

variation factor is low during t-slot period, i.e., m(low)
t,all =

∑t
τ=1 1{Lτ = ϵ0}. Further, let m

(low)
t,subopt

be the number of times when the variation factor is low and the arm with a suboptimal context

value has been pulled during t-slots, i.e., m(low)
t,subopt = m

(low)
t,all −m

(low)
t,⋆ .

Lemma 4. For the AdaLinUCB algorithm, the following inequality holds, for any n = 1, 2, · · · , N ,

∥x(n)∥A−1
t−1
≤
√

d

mt−1,(n)
.

Proof. We note that,

d = trace(Id) = trace
(
A−1

t−1At−1

)
= trace

(
A−1

t−1

[
N∑
i=1

mt−1,(i) · x(i)x⊤(i) + Id

])

= trace

(
N∑
i=1

mt−1,(i) ·A−1
t−1x(i)x

⊤
(i) +A−1

t−1

)

=

N∑
i=1

mt−1,(i) · trace
(
A−1

t−1x(i)x
⊤
(i)

)
+ trace

(
A−1

t−1

)
=

N∑
i=1

mt−1,(i) · trace
(
x⊤(i)A

−1
t−1x(i)

)
+ trace

(
A−1

t−1

)
=

N∑
i=1

mt−1,(i) · x⊤(i)A
−1
t−1x(i) + trace

(
A−1

t−1

)
≥ mt−1,(n) · x⊤(n)A

−1
t−1x(n), ∀n = 1, 2, · · · , N,

where the last inequality holds by noting that A−1
t−1 is a positive-definite matrix. Then, the results

follow. □
91

In the following, we let,

αT = Cnoise

√
d log

(
2 + 2TC2

context
δ̃

)
+ Ctheta.(4.12)

Thus, by (4.10), with probability at least 1− δ̃
2 , for all t ≤ T , the following inequality holds.

∥θt − θ⋆∥At ≤ αT .(4.13)

Let the α in AdaLinUCB algorithm be α = αT .

Lemma 5. When inequality (4.13) holds, for any slot t with variation factor Lt = 1− ϵ1, if,

⟨x⋆, θ⋆⟩ − ⟨x(n), θ⋆⟩ > αT ∥x⋆∥A−1
t−1

+ αT ∥x(n)∥A−1
t−1

, ∀n,(4.14)

then the arm with the optimal context is pulled in slot t, i.e., Rt = 0.

Proof. For the binary-valued variation factor, let the higher threshold of variation factor

l(+) = 1 − ϵ1. Thus, when the variation factor is high, i.e., Lt = 1 − ϵ1, the truncated variation

factor becomes L̃t = 1. As a result, the index in step 9 of Algo. 5 becomes,

pt,a = θ⊤t−1xt,a = ⟨xt,a, θt−1⟩.

As a result, to prove that the arm with optimal context value is selected, it is sufficient to prove

that,

⟨x⋆, θt−1⟩ − ⟨x(n), θt−1⟩ > 0, ∀n = 2, · · · , N.

When inequality (4.13) holds, by Lemma 2 , we have that,

⟨x⋆, θt−1⟩ ≥ ⟨x⋆, θ⋆⟩ − αT ∥x⋆∥A−1
t−1

,

and,

⟨x(n), θt−1⟩ ≤ ⟨x(n), θ⋆⟩ − αT ∥x(n)∥A−1
t−1

.

92

As a result, for any n = 2, 3, · · · , N ,

⟨x⋆, θt−1⟩ − ⟨x(n), θt−1⟩

≥⟨x⋆, θ⋆⟩ − ⟨x(n), θ⋆⟩ − αT ∥x⋆∥A−1
t−1
− αT ∥x(n)∥A−1

t−1

>0,

where the last inequality holds by the condition (4.14) of this Lemma, which completes the proof.

□

By Lemma 5, when inequality (4.13) holds, for any slot t with variation factor Lt = 1 − ϵ1, if

both of the following inequalities holds,

αT ∥x⋆∥A−1
t−1
≤ ∆min

2
,(4.15)

αT ∥x(n)∥A−1
t−1

<
⟨x⋆, θ⋆⟩ − ⟨x(n), θ⋆⟩

2
, ∀n = 2, · · · , N,(4.16)

then the arm with the optimal context is selected with probability at least 1− δ̃.

Now, we analyze when (4.16) holds. For any suboptimal context value x(n) with n ̸= 1, by

Lemma 4, (4.16) holds when,

mt−1,(n) >
4dα2

T[
⟨x⋆, θ⋆⟩ − ⟨x(n), θ⋆⟩

]2 .
As a result, before (4.16) is satisfied, pulling the arms with the suboptimal context values increases

R
(high)
total (T) by at most,

N∑
n=2

4dα2
T

⟨x⋆, θ⋆⟩ − ⟨x(n), θ⋆⟩
≤ (N − 1)

4d

∆min
α2
T .(4.17)

Note that the r.h.s. of (4.17) is the first term of (4.8) by recalling αT definition in (4.12).

Now, we focus on analyzing when (4.15) holds. For optimal context value x(1) = x⋆, by

Lemma 4, (4.15) holds when,

mt−1,⋆ >
4dα2

T

∆2
min

.(4.18)

93

To analyze when (4.18) holds, we can take advantage of (4.7), and note that,

m
(low)
t,subopt ≤

R
(low)
total (t)

∆min
.

Thus, by (4.7), with probability at least 1− δ̃
2 , for all t,

m
(low)
t,subopt ≤

16C2
noiseC

2
theta

∆2
min

[
log(Ccontextt)

+ 2(d− 1) log

(
d log

d+ tC2
context
d

+ 2 log
2

δ̃

)

+ (d− 1) log
64C2

noiseC
2
thetaCcontext

∆2
min

+ 2 log
2

δ̃

]2
,(4.19)

where the probability is introduced by (4.10) when proving (4.7).

Further, for the binary-valued variation factor, by Hoeffding’s inequality, we have that, with

probability at least 1− δ̃
2 ,

m
(low)
t,all ≥ ρt−

√
t

2
log

2

δ̃
,

which also holds when t = α2
TCslots. Thus, with probability at least 1− δ̃

2 ,

m
(low)
α2
TCslots,all ≥ ρ · α2

TCslots −

√
α2
TCslots
2

log
2

δ̃
.(4.20)

Then, by combining (4.19) and (4.20), and by recalling Cslots definition in (4.5), with probability

at least 1− δ̃,

mα2
TCslots,⋆ ≥ m

(low)
α2
TCslots,⋆

= m
(low)
α2
TCslots,all −m

(low)
α2
TCslots,subopt

≥
4dα2

T

∆2
min

.

Thus, with probability at least 1 − δ̃, for ∀t ≥ α2
TCslots, the inequality (4.15) holds. As a result,

with probability at least 1 − δ̃, before (4.15) is satisfied, pulling the arms with the suboptimal

94

Algorithm 6 LinUCB(Extracted)
1: Inputs: α ∈ R+, d ∈ N.
2: A← Id {The d-by-d identity matrix}
3: b← 0d
4: for t = 1, 2, 3, · · · , T do
5: θt−1 = A−1b
6: Observe possible arm set Dt, and observe associated context vectors xt,a, ∀a ∈ Dt.
7: for a ∈ Dt do
8: pt,a ← θ⊤t−1xt,a + α

√
x⊤t,aA

−1xt,a {Computes upper confidence bound}

9: at = argmaxa∈Dt θ
⊤
t−1xt,a + α

√
x⊤t,aA

−1xt,a {Computes upper confidence bound}
10: end for
11: Choose action at = argmaxa∈Dt pt,a with ties broken arbitrarily.
12: Observe nominal reward rt,at
13: A← A+ xt,atx

⊤
t,at

14: b← b+ xt,atrt,at
15: end for
context values increases R

(high)
total (T) by at most α2

TCslots∆max. By combining (4.17), we have that,

with probability at least 1− δ̃, the inequality (4.8) for R
(high)
total (T) holds.

4.8.2.3. Combine Results and Finish Proof. Further by noting that probabilities introduced in

this proof procedure only comes from two events: i) confidence set for θt in (4.10); ii) lower bound

for number of total slots with low variation factor as in (4.20). Note that each of these two events

with probability at least 1− δ̃
2 and that they are independent. Thus, with probability at least 1− δ̃,

both inequalities (4.7) and (4.8) hold, which completes the proof.

4.8.3. Performance Analysis of LinUCB.

4.8.3.1. LinUCB Algorithm Notation. In opportunistic contextual bandit problem, one way to

select bandits is to ignore the variation factor, i.e., Lt, and just employ the LinUCB algorithm, as

shown in Algorithm 6. This algorithm is denoted as LinUCBExtracted in numerical restuls.

In Algo. 6, for each time slot, the algorithm updates an matrix A and a vector b, so that to

estimate the unknown parameter for the linear function of context vector. To make the notation

clear, denote At = Id +
∑t

τ=1 xτ,aτx
⊤
τ,aτ , which is the matrix A updated in step 13 for each time

slot. It directly follows that At, ∀t ≥ 0 is a positive-definite matrix. Denote bt =
∑t

τ=1 xτ,aτ rτ,aτ ,

which is the vector b updated in step 14 for each time slot t.
95

As a result, the estimation of the unknown parameter θ⋆ is denoted by θt, as shown in step 5,

which satisfies,

θt = A−1
t bt(4.21)

=

(
Id +

t∑
τ=1

xτ,aτx
⊤
τ,aτ

)−1 t∑
τ=1

xτ,aτ rτ,aτ .

Note that θt is the result of a ridge regression. That is, θt is the coefficient that minimize a penalized

residual sum of squares, i.e.,

θt = argmin
θ

{
t∑

τ=1

(
rτ,aτ − ⟨θ, xτ,aτ ⟩

)2
+ ∥θ∥22

}
(4.22)

Here, the complexity parameter that controls the amount of shrinkage is chosen as 1.

Also, we note that the upper confidence index pt,a, as shown in step 9 of Algo. 6 consists of two

parts. The first part θ⊤t−1xt,a = ⟨θt−1, xt,a⟩ is the estimation of the corresponding reward, using the

up-to-date estimation of the unknown parameter, i.e., θt−1. The second part, i.e., α
√

x⊤t,aA
−1
t−1xt,a =

α∥xt,a∥A−1
t−1

, is related to the uncertainty of reward estimation.

In the following, to analyze the performance of LinUCB algorithm, we assume the same as-

sumptions as in Sec. 4.5.

4.8.3.2. General Performance Bound. Now, we analyze the performance of LinUCB algorithm.

We note that the initial analysis effort of LinUCB [17] presents analysis result for a modified version

of LinUCB to satisfied the independent requirement by applying Azuma/Hoeffding inequality [17].

As a result, we firstly provide the general performance analysis of LinUCB. We have used analysis

technique as in [18]. (Note that [18] provides analysis for another algorithm instead of LinUCB,

but its technique is helpful.)

Firstly, we note that since At, bt, θt has the same definition as that in AdaLinUCB Algorithm,

the previous Lemma 1, Lemma 2, and Lemma 3 also hold here for LinUCB algorithm. Then, we

have the following results.

Theorem 4.8.1. (The general regret bound of LinUCB). For the LinUCB algorithm in Algo. 6,

consider traditional contextual bandits with linear payoffs, the following results hold.
96

1) ∀t ≥ 1, if α ≥ ∥θt−1 − θ⋆∥At−1, then the one-step regret (regarding nominal reward) satisfies,

Rt ≤ 2α∥xt,at∥A−1
t−1

.

2) ∀δ ∈ (0, 1), with probability at least 1 − δ, the accumulated T -slot regret (regarding nominal

reward) satisfies,

Rtotal(T)≤
√
8T

[
Cnoise

√
d log

(
1+TC2

context

δ

)
+Ctheta

]

·

√
d log

[
trace(Id) + TC2

context

d

]
− log det(Id).(4.23)

Proof. We begin by analyzing the one-step regret (regarding nominal reward) of LinUCB

algorithm in Algo. 6. For ∀t ≥ 1, with α ≥ ∥θt−1 − θ⋆∥At−1 , we have,

Rt = ⟨xt,a⋆t , θ⋆⟩ − ⟨xt,at , θ⋆⟩

≤ ⟨xt,a⋆t , θt−1⟩+ α∥xt,a⋆t ∥A−1
t−1
− ⟨xt,at , θ⋆⟩

≤ ⟨xt,at , θt−1⟩+ α∥xt,at∥A−1
t−1
− ⟨xt,at , θ⋆⟩

= ⟨xt,at , θt−1⟩ − ⟨xt,at , θ⋆⟩+ α∥xt,at∥A−1
t−1

≤ ∥θt−1 − θ⋆∥At−1∥xt,at∥A−1
t−1

+ α∥xt,at∥A−1
t−1

≤ 2α∥xt,at∥A−1
t−1

,

where the inequality in the second line holds by Lemma 2 and α ≥ ∥θt−1−θ⋆∥At−1 ; the inequality in

the third line holds by the design of the LinUCB algorithm, specifically, by step 11 of Algo. 6; the

inequality in the fifth line holds by Lemma 2, and the last inequality holds by α ≥ ∥θt−1− θ⋆∥At−1 .

As a result, the first statement is proved.

Now, we analyze the accumulated regret. Let,

αT = Cnoise

√
d log

(
1 + TC2

context
δ

)
+ Ctheta.

97

Then, by Lemma 1, with probability at least 1 − δ, for ∀t ∈ [1, T], αT ≥ ∥θt−1 − θ⋆∥At−1 . As a

result, with probability at least 1− δ,

Rtotal(T) =
T∑
t=1

Rt ≤

√√√√T
T∑
t=1

R2
t

≤

√√√√T · 4α2
T

T∑
t=1

∥xt,at∥2A−1
t−1

≤
√
8Tα2

T

·

√
d log

[
trace(Id)+TC2

context
d

]
− log det(Id),

where the first inequality holds by Jensen’s inequality; the second inequality holds by statement

1); the third inequality holds by Lemma 3. Thus, by substituting the value of αT , the inequality

(4.23) holds. □

4.8.3.3. Problem-Dependent Bound. Now, we study the problem-dependent bound of LinUCB,

and have the following results.

Theorem 4.8.2. For the LinUCB algorithm in Algo. 6, consider traditional contextual bandit

setting with linear payoffs, the accumulated T -slot regret (regarding nominal reward) satisfies,

Rtotal(T) ≤
16C2

noiseC
2
theta

∆min

{
log(CcontextT) + 2 log

1

δ

+ 2(d− 1) log

[
d log

d+ TC2
context

d
+ 2 log

1

δ

]

+ (d− 1) log
64C2

noiseC
2
thetaCcontext

∆2
min

}2

.

Proof. We note that,

Rtotal(T) =
T∑
t=1

Rt ≤
T∑
t=1

R2
t

∆min
,

98

Algorithm 7 LinUCB(Multiply)
1: Inputs: α ∈ R+, d ∈ N.
2: A← Id {The d-by-d identity matrix}
3: b← 0d
4: for t = 1, 2, 3, · · · , T do
5: θt−1 = A−1b
6: Observe possible arm set Dt, and observe associated context vectors xt,a, ∀a ∈ Dt.
7: Observe Lt, and get x̃t,a = Lt · xt,a, ∀a ∈ Dt.
8: for a ∈ Dt do
9: pt,a ← θ⊤t−1x̃t,a + α

√
x̃⊤t,aA

−1x̃t,a {Computes upper confidence bound}
10: end for
11: Choose action at = argmaxa∈Dt pt,a with ties broken arbitrarily.
12: Observe nominal reward rt,at and get actual reward r̃t,at = Lt · rt,at .
13: A← A+ x̃t,at x̃

⊤
t,at

14: b← b+ x̃t,at r̃t,at
15: end for
where the inequality holds since either Rt = 0 or ∆min <= Rt. Then, the results follows from same

proof as in [18] (see the proof of Theorem 5 in [18]). Note that the proof procedure uses Lemma 3

and the single optimal context condition. □

4.8.3.4. Performance for Opportunistic Case - Proof of Theorem 4.5.3. Note that the arm

selection strategy in LinUCB in Algo. 6 is independent of the value of Lt. Thus, when Lt is i.i.d.

over time, we have that R̃total(T) = L̄Rtotal(T). As a result, Theorem 4.5.3 directly follows from

Theorem 4.8.2.

4.8.3.5. Another Way to Apply LinUCB in Opportunistic Linar Bandits. Beside the LinUCBEx-

tracted algorithm in Algo. 6, we also note that there is another way to directly apply in LinUCB

in opportunistic contextual bandit environment. Recall that the LinUCBExtracted algorithm in

Algo. 6 is based on the linear relationship, E[rt,a|xt,a] = ⟨xt,a, θ⋆⟩. We can also apply the Lin-

UCBMultiply algorithm in Algo. 7, which is based on the linear relationship, E[Lt · rt,a|xt,a, Lt] =

⟨Lt · xt,a, θ⋆⟩, i.e., regarding Lt · xt,a as context vector.

Thus, we have also implemented LinUCBMultiply in the numerical results. However, from the

experiment results, LinUCBExtracted algorithm has a better performance than LinUCBMultiply.

4.8.4. AdaLinUCB for Disjoint Model. In above, we focus on the design and analysis

of opportunistic contextual bandit for the joint model. However, it should be noted that, the
99

Algorithm 8 AdaLinUCB - Disjoint Model
1: Inputs: α ∈ R+, d ∈ N, l(+), l(−).
2: A(a) ← Id, ∀a
3: b(a) ← 0d, ∀a
4: for t = 1, 2, 3, · · · , T do
5: Observe possible arm set Dt, and observe associated context vectors xt,a, ∀a ∈ Dt.
6: Observe Lt and calculate L̃t by (4.3).
7: for a ∈ Dt do
8: θ

(a)
t−1 = [A(a)]−1b(a)

9: pt,a ← [θ
(a)
t−1]

⊤xt,a + α
√

(1− L̃t)x⊤t,a[A
(a)]−1xt,a

10: end for
11: Choose action at = argmaxa∈Dt pt,a with ties broken arbitrarily.
12: Observe nominal reward rt,at .
13: A(a) ← A(a) + xt,atx

⊤
t,at

14: b(a) ← b(a) + xt,atrt,at
15: end for
AdaLinUCB algorithm in Algo. 5 can be modified slightly and then be applied to the disjoint

model, which is shown in the Algo. 8.

Here, we note that the joint model is the model introduced in Sec. 4.3:, which assumes that,

E[rt,a|xt,a] = ⟨xt,a, θ⋆⟩,

where xt,a is a context vector and θ⋆ is the unknown coefficient vector. Another model is the disjoint

model, which assumes that,

E[rt,a|xt,a] = ⟨xt,a, θ(a)⋆ ⟩,

where xt,a is a context vector and θ
(a)
⋆ is the unknown coefficient vector for arm a. This model is

called disjoint since the parameters are not shared among different arms.

The joint and disjoint models correspond to different models for linear contextual bandit prob-

lems, as introduced in the seminal paper on LinUCB [48].

4.8.5. More Numerical Results. We have implemented AdaLinUCB (as in Algo. 5), Lin-

UCBExtracted (as in Algo. 6), and LinUCBMultiply (as in Algo. 7). We have also implemented

E-AdaLinUCB algorithm, which is an algorithm that adjusts the threshold l(+) and l(−) based on

the empirical distribution of Lt. Specifically, the E-AdaLinUCB algorithm maintains the empirical

histogram for the variation factors (or its moving average version for non-stationary cases), and
100

selects l(+) and l(−) accordingly. Furthermore, the results for KernelUCB is shown in Appen-

dix 4.8.5.3.

4.8.5.1. Synthetic Scenario with Binary-Valued variation Factor. Fig. 4.3 shows the perfor-

mance of different algorithms with binary-valued variation factor for different value of ρ. From

the simulation result, the AdaLinUCB algorithm significantly outperforms other algorithms for

different values of ρ.

0 1 2 3 4 5

Time slot t 10
4

0

200

400

600

800

R
e
g
re

t

AdaLinUCB

LinUCBExtracted

LinUCBMultiply

(a) ρ = 0.1

0 1 2 3 4 5

Time slot t 10
4

0

200

400

600

800

R
e
g
re

t

AdaLinUCB

LinUCBExtracted

LinUCBMultiply

(b) ρ = 0.5

0 1 2 3 4 5

Time slot t 10
4

0

200

400

600

800

R
e
g
re

t

AdaLinUCB

LinUCBExtracted

LinUCBMultiply

(c) ρ = 0.9

Figure 4.3. Regret under binary-valued variation factor.

4.8.5.2. Synthetic Scenario with Beta Distributed variation Factor. Here, we define l
(−)
ρ as the

lower threshold such that P{Lt ≤ l
(−)
ρ = ρ}, and l

(+)
ρ as the lower threshold such that P{Lt ≥ l

(+)
ρ =

ρ}. The simulation results demonstrate that, with appropriately chosen parameters, the proposed

AdaLinUCB algorithm (and its empirical version E-AdaLinUCB) achieves good performance by

leveraging the variation factor fluctuation in opportunistic contextual bandits. Furthermore, it

turns out that, for a large range of l(+) and l(−) values, AdaLinUCB performs well. Meanwhile,

E-AdaLinUCB has a similar performance as that of AdaLinUCB in different scenarios.

In Fig. 4.4, we implement both AdaLinUCB with a single threshold l(−) = l(+), and AdaL-

inUCB (and E-AdaLinUCB) with two different threshold values. We find that AdaLinUCB and

E-AdaLinUCB perform well for all these appropriate choices of l(−) and l(+). In addition, even in

the special case with a single threshold l(−) = l(+), AdaLinUCB has a better performance than

other algorithms.

We evaluate the impact of l(−) and l(+) separately with the other one fixed in Fig. 4.5 and

Fig. 4.6, respectively. Compared them, we can see that the impact of threshold values under

continuous variation factor is insignificant (when l(+) and l(−) are changing in wide appropriate
101

ranges), and the regret of AdaLinUCB is significantly lower than that of LinUCBExtracted and

LinUCBMultiple.

0 1 2 3 4 5

Time slot t 10
4

0

200

400

600

800

R
e

g
re

t

AdaLinUCB

E-AdaLinUCB

AdaLinUCB(l(-)=l(+))

LinUCBExtracted

LinUCBMultiply

(a) AdaLinUCB: l(−) = l
(−)
0.05, l

(+) =

l
(+)
0.05; AdaLinUCB(l(−) = l(+)):l(−) =

l(+) = 0.45

0 1 2 3 4 5

Time slot t 10
4

0

200

400

600

800

R
e

g
re

t

AdaLinUCB

E-AdaLinUCB

AdaLinUCB(l(-)=l(+))

LinUCBExtracted

LinUCBMultiply

(b) AdaLinUCB: l(−) = l
(−)
0 , l(+) =

l
(+)
0 ; AdaLinUCB(l(−) = l(+)):
l(−) = l(+) = 0.5

0 1 2 3 4 5

Time slot t 10
4

0

200

400

600

800

R
e

g
re

t

AdaLinUCB

E-AdaLinUCB

AdaLinUCB(l(-)=l(+))

LinUCBExtracted

LinUCBMultiply

(c) AdaLinUCB: l(−) = l
(−)
0.1 , l

(+) =

l
(+)
0.1 ; AdaLinUCB(l(−) = l(+)):
l(−) = l(+) = 0.55

Figure 4.4. Regret under beta distributed variation factor with a single threshold.

0 1 2 3 4 5

Time slot t 10
4

0

200

400

600

800

R
e

g
re

t

AdaLinUCB

E-AdaLinUCB

LinUCBExtracted

LinUCBMul

(a) l(−) = l
(−)
0.05, l

(+) = l
(+)
0

0 1 2 3 4 5

Time slot t 10
4

0

200

400

600

800

R
e

g
re

t

AdaLinUCB

E-AdaLinUCB

LinUCBExtracted

LinUCBMul

(b) l(−) = l
(−)
0.1 , l

(+) = l
(+)
0

0 1 2 3 4 5

Time slot t 10
4

0

200

400

600

800

R
e

g
re

t

AdaLinUCB

E-AdaLinUCB

LinUCBExtracted

LinUCBMul

(c) l(−) = l
(−)
0.15, l

(+) = l
(+)
0

Figure 4.5. Regret under beta distributed variation factor with different values of
l(−).

4.8.5.3. Compare with KernelUCB. We have also implemented KernelUCB [49] which is a

kernel-based upper confidence bound algorithm. It applies for general contextual bandits with

non-linear payoffs. It can characterize general non-linear relationship between the context vector

and reward based on the kernel that defines the similarity between two data points. There are

many widely used kernels, such as Gaussian kernel, Laplacian kernel and polynomial kernel [123].

We demonstrate KernelUCB in Algo. 9. The algorithm is based on paper [49]. Furthermore, in

line 10, we have actually used the technique of Schur complement [115] to update of kernel matrix

Kt so as to boost the implementation of KernelUCB.
102

0 1 2 3 4 5

Time slot t 10
4

0

200

400

600

800
R

e
g

re
t

AdaLinUCB

E-AdaLinUCB

LinUCBExtracted

LinUCBMul

(a) l(−) = l
(−)
0 , l(+) = l

(+)
0.05

0 1 2 3 4 5

Time slot t 10
4

0

200

400

600

800

R
e

g
re

t

AdaLinUCB

E-AdaLinUCB

LinUCBExtracted

LinUCBMul

(b) l(−) = l
(−)
0 , l(+) = l

(+)
0.1

0 1 2 3 4 5

Time slot t 10
4

0

200

400

600

800

R
e

g
re

t

AdaLinUCB

E-AdaLinUCB

LinUCBExtracted

LinUCBMul

(c) l(−) = l
(−)
0 , l(+) = l

(+)
0.15

Figure 4.6. Regret under beta distributed variation factor with different values of
l(+).

Fig. 4.7 demonstrates the performance of AdaLinUCB, LinUCBExtracted, and KernelUCB

(with carefully selected hyper-parameters) for different scenarios. Note that the performance of Ker-

nelUCB highly depends on the choice of hyper-parameter. To make a fair comparison, we test the

performance of KernelUCB for different hyper-parameter values, and chooses the hyper-parameters

with the best performance (among the hyper-parameter values that we have experimented), i.e.,

Γkernel = 2 for Gaussian kernel k(z1, z2) = exp(−Γkernel||z1 − z2||2), λregularization = 0.5 for kernel

ridge regression. As shown in Fig. 4.7, AdaLinUCB outperforms KernelUCB under both binary-

valued variation factor and continuous variation factor.

Besides the less competitive performance, as show in Fig. 4.7, there are two other severe draw-

backs that prevents the application of KernelUCB in many practical scenarios. Firstly, its perfor-

mance is highly sensitive to the choice of hyper-parameters. As discussed above, we have tested the

performance of KernelUCB for different hyper-parameter values, and chooses the hyper-parameters

with the best performance for a fair comparison. However, even when the hyper-parameters just

changes slightly (or environment such as variation factor fluctuation changes slightly), the perfor-

mance of KernelUCB can deteriorate severely such that it performs even worse then LinUCBEx-

tracted.

Secondly, KernelUCB suffers from the high computational complexity problem. Even if we have

used the technique of Schur complement [115] to update of Kt so as to boost the implementation of

KernelUCB as paper [49] , it still suffers from prohibitively high computational complexity even for

moderately long time horizon. This is also the reason why Fig. 4.7 has a shorter time horizon than

other figures. Specifically, even to run a 104-slot simulation, the time to run KernelUCB algorithm

103

Algorithm 9 KernelUCB
1: Inputs: α ∈ R+, d ∈ N, k(·, ·), λ = λregularization.
2: for t = 1, 2, 3, · · · , T do
3: Observe possible arm set Dt, and observe associated context vectors xt,a, ∀a ∈ Dt.
4: Observe Lt, and get augment context x̃t,a = [Lt, x

⊤
t,a]

⊤, ∀a ∈ Dt.
5: if t = 1 then
6: Choose the first actions at ∈ Dt (at start first action is pulled)
7: else
8: for a ∈ Dt do
9: kt,a ← [k(x̃t,a, x̃1,a1), k(x̃t,a, x̃2,a2),

· · · , k(x̃t,a, x̃t−1,at−1)]
⊤

10: Kt ← kernel matrix of (x̃1,a1 , · · · , x̃t−1,at−1)

11: pt,a ← k⊤t,a[Kt + λI]−1yt−1

+α
√
k(x̃a,t, x̃a,t)− kTt,a[Kt+λI]−1kt,a

12: end for
13: Choose action at = argmaxa∈Dt pt,a with ties broken arbitrarily.
14: end if
15: Observe nominal reward rt,at .
16: yt ← [r1,a1 , r2,a2 , · · · , rt,at]⊤
17: end for
is at least 70 times longer than the time to run AdaLinUCB algorithm. In addition, when the

time horizon is even larger, the time to run KernelUCB can be prohibitively long. This is because

KernelUCB needs more computation with more existing data samples. As a result, KernelUCB is

not applicable for applications with large number of data samples in practice.

4.8.5.4. More for experiments on Yahoo! Today Module. We also test the performance of the

algorithms using the data from Yahoo! Today Module. This dataset contains over 4 million user

visits to the Today module in a ten-day period in May 2009 [48]. To evaluate contextual bandits

using offline data, the experiment uses the unbiased offline evaluation protocol proposed in [120].

In Yahoo! Today Module, for each user visit, there are 10 candidate articles to be selected. The

candidate articles are updated in a timely manner and are different for different time slots. Further,

both the user and each of the candidate articles are associated with a 6-dimensional feature vector,

which are generated by a conjoint analysis with a bilinear model [124].

For the variation factor, we use a real trace - the sales of a popular store . It includes everyday

turnover in two years [122]. The normalized variation factor variation is demonstrated in Fig. 4.9.

Similarly to the experiments in Fig. 4.4, Fig. 4.5 and Fig. 4.6, we have evaluated the impact

of of l(−) and l(+) in this data set in Fig. 4.9. We can see that the impact of threshold values for

104

0 2000 4000 6000 8000 10000

Time slot t

0

20

40

60

80

100

120

140

R
e

g
re

t

AdaLinUCB

LinUCBExtracted

KernelUCB

(a) Binary-valued Lt with ρ = 0.9. (ϵ0 = ϵ1 =
0.)

0 2000 4000 6000 8000 10000

Time slot t

0

50

100

150

200

250

300

R
e

g
re

t

AdaLinUCB

LinUCBExtracted

KernelUCB

(b) Binary-valued Lt with ρ = 0.5. (ϵ0 = ϵ1 =
0.)

0 2000 4000 6000 8000 10000

Time slot t

0

100

200

300

400

500

R
e

g
re

t

AdaLinUCB

LinUCBExtracted

KernelUCB

(c) Binary-valued Lt with ρ = 0.1. (ϵ0 = ϵ1 =
0.)

0 2000 4000 6000 8000 10000

Time slot t

0

100

200

300

400

500

600

R
e

g
re

t

AdaLinUCB

LinUCBExtracted

KernelUCB

(d) Beta distributed variation factor; AdaLin-
UCB with l(−) = 0, l(+) = l

(+)
0 .

Figure 4.7. Performance Comparison with KernelUCB.
experiments on this real-world dataset is insignificant (when they are changing in a relatively large

appropriate range) and the rewards of AdaLinUCB and E-AdaLinUCB are always higher than that

of LinUCBExtracted and LinUCBMultiple.

R̃total(T) ≤
E
[
Lt|Lt≤ l(−)

]
O
(
(log T)2

)
∆min

+
E
[
Lt|Lt>l(−)

]
O (log T)

∆min

105

0 1 2 3 4 5

Time slot t 10
4

0

200

400

600

800

1000

1200
R

e
w

a
rd

AdaLinUCB

E-AdaLinUCB

LinUCBExtracted

LinUCBMultiply

RandomPolicy

(a) l(−) = l
(−)
0 , l(+) = l

(+)
0.1

0 1 2 3 4 5

Time slot t 10
4

0

200

400

600

800

1000

1200

R
e

w
a

rd

AdaLinUCB

E-AdaLinUCB

LinUCBExtracted

LinUCBMultiply

RandomPolicy

(b) l(−) = l
(−)
0 , l(+) = l

(+)
0.2

0 1 2 3 4 5

Time slot t 10
4

0

200

400

600

800

1000

1200

R
e

w
a

rd

AdaLinUCB

E-AdaLinUCB

LinUCBExtracted

LinUCBMultiply

RandomPolicy

(c) l(−) = l
(−)
0 , l(+) = l

(+)
0.3

0 1 2 3 4 5

Time slot t 10
4

0

200

400

600

800

1000

1200

R
e

w
a

rd

AdaLinUCB

E-AdaLinUCB

LinUCBExtracted

LinUCBMultiply

RandomPolicy

(d) l(−) = l
(−)
0.1 , l

(+) = l
(+)
0

0 1 2 3 4 5

Time slot t 10
4

0

200

400

600

800

1000

1200

R
e

w
a

rd

AdaLinUCB

E-AdaLinUCB

LinUCBExtracted

LinUCBMultiply

RandomPolicy

(e) l(−) = l
(−)
0.2 , l

(+) = l
(+)
0

0 1 2 3 4 5

Time slot t 10
4

0

200

400

600

800

1000

1200

R
e

w
a

rd

AdaLinUCB

E-AdaLinUCB

LinUCBExtracted

LinUCBMultiply

RandomPolicy

(f) l(−) = l
(−)
0.3 , l

(+) = l
(+)
0

0 1 2 3 4 5

Time slot t 10
4

0

200

400

600

800

1000

1200

1400

R
e

w
a

rd

AdaLinUCB

E-AdaLinUCB

AdaLinUCB(l(-)=l(+))

LinUCBExtracted

LinUCBMultiply

RandomPolicy

(g) AdaLinUCB: l(−) = l
(−)
0.05, l

(+) =

l
(+)
0.3 ; AdaLinUCB (l(−) = l(+)):l(−) =

l(+) = 0.4

0 1 2 3 4 5

Time slot t 10
4

0

200

400

600

800

1000

1200

R
e

w
a

rd

AdaLinUCB

E-AdaLinUCB

AdaLinUCB(l(-)=l(+))

LinUCBExtracted

LinUCBMultiply

RandomPolicy

(h) AdaLinUCB: l(−) = l
(−)
0 , l(+) =

l
(+)
0.3 ; AdaLinUCB (l(−) = l(+)):l(−) =

l(+) = 0.5

0 1 2 3 4 5

Time slot t 10
4

0

200

400

600

800

1000

1200

R
e

w
a

rd

AdaLinUCB

E-AdaLinUCB

AdaLinUCB(l(-)=l(+))

LinUCBExtracted

LinUCBMultiply

RandomPolicy

(i) AdaLinUCB: l(−) = l
(−)
0.1 , l

(+) =

l
(+)
0.3 ; AdaLinUCB (l(−) = l(+)):
l(−) = l(+) = 0.6

Figure 4.8. Performance comparison with different l(−) and l(+) values on Yahoo!
Today Module.

0 100 200 300 400 500 600

Time (day)

0

0.2

0.4

0.6

0.8

1

N
o
rm

a
liz

e
d
 v

a
ri
a
ti
o
n
 f
a
c
to

r

Figure 4.9. Normalized variation factor demonstration.

106

CHAPTER 5

Opportunistic Learning for Episodic Reinforcement Learning

5.1. Introduction

Recently, reinforcement learning (RL) has shown spectacular success. By experimenting, com-

puters can learn how to perform tasks that no programmer could teach them autonomously. How-

ever, the effectiveness of these approaches varies significantly depending on the application domain.

In general, there is a need for reinforcement learning algorithms that deliver both strong empirical

performance and solid theoretical guarantees. These objectives cannot be achieved without efficient

environmental exploration, which has been extensively studied in episodic RL.

In episodic RL, an agent interacts with the environment in a series of episodes while aiming to

maximize the total reward accumulated over time [20,21]. This learning process presents a funda-

mental trade-off: Should the agent explore insufficiently-understood states and actions to gain new

knowledge and achieve better long-term performance, or should it exploit its existing information

to maximize short-term rewards? The existing algorithms focus on striking an appropriate balance

between these choices, under the implicit assumption that the exploration cost remains consistent

over time. However, in numerous application scenarios, the exploration cost is both time-varying

and situation-dependent. These scenarios provide an opportunity to explore more when the ex-

ploration cost is relatively low, and exploit more when it’s high, thereby adaptively balancing the

exploration-exploitation trade-off to achieve better performance. Consider the following motivating

examples:

Motivating scenario 1: Return variation in games. In a game or gambling machine, certain

rounds may offer players special multipliers (2×, 4×, ..., etc.) on their rewards. Players can win

a large number of points by getting lucky and landing large prizes supplemented by substantial

multipliers. Consequently, when a player is given a large multiplier, they should ideally make the

move they believe to be best. This conservative approach is less risky, especially given that making

107

a ”bad” move in this situation could result in a significant loss. Conversely, in rounds with no or

small multipliers, attempting experimental actions will be less risky since the regret of trying a

suboptimal move will be relatively low.

Motivating scenario 2: Value variation in sequential recommendations. In e-commerce’s sequen-

tial recommender systems, the system continuously suggests candidate products to users with the

goal of maximizing the total click-through rate (i.e., the probability that a user accepts the rec-

ommendation), which is based on users’ preferences and browsing history. It is important to note

that the real monetary return of a recommendation (if accepted) can vary based on other factors

such as the purchasing power or loyalty level of users (e.g., diamond vs silver status). Because the

ultimate goal is to maximize the overall monetary reward, intuitively, when the monetary return

of a recommendation (if accepted) is low, the monetary regret of suggesting suboptimal products

is also low, resulting in a low exploration cost. Conversely, high returns lead to high regret and a

correspondingly high exploration cost.

Opportunistic reinforcement learning. Motivated by these examples, we propose and study op-

portunistic episodic reinforcement learning, a new paradigm of reinforcement learning problems

where the regret of executing a suboptimal action is influenced by a varying cost referred to as the

variation factor, associated with environmental conditions. When the variation factor is low, the

cost/regret of selecting a suboptimal action is likewise low, and vice versa. Therefore, intuitively,

we should explore more when the variation factor is low and exploit more when the variation factor

is high. As the name suggests, opportunistic RL allows us to leverage the dynamics of the variation

factor to reduce regret.

Contributions. In this work, we propose the OppUCRL2 algorithm for opportunistic learning

in episodic RL that introduces variation factor-awareness to balance the exploration-exploitation

trade-off. The OppUCRL2 can significantly outperform the UCRL2 [22] in the simulation and

have the same theoretical guarantee with respect to the regret. The opportunistic RL concept

is also easy to generalize for other reinforcement algorithms. To demonstrate it, we design the

OppPSRL algorithm based on PSRL [23]. It also achieves better performance compared with the

original version in the simulation. To the best of our knowledge, this is the first work proposing

and studying the concept of opportunistic reinforcement learning. We believe this work will serve

108

as a foundation for the opportunistic reinforcement learning concept and help further address the

exploration-exploitation trade-off.

5.2. Related Work

Optimism in the face of uncertainty (OFU) is a popular paradigm for the exploration-exploitation

trade-off in RL. Here, each pair of states and actions is assigned an optimism bonus. The agent

then chooses a policy that is optimal under this ”optimistic” model of the environment. To learn

efficiently, the agent maintains control over its uncertainty by assigning a larger optimism bonus

to potentially informative states and actions. This bonus can stimulate and guide the exploration

process. Most OFU algorithms provide strong theoretical guarantees [22,66,67,68,69]. An alter-

nate approach is inspired by Thompson sampling (TS) [70]. In RL, TS approaches [71] maintain a

posterior distribution over the reward function and the transition kernel, then compute the optimal

policy for a randomly sampled MDP from the posterior. One of the well-known TS algorithms in

literature is the Posterior Sampling for Reinforcement Learning (PSRL) [23,72].

The opportunistic learning idea has been introduced in [73] for classic K-armed bandits and in

[4] for context bandits. In reinforcement learning, the authors in [125] consider the case where each

episode has a side context and propose the ORLC algorithm that can use the context information

to estimate the dynamics of the environment but does not include the opportunistic concept, which

distinguishes our work. To the best of our knowledge, no prior work has made a formal mathematical

formulation and rigorous performance analysis for opportunistic reinforcement learning.

5.3. Problem Formulation

We consider an RL problem in an episodic finite-horizon Markov decision process (MDP),

M := ⟨S,A,H, P, r⟩, where S is a finite state space with carnality |S| = S, A is a finite action

space with carnality |A| = A, H is the horizon that represents the number of time steps in each

episode, P is a state transition distribution such that P (·|s, a) dictates a distribution over state

S if action a is taken for state s, and r : S × A → [0, 1] is the deterministic reward function.

For simplicity, we assume that the reward function r is known to the agent, but the transition

distribution P is unknown.
109

In each episode of this MDP, an initial state s1 ∈ S is chosen arbitrarily by the environment

before it starts. For each step h ∈ [H]1, the agent observes a state sh ∈ S, selects an action ah ∈ A,

receives a reward r(sh, ah) and then the state transits to next state sh+1 ∈ S that is drawn from

the distribution P (·|sh, ah). The episode ends in state sH+1.

A policy for an agent during the episode is expressed as a mapping π : S × [H] → A. We

write V π
h : S → R as the value function at step h under policy π. For a state s ∈ S, V π

h (s) is

the expected return (i.e., the sum of rewards) received under policy π, starting from s = sh ∈ S,

i.e., V π
h (s) := E

[∑H
i=h r(si, π(si, i))

∣∣∣sh = s
]
. Because the action space, state space, and horizon

are finite, and the reward function is deterministic, there always exists an optimal policy π∗ that

attains the best value V ∗
h (s) = supπV

π
h (s) for all s ∈ S and h ∈ [H]. For an episode with initial

state s1, the quality of a policy π is measured by the regret that is the gap between the value

function at step 1 under policy π and that under the optimal policy, i.e., V ∗
1 (s1) − V π

1 (s1). The

goal of the classic RL problem is to consider an RL agent interacts with the environment (MDP

M) for K episodes k ∈ [K] in a sequential manner and find the optimal policy.

Next, we introduce the opportunistic reinforcement learning in an episodic finite-horizon

MDP. For each episode k ∈ [K], let Lk ≥ 0 be an external variation factor and not change during

the episode. We assume Lk is independent of the MDP M for k ∈ [K]. To distinguish different

episodes, we use sk,h, ak,h, rk,h to denote the state, action and reward in step h of episode k. The

expected actual return for the episode k is defined as E[LkV
π
1 (sk,1)] if the initial state is sk,1

and the policy of agent is π. Before the k-th episode, the agent can observe the initial state sk,1

and the current value of Lk. Based on the policy πk that the agent selected, the expected actual

return that the learner receives is E[LkV
π
1 (sk,1]).

This model captures the essence of the opportunistic RL paradigm for the motivating scenarios

in the introduction. In the opportunistic RL model, we notice that the optimal policy that max-

imizes E[LkV
πk
h (sk,1)] for each episode k ∈ [K] does not change over episodes and is same as the

optimal policy π∗ in the standard RL problem for an MDP M . So, the best expected actual return

for an episode k is E[LkV
∗
h (sk,1)].

1We write [n] for i ∈ N, 1 ≤ i ≤ n

110

The goal is to minimize the actual total regret for K episodes in terms of the expected actual

return. Particularly, we define the actual total regret in opportunistic RL problems over K episodes

regarding the expected actual return as:

(5.1) Regret(K) :=

K∑
k=1

E [LkV
∗
1 (sk,1)− LkV

πk
1 (sk,1)]

In a special case, equation (5.1) has an equivalent form: when Lk is i.i.d. over the episodes

with mean value L̄, the total regret regarding actual reward is Regret(K) = L̄
∑K

k=1 V
∗
1 (sk,1) −∑K

k=1E[LkV
πk
1 (sk,1)]. Note that in general, it is likely that E[LkV

πk
1 (sk,1)] ̸= L̄E[V πk

1 (sk,1)], because

the policy πk can depend on Lk.

5.4. Opportunistic Reinforcement Learning Algorithm

In this section, we propose two opportunistic algorithms that are designed based on optimism

in the face of uncertainty and posterior sampling, respectively.

We first introduce the OppUCRL2 algorithm, an opportunistic variant of UCRL2 [22].

In Alg.10, δ ∈ (0, 1] is a hyper-parameter, and L̃k is the normalized variation factor, defined as,

(5.2) L̃k =
[Lk]

lmax
lmin
− lmin

lmax − lmin

where lmin and lmax are, respectively, the lower and upper thresholds for truncating the variation

factor level, and [Lk]
lmax
lmin

= max{lmin,min{Lk, lmax}}. The variation factor normalization restricts

the impact of the variation factor term in the confidence bounds, which avoids under or over-

explorations. We note that the normalized variation factor L̃k is only employed in the algorithm

itself. Indeed, the regret depends on the real variation factor Lk and not L̃k.

In the initialization, N(s, a) and N(s, a, s′) are the counts for state-action pair (s, a) played and

tuple (s, a, s) happened up to current episode. tk = H(k − 1) is the start time of the episode k.

Before the start of the k-th episode, the algorithm observes the variation factor Lk and normalize

it by Eq.5.2 in Line 4. The empirical estimate P̂k(·|s, a) of P (·|s, a) is calculated by all historical

transitions observed so far in Line 6. The width of the high probability confidence regions of

P̂ (·|s, a) is estimated by Hoeffding’s inequality and normalized variation factor L̃k in line 7. Then,

a plausible MDP set Mk is created in line 8 that consists of finite-horizon MDP M ′ with same
111

known reward function r and the transition probability P ′(·|s, a) in the high probability confidence

regions of P̂ (·|s, a) with width dk(s, a) for all state-action pairs.

Algorithm 10 OppUCRL2
1: Input: lmin, lmax, δ
2: Initialization: N(s, a, s′) = 0, N(s, a) = 0 ∀, s ∈ S, a ∈ A, s′ ∈ S
3: for episode k = 1, 2, . . . ,K do
4: Observe Lk and calculate L̃k by Eq. 5.2
5: tk = H(k − 1)

6: P̂k(s
′|s, a) = N(s,a,s′)

N(s,a)

7: dk(s, a) =
√

2S(1−L̃k) log(2SAtk/δ)
max{1,N(s,a)}

8: Mk := {M ′ :
∥∥∥P ′(.|s, a)− P̂k(.|s, a)

∥∥∥
1
≤ dk(s, a) ∀(s, a) ∈ S ×A}

9: πk, M̃k ← ExtendedV alueIteration(Mk)
10: for time step h = 1, . . . , H do
11: ak,h = πk(sk,h).
12: Observe rk,h and sk,h+1 ∼ P (·|sk,h, ak,h).
13: N(sk,h, ak,h, sk,h+1)←N(sk,h, ak,h, sk,h+1)+1
14: N(sk,h, ak,h)← N(sk,h, ak,h) + 1
15: end for
16: end for

Next, in line 9, Alg.10 calls a subroutine Finite Horizon Extended Value Iteration Alg. 11 that

returns an optimistic MDP M̃k with the best achievable reward fromMk and the optimistic policy

πk. The idea behind finite horizon extended value iteration is the same as [68, 126]. Last, the

policy πk executes throughout the episode k adn updates the counts N(s, a, s′) and N(s, a).

Alg.11 Finite Horizon Extended Value Iteration is used as a subroutine for Alg.10 OppUCRL2.

The input of Alg.10 is an MDP set. The output is the optimistic MDP M̃k with the best achievable

reward from Mk and the optimistic policy πk in line 9. In practice, we define the value function

in finite horizon MDP M ′ under policy π as V
M ′(π)
h (s) := Ep(·|s,a)∼M ′ [

∑H
i=h r(si, π(si, i))|sh = s].

Then the optimistic MDP M̃k and optimistic policy πk are M̃k, πk = argmaxM ′∈Mk,π V
M ′(π)
1 (s)

for all s ∈ S. The idea behind finite horizon extended value iteration is the same as [68, 126],

putting as much transition probability as possible to the state with maximal value at the expense

of transition probabilities to states with small values. Then, in order to make P̃ correspond to a

probability distribution again, the transition probabilities with small values are reproduced iter-

atively with respect to the constraint d(s, a). This implies that extended value iteration solves a
112

Algorithm 11 Finite Horizon Extended Value Iteration.
1: Input: MDP set M
2: Initialize VH+1(s) = 0 for all s ∈ S
3: for h = H,H − 1, . . . , 1 do
4: Sort the states in S in the descending order w.r.t. their values: Let S = {s′1, s′2, ..., s′S} such

that Vh+1(s
′
1) ≥ Vh+1(s

′
2) ≥ · · · ≥ Vh+1(s

′
S)

5: for (s, a) ∈ S ×A do
6: P̃ (s′1|s, a) = min

{
1, P̂ (s′1|s, a) +

d(s,a)
2

}
7: P̃ (s′i|s, a) = P̂ (s′i|s, a) for all 1 < i ≤ S

8: Set j = S

9: while ∑s′i∈S
P̃k(s

′
i|s, a) > 1 do

10: P̃ (s′j |s, a) = max{0, 1−
∑

s′i ̸=s′j
P̃ (s′i|s, a)}

11: j = j − 1

12: end while
13: Qh(s, a) = r(s, a) +

∑
s′∈S

P̃ (s′|s, a)Vh+1(s
′)

14: end for
15: Vh(s) = maxa∈AQh(s, a)

16: end for
17: π(s, h) = argmaxa∈AQh(s, a) for all s ∈ S, h ∈ [H]

18: Output: MDP with transition probabilities P̃ , and optimal policy π

linear optimization problem over the convex polytope constructed by the set of transition proba-

bilities satisfying conditions and d(s, a).

In general, Alg.10 explores more when the variation factor is relatively low, and exploits more

when the variation factor is relatively high. To see this, note that dk(s, a) in line 7 is the adaptive

width of the confidence region modulated by L̃k for MDP set Mk, which determines the level of

exploration. For example, when Lk is at its lowest level with Lk ≤ lmin, L̃t = 0, and the width

of confident region dk is the same as that of the UCRL2 algorithm, and then the algorithm learns

the policy in the same way as the conventional UCRL2. At the other extreme, when L̃k = 1, i.e.,

Lk ≥ lmax, the width dk = 0, that is, when the variation factor is at its highest level, the algorithm

purely exploits the existing knowledge and selects the best policy. With the exploitation of variation

factor awareness capabilities and given that the actual regret is scaled with the variation factor

level, OppUCRL2 could achieve a lower regret than the original UCRL2.

Similarly, we also can generalize the opportunistic RL concept into the sampling-based algo-

rithm, Alg. [?] OppPSRL, which is a variant of Posterior Sampling for Reinforcement Learning

113

(PSRL) [72]. In each episode, PSRL samples a single MDP from the plausible MDP set and then

selects a policy that has the maximum value for that MDP.

Algorithm 12 OppPSRL
1: Input: prior distribution ϕ(α0,1) of M
2: for episode k = 1, 2, . . . ,K do
3: Observe Lk and calculate L̃k by Eq.5.2
4: αk = L̃kαk−1,1

5: Sample MDP Mk ∼ ϕ(·|αk)

6: Compute πk = argmaxπV
Mk(π)
1

7: for time step h = 1, . . . , H do
8: ak,h = πk(sk,h).
9: Observe rk,h and sk,h+1 ∼ P (·|sk,h, ak,h).

10: Update the parameters αk,h of posterior distribution by (sk,h, ak,h, rk,h, sk,h+1).
11: end for
12: end for

Inspired by the opportunistic learning idea, we propose Alg.12 OppPSRL. The input is a prior

distribution of the MDP. In general, we can formulate the state transition distribution P (·|s, a) as

a Dirichlet distribution ϕ with parameters α. At the beginning of each episode, Alg. 12 calculates

the normalized variation factor L̃t in line 3. Then it uses L̃k to rescale the parameter αk. Next,

an MDP Mk is sampled from the scaled distribution. In line 6, it computes the policy πk that has

the maximum value for the MDP. Finally, the policy πk is executed throughout the episode k and

the posterior distribution is updated by the new observations.

The core step of Alg. 12 is Line 4. Intuitively, when L̃k is small, it can decrease the value of

αk and the corresponding Dirichlet distribution is more concentrated, then the sampled MDP in

Line 5 is similar to the empirical MDP with high probability, so the policy πk in Line 6 is more

conservative and less exploratory. When L̃k is larger, the distribution flattens, and it provides the

opportunity for the agent to explore new MDP and try under-explored actions.

5.5. Regret Analysis for OppUCRL2

In this section, we present an upper bound on the regret of OppUCRL2. We study a simple

case with a periodic square wave variation factor. Specifically, we assume that the variation factor

for an episode k is Lk = ϵ0 if the episode index k is even, and Lk = ϵ1 if k is odd. Because we use a

sophisticated variation factor-aware regret expression as described in Eq. 5.1 for the opportunistic
114

(a) River Swim (b) Cliff Walking (c) Frozen Lake

Figure 5.1. Regret under binary variation factor scenarios.
learning that is different from the classical regret definition, in order to compare OppUCRL2 and

original UCRL2 algorithm fairly, we should derive the regret bounds for both them based on

Eq. 5.1. Following the same logic as [22,127], we can get Theorem 6 and Theorem 5.5.2 that show

UCRL2 and OppUCRL2 can achieve the same regret bound Õ(HS
√
AT) in the periodic square

wave variation factor case.

Theorem 5.5.1 (Regret Bound for UCRL2 under Periodic Square Wave Variation Factor).

For a finite horizon MDP, M := ⟨S,A,H, P, r⟩, and Lk = ϵ0 if the episode index k is even, and

Lk = 1 − ϵ1 if k is odd, consider a parameter δ, then the regret of UCRL2 is bounded with a

probability at least 1− δ by,

Regret(K) = Õ(HS
√
CAT)

where C = log(2SAT/δ).

Theorem 5.5.2 (Regret Bound for OppUCRL2 under Periodic Square Wave Variation Factor).

For a finite horizon MDP, M := ⟨S,A,H, P, r⟩, and Lk = ϵ0 if the episode index k is even, and

Lk = 1 − ϵ1 if k is odd, consider a parameter δ, then the regret of OppUCRL2 is bounded with a

probability at least 1− δ by,

Regret(K) = Õ(HS
√
CAT)

where C = log(2SAT/δ).

Next, we introduce the proof of the theorems in the main paper. According to Theorem 2

in [22] and Theorem 1 in [127], we have the following lemma that shows the regret bound for

UCRL2 in finite horizon MDP.
115

Lemma 6 (Regret Bound for UCRL2 in finite horizon MDP). For a finite horizon MDP,

M := ⟨S,A,H, P, r⟩, consider a parameter δ, the regret of UCRL2 is bounded with a probability at

least 1− δ by,

Regret(K) = Õ(HS
√
CAT)

where C = log(2SAT/δ).

Proof of Theorem 1.

Proof. For the periodic square wave variation factor case, we can categorize the episodes into

two groups, and then analyze the regret independently, which can still guarantee an upper bound

for the regret because the variation factor is independent of the MDP and UCRL2 algorithm.

Specifically, from Eq. 5.1, we have

Regret(K) =
∑
k∈[K]

E [LkV
∗
1 (sk,1)− LkV

πk
1 (sk,1)]

=
∑

k∈[K],k is odd
E [LkV

∗
1 (sk,1)− LkV

πk
1 (sk,1)]+

∑
k∈[K],k is even

E [LkV
∗
1 (sk,1)− LkV

πk
1 (sk,1)]

= ϵ0 ∗Regretoriginal,odd(K)+

(1− ϵ1) ∗Regretoriginal,even(K)(5.3)

So, based on the union bound and Lemma 1, we can get bound in Theorem 1. □

Proof of Theorem 2.

Proof. In order to bound the regret of OppUCRL2, we can still do the same decomposition

as Eq. 5.3. The difference is that the exploration in OppUCRL2 is related to the variation factor,

so we cannot directly apply lemma 1 for analysis. However, we notice that in the analysis of

UCRL2 in finite horizon MDPs, the regret bound is mainly dominated by the time of visits for all

state-action pairs. In order to get the upper bound of the regret of OppUCRL2 in periodic square

wave variation factor, we can regard it as two independent algorithms with different exploration
116

parameters in odd and even episodes to get the upper bound of regret, because the time of visits

for each state-action pairs in OppUCRL2 is at least same as that in two independent UCRL2 cases

and the difference only affects the constant coefficient in the bound. So, OppUCRL2 can achieve

the bound shown in Theorem 5.5.2. □

Theorem 6 and Theorem 5.5.2 show that UCRL2 and OppUCRL2 in the periodic square wave

variation factor can achieve the same regret bound Õ(HS
√
AT).

5.6. Experimental Evaluation

In this section, we evaluate the empirical performance of OppUCRL2 and OppPSRL compared

to the original UCRL2 and PSRL algorithms. We use three classic examples of the OpenAI Gym,

namely River Swim, Cliff Walking and Frozen Lake that represent three different test cases [128]:

undiscounted reward in a stochastic environment, undiscounted reward deterministic environment,

and discounted reward in a deterministic environment.

Figure 5.2. River Swim - consisting of six states arranged in a chain and two
actions. Continuous and dotted arrows represent the MDP under the actions “right”
and “left”, respectively. The agent always starts in state 1. Swimming left (with the
current) is always successful, but swimming right (against the current) often fails.
The agent receives a small reward for reaching the starting state, but the optimal
policy is to attempt to swim right and receive a much larger reward. We set the
horizon H = 15 and length of the chain S = 6.

The stochastic and deterministic describe state transition distribution. The River Swim and

Cliff Walking RL environments can be formulated as undiscounted, episodic MDPs, while Frozen

Lake is a discounted, episodic task with a discount factor γ = 0.95. We report the results for the

average of 20 simulations with different seeds while showing 95% confidence interval. We use the

same scaling factors for both algorithms, chosen experimentally for each environment. We compare

all algorithms with their best input precision hyper-parameters obtained by grid search.
117

S T h e C l i f f G

Figure 5.3. Cliff Walking - consisting of a grid. The start state is in the left lower
corner while the goal state is in the right lower corner of the grid. The possible
actions causing movement are UP, DOWN, RIGHT, and LEFT. Each transition
incurs -1 reward, except for stepping into the gray region marked “The Cliff”, which
incurs -100 reward and a reset to the start. An episode terminates when the agent
reaches the goal or the episode time expires (reach the horizon). A suboptimal policy
can be thought of as avoiding moving closely to “The Cliff” region. The optimal
policy is the shortest path to avoiding “The Cliff” region as shown in the figure. We
set the horizon H = 50 and the shape of grid as 4× 12.

S

G

Figure 5.4. Frozen Lake - consisting of a grid world representing a frozen lake.
The water is mostly frozen, but there are a few holes where the ice has melted.
Thus, some tiles of the grid are walkable, and others lead to the agent falling into
the water. The agent is rewarded for finding a walkable path to a goal tile. The
episode ends when it reaches the goal, fall in a hole or the episode time expires. The
agent receives a reward of 1 if it reaches the goal, -1 if it falls in a hole and zero
otherwise.We set the horizon H = 20 and the shape of grid as 4× 4.

We first introduce the result under a random binary-valued variation factor. We assume that

the variation factor Lk is i.i.d. over the episodes, with Lk ∈ {ϵ0, 1 − ϵ1}, where ϵ0, ϵ1 ≥ 0 and

ϵ0 < 1 − ϵ1. Let ρ denote the probability that the variation factor is low, i.e., P{Lk = ϵ0} = ρ.

Fig. 5.1 shows the regret for different algorithms under random binary-value variation factor with

ϵ0 = ϵ1 = 0 and ρ = 0.5.

Opportunistic RL algorithms outperform the corresponding original RL algorithms across every

environment by significantly reducing regret. More significantly, for River Swim, Cliff Walking and
118

(a) River Swim (b) Cliff Walking (c) Frozen Lake

Figure 5.5. Regret under Beta variation factor scenarios
Frozen Lake, at the end of the 103-th episode, OppUCRL2 reduces the regret by 12.7%, 25.9% and

23.7% respectively, compared with UCRL2. OppPSRL reduces the regret by 29.1%, 13.3% and

81.9%, respectively, compared with PSRL. We also notice that OppUCRL2 achieves O(1) regret

converging to the optimal policy in a constant time. This is because it pushes most exploration

moves to the episodes where the variation factor is equal to zero. As a result, the exploration

cost is negligible. Although OppUCRL2 largely outperforms UCRL2, it may have higher regret

at the beginning, especially in environments with less deterministic behaviour such as River Swim

and Cliff Walking. OppUCRL2 emphasizes the main insight of the exploration-exploitation trade-

off: we may sacrifice some short-term rewards to improve future performance. This observation,

combined with the constant-time optimal regret, demonstrates OppUCRL2’s capability to learn

and adapt to the environment’s dynamics over time.

We also test these algorithms in the continuous variation factor case and find the opportunistic

version of the algorithms also has a better performance. We assume that the variation factor Lk is

i.i.d. over episodes and sampled from a Beta distribution, i.e., Lk ∼ Beta(2, 2). Figure 5.5 shows

the regrets for different algorithms and environments. Here, we define the lower threshold lmin such

that P(Lk ≤ lmin) = ρ where ρ = 0.05, and the upper threshold lmax such that P(Lk ≥ lmax) = ρ.

For River Swim, Cliff Walking and Frozen Lake, at the end of the 103-th episode, OppUCRL2

reduces regret by 17.1%, 23.3% and 2.7% respectively, compared with UCRL2. OppPSRL reduces

regret by 39.2%, 12.2% and 43.4%, respectively, compared with PSRL. For OppUCRL2, we also see

similar trends with previous experiments. However, with the beta variation factor, the OppUCRL2

algorithm does not achieve a constant-time regret. This is due to the fact that the variation factor

does not vary radically between 0 and 1, and the exploration carried out in the low variation factor
119

episode usually does not have a zero variation factor, thus, generating an extra overhead compared

to the previous experimental case.

5.7. Discussion

In this section, we discuss the limitations of our work and possible future improvements.

Weakly communicating MDPs: In this paper, we focused on the finite horizon MDPs

setting. While some previous approaches to exploration provide regret bounds for the more general

setting of weakly communicating MDPs [22, 67], we believe our analysis can be extended to this

more general case using existing techniques such as the ”doubling trick” [22].

Computational and statistical efficiency: Our proposed algorithm is computationally

tractable. In each episode, it performs optimistic value iteration, which has a computational cost

on the same order as solving a known MDP. Furthermore, our regret bounds guarantee the statistical

efficiency of the algorithm with high probability.

Theoretical Regret Bound: In our current work, we show th at both OppUCRL2 and

UCRL2 can achieve the same bound in the case of a periodic square wave variation factor. However,

in simulations, the opportunistic version yields significantly better results. This suggests that the

bound for OppUCRL2 is not tight, at least under some circumstances. Existing literature on finite

horizon MDP analysis considers all state-action pairs together to establish an upper bound for

regret, which overlooks differences in exploration strength. Therefore, to achieve a better bound for

the opportunistic reinforcement learning algorithm, such as improved bounds in the opportunistic

bandit setting [73] and [4], we may need to consider each state-action pair independently. We plan

to explore this direction in future work.

5.8. Conclusion

In this paper, we studied opportunistic reinforcement learning, where the regret of choosing a

suboptimal action depends on an external condition denoted as the variation factor. We established

the OppUCRL2 and OppPSRL algorithms, which are variants of the well-known UCRL2 and PSRL

algorithms. We also analyzed the regret of OppUCRL2 and presented Õ(HS
√
AT) regret bounds.

Experimental results demonstrated substantial benefits from employing low-cost opportunistic ex-

ploration in the OppUCRL2 and OppPSRL algorithms under variation factor fluctuations.
120

CHAPTER 6

Causal Explanation for Reinforcement Learning: State and

Temporal Importance

6.1. Introduction

Reinforcement learning (RL) is increasingly being considered in domains with significant social

and safety implications such as healthcare, transportation, and finance. This growing societal-scale

impact has raised a set of concerns, including trust, bias, and explainability. For example, can

we explain how an RL agent arrives at a certain decision? When a policy performs well, can we

explain why? These concerns mainly arise from two factors. First, many popular RL algorithms,

particularly deep RL, utilize neural networks, which are essentially black boxes with their inner

workings being opaque not only to lay persons but also to data scientists. Second, RL is a trial-

and-error learning algorithm in which an agent tries to find a policy that minimizes a long-term

reward by repeatedly interacting with its environment. Temporal information such as relationships

between states at different time instances plays a key role in RL and subsequently adds another

layer of complexity compared to supervised learning.

The field of explainable RL (XRL), a sub-field of explainable AI (XAI), aims to partially

address these concerns by providing explanations as to why an RL agent arrives at a particular

conclusion or action. While still in its infancy, XRL has made good progress over the past few years,

particularly by taking advantage of existing XAI methods [75,76,77]. For instance, inspired by the

saliency map method [129] in supervised learning which explains image classifiers by highlighting

“important” pixels in terms of classifying images, some XRL methods attempt to explain the

decisions made by an RL agent by generating maps that highlight “important” state features [78,

130, 131]. However, there exist at least two major limitations in state-of-the-art XRL methods.

First, the majority of them take an associational perspective. For instance, the aforementioned

studies quantify the “importance” of a feature by calculating the correlation between the state

121

feature and an action. Since it is well known that “correlation doesn’t imply causation” [132], it is

possible that features with a high correlation may not necessarily be the real “cause” of the action,

resulting in a misleading explanation that can lead to user skepticism and possibly even rejection

of the RL system. Second, temporal information is not generally considered. Temporal effects, such

as the interaction between states and actions over time, which as mentioned previously is essential

in RL, are not taken into account.

Figure 6.1. Causal graph of the crop irrigation problem. Endogenous and exoge-
nous states are denoted by dashed and solid rectangles, respectively, while actions
are denoted by circles. More details about causal graphs can be found in the Pre-
liminaries section.

In this paper, we propose a causal XRL mechanism. Specifically, we explain an RL policy by

incorporating a causal model that we have about the relationship between states and actions. To

best illustrate the key features of our XRL mechanism, we use a concrete crop irrigation problem

as an example, as shown in Fig. 6.1 (more details can be found in the Evaluation section). In

this problem, an RL policy π controls the amount of irrigation water (It) based on the following

endogenous (observed) state variables: humidity (Ht), crop weight (Ct), and radiation (Dt). Its

goal is to maximize the crop yield during harvest. Crop growth is also affected by some other

features, including the observed precipitation (Pt) and other exogenous (unobserved) variables Ut.

To explain why policy π arrives at a particular action It at the current state, our XRL method

quantifies the causal importance of each state feature, such as Ht, in the context of this action It

via counterfactual reasoning [133, 134], i.e., by calculating how the action would have changed if

the feature had been different.
122

Our proposed XRL mechanism addresses the aforementioned limitations as follows. First, our

method can generate inherently causal explanations. To be more specific, in essence, importance

measures used in associational methods can only capture direct effects while our causal importance

measures capture total causal effects. For example, for the state feature Ht, our method can account

for two causal chains: the direct effect chain Ht → It and the indirect effect chain Ht → Ct →

It, while associational methods only consider the former. Second, our method can quantify the

temporal effect between actions and states, such as the effect of today’s humidity Ht on tomorrow’s

irrigation It+1. In contrast, associational methods, such as saliency map [78], cannot measure

how previous state features can affect the current action because their models only formulate the

relationship between state and action in one time step and ignore temporal relations. To the best

of our knowledge, our XRL mechanism is the first work that explains RL policies by causally

explaining their actions based on causal state and temporal importance. It has been studied that

humans are more receptive to a contrastive explanation, i.e., humans answer a “Why X?” question

through the answer to the often only implied-counterfactual “Why not Y instead?” [134, 135].

Because our causal explanations are based on contrastive samples, users may find our explanations

more intuitive.

6.2. Related Work

Explainable RL (XRL). Based on how an XRL algorithm generates its explanation, we can

categorize existing XRL methods into state-based, reward-based, and global surrogate explana-

tions [75, 76, 77]. State-based methods explain an action by highlighting state features that are

important in terms of generating the action [78, 79]. Reward-based methods generally apply re-

ward decomposition and identify the sub-rewards that contribute the most to decision making [80].

Global surrogate methods generally approximate the original RL policy with a simpler and trans-

parent (also called intrinsically explainable) surrogate model, such as decision trees, and then

generate explanations with the surrogate model [81]. In the context of state-based methods, there

are generally two ways to quantify feature importance: (i) gradient-based methods, such as simple

gradient [82] and integrated gradients [83], and (ii) sensitivity-based methods, such as LIME [84]

and SHAP [85]. Our work belongs to the category of state-based methods. However, instead of
123

using associations to calculate importance, a method generally used in existing state-based meth-

ods, our method adopts a causal perspective. The benefits of such a causal approach have been

discussed in the Introduction section.

Causal Explanation. Causality has already been utilized in XAI, mainly in supervised learning

settings. Most existing studies quantify feature importance by either using Granger causality [86]

and average or individual causal effect metric [87] or by applying random valued interventions [88].

Two recent studies [89] and [90] are both focused on causal explanations in an RL setting. Com-

pared with [89], the main difference is that we provide a different type of explanation. Our method

involves finding an importance vector that quantifies the impact of each state feature, while [89]

provides a causal chain starting from the action. We also demonstrate the ability of our approach to

provide temporal importance explanations that can capture the impact of a state feature or action

on the future state or action. This aspect has been discussed in the crop irrigation experiment

in Section 6.6.1. Additionally, we construct structural causal models(SCM) differently. While the

action is modeled as an edge in the SCM in the paper [89], our method formulates the action as a

vertex in the SCM model, allowing us to quantify the state feature impact on action. As for [90],

our approach is unique in that it can calculate the temporal importance of a state, which is not

achievable by their method. Furthermore, we have provided a value-based importance definition

of Q-value that differs from their method. Another significant difference between our approach

and [90] is the underlying assumption. Our method takes into account intra-state relations, which

are ignored in Olson’s work. Neglecting intra-state causality is more likely to result in an invalid

state after the intervention, leading to inaccurate estimates of importance. Therefore, our ap-

proach considers the causal relationships between state features to provide a more accurate and

comprehensive explanation of the problem.

6.3. Preliminaries

We introduce the notations used throughout the paper. We use capital letters such as X to

denote a random variable and small letters such as x for its value. Bold letters such as X denote

a vector of random variables and superscripts such as X(i) denote its i-th element. Calligraphic

letters such as X denote sets. For a given natural number n, [n] denotes the set {1, 2, · · · , n}.
124

Causal Graph and Skeleton. Causal graphs are probabilistic graphical models that define data-

generating processes [132]. Each vertex of the graph represents a variable. Given a set of variables

V = {Vi, i ∈ [n]}, a directed edge from a variable Vj to Vi denotes that Vi responds to changes in

Vj when all other variables are held constant. Variables connected to Vi through directed edges are

defined as the parents of Vi, or “direct causes of Vi,” and the set of all such variables is denoted

by Pai. The skeleton of a causal graph is defined as the topology of the graph. The skeleton can

be obtained using background knowledge or learned using causal discovery algorithms, such as the

classical constraint-based PC algorithm [136] and those based on linear non-Gaussian models [137].

In this work, we assume the skeleton is given.

SCM. In a causal graph, we can define the value of each variable Vi as a function of its parents

and exogenous variables. Formally, we have the following definition of SCM: let V = {Vi, i ∈ [n]}

be a set of endogenous(observed) variables and U = {Ui, i ∈ [n]} be a set of exogenous(unobserved)

variables. A SCM [132] is defined as a set of structural equations in the form of

(6.1) Vi = fi(Pai, Ui),Pai ⊂ V , Ui ⊂ U , i ∈ [n],

where function fi represents a causal mechanism that determines the value of Vi using its parents

and the exogenous variables.

Intervention and Do-operation. SCM can be used for causal interventions, denoted by the do(·)

operator. do(Vi = v) means setting the value of Vi to a constant v regardless of its structural

equation in the SCM, i.e., ignoring the edges into the vertex Vi. Note that the do-operation differs

from the conditioning operation in statistics. Conditioning on a variable implies information about

its parent variables due to correlation.

Counterfactual Reasoning. Counterfactual reasoning allows us to answer “what if” questions.

For example, assume that the state is Xt = x and the action is At = a. We are interested in knowing

what would have happened if the state had been at a different value x′. This implies a counterfactual

question [132]. The counterfactual outcome of At can be represented as At,Xt=x′ |Xt = x,At = a.

Given an SCM, we can perform counterfactual reasoning based on intervention through the following

two steps:

125

(1) Recover the value of exogenous variable U as u through the structural function f and the

values Xt = x, At = a;

(2) Calculate the counterfactual outcome as At|do(Xt = x′), U = u. More specifically, in

SCM, we set up the value of Xt to x′. Then we substitute all exogenous variable values

to the right side of the functions and get the counterfactual outcome At.

MDP and RL. An infinite-horizon Markov Decision Process (MDP) is a tuple (S,A, P,R) ,

where S ∈ Rm and A ∈ R are finite sets of states and actions, P (s, a, s′) is the probability of

transitioning from state s to state s′ after taking action a, and R(s, a) is the reward for taking a

in s. An RL policy π returns an action to take at state s, and its associated Q-function, Qπ(s, a),

provides the expected infinite-horizon γ-discounted cumulative reward for taking action a at state

s and following π thereafter.

6.4. Problem Formulation

Our focus is on policy explainability, and we assume that the policy π and its associated Q-

function, Qπ(s, a), are given. Note that the policy may or may not be optimal. We require a

dataset containing trajectories of the agent interacting with the MDP using the policy π. A single

trajectory consists of a sequence of (s, a, r, s′) tuples. Additionally, We assume that the skeleton of

the causal graph, such as the one shown in Fig. 6.1 for the crop irrigation problem, is known. We

do not assume that the SCM, more specifically its structural functions, is given. We assume the

additive noise for the SCM but not its linearity (discussed in Eq. (6.2) in Section 6.5.1). The goal

is to answer the question “why does the policy π select the current action a at the current state

s?” We provide causal explanations for this question from two perspectives: state importance and

temporal importance.

Importance vector for state. The first aspect of our explanation is to use the important state

feature to provide an explanation. Specifically, we seek to construct an importance vector for the

state, where each dimension measures the impact of the corresponding state feature on the action.

For instance, in the crop irrigation problem, we can answer the question “why does the RL agent

irrigate more water today?” by stating that “the impact of humidity, crop weight, and radiation

on the current irrigation decision is quantified as [0.8, 0.1, 0.1] respectively. Formally, we have the
126

following definition of the importance vector for state explanation. Given state st and policy π, the

importance of each feature of st for the current action at is quantified as wt. The explanation is

that the features in state st have causal importance wt on policy π to select action at at state st.

Temporal importance of action/state. The second aspect of our explanation considers the tem-

poral aspect of RL. Here, we measure how the actions and states in the past impact the current

action. We can generalize the importance vector above to past states and actions. Formally, given

state st, policy π and the history trajectory of the agent Ht := {(sτ , aτ), τ ≤ t}, we define the effect

of a past action aτ on the current action at as waτ
t . Similarly, for a past state sτ , we define the

temporal importance vector wτ
t , in which each dimension measures the impact of the corresponding

state feature at time step τ on current action at. Then we use waτ
t and wτ

t to quantify the impact

of past states and action.

6.5. Explanation

6.5.1. Importance Vector for State. Our mechanism implements the following two steps

to obtain the importance vector wt.

(1) Train SCM structural functions between the states and actions using the data of historical

trajectories of the RL agent;

(2) Compute the important vector by intervening in the SCM.

First, we notice that there are three types of causal relations between the states and actions: intra-

state, policy-defined, and transition-defined relations. As shown in Fig. 6.2, the green directed

edges represent the intra-state relations, which are defined by the underlying causal mechanism.

The orange edges describe the policy and represent how the state variables affect the action. The

third type of relation shown as blue edges is the causal relationship between the states across

different times. They represent the dynamics of the environment and depend on the transition

probability P (st, at, st+1) in the MDP.

We assume that the intra-state and transition-defined causal relations are captured by the causal

graph skeleton. For the policy-defined relations, we assume a general case where all state features

are the causal parents of the action. In the causal graph, each edge defines a causal relation, and

the vertex defines a variable V with a causal structural function f . Then we only need to learn
127

Figure 6.2. Example causal graph between the state and action.
Example causal graph between the state and action. S

(i)
t is the i-th dimension of the interested

state S at time t. Each vertex also has a corresponding exogenous variable, which has no parent
and its only child is the associated endogenous variable. Per causality conventions, the exogenous

variables are omitted in the graph.
the causal structural functions between the vertices. To achieve this, we can learn each vertex’s

function separately. For a vertex Vi and its parents Pai, based on Eq. (7.1), we make an additive

noise assumption to simplify the problem and formulate the function mapping between Vi and Pai
as

(6.2) Vi = fi(Pai) + Ui,

where Ui is an exogenous variable. We note that the additive noise assumption is widely used in

the causal discovery literature [138, 139]. We then use supervised learning to learn the function

mapping among the vertices. Specifically, fa for action at is defined as

At = fa(S
(1)
t , · · · ,S(m)

t , Ua),

where m is the dimension of the state, and Ua is the exogenous variable for the actions.

For the state variables, we denote all exogenous variables as a vector US := [U1, · · · , Um] and

learn the structural functions. Intuitively, the exogenous variables Ua and US represent not only

random noise but also hidden features or the stochasticity of the policy for the intra-state and

policy-defined causal relations. For transition-defined relations, the exogenous variables can be

regarded as the stochasticity in the environment.

128

6.5.2. Action-based Importance. Given a state st and an action at, the importance vector

wt is calculated by applying intervention on the learned SCM. Based on the additive noise assump-

tion, we recover the values of the exogenous variables Us and Ua according to the value of at, st
and the learned causal structural functions. Then we define wt using the intervention operation

(counterfactual reasoning). Specifically, we define the importance vector wt = [w
(1)
t , · · · ,w(m)

t] as

(6.3) w
(i)
t =

∣∣∣(A
t,S

(i)
t =s

(i)
t +δ

∣∣∣St = st, At = at

)
− at

∣∣∣
δ

,

where | · | is a vector norm (e.g., absolute-value norm) and δ is a small perturbation value chosen

according to the problem setting. The term A
t,S

(i)
t =s

(i)
t +δ
|St = st, At = at represents the counterfac-

tual outcome of At if we set S(i)
t = s

(i)
t + δ. In our case, the value of the exogenous variables can be

recovered using the additive noise assumption, so the value of A
t,S

(i)
t =s

(i)
t +δ
|St = st, At = at can be

determined. We interpret the result as that the features with a larger w
(i)
t have a more significant

causal impact on the agent’s action at. Note that in the simulation, we average the importance

from both positive and negative δ and return the average as the final score. The perturbation

amount δ is a hyperparameter and should be selected according to each problem setting.

6.5.3. Q-value-based Importance. While action-based importance can capture the causal

impact of states on the change of the action, it may not capture the more subtle causal importance

when the selected action does not change, especially when the action space is discrete. Specifically,

A
t,S

(i)
t =s

(i)
t +δ
|St = st, At = at may not change after a perturbation of δ, which will result in a

w
(i)
t = 0. However, this is different from when there are no causal paths from feature S

(i)
t to the

action At, also resulting in a w
(i)
t = 0. Therefore, we also define Q-value-based importance as

follows:

(6.4) Qw
(i)
t =

|Qperturb
π −Qπ(st, at)|

δ
,

where Qperturb
π = Qπ(St,S

(i)
t =s

(i)
t +δ

, A
t,S

(i)
t =s

(i)
t +δ
|St = st, At = at). In detail, we use counterfactual

reasoning to compute the counterfactual outcome of At and St after setting S
(i)
t = s

(i)
t + δ and

then substituting them into Qπ to evaluate the corresponding Q-value. Similar to the action-based

importance, we account for both positive and negative importance in practice. See the Blackjack
129

Section 6.6.3 in evaluation for a comparison between Eq. (6.3) and Eq. (6.4) on an example with a

discrete action space.

In most RL algorithms, Q-value critically impacts which actions to choose. Therefore, we

consider Q-valued-based importance as explanations on the action through the Q-value. However,

we note that the Q-value-based importance method sometimes cannot reflect which features the

policy really depends on. Some features may contribute largely to the Q-value of all state-action

pairs ({Q(st, at), at ∈ A}, but not to the decision making process - the action with the largest Q-

value (argmaxat∈AQ(st, at)). In such cases, these features may have an equal impact on the Q-value

regardless of the action. For example, in the crop irrigation problem, crop pests have an impact

on the crop yield (Q-value) but don’t impact the amount of irrigation water (the action). Some

related simulations are shown in Appendix 6.9.6. In summary, we suggest using the action-based

importance method by default and the Q-value-based method as a supplement.

6.5.4. Temporal Importance and Cascading SCM. Temporal importance allows us to

quantify the impact of past states and actions on the current action. In RL, estimating of temporal

effect is important because policies are generally non-myopic, and actions should affect all future

states and actions. To measure the importance beyond the previous step, we define an extended

causal model that includes state features and actions in the previous time step, as shown in Fig. 6.1.

In this model, the vertices in the graph are {Sτ , Aτ}Tτ=1. For simplicity, we assume the system is

stationary, so the causal relations are stationary and do not change over time. Therefore, the

structural functions are the same as those defined in Fig. 6.2, i.e., the mechanism of an edge

(S
(i)
τ ,S

(j)
τ+1) will be the same as the edge (S

(i)
t ,S

(j)
t+1). The extended causal model can be regarded

as a cascade of multiple copies of the same module, where each module is similar to that in Fig. 6.2.

We can estimate the effect of perturbing any features or actions at any step through intervention,

and the effect will propagate through the modules to the final time step. We illustrate the temporal

importance in the Blackjack experiment in Section 6.6.3.

6.5.5. Comparison with Associational Methods. In Eq. (6.3), we define importance by

applying intervention. If we change the do action to the conditioning operation, we have the
130

following definition, which is the same as the association-based saliency map method:

(6.5) salw
(i)
t =

|At|St=[s
(1)
t , · · ·, s(i)t +δ, · · ·, s(m)

t]− at

∣∣∣
δ

Associational models cannot perform individual-level counterfactual reasoning and hence cannot

infer the counterfactual outcome after changing the value of one feature of the current state. As

pointed out by [132], counterfactual reasoning can infer the specific property of the considered

individual that is related to the exogenous variables, and then derives what would have happened

if the agent had been in an alternative state. In our method, we use counterfactual reasoning to

recover the environment at the current state and estimate how the action responds to the change

in one of the state features. So our causal importance can capture more insights compared to the

associational methods.

In Fig. 6.3, we use a one-step MDP toy example to demonstrate the difference. Omitting

the time step subscript in the notation, we assume the policy is defined on the state space S =

[S(1),S(2),S(3)]. An observed variable Vp is a causal parent of S(3) but is not defined in the state

space. We define the ground truth of the state and policy as Eq. (6.6), where c1, c2, c3, c12, cp are

constant parameters and Ua, U1, U2, U3, Up are exogenous variables. We use a linear SCM to show

the difference between the two methods. We do not assume the SCM to have linear dependencies.

S(1) =U1

S(2) =c12S
(1)+U2

S(3) =cpVp+U3

A =c1S
(1)+c2(S

(2))2+c3S
(3)+Ua

Vp =Up

(6.6)

Figure 6.3. Example of a one-step MDP.

We assume that both the associational method saliency map and our causal method can learn

the ground truth functions. Given a state s, the importance vectors using the two methods are
131

compared in Table 6.1. We notice that, for s(1), our method can capture the effect of s(1) through

two causal chains S(1) → A and S(1) → S(2) → A, while the saliency map method captures only

S(1)→ A. Our causal method considers the fact that a change in S(1) will result in a change of

S(2) and thus additionally influence the action A. The non-direct paths are also meaningful in

explanation and should be considered in measuring the importance of S(1). However, they are

ignored in the saliency map method. The causal importance vector for s(1) also considers the

effect of u2, which is recovered through counterfactual reasoning. This makes the causal-based

importance specific to the current state. Additionally, our method can calculate the effect of Vp on

the action A, which can not be achieved by the associational method saliency map.

Table 6.1. Importance vector on the environment in Fig. 6.3 using our method
and the saliency map method.

Our method Saliency map
s(1) c1 + c2c12(c12(2s

(1) + δ) + 2u2) c1
s(2) c2(2s

(2) + δ) c2(2s
(2) + δ)

s(3) c3 c3
vp cpc3 N/A

We also note that for features s(2) and s(3), the two methods obtain the same result. In cases

where a state feature is (1) not a causal parent of other features, (2) the policy is deterministic,

and (3) there are no exogenous variables, our method is equivalent to the saliency-style approach.

However, these conditions may not be common in RL. In general, there are causal relations among

state features, such as the chess positions in the game of chess, the state features [position, velocity,

acceleration] in a self-driving problem, and the state features [radiation, temperature, humidity] in

a greenhouse control problem.

6.6. Evaluation

We test our causal explanation framework in three toy environments: crop irrigation (Section

6.6.1), collision avoidance (Section 6.6.2), and Blackjack (Section 6.6.3). We also conduct exper-

iments on Lunar Lander, which is a more sophisticated RL environment (Appendix 6.9.3). For

each experiment, the system dynamics, policy, training details, and perturbation values used can

be found in Appendix 6.9.1. The source code is available in reference [6].
132

6.6.1. Crop Irrigation Problem. We show the results of our explanation algorithm for

the crop irrigation problem. We assume a simplified environment dynamic based on agriculture

models [140]. The growth of the plant at each step is determined by the state features humidity

(Ht), crop weight (Ct), and radiation (Dt). The policy controls the amount of water to irrigate each

day. Intuitively, it irrigates more when the crop weight is high, and less when the crop weight is low.

Details about the environment dynamics and policy are described in Appendix 6.9.1.1. We use Fig.

6.1 as the causal skeleton and apply a neural network to learn the structural equations. Fig. 6.4

shows the importance vector of the state for a given environment [Pt = 0.07,Ht = 0.12, Ct =

0.44, Dt = 0.70] and its corresponding action It = 0.67. First, we notice that our method can

estimate the importance of the feature precipitation(Pt), which is not defined in the state space of

the policy. Second, in estimating the causal importance of Ht, our method can estimate the effect

of Ht → Ct → It, which results in higher importance compared to the saliency map method. Since

an intervention on Ht can induce a change in Ct, causing the action to change more drastically.

This effect cannot be measured without a causal model. The same applies to the feature Dt. The

full trajectory and the importance vector at each time step can be found in Fig. 6.10 in Appendix

6.9.1.1.

The causality-based action influence model [89] can find a causal chain It → Ct → CropYield

and provide the explanation as “the agent takes current action to increase Ct at this step, which

aims to increase the eventual crop yield.” This explanation only provides the information that Ct is

an important factor in the decision-making for the current action but can’t quantify it. Moreover,

this explanation can’t provide information for other state features, such as Ht and Dt which are

also measured in our importance vector.

6.6.2. Collision Avoidance Problem. We use a collision avoidance problem to further il-

lustrate that our causal method can find a more meaningful importance vector than saliency map,

i.e., which state feature is more impactful to decision-making.

Fig. 6.5(a) shows the state definition for this problem. A car with zero initial velocity travels

from the start point to an endpoint over a distance of Xgoal. The system is controlled in a discrete-

time-slot manner and we assume acceleration of the car is constant within each time step. The

state St includes the distance from the start Xt, the distance to the end Dt, and the velocity Vt of
133

Figure 6.4. The importance vector for the crop irrigation problem.

(a) The state definition

(b) The causal graph of states and actions

Figure 6.5. The collision avoidance problem and its corresponding SCM skeleton.
the car, i.e., St := [Vt, Xt, Dt], where Vt ≤ vmax and vmax is the maximum speed of the car. The

action At is the car’s acceleration, which is bounded |At| ≤ emax. We assume the acceleration of

the car is constant within each time step. More detailed settings are described in the simulation

section in the supplementary materials. The objective is to find a policy π to minimize the traveling

time under the condition that the final velocity is zero at the endpoint (collision avoidance).

134

An RL agent learns the following optimal control policy for this avoidance problem, which is

also known as the bang-bang control (optimal under certain technical conditions) [141]:

(6.7) At =

emax if Dt ≤ v2max/(2emax)

−emax otherwise

Intuitively, this policy accelerates as much as possible until reaching the critical point defined above.

Then it will decelerate until reaching the goal.

We use Fig. 6.5(b) as the SCM skeleton and use linear regression to learn the structural

equations as the entire dynamics are linear. The detail about the system dynamics is described in

the appendix.

(a) A trajectory of using bang-bang control on
the collision avoidance problem.

(b) The result importance from our algorithm
on the trajectory in Fig. 6.6(a).

Figure 6.6. Trajectory and importance on the collision avoidance problem.

Fig. 6.6(a) shows a trajectory under the policy bang-bang control and Fig. 6.6(b) shows its cor-

responding causal importance results. The importance of Vt, At−1, Dt−1, Vt−1 are zero throughout

the time history, and those of Xt, Dt, Xt−1 have peak importance of [0.502, 0.502, 0.502] , respec-

tively, between time step 303-322, during which the car changes the direction of acceleration to

avoid hitting the obstacle. The importance curves of Xt, Dt, and Xt−1 have the same shape, but

that of Xt−1 is off by one time step, corresponding to their time step subscript. If we were to use

the associational saliency method [78] Xt would have a constant zero importance since the action

is solely determined by the feature Dt. In comparison, our method can find non-zero importance

through the edge Xt → Dt. It is reasonable that Xt causally affects At, because, in the physical
135

world, the path length Xt is the cause of the measurement of the distance to the end Dt. Although

in Eq. (6.7) the action At is only decided by Dt, the source cause of the change in Dt is Xt. We

can only obtain such information through a causal model, not an associational one.

Figure 6.7. The skeleton of the Blackjack SCM.

6.6.3. Blackjack. We test our explanation mechanism on a simplified game of Blackjack. The

state is defined as [hand, ace, dealer], where hand represents the sum of current cards in hand,

ace represents if the player has a usable ace (an ace that can either be a 1 or an 11), and dealer,

is the value of the dealer’s shown card. There are two possible actions: to draw a new card or to

stick and end the game. We use an on-policy Monte-Carlo control [8] agent to test our mechanism.

Since the problem dynamic is non-linear, we use a neural network to learn each structural equation.

Fig. 6.7 shows the skeleton of the SCM. More details about the rules of the game are explained

in Appendix 6.9.1.2. Note that in Blackjack, the exogenous variable Ui of some features can be

interpreted as the stochasticity or the “luck” during the input trajectory. e.g., Uhand,t corresponds

to the value of the card drawn at step t if the previous action is draw.

Using Q-values as Metric. The solid bars in Fig. 6.8 on the next page show the result of Q-

value-based importance based on Eq. (6.4). We interpret the result as follows: (1) The importance

of all features are highest at step 1. This is because state 1 is closest to the decision boundary of the

policy, and thus applying a perturbation at this step is easier to change the Q-value distribution;

(2) The importance of dealer and dealer_prev are the same throughout the trajectory. This is
136

Figure 6.8. A trajectory of a blackjack game and the result from running our
mechanism using either the Q-values or the action as the metric. In each sub-graph,
the top figure shows the state, and the usable ace is highlighted in red if present.
The bottom figure shows the importance of each feature. The solid bars are the
Q-value-based importance and the hatched bars are the action-based importance.
Note that at step 1, the importance for the previous hand, previous dealer, previous
ace, and previous action are not applicable since there is no previous state for the
first state.

due to the fact that dealer and dealer_prev are always the same. Thus, applying a perturbation

on dealer_prev will have the same effect as applying a perturbation on dealer assuming changing

dealer_prev won’t incur a change in the previous action; (3) A similar phenomenon can be observed

between hand and hand_prev. Increasing the hand at step t−1 by one will have the same outcome

as drawing a card with one higher value at t. The occasional difference comes from the change

in hand_prev causing a_prev to change; (4) The importance of ace is highest at steps 2 and 5.

In both of these two states, changing if the player has an ace or not while keeping other features

the same will change the best action and a larger difference in the Q-values, which causes the

importance to be higher.

137

Using Action as Metric. The hatched bars in Fig. 6.8 show the result of action-based importance

based on Eq. (6.3). The importance is more “bursty”, and features, such as hand, have an impor-

tance of zero in the majority of the steps since a perturbation of size one could not trigger a change

in the action. However, intuitively, hand is crucial to the agent’s decision-making. Therefore, in

this case, we note that the Q-value-based method produces a more reasonable explanation in this

example.

Multi-Step Temporal Importance. We cascade the causal graph of blackjack in Fig. 6.7 to

estimate the impact of the past states and actions on the current action, and the full SCM is shown

in Fig. 6.12 in Appendix 6.9.1.2. Fig. 6.9 shows the results of Q-value-based importance. The

importance of A4 on itself is omitted since it will always be one regardless of any other part of the

graph. We interpret the results as follows: (1) The importance of handτ and dealerτ is flat over

time. As discussed above, perturbing these two features at any given step will mostly change the

last state in the same way, resulting in constant importance; (2) The importance of the action aτ

increases as τ gets closer to the last step t = 4. An action taken far in the past should generally

have a smaller impact on the current action, which corresponds to the increasing importance for

aτ in our explanation.

Figure 6.9. The Q-value-based temporal importance on A4 for all state features
and actions at past time steps in the Blackjack experiment.

6.6.4. Additional Evaluation. We also evaluate our scheme in a more complex RL envi-

ronment, Lunar Lander, in Appendix 6.9.3. Lunar Lander is a simulation testing environment
138

developed by OpenAI Gym [142]. The simulation shows that our scheme can explain some specific

phases(state) of the spaceship in the landing process.

6.7. Discussions

Our causal importance explanation mechanism is a post-hoc explanation method that uses

data collected by an already learned policy. We focus on providing local explanations based on a

particular state and action. Counterfactual reasoning is required to recover the exogenous variables

and estimate the effect on the given state and action. In this case, the intervention operation is

not enough to achieve this goal, as it can only evaluate the average results (population) over the

exogenous variables, which is not a local explanation for the given state.

Intra-state Relations. One crucial characteristic of our method is that we consider intra-state

relations when computing the importance, which is essential in accurately quantifying the impact of

a state feature on the action. Although the MDP defines that a state feature at a certain time step

cannot affect another state feature at the same step, it is essential to consider causal relationships

within state features when measuring their impact if we use causal intervention or associational

perturbation. Since these types of methods require modifying the value of a specific state feature,

it should subsequently affect the value of other state features based on real-world causality. For

instance, in the collision avoidance problem (Section 6.6.2), the distance to the end (Dt) will change

in response to the distance from the start (Xt), and in the crop irrigation problem (Section 6.6.1),

the crop weight (Ct) will vary based on the humidity level (Ht). Ignoring the intra-state causality

can lead to an invalid state after the intervention, resulting in inaccurate importance estimates for

the given state feature. Hence, we formulate the intra-state relations in the SCM to provide more

accurate and comprehensive explanations of the problem.

Additive Noise Assumption. With the additive noise assumption in Eq. (6.2), the exogenous

variable (noise) can be fully recovered and used for counterfactual reasoning. We note that the

full recovery noise assumption can be relaxed for our mechanism. In the case where the exogenous

variables have multiple values (not deterministic), we can generalize our definition of importance

vector in Eq. (6.3) by replacing the first term with the expectation over different values of ex-

ogenous variables using probabilistic counterfactual reasoning [143]. Furthermore, the additive
139

noise assumption is not mandatory. We can use bidirectional conditional GAN [144] to model the

structure function and use its noise to conduct counterfactual reasoning and obtain the importance

vector.

Known SCM Skeleton Assumption. Our approach is based on the assumption that the SCM

skeleton is known, which can be obtained either through background knowledge of the problem or

learned using causal discovery algorithms. Causal discovery aims to identify causal relations by

analyzing the statistical properties of purely observational data. There are several causal discovery

algorithms available, including the classical constraint-based PC algorithm [136], algorithms based

on linear non-Gaussian models [137], and algorithms that use the additive noise assumption [138,

139]. These algorithms can be used to learn the SCM skeleton from observational data, which can

then be used in our method to quantify the impact of state features and actions on the outcome.

There are also existing toolboxes such as [145] and [146] that can be easily applied directly to data

to identify the SCM structure.

Perturbation. In addition to the method we employed in the simulation, which averages the

importance derived from both positive and negative δ, maximizing them is also a viable option.To

compute the causal importance vector defined in Eq. (6.3), we need to choose a perturbation value

δ. As shown in Table 6.1, the importance may depend on δ. Therefore, it is not meaningful to

compare importance vectors calculated with different δ. This is a common issue of perturbation-

based algorithms, including the saliency map method. In our case, δ should be as small as possible

but still be computationally feasible. More detailed sensitivity analysis and normalization on the

perturbation value δ can be found in Appendix 6.9.4.

Limitations. Our study has limitations when the state space has high dimensions, for exam-

ple, in visual RL, where state features are represented as images. Image data is inherently high-

dimensional, with multiple features that can interact in complex ways. The SCMs we used may

struggle to fully capture the complexity of these interactions, especially when a large number of

variables are involved. To address this issue, we suggest utilizing the algorithm of causal discovery

in images [147] and representation learning [148]. Further work is needed to explore this direction.

Another question that might be raised is what will happen if the trained SCM is not perfect.

An imperfect SCM will cause the counterfactual reasoning result to be biased, and thus affecting

140

the final importance. One potential solution is quantifying the uncertainty of the explanation. If

the explainer can output its confidence on top of the importance score, users can identify potential

out-of-distribution samples where our explanation framework might fail. To achieve this, we need

to separate aleatoric uncertainty (which comes from the inherent variability in the environment)

and epistemic uncertainty (which represents the imperfection of the model) [149]. Our use of SCM

may help us to differentiate the two, and this is one of the directions we are currently exploring.

6.8. Conclusion

In this paper, we have developed a causal explanation mechanism that quantifies the causal

importance of states on actions and their temporal importance. Our quantitative and qualitative

comparisons show that our explanation can capture important factors that affect actions and their

temporal importance. This is the first step towards causally explaining RL policies. In future work,

it will be necessary to explore different mechanisms to quantify causal importance, relax existing

assumptions, build benchmarks, develop human evaluations, and use the explanation to improve

evaluation and RL policy training.

141

6.9. Appendix

6.9.1. Additional Experiments and Details. In this section, we provide additional details

regarding the crop irrigation problem, the collision avoidance problem, and the Blackjack experi-

ments. Furthermore, we describe our results on an additional testing environment, Lunar Lander.

All experiments were conducted on a machine with 8 NVIDIA RTX A5000 GPU, an dual AMD

EPYC 7662 CPU, and 256 GB RAM.

6.9.1.1. Crop Irrigation. This section contains details of the crop irrigation experiment.

System dynamics.

Precipitation = U(0, 1)

SolarRadiation = U(0, 1)

Humidity = 0.3 ·Humidityprev + 0.7 · Precipitation

CropWeight = CropWeightprev

+ 0.07 ·
(
1− (0.4 ·Humidity + 0.6 · Irrigation− Radiation2)2

)
+ 0.03 · U(0, 1)

The change in CropWeight at each step is determined by humidity, irrigation and radiation, and

maximum growth is achieved when 0.4 · Humidity + 0.6 · Irrigation = Radiation2. An additional

exogenous variable is also included in the change of CropWeight. This can be regarded as some

unobserved confounders that affect the growth that are not included in the system dynamics, such

as CO2Concentration or the temperature.

Policy.

Irrigation = (Radiation2 − 0.4 ·Humidity) · (1.6 · CropWeight + 0.2)/0.6

The policy we used is a suboptimal policy that multiplies an additional coefficient 1.6·CropWeight+

0.2 on the optimal policy. This will cause the irrigation value to be less than optimal when Crop-

Weight is less than 0.5, and more than optimal and vice versa.

142

Training. We use a neural network to learn the causal functions in the SCM. The network has

three fully-connected layers, each with a hidden size of four. We use Adam with a learning rate of

3 × 10−5 as the optimizer. The training dataset consists of 1000 trajectories (10000 samples) and

the network is trained for 50 epochs.

Perturbation. The perturbation value δ used in the intervention is 0.1 w.r.t. the range of each

value.

(a) A trajectory of the crop irrigation
problem

(b) Saliency map method result (c) Causal-based importance result

Figure 6.10. Importance vector for state in crop irrigation problem.

6.9.1.2. Blackjack. This section contains details and additional figures for the blackjack simu-

lation.

System dynamics. This simulation is done in the blackjack environment in OpenAI Gym [142].

The goal is to draw cards such that the sum is close to 21 but never exceeds it. Jack, queen and

king have a value of 10, and an ace can be either a 1 or an 11, and an ace is called “usable” when

it can be used at an 11 without exceeding 21. We assume the deck is infinite, or equivalently each

card is drawn with replacement.

In each game, the dealer starts with a shown card and a face-down card, while the player starts

with two shown cards. The game ends if the player’s hand exceeds 21, at which the player loses,

or if the player chooses to stick, the dealer will reveal the face-down card and draw cards until his

sum is 17 or higher. The player wins if the player’s sum is closer to 21 or the dealer goes bust.

Policy. We trained the agent using on-policy Monte-Carlo control. Fig. 6.11 shows the policy

and the decision boundary.
143

Figure 6.11. The policy we use for the blackjack game. The blue line shows the
decision boundary.

SCM structure. We assume the blackjack game has a causal structure as shown in Fig. 6.7.

Additionally, Fig. 6.12 shows the 5-step cascading SCM we used to test the temporal importance.

Figure 6.12. The skeleton of the cascading SCM for a 5-step blackjack game.

Training. We use a neural network to learn the causal functions in the SCM. The network has

three fully-connected layers and each layer has a hidden size of four. We use Adam with a learning

rate of 3 × 10−5 as the optimizer. The training dataset consists of 50000 trajectories (∼76000

samples) and the network is trained for 50 epochs.

Perturbation. Since blackjack has a discrete state space, for numerical features “hand” and

“dealer”, we use a perturbation value δ = 1. For the boolean feature “ace”, we flip its value as the

perturbation.
144

6.9.2. Collision Avoidance Problem. We use the collision avoidance problem to further

illustrate that our causal method can find a more meaningful importance vector than saliency map,

i.e., which state feature is more impactful to decision-making.

System dynamics. The state St includes the distance from the start Xt, the distance to the end

Dt, and the velocity Vt of the car, i.e., St := [Vt, Xt, Dt], where Vt ≤ vmax and vmax is the maximum

speed of the car. The action At is the car’s acceleration, which is bounded |At| ≤ emax. The state

transition is defined as follows:

Vt+1 := Vt +At∆t

Xt+1 := Xt + Vt∆t+
1

2
At∆t2

Dt+1 := Xgoal −Xt+1

The objective of the RL problem is to find a policy π to minimize the traveling time under the

condition that the final velocity is zero at the endpoint (collision avoidance).

Policy. An RL agent learns the following optimal control policy also known as the bang-bang

control (optimal under certain technical conditions) defined as Eq. (6.7)

SCM structure. We use Fig. 6.5(b) as the SCM skeleton and use linear regression to learn the

structural equations as the entire dynamics are linear.

Perturbation. The perturbation value δ used in the intervention is 0.1 after normalization.

6.9.3. Lunar Lander.

System dynamics. Lunar lander problem is a simulation testing environment developed by Ope-

nAI Gym [142]. The goal is to control a rocket to land on the pad at the center of the surface while

conserving fuel. The state space is an 8-dimensional vector containing the horizontal and vertical

coordinates, the horizontal and vertical speed, the angle, the angular speed, and if the left/right

leg has contacted or not.

The four possible actions are to fire one of its three engines: the main, the left, or the right

engine, or to do nothing.
145

The landing pad location is always at (0, 0). The rocket always starts upright at the same

height and position but has a random initial acceleration. The shape of the ground is also randomly

generated, but the area around the landing pad is guaranteed to be flat.

Policy. We train our RL policy using DQN [150].

Figure 6.13. The causal structure of lunar lander that includes previous state and
actions. There should also be edges from each feature to the action at its time step,
e.g. edges from x_pos_prev to a_prev, or from x_pos to a. These edges are not
shown in this graph for simplicity.

SCM structure. We use the Fig. 6.13 as the skeleton of SCM. The structural functions are

learned with linear regression using 100 trajectories (∼25000 samples).

Evaluation. Fig. 6.14 shows a trajectory of the agent interacting with the lunar lander en-

vironment and the corresponding causal importance using our mechanism. We notice that our

mechanism discovers three importance peaks, and we explain this as the agent’s decision-making

during the landing process consisting of three phases: a “free fall phase”, in which the agent mainly

falls straight and slightly adjusts its angle to negate the initial momentum; an “adjusting phase”,

in which the agent mostly fires the main engine to reduce the Y-velocity; and a “touchdown phase”,

during which the lander is touching the ground and the agent is performing final adjustments to

stabilize its angle and speed. Fig. 6.15(a), 6.15(b) and 6.15(c) show our causal importance vector

during each of the three phases. We notice that during the “free fall phase”, features such as angle,

angular velocity and x-velocity are more important since the agent needs to rotate to negate the
146

(a) The lunar lander instance. (b) Causal importance vector the for
the current-step features on the tra-
jectory in Fig. 6.14(a).

(c) Causal importance vector the for
the previous-step features on the tra-
jectory in Fig. 6.14(a).

(d)

Figure 6.14. A lunar lander trajectory instance we used to evaluate our algorithm
and the corresponding causal importance vector. The “freefall phase” is roughly
between steps 0-70, “adjusting phase” is between steps 70-170, and “touchdown
phase” is from about step 170 to the end.

initial x-velocity. However, as the rocket approaches the ground during the “adjusting phase”, we

find an increase in importance for y-velocity since a high vertical velocity is more dangerous to

control when the rocket is closer to the ground. In the last “touchdown phase”, a large x-position

and x-velocity importance can be observed as a change in those features is highly likely to cause

the lander to fail to land inside the designated landing zone. Since the lander is already touching

the ground, it will take much more effort for the agent to adjust compared to when the lander is

still high in the air.

The results are similar to those of saliency-based algorithms [78], and Fig. 6.16 shows the

difference in importance vector between our algorithm and saliency-based algorithm. Note that

differences only occur for the positions and the angle. This is because other features don’t have

any additional causal paths to the action besides the direct connection. Therefore, the intervention

operation is equivalent to the conditioning operation for these features. The features position and

angle have an additional causal path through the legs, which causes the difference. Notably, our

method captures higher importance for angle, which we interpret as that the landing angle is crucial

and is actively managed by the agent.

147

(a) Importance vector during the
“free fall phase” (step 48).

(b) Importance vector during the
“adjusting phase” (step 129).

(c) Importance vector during the
“touchdown phase” (step 216).

Figure 6.15. The importance vector on lunar lander calculated using our method
and a comparison with the saliency map method. The solid bars in the first three
figures representing the importance of the current-step features and the shaded bars
are for the previous-step features.

Figure 6.16. Difference between our method and the saliency map method for
current-step features.

We are also able to compute the importance of the features in the previous steps, and Fig. 6.14(c)

and the shaded bars in Fig. 6.15 represent such importance vectors. The previous-step importances

are rather similar to those of the current-step features since the size of the time step is compara-

tively small. However, our algorithm captures that during the “adjusting phase”, the previous-step

importance for the angle is in general higher than the current-step importance, as changing the

previous angle may have a cascading effect on the trajectory and is especially important to the

agent when it is actively adjusting the angle.

6.9.4. Sensitivity Analysis. This section performs a sensitivity analysis on how the pertur-

bation amount affects the result of our explanation.
148

For action-based importance, too small of a perturbation may not yield a meaningful result.

This is due to the fact that, depending on the environment and the policy, a too small perturbation

may fail to trigger a noticeable change in the action, resulting in a zero importance. This differs

from the zero importance case where the policy disregards the feature when making decisions. In

our experiments, we use 0.01 with respect to the range of the features for continuous features and

the smallest unit for discrete features.

In general, using different perturbation amounts δ on the same state in the same SCM may result

in different importance vectors, and vectors calculated using different δ cannot be meaningfully

compared. However, if we desire the importance of using different δ to be more on the same level,

we suggest finding the highest importance across all features and all time steps and normalizing all

results by said number. Section 6.9.4.2 contains an example comparing the importance score with

and without the aforementioned normalization.

Figure 6.17. The importance vector of S(1) from both our method and the saliency
map method with respect to the perturbation amount.

6.9.4.1. One-step MDP. As we demonstrated in the example of one-step MDP in Fig. 6.3 and

Table 6.1, our importance vector will sometimes be affected by the perturbation amount. For this

experiment, we use Fig. 6.3 as the skeleton and the following settings. The constants are

c1 = 1, c2 = −2, c3 = 3, c12 = 2, cp = −1

We use unit Gaussian distributions as the exogenous variables and the values are

u1 = 0.50, u2 = −0.14, u3 = 0.65, up = 1.52, ua = −0.23
149

The state value and the corresponding action are then

s(1) = 0.50, s(2) = 0.86, s(3) = −0.88, vp = 1.52, a = 3.83

The result of running our method and the saliency map method on the feature S(1) is shown in

Fig. 6.17. Same as in Table 6.1. Our algorithm is linear w.r.t. δ while the saliency map result

is constant. The increased importance comes from the causal link S(1) → S(2) → A, which also

introduces the linear relationship.

6.9.4.2. Collision Avoidance. Fig. 6.18 shows the importance vector of Xt in the collision avoid-

ance problem and different color lines correspond to different perturbation amounts. Note that

similar to the result shown in Fig. 6.6(b), the importance of Dt is the same as Xt, and Xt−1 is the

same but off by one time step. Other features have negligible importance.

There are two effects of using different perturbation amounts: 1) The number of steps with non-

zero importance is increasing as δ increases since a larger δ will cause states further away from the

decision boundary to cross the boundary after the perturbation; 2) The value of peak importance is

lower. Since we use the action-based importance and the action is essentially binary, the difference

in importance solely comes from the normalization we applied on δ (the denominator in Eq. (6.3).

If this is undesirable, one way to combat this is to normalize the result using the highest importance

across all features and time steps. The normalized result is shown in Fig. 6.18(b), in which the

peak value will be one regardless of δ.

(a) Importance vector of Xt (b) Normalized importance vector of
Xt

Figure 6.18. Sensitivity analysis on the collision avoidance problem.

150

6.9.5. Lunar Lander. Fig. 6.19 shows the sensitivity analysis on lunar lander and the different

color lines correspond to different perturbation amounts. Binary features including left and right

leg are not included. The general trend of the result is the same while the value and the exact

shape of the curve vary slightly when different δ is used and our result is robust w.r.t. δ.

(a) Importance vector of x-position (b) Importance vector of y-position (c) Importance vector of angle

(d) Importance vector of x-velocity (e) Importance vector of y-velocity (f) Importance vector of angular ve-
locity

Figure 6.19. Sensitivity analysis on the lunar lander environment.

6.9.5.1. Blackjack. Fig. 6.20 shows the sensitivity analysis for blackjack, with different color

lines representing different perturbation amounts. The binary feature ace is not included. In

blackjack, since the smallest legal perturbation amount is one and the range of the value is at most

21, increasing δ has a much larger effect on the result. However, we can observe that the general

shape of the curves is similar, indicating the robustness of our method.

6.9.6. Action-based Importance versus Q-value-based Importance. This section dis-

cusses the comparison between the action-based importance method and the Q-value-based im-

portance method. It demonstrates that the Q-value-based method sometimes fails to reflect the

features in the state that the policy relies on.
151

(a) Importance vector of hand (b) Importance vector of dealer

Figure 6.20. Sensitivity analysis on the Blackjack environment.
Consider a one-step MDP with the SCM shown in Fig. 6.21, where the state S = [S1, S2],

Si ∈ [−1, 1], i = 1, 2, and the action a ∈ [−1, 1]. The reward is defined as R(S, a) = 100×S2+a×S1.

Under this setting, the optimal policy is:

A =

−1 S1 < 0

1 otherwise

Intuitively, the policy selects the minimum value in the action space when S1 is negative , and the

maximum value otherwise.

The action-based importance method correctly identifies S1 as more important, as the policy

only depends on S1. However, the Q-value-based method produces a different result. In a one-

step MDP, the Q-function is the same as the reward function. As the coefficient in the Q(reward)

function is larger for S2, the Q-value-based method finds S2 more important, which is different

from the features that the policy relies on.

Figure 6.21. The skeleton of SCM of the one step MDP.

152

7

Causal Path-Specific Importance in SCM

7.1. Introduction

Path-specific effect analysis, which quantifies the strength of pathways linking a decision to

its outcome, is an important topic in statistical causal inference. This approach has been widely

adopted across various disciplines, including social psychology [151], medicine [152], and economics

[153], proving to be a valuable tool for analyzing complex systems. Recently, with the advancement

of artificial intelligence, path-specific effect analysis has been employed to provide explanations

for decision-making mechanisms in models and design algorithms that promote fair predictions

[6,154,155].

As an illustration of the significance of the path-specific effect, consider the structural causal

model (SCM) in Figure 7.1, which describes a hiring process based on an applicant’s gender,

number of children, physical strength, and qualifications [156]. The effect of gender (X) on the

hiring decision (Y) can be decomposed into three different pathways starting from X and ending in

Y : the direct impact of gender (unfair) π1 : X → Y , the impact mediated by the number of children

π2 : X → C → Y (unfair, as it also discriminates against women who have children), and the impact

mediated by physical strength π3 : X →M → Y (fair). It is essential to measure each path’s effect

in the SCM to analyze the hiring process’s fairness. The importance of the path-specific effect

is also demonstrated in other domains, such as protein signaling networks, which provides insight

into how signaling molecules influence subsequent molecules in the cascade [152], and biological

pathways of symptoms, where it elucidates the impact of a disease on symptoms [157]. Identifying

and differentiating specific pathways can contribute to a deeper understanding of complex diseases

and may lead to new insights into disease mechanisms.

However, using the classical definition of the path-specific effect [158] has limitations in assessing

the fairness of SCM. This is because it only provides an average effect estimate at the population

153

Figure 7.1. The causal graph of job hiring for the physical demanding job. X:
gender, C: the number of children, M: physical strength, Q: qualification, Y: hiring
probability

(type) level without considering individual-level impact (token). For example, the impact of gender

on hiring (X → Y) can be very small on average for the population, but it can be large for an

individual.

To overcome this limitation, we present a novel definition of the causal counterfactual path-

specific importance score. The proposed definition has three major advantages. Firstly, it can

quantify individual-level impact through a specific pathway from the source vertex to the target

vertex. Secondly, for paths with multiple edges, the effect can be decomposed into individual

edges, making it cognitively intuitive for humans to understand. Finally, the computation of the

proposed definition is efficient compared to the classical path-specific effect calculation, which is

computationally demanding due to the need to evaluate each path independently. In complex causal

graphs where the number of pathways grows exponentially with the number of edges, evaluating all

pathways from the source vertex to the target vertex can be expensive. Our proposed path-specific

importance score has desirable mathematical properties and can be efficiently computed through

our designed algorithm.

In summary, we define a causal counterfactual path specific importance score, which quantifies

the individual-level impact of a specific path from the source variable to the target variable. We

show that our metric has desirable mathematical properties, including adherence to chain rules

and consistency. Additionally, we present an algorithm that can efficiently compute the scores of

all paths from the source vertex to the target vertex and identify the k-most significant paths in a

causal graph with the highest scores.

154

The structure of this paper is as follows. Section 2 introduces preliminary knowledge related

to causality. Section 3 presents our definition of path-specific counterfactual importance score.

In Section 4, we establish the mathematical properties of the importance score. In Section 5,

we propose an efficient algorithm to identify the most important path. Section 6 provides the

evaluation of our method, while Section 7 presents related works in the field. Section 8 offers a

detailed discussion of our findings. We summarize our work in Section 9. Lastly, the appendix

provides proof of theorems and lemmas.

7.2. Preliminaries

We introduce the notation used to express concepts and variables. Capital letters, such as X,

are utilized to represent random variables, while small letters, such as x, are utilized to denote

the realizations of these variables. Bold letters, such as X, are used to denote vectors of random

variables. Calligraphic letters, such as X , are used to represent sets. For a given natural number

n, the [n] is defined as the set {1, 2, · · · , n}.

Causal Graph and Skeleton. Causal graphs are probabilistic graphical specifically con-

structed to depict data-generating processes [132]. In the graph, each vertex represents a variable.

With a given variable set denoted as V = {Vi, i ∈ [n]}, a directed edge from variable Vj to Vi

implies that Vi reacts to modifications in Vj , with all other variables maintaining a constant value.

Direct causes of Vi, or its parent variables, are defined as those linked to Vi through directed edges,

denoted by the set Pai. The underlying structure of a causal graph, commonly referred to as its

skeleton, is determined by the graph’s overall topology.

Structural Causal Models (SCM). The Structural Causal Model (SCM) introduces a frame-

work in which the value of each variable Vi can be determined as a function of both its parent

variables and exogenous variables within a causal graph. This formalization proceeds as follows:

let V = {Vi, i ∈ [n]} denote a set of endogenous (observed) variables, and let U = {Ui, i ∈ [n]}

stand for a set of exogenous (unobserved) variables. An SCM is then established through a series

of structural equations [132] :

(7.1) Vi = fi(Pai, Ui),Pai ⊂ V , Ui ⊂ U , i ∈ [n],

155

where function fi signifies the causal mechanism of Vi, thereby determining the value of Vi contin-

gent upon its parent variables and the exogenous variables.

Intervention and Do-operation. The intervention of a variable on an SCM, denoted by the

do(·) operator, refers to assigning a constant value v to Vi, irrespective of its structural equation

in the SCM. do(Vi = v) means setting the value of Vi to a constant v regardless of its structural

equation in the SCM, i.e., ignoring the edges into the vertex Vi. This equates to disregarding the

edges leading into the vertex Vi in the causal graph. After intervention do(X = x), the distribution

of Y is denoted by P (YX=x = y), where the variable YX=x is the value of Y after intervention

do(X = x).

Path. Given a graph G, a path from vertex X to vertex Y in G is a finite sequence of edges

π = {XV1, V1V2, · · ·Vm−2Vm−1, Vm−1Y } in which any two consecutive edges are adjacent, and all

vertices are distinct.

Counterfactual Reasoning. Counterfactual reasoning enables the exploration of hypothetical

“what if” scenarios. Consider an observation O referring to the realization of variables in the causal

graph, and X = x being given, the counterfactual question is asking the potential outcome if X were

assigned a different value x′ [132]. The counterfactual outcome of Y is represented as YX=x′ |X =

x,O = o. With a given SCM, deterministic counterfactual reasoning can be accomplished through

intervention, as follows:

(1) Recover the exogenous variable value U as u, via the structural functions and the values

X = x, O = o;

(2) Calculate the counterfactual outcome Y |do(X = x′), U = u. Specifically, within the SCM,

assign the value of X to x′ and substitute all exogenous variable values U as u on the right

side of each structural function to obtain the value of Y .

The two steps are called deterministic counterfactual reasoning [143], because the value

of U can be solved uniquely from f when X and O are given. If the exogenous variable U in step

1 has multiple solutions, then nondeterminism should be involved in causal models by assigning a

prior probability P (U = u). In the nondeterministic counterfactual reasoning [143], step 1

is to update P (U) as P (U |X = x,O = o), and the counterfactual outcome in step 2 is defined as

the expectation over the posterior distribution of U .
156

7.3. Causal Effect along Different Pathways

We consider an SCM that represents the causal relationships among a set of variables V =

{Vi, i ∈ [n]} that are given. All structural functions fi, i ∈ [n] are assumed to be continuous, with

bounded derivatives on their respective domains. Additionally, we assume the corresponding causal

graph G is a directed acyclic graph (DAG), as an example depicted in Figure 7.1.

Our primary objective is to examine the influence of a source vertex X on a target vertex Y ,

where X,Y ∈ V . The most prevalent definition of a causal effect is applied within the medical

field for binary cases, where the outcome variable Y depends on whether a patient accepts the

diagnosis D or not. In this context, the causal effect is defined as the expected difference between

these two scenarios within the population, denoted by E[YD=1] − E[YD=0]. Building upon this

concept, to evaluate the causal effect at an individual level, allowing the algorithm to quantify the

impact for a specific data point, we introduce the total counterfactual importance score described

in Definition 2. This method incorporates counterfactual reasoning and a perturbation value δ in

the denominator of Eq. 7.2.

Definition 2. (Total Counterfactual Importance Score) Given a factual observation O :

{Vi = vi|i = 1, . . . , n}, which is a realization of all endogenous variables, for ∀X,Y ∈ V, the

counterfactual importance score of X on Y is

(7.2) wX→Y |O = lim
δ→0

E[YX=x+δ|O]− E[YX=x|O]

δ
,

where X = x is the factual observation from O.

The numerator represents the difference between two counterfactual outcomes of Y in the

situations X is setup to X or x+δ when given the observation O. By incorporating the denominator

δ and the limit operation in Eq. 7.2, this definition intuitively captures how Y responds to the change

on X given the current observation O. A larger value of effect scores for a path indicates greater

significance for that path.

Next, we will discuss how to perform an intervention on a variable along a path. Furthermore,

we introduce the concept of the path-specific counterfactual importance score for a given path π,

which starts from variable X and ends at variable Y . This score quantifies the causal effect from
157

the source variable to the target variable along a specific path. A direct edge can be considered a

special case of a path.

Definition 3. (Intervention a variable along a path) For an SCM M , given a path (or an

edge, a subgraph) π, we can partition each vertex Vi ’s parents into two parts Pai = Pai(π)∪Pai(π̃),

where Pai(π) represents those members of Pai that are linked to Vi in π, Pai(π̃) represents the

complementary set. The operation of intervention of X = x on the path π is defined as: we replace

the structural equation fi as fi(Pai, u)
π = fi(Pai(π)X=x, Pai(π̃), u), where Pai(π)X=x represents

it takes the value when X = x is enforced. The outcome of Y after the intervention of X = x on

the path π can be represented as YX=x|π.

Definition 4. (Path-Specific Counterfactual Importance Score) Given a factual observation

O : {Vi = vi|i = 1, . . . , n}, which is a realization of all endogenous variables, and a causal path π

in graph G, the path-specific counterfactual importance score of source vertex X on target vertex Y

along path π is defined as follows

(7.3) w
X

π−→Y |O= lim
δ→0

E[YX=x+δ|π,X=x|π̃|O]− E[YX=x|O]

δ
.

Here, X = x is the factual observation. The term π̃ = ΠX→Y \π represents the set of all paths from

X to Y excluding path π, where ΠX→Y is the set of all paths from X to Y . When the path is a

direct edge from X to Y , the notation w
X

π−→Y |O can be simplified as wlXY |O. The first term in the

numerator represents the counterfactual outcome of Y when X is fixed at x+ δ if X is part of path

π; otherwise, it remains fixed at x.

The numerator captures the effect of X on Y through the given π. Definition 4 can quantify

how Y responds to the change on X only through a path π given the current observation O. In our

model, the direct effect is defined as the effect propagated only through the edge directly connecting

the source and target, which can be regarded as a special case of path-specific effect.

Intuitively, Definition 4 uses the intervention operation on a path and only considers the effect

of the changing of X on Y propagating from the given path π. We will keep X as its original

value for other edges in the graph. Intuitively, if the change caused by the intervention is larger,

the causal strength of X to Y on these paths is larger. The operation of intervention on a path
158

isolates the impact on Y by X on the given path. The normalization and limitation operation on

the intervention value provides some “independence” among edges of the causal effect in a path.

These exhibit desirable properties.

The numerator is similar to the definition of the counterfactual path-specific effect in [155].

However, they focus on the discrete case. Although [155] can be directly extended to the individual

level, it doesn’t have the math properties we propose in the next section. Our definition adds the

normalization of the intervention value in the denominator and focuses on the strength of the

local effect by limitation operation. Intuitively, these modifications provide some “independence”

of the causal effect in the graph. So, our method has more straightforward decomposition and

fast calculation properties (discussed in the next section), which are important for explaining and

evaluating the causal effect along each path.

The limit format of the perturbation value δ has a similar format as incremental causal effect

and marginal treatment effect [94,95,96]. Ours are defined on counterfactual reasoning and path-

specific effect. However, they focus on the total or direct effect.

7.4. Properties of Path-Specific Counterfactual Importance Score

As previously stated in the introduction, the traditional definition of path-specific effect en-

counters difficulties in decomposing its effect to individual edges and computing it efficiently. This

section delves into the mathematical properties of our path-specific counterfactual importance score,

which addresses these limitations.

In detail, we discuss the connection between our definition and the partial derivative involved

in the calculation, as well as the consistency between the total importance score and path-specific

score. First, we introduce an assumption and a lemma pertinent to the direct effect, which refers

to an edge that directly connects the source and target vertex within the graph.

Lemma 7. For an SCM M , given an edge from X to Y , and the structural causal equation

of Y : Y = fY (X,Zyx, Uy), where Zyx represents all parents of Y excluding X. Given a factual

observation O, the counterfactual importance score of X on Y along the path/link π = lXY = {XY }
159

is the partial derivative of Y with respect to X at the point of the observation. Formally,

wlXY |O = EUy |O

[
∂Y

∂X

∣∣∣∣
O

]

= EUy |O

[
∂Y

∂X

∣∣∣∣
X=x,Zyx=zyx,Uy=uy

]

=

∫
∂Y

∂X

∣∣∣∣
X=x,Zyx=zyx,Uy=uy

P (uy|O)duy(7.4)

The Lemma 7 does not require the exogenous variables U to be deterministically recovered

(have a unique solution when f,X,O are given). The derivation is based on nondeterministic

counterfactual reasoning. It shows that the value of the path-specific counterfactual importance

score in an edge case is the partial derivative of Y concerning X in the counterfactual reasoning

data point weighted by the posterior probability of U . Additionally, if exogenous variables U can

be perfectly recovered as u, given a factual observation O : {Vj = vj |j = 1, . . . , n}, then equation

(7.4) in Lemma 7 can be simplified as eq. (7.5). The detailed proof of Lemma 7 can be found in

Appendix 7.10.

(7.5) wlXY |O =
∂Y

∂X

∣∣∣∣
O

We introduce the following assumption about exogenous variables U .

Assumption 1. (Independent exogenous variables assumption) All endogenous variables

U are independent.

Based on Lemma 7, when Assumption 1 holds true, we can derive the following theorem for a

general path in the causal graph, which shows that the calculation of the importance score for each

edge in the graph is independent, and the importance score for a path is the multiplication of the

importance score for each edge inside the path. Our path-specific score can be directly decomposed

to individual edges. This is helpful to understand the effect of these edges on the outcome and

design effective algorithms for calculating the importance score in the graph. The detailed proof of

Theorem 7.4.1 is in Appendix 7.10.

160

Theorem 7.4.1. (Chain rule: path-specific counterfactual importance score and par-

tial derivative) For an SCM M , when Assumption 1 holds true, given a path π = {XV1, V1V2, · · ·Vm−2Vm−1,

Vm−1Y } with length m and a factual observation O, the path-specific counterfactual importance score

of the source vertex X on target vertex Y along the path π can be represented as:

w
X

π−→Y |O = wlXV1
|O

(
m−2∏
i=1

wlViVi+1
|O

)
wlVm−1

Y |O

= EU1|O

[
∂V1

∂X

∣∣∣∣
O

](m−2∏
i=1

EUi+1|O

[
∂Vi+1

∂Vi

∣∣∣∣
O

])

EUY |O

[
∂Y

∂VY

∣∣∣∣
O

]
.

We also show the consistency of our definition in Theorem 7.4.2. The sum of counterfactual

path-specific scores among all paths from source to target is the same as the total counterfactual

importance score from source to target. It provides the connection between Definition 2 and Defi-

nition 4. This makes the addition and comparison among different paths’ scores more meaningful.

The detailed proof is in Appendix 7.10.

Theorem 7.4.2. (Consistency) Given an SCM M and a factual observation O, when As-

sumption 1 holds true, the total counterfactual importance score of X on Y equals the summation

of path-specific counterfactual importance score among all the possible paths from X to Y :

wX→Y |O =
∑

π∈ΠX→Y

w
X

π−→Y |O.

7.5. Efficient Algorithm for the Most Important Path

In reality, given an SCM, people are more interested in finding the most important path that

has the largest impact. We define the most important paths from the source to the target as the

path with the largest absolute value of the Importance score. We introduce algorithm Algorithm 13

to find the most important path effectively. We note that this algorithm can be easily extended to

the k-most important path, by using a priority queue.

Based on Theorem 7.4.1, the calculation for the importance score for each edge is independent.

So, we can evaluate each edge’s score first and then calculate the path’s score. Then, we notice that
161

finding the most important path in the original causal graph can be reduced into finding the longest

path in a DAG with different edge weights. In detail, based on Theorem 7.4.1, the importance score

for a path is the multiplication of the importance score for each edge inside the path. We denote

the importance score of all edges in a graph as w1, · · · , wn, where n is the number of edges. Because

of the monotonicity of the log function,
∏n

i=1 |wi| achieves the largest value as the log(
∏n

i=1 |wi|).

Then we can transfer it from the multiplication to the summation as follows:

log(

n∏
i=1

|wi|) =
n∑

i=1

log(|wi|)

Next, we define a new graph G′ with the same skeleton as the original graph G, but the length

for edge i is log(|wi|), rather than wi, i ∈ [n]. For each path in G′ with a length of
∑n

i=1 log(|wi|),

there exists a corresponding path in G with an absolute importance score of
∏n

i=1 |wi|. Given the

monotonicity of logarithms, the most important path in the original graph G corresponds to the

longest path in the transformed graph G′. Finally, Algorithm 13 calls a subroutine Algorithm 14

to calculate the longest path in a DAG [159]. Because of the acyclic property, Algorithm 14 can

find the longest path in polynomial time by topological sort and dynamic programming.

Our methodology retains its applicability even when |wi| is less than 1. If |wi| is found within

the range of 0 to 1, then the associated edge length log(|wi|) in the graph G′ is a negative value.

As we presuppose the causal graph to be acyclic, issues related to negative cycles are avoided, and

the validity of our longest path computation is preserved. Intuitively, when |wi| lies between 0

and 1, in the original graph G, the expansion of a path by an edge results in a decrease in the

path’s importance score. Correspondingly, in the graph G′, a negative path log(|wi|) contributes

to a decrease in path length. Consequently, the consistent correlation between these observations

validates our approach.

The time complexity of Algorithm 13 is in the linear scale of number of edges and vertices,

O(|E| + |V |) [160]. Compared with the case using the classical definition, where the calculations

for each path are independent, and the number of paths is exponential to the edge, our algorithm

significantly improves finding the most important path in the causal graph.

Because of the math property that the edge’s scores are independent, we can easily formulate

our definition of the path-specific score into the existing algorithm that is based on graph theorem

162

Algorithm 13 Fast Calculation for the Most Important Path
1: Inputs: Graph G(V, E), source vertex X, target vertex Y
2: Outputs: Path P
3: Calculate the path-specific importance score for each edge in the graph: w1, w2, · · · , wn, where

n = |E|
4: Transfer the importance score to log scale, log(|w1|), log(|w2|), · · · , log(|wn|)
5: Define a graph G′ that maintains same skeleton as graph G, with edge weight

log(|w1|), log(|w2|), · · · , log(|wn|)
6: Path P = LongestPathDAG(G′, X, Y)
7: return P

Algorithm 14 Longest Path in DAG
1: Inputs:Weighted DAG graph G(V,E), source vertex X, target vertex Y
2: Outputs: Path P
3: Linearized order V = Topologically sort G
4: for each vertex v ∈ V in linearized order from X to Y do
5: dist(v) = maxu,v∈E(dist(u) + w(u, v))
6: vprevious = argmaxu,v∈E(dist(u) + w(u, v))
7: end for
8: Recursively find the path using vprevious starting from X to Y
9: return P

to design an efficient algorithm. For example, we can use the algorithm in [161] to find the paths

with the top k largest importance score in a causal graph.

7.6. Evaluation

We demonstrate the performance of our method for path-specific analysis using two datasets,

one synthetic and the other real.

7.6.1. Job Hiring Problem. We assume the following SCM for the physically demanding

job hiring process discussed in the introduction (illustrated in Figure 7.1).

X = Ux, Ux ∼ Bernoulli(0.6)

Q = UQ, UQ ∼ N (2, 52)

C = X + 0.5QUc, Uc ∼ TrN (2, 12, 0.1, 3.0)

M = 3X + 0.4QUM , UM ∼ TrN (3, 22, 0.1, 3.0)

Y = h(X,Q,C,M) = ζ(−10 + 5X + C +Q+M)

163

where Bernoulli, N , and TrN represent the Bernoulli, Gaussian, and truncated Gaussian distribu-

tions, respectively, and ζ(k) = 1/(1 + exp(−k)) denotes the standard sigmoid function. A similar

data generation process was employed in [156].

The simulation results are presented in Figure 7.2. The first three figures display population-

level results. Specifically, they illustrate the distribution of importance scores for three distinct

paths, originating from gender and ending in hiring, which quantify the impact of X on Y . For

the majority of individuals (over 80%), the effect of these three paths is small, indicating that the

model appears fair on average. This result aligns with the classical definition at the population

level.

In the final subfigure, we examine a specific individual and assess the impact of all paths related

to hiring decisions of Figure 7.1 for this particular individual. We observe that the hiring process

is unfair for this individual, as the impact of the unfair paths X → Y and X → C → Y possess

importance scores comparable to other paths. This example highlights how our approach can be

utilized to quantify the influence of paths for individuals.

To further investigate the variations in importance scores for paths within the population and at

the individual level, we introduce a weight coefficient, wc corresponding to the ’number of children’

feature, into the equation for Y . An increase in the value of wc signifies an amplified impact of

feature C on Y .

Y = h(X,Q,C,M) = ζ(−10 + 5X + wcC +Q+M)

Our analysis results are depicted in Figure 7.3. The first figure presents the distribution of

importance scores for path X−C−Y . The second figure relates to the individual-level importance

scores. We note that as the value of wc increases, the importance score for path X−C−Y increases

correspondingly, while the scores for other paths remain almost unchanged. This indicates an

increased level of unfairness associated with this specific path, in line with the changes in wc.

7.6.2. Smoking Impact Problem. We also evaluate our method using a real dataset - the

Framingham Heart Study dataset [162]. The original Framingham cohort dataset comprises two

years of examination data for 5,209 participants aged between 30 and 62 years. Our objective is to
164

(a) Path X-Y (Gender-Hiring) (b) Path X-M-Y (Gender-Physical strength-Hiring)

(c) Path X-C-Y (Gender-Num of children-Hiring) (d) Important score for an individual

Figure 7.2. The causal counterfactual path-specific importance score in job hiring
problem.

investigate the causal mechanisms of smoking behavior on systolic blood pressure (SBP) mediated

by cholesterol levels and body weight (depicted in Figure 7.4). Our SCM is formulated as a linear

regression model with some covariant terms, as recommended by [163].

Figure 7.5 presents the average effect of the paths that begin with smoking and end with at the

population level by using our method. Our method reveals that the direct impact of smoking on

165

(a) The distribution of importance score for path X-C-Y
with different values of wc

(b) Importance score for an individual with different val-
ues of wc

Figure 7.3. The causal counterfactual path-specific importance score in job hiring
problem with different values of wC

Figure 7.4. The causal graph of smoking effect on blood pressure. S: smoking
behavior, C: cholesterol level, B: body weight, Y: systolic blood pressure (SBP).

blood pressure, denoted as (S → Y), has the highest average importance score in comparison to the

other three paths. Consequently, the direct path’s influence is the most dominant factor relative to

other paths. Notably, the ranking for the paths sorted by their importance based on our method

is consistent with the conclusion drawn in [163]. We believe the difference in the magnitude of the

results is due to the different perturbation values used by the two methods.

The first four subfigures of Figure 7.6 display the distribution of importance scores along the

paths that begin with smoking and end with SBP at the population level. Additionally, the last

two subfigures show the individual-level importance of these paths for two specific individuals.

166

Interestingly, we find that for person A, both the direct path from smoking to blood pressure

(S → Y) and the path of smoking affecting blood pressure through body weight (S → B → Y) are

significant. However, for person B, the direct impact of smoking on blood pressure (S → Y) is the

dominant factor. This type of individual-level path analysis provided by our method can help an

individual know each path’s influence for the particular individual.

Figure 7.5. Average effect for each path at the population level.

7.7. Related Works

The study of path-specific analysis has garnered significant interest within the academic com-

munity. A majority of the existing research has centered around non-parametric settings, iden-

tifiability, or informational decomposition of SCMs [91, 92, 93]. These approaches diverge from

our work, which is grounded in a known SCM model. Our method enables the quantification of

individual-level path-specific effects and the development of efficient algorithms to identify the most

crucial paths.

Several related studies have proposed causal effect definitions such as incremental causal effects

and marginal treatment effects [94, 95, 96]. These definitions employ a similar constraint format
167

(a) Importance score for path S-Y
(fig/population level)

(b) Importance score for path S-B-Y
(fig/population level)

(c) Importance score for path S-C-Y
(fig/population level)

(d) Importance score for path S-C-B-
Y (fig/population level)

(e) Importance score for individual
(person A)

(f) Importance score for individual
(person B)

Figure 7.6. The causal counterfactual path-specific importance score in smoking
impact problem.

for the perturbation value δ. However, while their focus lies on total effects and population-level

analysis, our work concentrates on path-specific effects and offers individual-level quantification.

We elucidate the relationship between our work and existing literature concerning population-

level causal effects. In particular, the studies by Janzing et al. [97] and Wang et al. [99] both define

and measure causal strength (effect) using Shapley values. Janzing et al. [98] assess causal influ-

ence based on the distributional change resulting from removing a “causal arrow”. Furthermore,

Janzing’s concept of intrinsic causal contribution [97] allows for the separation of intrinsic infor-

mation added by each vertex from the information obtained from its ancestors. Wang et al. [99]

allocate credit to edges and provide an interpretation of the entire causal graph. In contrast, our

method builds upon the classical definition of average treatment effect, which is grounded in inter-

vention operations, and extends this definition to continuous and individual cases. Our approach

168

boasts advantages such as the clear decomposition of causal effects along paths and rapid calcula-

tions for identifying the most important paths. This transparent decomposition proves critical for

interpreting the entirety of the SCM.

7.8. Discussions

Motivation for Path-specific Effects: In certain applications, the analysis of path effects

yields vital information that is not captured by total effects. Notable examples include the fairness

analysis of a model as discussed in the introduction, protein signaling networks (which examine

the influence of signaling molecules on subsequent molecules within the cascade) [152], and the

biological pathway of symptoms (exploring the impact of a disease on its symptoms) [157]. Identi-

fying and distinguishing specific pathways can enhance our understanding of complex diseases and

potentially offer novel insights into disease mechanisms.

Linear Case: Based on our definition, when all structural equations are linear, the individual-

level effect is equivalent to the population-level effect, as the difference between the counterfactual

after perturbation and the original is independent of U . Consequently, for each edge, the path-

specific score is the partial derivative of the structural function, which corresponds to the coefficient

of the linear function. Simultaneously, using Theorem 1, the path-specific score for a given path

is determined by the product of each variable’s coefficient within its respective linear model along

that path.

Assumptions: We do not make the assumption that U is perfectly recovered, which is only

necessary for deterministic counterfactual reasoning and facilitates the calculation of the expecta-

tion over U . The only requirement is the independence of U (Assumption 1) . Without perfectly

recovered of U , our definitions and theorems remain valid, and our method can still be employed

based on nondeterministic counterfactual reasoning, as evidenced by our experiments.

Single-point Derivatives and Potential for Severe Errors: Our objective is to quantify

the local effect at a specific point; hence, a method that concentrates on a single point preserves

generality. We recognize that the product of effects along a causal path may lead to error propaga-

tion and amplification, a common issue when estimating a path’s strength. This arises because the
169

target vertex can be represented as a multi-layer composition function of the source vertex through

the causal graph structure. We intend to explore this challenge in future work.

7.9. Conclusion

In this study, we present a novel metric for path-specific effect analysis, termed the causal

counterfactual path-specific importance score. This score quantifies path-specific effects at the

individual level. We demonstrate that our metric exhibits desirable mathematical properties, such

as compliance with chain rules and preservation of consistency. These properties facilitate the

decomposition of the path-specific score into each edge within the path, enabling the development

of an efficient algorithm to identify the most critical path in a causal graph in linear time with

respect to the number of edges. Our simulations indicate that our innovative definition concurs

with the classical definition at the population (type) level while also delineating path-specific effects

at the individual (token) level.

7.10. Appendix

We first introduce Lemma 8, which pertains to the properties based on our assumption of the

structural function. Lemma 8 demonstrates that if f is continuously differentiable and possesses a

bounded derivative of Y with respect to X, then the expectation operation (integration) and limit

(derivative) on f are exchangeable.

Lemma 8. Let U ∈ U be a random variable. Suppose that f(x, U) is continuously differentiable

with respect to x for all U ∈ U and integrable on U for all x ∈ R. If the partial derivative | ∂∂xf(x, U)|

is bounded by a constant B for all x ∈ R, U ∈ U,∣∣∣∣ ∂∂xf(x, U)

∣∣∣∣ ≤ B,

170

then

∂

∂x
E
[
f(x, U)

]
=

∂

∂x

∫
U
f(x, U)dF (U)

=

∫
U

∂

∂x
f(x, U)dF (U)

= E
[
∂

∂x
f(x, U)

]
,

where F is the cumulative distribution function of U .

Proof. From the mean value theorem, there exists x′ ∈ (x, x+ δ) such that f(x+δ,U)−f(x,U)
δ =

∂
∂xf(x

′, U). Then

∂

∂x
E
[
f(x, U)

]
=

∂

∂x

∫
U
f(x, U)dF (U)

= lim
δ→0

∫
U

f(x+ δ, U)− f(x, U)

δ
dF (U)

= lim
δ→0

∫
U

∂

∂x
f(x′, U)dF (U).

Since | ∂∂xf(x′, U)| ≤ B for all x′ ∈ (x, x+ δ), from dominated convergence theorem [164], we have

∂

∂x
E
[
f(x, U)

]
= lim

δ→0

∫
U

∂

∂x
f(x′, U)dF (U)

=

∫
U
lim
δ→0

∂

∂x
f(x′, U)dF (U)

=

∫
U

∂

∂x
f(x, U)dF (U)

= E
[
∂

∂x
f(x, U)

]
.

□

7.10.1. Proof of Lemma 1. According to our assumption about f and U , we can have

following results by using Lemma 8 in Definition 4.
171

Proof.

wlXY |O = lim
δ→0

E[YX=x+δ|π,X=x|ΠX→Y \π|O]− E[YX=x|O]

δ

= lim
δ→0

E[fY (x+ δ, zyx, Uy)|O − fY (x, zyx, Uy)|O]

δ

= lim
δ→0

∫
(fY (x+ δ, zyx, uy)− fY (x, zyx, uy))P (uy|O)duy

δ

=

∫
lim
δ→0

fY (x+ δ, zyx, uy)− fY (x, zyx, uy)

δ
P (uy|O)duy

=

∫
∂Y

∂X

∣∣∣∣
X=x,Zyx=zyx,Uy=uy

P (uy|O)duy

= EUy |O

[
∂Y

∂X

∣∣∣∣
X=x,Zyx=zyx,Uy=uy

]

□

7.10.2. Proof of Theorem 1.

Proof. We first show Theorem 7.4.1 holds for the path with two edges. Consider a path

π′ = {XV1, V1V2}, we can show that the impact score of a path can be decomposed to the score of

the edge inside the page. The calculation of each edge’s score is independent. From the assumption

of f1, f2 and U1, U2,

(7.6)

w
X

π′−→V2|O
= lim

δ→0

E[V2X=x+δ|π,X=x|ΠX→V2
\π|O]− E[YX=x|O]

δ

= lim
δ→0

(E[fV2(fV1(x+ δ, zv1x, U1), zv2v1 , U2)|O

− fV2(fV1(x, zv1x, U1), zv2v1 , U2)|O])/δ

= lim
δ→0

EU1,U2|O[(fV2(fV1(x+ δ, zv1x, U1), zv2v1 , U2)

− fV2(fV1(x, zv1x, U1), zv2v1 , U2))/δ|O]

= EU1,U2|O

[
lim
δ→0

(fV2(fV1(x+ δ, zv1x, U1), zv2v1 , U2)

− fV2(fV1(x, zv1x, U1), zv2v1 , U2))/δ|O
]
.

172

Next we prove the chain rule g′(h(x)) = g′(h(x))h′(x) for continuously differentiable function g

and h. Define

g̃(y) =

g(y)− g(h(x))

y − h(x)
, y ̸= h(x),

g′(h(x)), y = h(x),

which is continuous around x due to the differentiability of g. It’s easy to verify that ∀δ ̸= 0,

g(h(x+ δ))− g(h(x))

δ
= g̃(h(x+ δ))

h(x+ δ)− h(x)

δ
.

Since g̃ is continuous and h is continuously differentiable, limδ→0 g̃(h(x+ δ)) and

limδ→0
h(x+δ)−h(x)

δ exist, which implies that limδ→0
g(h(x+δ))−g(h(x))

δ exists and

lim
δ→0

g(h(x+ δ))− g(h(x))

δ
= g′(h(x))h′(x).

Applying chain rule into (7.6),

w
X

π′−→V2|O
= EU1,U2|O

[
lim
δ→0

(fV2(fV1(x+ δ, zv1x, U1), zv2v1 , U2)

− fV2(fV1(x, zv1x, U1), zv2v1 , U2))/δ|O
]
. (Step 1)

= EU1,U2|O

[
∂V2

∂V1
|V1=v1,Zv2v1=zv2v1 ,U2=u2

× ∂V1

∂X
|X=x,Zv1x=zv1x,U1=u1

]
(Step 2)

= EU2|O

[
∂V2

∂V1
|V1=v1,Zv2v1=zv2v1 ,U2=u2

]
× EU1|O

[
∂V1

∂X
|X=x,Zv1x=zv1x,U1=u1

]
(Step 3)

= wlXV1
|OwlV2V1 |O (Step 4).

The transition from step 2 to step 3 is valid because the first term in step 2 is independent

of U1 and the second term in step 2 is independent of U2. Therefore, their expectations can be

decomposed and calculated independently, which is shown in step 3.

Then, given a path contains multiple edges π = {XV1, V1V2, · · ·Vm−2Vm−1, Vm−1Y }, because

the impact score for each edge is independent, we can show that the calculation of path-specific

173

counterfactual importance score can be written as the format similar to the chain rule in calculus.

The path-specific counterfactual importance score of the source vertex X on target vertex Y along

the path π can be represented as:

w
X

π−→Y |O = EU1|O

[
∂V1

∂X

∣∣∣∣
O

](m−2∏
i=1

EUi+1|O

[
∂Vi+1

∂Vi

∣∣∣∣
O

])

EUY |O

[
∂Y

∂VY

∣∣∣∣
O

]

= wlXV1
|O

(
m−2∏
i=1

wlViVi+1
|O

)
wlVm−1

Y |O

□

7.10.3. Proof of Theorem 2.

Proof. We denote the set of all paths from X to Y as ΠX→Y = {π = (XVπ,1, Vπ,1Vπ,2, . . . ,

Vπ,mπ−1Y) | X ∈ Pa(Vπ,1), Vπ,mπ−1 ∈ Pa(Y), Vπ,i ∈ Pa(Vπ,i+1), ∀i = 1, . . . ,mπ − 2}, where mπ is

the number of vertex in path π. We use m to denote the number of vertex in the largest path in

the DAG (which means that if we start from Y going backward along its parents, we will reach the

root at most m steps). Then from the definition of the total derivative, we have

wX→Y |O = lim
δ→0

E[YX=x+δ|O]− E[YX=x|O]

δ

=
∂Y

∂X

∣∣∣∣
X=x

=
∑

Vm−1∈Pa(Y)\{X}

∑
Vm−2∈Pa(Vm−1)\{X}

· · ·
∑

V1∈Pa(V2)\{X}

EU|O

[
∂Y

∂Vm−1

∣∣∣∣
O

(
m−2∏
i=1

∂Vi+1

∂Vi

∣∣∣∣
O

)
∂V1

∂X

∣∣∣∣
O

]

=
∑

π∈ΠX→Y

EUY |O

[
∂Y

∂Vπ,mπ−1

∣∣∣∣
O

]
(

mπ−2∏
i=1

EUi+1|O

[
∂Vπ,i+1

∂Vπ,i

∣∣∣∣
O

])
EU1|O

[
∂Vπ,1

∂X

∣∣∣∣
O

]
=

∑
π∈ΠX→Y

w
X

π−→Y |O

174

The step of combining a sequence of summation operations to one summation over π ∈ ΠX→Y

holds, because the change of X will not affect the value of Vm−1 if there is not exist a path

(XVm−1, Vm−2Vm−1, . . . , V1Y). □

175

8

Conclusion and Future Work

8.1. Conclusion

In this dissertation, we addressed significant challenges faced by reinforcement learning in

real-world settings, including data efficiency, exploration-exploitation trade-off, and explainabil-

ity, through a set of algorithms and solutions presented in three distinct parts.

First, we aimed to enhance data efficiency in multi-agent/task situations by developing online-

learning-based joint optimization and kernel-based multi-task contextual bandits algorithms. By

exploiting similarities among tasks or agents while optimizing their performance with limited data,

our proposed algorithms demonstrated their potential for improving data utilization in multi-

agent/task scenarios. As an application area, we considered cellular network configuration and

showed that the algorithms significantly contributed to the optimization of such networks, outper-

forming conventional methods in settings where obtaining extensive training data is challenging.

Second, we proposed opportunistic reinforcement learning algorithms - AdaLinUCB, OppU-

CRL2, and OppPSRL - designed to adaptively balance exploration and exploitation when operating

under varying exploration costs. These algorithms dynamically adjusted their optimism according

to an external variation factor, resulting in superior performance in opportunistic learning scenar-

ios when compared to existing contextual bandit and conventional RL algorithms. Our theoretical

regret-bound analyses provided guarantees of their performance, highlighting their applicability

and benefits in real-world environments where exploration costs fluctuate.

Finally, we tackled RL’s lack of explainability by introducing a causal explanation mechanism

that quantified the causal influence of states on actions and their temporal impact, providing

powerful insights into RL policies. Our approach, which involved formulating MDP as SCM, was

able to identify and quantify pivotal factors in RL policies that influence actions and their temporal

relevance. To further leverage causality for improved explainability, we proposed a novel definition

176

of the causal counterfactual path-specific importance score for general SCMs, which enabled a more

comprehensive and efficient understanding of the causal influence in decision chains.

Collectively, our research contributes to the advancement of RL by addressing and overcoming

critical challenges in real-world settings, paving the way for the development of safer, more explain-

able, and efficient RL applications in the future. Each proposed algorithm and solution demon-

strated effectiveness in various domains, particularly enhancing data efficiency in multi-agent/task

scenarios, adaptively balancing exploration-exploitation trade-offs, and providing causal explana-

tions for RL policies.

8.2. Future Work and Limitations

8.2.1. Multi-agent/Task Optimization with Application IN Cellular Network Con-

figuration. The introduced approach for multi-agent or task optimization within cellular network

configuration may conceivably be extrapolated to comparable network configuration challenges,

including the configuration of handoff thresholds, antenna adjustments, and the allocation of trans-

mission power. Moreover, conducting evaluative experiments within actual field conditions would

be a considerable contribution towards research development in this domain. The proposed algo-

rithm may prove beneficial in several application domains requiring the effective use of limited data

and the careful navigation of the exploration-exploitation trade-off.

8.2.2. Opportunistic Reinforcement Learning. The present exploration of opportunistic

learning may pave the way for subsequent research, particularly within the field of deep reinforce-

ment learning, where maintaining an optimal balance between exploration and exploitation remains

a persistent challenge. The theoretical regret bound is another salient element. In our existing work,

given a square wave variation factor, both the OppUCRL2 and UCRL2 methods achieve equiva-

lent bounds. Nevertheless, this is not universally applicable, with potential scenarios where the

algorithm may not perform as effectively as simulation results might imply. In light of potential

disparities between exploration strengths and the regret bound, it is recommended that subsequent

research delve into sophisticated methods and other reinforcement learning environments, such as

weakly communicating MDP and the efficiency of computational and statistical elements.
177

8.2.3. Causal Interpretability in Reinforcement Learning. The causal importance ex-

planation mechanism proposed herein is a post-hoc method that utilizes data harvested from a

previously learned policy. This renders it somewhat limited in addressing high-dimensional state

spaces, particularly in visual reinforcement learning, where state features are manifested as images.

To surmount this hurdle, the application of algorithms such as causal discovery in images and

representation learning might prove instrumental. Moreover, if the trained SCM is imperfect, there

may be potential issues. An imperfect SCM would yield skewed counterfactual reasoning results,

subsequently leading to biases in final importance. Upcoming research should investigate meth-

ods of quantifying the uncertainty of the explanation, thereby enabling users to discern potential

out-of-distribution samples where our explanation framework may falter.

In conclusion, the potential for enhancements and augmentations in subsequent research is

vast, covering areas such as experimental evaluations, algorithmic improvements, and rectifying

constraints in causal interpretability. The exploration of these research avenues promises to yield

fresh insights, thereby empowering reinforcement learning approaches to better navigate real-world

applications.

178

Bibliography

[1] Xueying Guo, George Trimponias, Xiaoxiao Wang, Zhitang Chen, Yanhui Geng, and Xin Liu. Cellular network

configuration via online learning and joint optimization. In 2017 IEEE International Conference on Big Data

(Big Data), pages 1295–1300. IEEE, 2017.

[2] Xueying Guo, George Trimponias, Xiaoxiao Wang, Zhitang Chen, Yanhui Geng, and Xin Liu. Learning-based

joint configuration for cellular networks. IEEE Internet of Things Journal, 5(6):4283–4295, 2018.

[3] Xiaoxiao Wang, Xueying Guo, Jie Chuai, Zhitang Chen, and Xin Liu. Kernel-based multi-task contextual

bandits in cellular network configuration. In 2019 IEEE International Conference on Big Data (Big Data),

pages 1517–1526. IEEE, 2019.

[4] Xueying Guo, Xiaoxiao Wang, and Xin Liu. Adalinucb: Opportunistic learning for contextual bandits. In

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, pages

2420–2427. International Joint Conferences on Artificial Intelligence Organization, 7 2019.

[5] Xiaoxiao Wang, Nader Bouacida, Xueying Guo, and Xin Liu. Opportunistic episodic reinforcement learning.

arXiv preprint arXiv:2210.13504, 2022.

[6] Xiaoxiao Wang, Fanyu Meng, Xin Liu, Zhaodan Kong, and Xin Chen. Causal explanation for reinforcement

learning: Quantifying state and temporal importance. Applied Intelligence, pages 1–19, 2023.

[7] Xiaoxiao Wang, Minda Zhao, Fanyu Meng, Xin Liu, Zhaodan Kong, and Xin Chen. Quantifying causal path-

specific importance in structural causal model. Computation, 11(7):133, 2023.

[8] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, Cambridge, 2018.

[9] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas

Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without human knowledge.

nature, 550(7676):354–359, 2017.

[10] Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey. The International

Journal of Robotics Research, 32(11):1238–1274, 2013.

[11] TP Imthias Ahamed, PS Nagendra Rao, and PS Sastry. A reinforcement learning approach to automatic

generation control. Electric power systems research, 63(1):9–26, 2002.

[12] Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. Challenges of real-world reinforcement learning.

arXiv preprint arXiv:1904.12901, 2019.

179

[13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and

Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[14] Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag, Timothy Lillicrap, Jonathan Hunt,

Timothy Mann, Theophane Weber, Thomas Degris, and Ben Coppin. Deep reinforcement learning in large

discrete action spaces. arXiv preprint arXiv:1512.07679, 2015.

[15] Jie Chuai, Zhitang Chen, Guochen Liu, Xueying Guo, Xiaoxiao Wang, Xin Liu, Chongming Zhu, and Feiyi Shen.

A collaborative learning based approach for parameter configuration of cellular networks. In IEEE INFOCOM

2019-IEEE Conference on Computer Communications, pages 1396–1404. IEEE, 2019.

[16] Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. J. Mach. Learn. Res., 3:397–422,

2002.

[17] Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandits with linear payoff functions. In

Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, volume 15 of

AISTATS, pages 208–214, 2011.

[18] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic bandits. In

Proceedings of the 24th International Conference on Neural Information Processing Systems, NIPS’11, pages

2312–2320, 2011.

[19] John Langford and Tong Zhang. The epoch-greedy algorithm for multi-armed bandits with side information. In

J. C. Platt, D. Koller, Y. Singer, and S. T. Roweis, editors, Advances in Neural Information Processing Systems

20, pages 817–824. Curran Associates, Inc., 2008.

[20] Apostolos N Burnetas and Michael N Katehakis. Optimal adaptive policies for markov decision processes.

Mathematics of Operations Research, 22(1):222–255, 1997.

[21] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning. MIT Press, Cambridge, MA,

USA, 1st edition, 1998.

[22] Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement learning. The

Journal of Machine Learning Research, 99:1563–1600, 2010.

[23] Osband Ian, Van Roy Benjamin, and Russo Daniel. (More) efficient reinforcement learning via posterior sam-

pling. In Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume

2, pages 3003–3011. Curran Associates Inc., 2013.

[24] Wei Ding and Di Yuan. A decomposition method for pilot power planning in umts systems. In Digital Informa-

tion and Communication Technology and it’s Applications (DICTAP), Second International Conference,, pages

42–47. IEEE, 2012.

[25] Kimmo Valkealahti, Albert Hõglund, Jyrki Parkkinen, and A Hamalainen. Wcdma common pilot power control

for load and coverage balancing. In Personal, Indoor and Mobile Radio Communications. The 13th IEEE

International Symposium,, volume 3, pages 1412–1416. IEEE, 2002.

180

[26] Adrian Agustin, Sandra Lagen, and Josep Vidal. Energy efficient cell load-aware coverage optimization for

small-cell networks. In Communications (ICC), IEEE International Conference,, pages 2036–2041. IEEE, 2015.

[27] Imran Ashraf, Holger Claussen, and Lester TW Ho. Distributed radio coverage optimization in enterprise

femtocell networks. In IEEE International Conference Communications(ICC), pages 1–6, 2010.

[28] Rouzbeh Razavi and Holger Claussen. Self-configuring switched multi-element antenna system for interference

mitigation in femtocell networks. In Personal Indoor and Mobile Radio Communications (PIMRC), IEEE 22nd

International Symposium on, pages 237–242. IEEE, 2011.

[29] Cong Shen, Ruida Zhou, Cem Tekin, and Mihaela van der Schaar. Generalized global bandit and its application

in cellular coverage optimization. IEEE Journal of Selected Topics in Signal Processing, 12(1):218–232, 2018.

[30] X. Chen, J. Wu, Y. Cai, H. Zhang, and T. Chen. Energy-Efficiency Oriented Traffic Offloading in Wireless

Networks: A Brief Survey and a Learning Approach for Heterogeneous Cellular Networks. IEEE Journal on

Selected Areas in Communications, 33(4):627–640, April 2015.

[31] Liang Xiao, Yan Li, Jinliang Liu, and Yifeng Zhao. Power control with reinforcement learning in cooperative

cognitive radio networks against jamming. The Journal of Supercomputing, 71(9):3237–3257, Sep 2015.

[32] L. Xiao, Y. Li, C. Dai, H. Dai, and H. V. Poor. Reinforcement Learning-Based NOMA Power Allocation in the

Presence of Smart Jamming. IEEE Transactions on Vehicular Technology, 67(4):3377–3389, April 2018.

[33] Ching-Yu Liao, Fei Yu, Victor CM Leung, and Chung-Ju Chang. A novel dynamic cell configuration scheme in

next-generation situation-aware cdma networks. IEEE Journal on Selected Areas in Communications,, 24(1):16–

25, 2006.

[34] Carlos Guestrin, Michail G. Lagoudakis, and Ronald Parr. Coordinated reinforcement learning. In Proceedings

of the Nineteenth International Conference on Machine Learning, ICML ’02, pages 227–234, 2002.

[35] Jelle R. Kok and Nikos Vlassis. Collaborative multiagent reinforcement learning by payoff propagation. J. Mach.

Learn. Res., 7:1789–1828, December 2006.

[36] Sébastien Bubeck and Nicolo Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-armed bandit

problems. Machine Learning, 5(1):1–122, 2012.

[37] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit problem.

Machine Learning, 47(2-3):235–256, 2002.

[38] Olivier Chapelle and Lihong Li. An empirical evaluation of Thompson Sampling. In Advances in Neural Infor-

mation Processing Systems, pages 2249–2257, 2011.

[39] Lihong Li, Wei Chu, John Langford, and R. E. Schapire. A contextual-bandit approach to personalized news

article recommendation. In ACM International Conference on World Wide Web, pages 661–670, 2010.

[40] Wenzhuo Ouyang, A Eryilmaz, and N. B. Shroff. Asymptotically optimal downlink scheduling over Markovian

fading channels. In Proceedings of IEEE INFOCOM, pages 1224–1232, March 2012.

181

[41] Xueying Guo, Rahul Singh, P. R. Kumar, and Zhisheng Niu. Optimal energy-efficient regular delivery of packets

in cyber-physical systems. In IEEE ICC, 2015.

[42] Rahul Singh, Xueying Guo, and P. R. Kumar. Index policies for optimal mean-variance trade-off of inter-delivery

times in real-time sensor networks. In Proceedings of IEEE INFOCOM, 2015.

[43] Yuxuan Sun, Xueying Guo, Sheng Zhou, Zhiyuan Jiang, Xin Liu, and Zhisheng Niu. Learning-based task

offloading for vehicular cloud computing systems. In IEEE ICC, 2018.

[44] Yuxuan Sun, Jinhui Song, Sheng Zhou, Xueying Guo, and Zhisheng Niu. Task replication for vehicular edge

computing: a combinatorial multi-armed bandit based approach. In IEEE GLOBECOM, 2018.

[45] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit problem.

Machine learning, 47(2-3):235–256, 2002.

[46] Olivier Chapelle and Lihong Li. An empirical evaluation of thompson sampling. In J. Shawe-Taylor, R. S. Zemel,

P. L. Bartlett, F. Pereira, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems

24, pages 2249–2257. Curran Associates, Inc., 2011.

[47] Rajeev Agrawal. Sample mean based index policies with o(log n) regret for the multi-armed bandit problem.

Advances in Applied Probability, 27(4):1054–1078, 1995.

[48] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. A contextual-bandit approach to personalized

news article recommendation. In the 19th International Conference on World Wide Web (WWW), 2010.

[49] Michal Valko, Nathaniel Korda, Rémi Munos, Ilias Flaounas, and Nelo Cristianini. Finite-time analysis of

kernelised contextual bandits. arXiv preprint arXiv:1309.6869, 2013.

[50] Qingyun Wu, Huazheng Wang, Quanquan Gu, and Hongning Wang. Contextual bandits in a collaborative

environment. In Proceedings of the 39th International ACM SIGIR Conference on Research and Development

in Information Retrieval, SIGIR ’16, pages 529–538. ACM, 2016.

[51] Huazheng Wang, Qingyun Wu, and Hongning Wang. Learning hidden features for contextual bandits. In Pro-

ceedings of the 25th ACM International on Conference on Information and Knowledge Management, CIKM ’16,

pages 1633–1642. ACM, 2016.

[52] Huazheng Wang, Qingyun Wu, and Hongning Wang. Factorization bandits for interactive recommendation. In

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI’17, 2017.

[53] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to personalized

news article recommendation. In Proceedings of the 19th international conference on World wide web, pages

661–670. ACM, 2010.

[54] Sofía S Villar, Jack Bowden, and James Wason. Multi-armed bandit models for the optimal design of clinical

trials: benefits and challenges. Statistical science: a review journal of the Institute of Mathematical Statistics,

30(2):199, 2015.

182

[55] Sinno Jialin Pan, Qiang Yang, et al. A survey on transfer learning. IEEE Transactions on Knowledge and Data

Engineering, 22(10):1345–1359, 2010.

[56] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of transfer learning. Journal of Big Data,

3(1):9, 2016.

[57] Theodoros Evgeniou and Massimiliano Pontil. Regularized multi–task learning. In Proceedings of the tenth ACM

SIGKDD international conference on Knowledge discovery and data mining, pages 109–117. ACM, 2004.

[58] Chang Wang and Sridhar Mahadevan. Heterogeneous domain adaptation using manifold alignment. In Inter-

national Joint Conference on Artificial Intelligence, volume 22, page 1541, 2011.

[59] Lixin Duan, Dong Xu, and Ivor Tsang. Learning with augmented features for heterogeneous domain adaptation.

arXiv preprint arXiv:1206.4660, 2012.

[60] Rita Chattopadhyay, Qian Sun, Wei Fan, Ian Davidson, Sethuraman Panchanathan, and Jieping Ye. Multisource

domain adaptation and its application to early detection of fatigue. ACM Transactions on Knowledge Discovery

from Data, 6(4):18, 2012.

[61] Sinno Jialin Pan, James T Kwok, and Qiang Yang. Transfer learning via dimensionality reduction. In AAAI,

volume 8, pages 677–682, 2008.

[62] Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and Qiang Yang. Domain adaptation via transfer component

analysis. IEEE Transactions on Neural Networks, 22(2):199–210, 2011.

[63] Edwin V Bonilla, Kian M Chai, and Christopher Williams. Multi-task gaussian process prediction. In Advances

in neural information processing systems, pages 153–160, 2008.

[64] Edwin V Bonilla, Felix V Agakov, and Christopher KI Williams. Kernel multi-task learning using task-specific

features. In Artificial Intelligence and Statistics, pages 43–50, 2007.

[65] Aniket Anand Deshmukh, Urun Dogan, and Clay Scott. Multi-task learning for contextual bandits. In Advances

in Neural Information Processing Systems, pages 4851–4859, 2017.

[66] Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for reinforcement learning.

In Proceedings of the 34th International Conference on Machine Learning, volume 70, pages 263–272. PMLR,

2017.

[67] Peter L Bartlett and Ambuj Tewari. REGAL: A regularization based algorithm for reinforcement learning

in weakly communicating MDPs. In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial

Intelligence, pages 35–42. AUAI Press, 2009.

[68] Christoph Dann and Emma Brunskill. Sample complexity of episodic fixed-horizon reinforcement learning. In

Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2, pages

2818–2826. MIT Press, 2015.

[69] Alexander L. Strehl, Lihong Li, and Michael L. Littman. Reinforcement learning in finite MDPs: PAC analysis.

The Journal of Machine Learning Research, 10:2413–2444, 2009.

183

[70] Olivier Chapelle and Lihong Li. An empirical evaluation of thompson sampling. In Proceedings of the 24th

International Conference on Neural Information Processing Systems, pages 2249–2257. Curran Associates Inc.,

2011.

[71] Malcolm Strens. A Bayesian framework for reinforcement learning. In Proceedings of the 17th International

Conference on Machine Learning, pages 943–950, 2000.

[72] Ian Osband and Benjamin Van Roy. Why is posterior sampling better than optimism for reinforcement learning?

In Proceedings of the 34th International Conference on Machine Learning, volume 70, pages 2701–2710. PMLR,

2017.

[73] Huasen Wu, Xueying Guo, and Xin Liu. Adaptive exploration-exploitation tradeoff for opportunistic bandits.

In ICML, 2018.

[74] Djallel Bouneffouf, Amel Bouzeghoub, and Alda Lopes Gançarski. A contextual-bandit algorithm for mobile

context-aware recommender system. In International conference on Neural Information Processing (ICONIP),

pages 324–331, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[75] Erika Puiutta and Eric Veith. Explainable reinforcement learning: A survey. In International cross-domain

conference for machine learning and knowledge extraction, pages 77–95. Springer, 2020.

[76] Alexandre Heuillet, Fabien Couthouis, and Natalia Díaz-Rodríguez. Explainability in deep reinforcement learn-

ing. Knowledge-Based Systems, 214:106685, 2021.

[77] Lindsay Wells and Tomasz Bednarz. Explainable ai and reinforcement learning—a systematic review of current

approaches and trends. Frontiers in artificial intelligence, 4:550030, 2021.

[78] Samuel Greydanus, Anurag Koul, Jonathan Dodge, and Alan Fern. Visualizing and understanding atari agents.

In International Conference on Machine Learning, pages 1792–1801. PMLR, 2018.

[79] Nikaash Puri, Sukriti Verma, Piyush Gupta, Dhruv Kayastha, Shripad Deshmukh, Balaji Krishnamurthy, and

Sameer Singh. Explain your move: Understanding agent actions using specific and relevant feature attribution.

arXiv preprint arXiv:1912.12191, 2019.

[80] Zoe Juozapaitis, Anurag Koul, Alan Fern, Martin Erwig, and Finale Doshi-Velez. Explainable reinforcement

learning via reward decomposition. In IJCAI/ECAI Workshop on Explainable Artificial Intelligence, 2019.

[81] Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat Chaudhuri. Programmat-

ically interpretable reinforcement learning. In International Conference on Machine Learning, pages 5045–5054.

PMLR, 2018.

[82] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks: Visualising

image classification models and saliency maps. arXiv preprint arXiv:1312.6034, 2013.

[83] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In International

Conference on Machine Learning, pages 3319–3328. PMLR, 2017.

184

[84] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should i trust you?” explaining the predictions

of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery

and data mining, pages 1135–1144, 2016.

[85] Scott Lundberg and Su-In Lee. A unified approach to interpreting model predictions. arXiv preprint

arXiv:1705.07874, 2017.

[86] Patrick Schwab and Walter Karlen. Cxplain: Causal explanations for model interpretation under uncertainty.

arXiv preprint arXiv:1910.12336, 2019.

[87] Aditya Chattopadhyay, Piyushi Manupriya, Anirban Sarkar, and Vineeth N Balasubramanian. Neural network

attributions: A causal perspective. In International Conference on Machine Learning, pages 981–990. PMLR,

2019.

[88] Anupam Datta, Shayak Sen, and Yair Zick. Algorithmic transparency via quantitative input influence: Theory

and experiments with learning systems. In 2016 IEEE symposium on security and privacy (SP), pages 598–617.

IEEE, 2016.

[89] Prashan Madumal, Tim Miller, Liz Sonenberg, and Frank Vetere. Explainable reinforcement learning through

a causal lens. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 2493–2500,

2020.

[90] Matthew L Olson, Roli Khanna, Lawrence Neal, Fuxin Li, and Weng-Keen Wong. Counterfactual state ex-

planations for reinforcement learning agents via generative deep learning. Artificial Intelligence, 295:103455,

2021.

[91] Daniel Malinsky, Ilya Shpitser, and Thomas Richardson. A potential outcomes calculus for identifying condi-

tional path-specific effects. In The 22nd International Conference on Artificial Intelligence and Statistics, pages

3080–3088. PMLR, 2019.

[92] Junzhe Zhang and Elias Bareinboim. Non-parametric path analysis in structural causal models. In Proceedings

of the 34th Conference on Uncertainty in Artificial Intelligence, 2018.

[93] Heyang Gong and Ke Zhu. Path-specific effects based on information accounts of causality. arXiv preprint

arXiv:2106.03178, 2021.

[94] Dominik Rothenhäusler and Bin Yu. Incremental causal effects. arXiv preprint arXiv:1907.13258, 2019.

[95] Xiang Zhou and Yu Xie. Marginal treatment effects from a propensity score perspective. Journal of Political

Economy, 127(6):3070–3084, 2019.

[96] Xiang Zhou and Aleksei Opacic. Marginal interventional effects. arXiv preprint arXiv:2206.10717, 2022.

[97] Dominik Janzing, Patrick Blöbaum, Lenon Minorics, and Philipp Faller. Quantifying causal contributions via

structure preserving interventions. arXiv preprint arXiv:2007.00714, 2020.

[98] Dominik Janzing, David Balduzzi, Moritz Grosse-Wentrup, and Bernhard Schölkopf. Quantifying causal influ-

ences. 2013.

185

[99] Jiaxuan Wang, Jenna Wiens, and Scott Lundberg. Shapley flow: A graph-based approach to interpreting model

predictions. In International Conference on Artificial Intelligence and Statistics, pages 721–729. PMLR, 2021.

[100] Iana Siomina and Di Yuan. Soft handover overhead control in pilot power management in wcdma networks. In

Vehicular Technology Conference. VTC 2005-Spring, volume 3, pages 1875–1879. IEEE, 2005.

[101] X. Cheng, L. Fang, X. Hong, and L. Yang. Exploiting Mobile Big Data: Sources, Features, and Applications.

IEEE Network, 31(1):72–79, January 2017.

[102] X. Cheng, L. Fang, L. Yang, and S. Cui. Mobile Big Data: The Fuel for Data-Driven Wireless. IEEE Internet

of Things Journal, 4(5):1489–1516, Oct 2017.

[103] Suzhi Bi, Rui Zhang, Zhi Ding, and Shuguang Cui. Big data aware wireless communication: challenges and

opportunities, pages 180–216. Cambridge University Press, 2016.

[104] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning. Springer New

York Inc., New York, NY, USA, 2017 printed.

[105] Pierre Brémaud. Markov chains: Gibbs fields, Monte Carlo simulation, and queues, volume 31. Springer Science

& Business Media, 2013.

[106] S. C. Borst, M. G. Markakis, and I. Saniee. Nonconcave utility maximization in locally coupled systems, with

applications to wireless and wireline networks. IEEE/ACM Transactions on Networking, 22(2):674–687, April

2014.

[107] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980, 2014.

[108] F. P. Kelly. Reversibility and Stochastic Networks. Cambridge University Press, New York, NY, USA, 2011.

[109] Cisco Visual Networking Index. Cisco visual networking index: global mobile data traffic forecast update,

2014–2019. Tech. Rep, 2015.

[110] X. Guo, Z. Niu, S. Zhou, and P. R. Kumar. Delay-constrained energy-optimal base station sleeping control.

IEEE Journal on Selected Areas in Communications, 34(5):1073–1085, May 2016.

[111] Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine Learning Re-

search, 3(Nov):397–422, 2002.

[112] Sébastien Bubeck, Nicolo Cesa-Bianchi, et al. Regret analysis of stochastic and nonstochastic multi-armed

bandit problems. Foundations and Trends® in Machine Learning, 5(1):1–122, 2012.

[113] Trevor Hastie, Robert Tibshirani, Jerome Friedman, and James Franklin. The elements of statistical learning:

data mining, inference and prediction. The Mathematical Intelligencer, 27(2):83–85, 2005.

[114] Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.

[115] Fuzhen Zhang. The Schur complement and its applications, volume 4. Springer Science & Business Media, 2006.

[116] Carl Edward Rasmussen. Gaussian processes for machine learning. MIT Press, 2006.

[117] Alex Smola, Arthur Gretton, Le Song, and Bernhard Schölkopf. A Hilbert space embedding for distributions.

In ALT, 2007.

186

[118] Andreas Krause and Cheng S Ong. Contextual gaussian process bandit optimization. In Advances in Neural

Information Processing Systems, pages 2447–2455, 2011.

[119] Joris Walraevens, Bart Steyaert, and Herwig Bruneel. Performance analysis of a single-server atm queue with

a priority scheduling. Computers & Operations Research, 30(12):1807 – 1829, 2003.

[120] Lihong Li, Wei Chu, John Langford, and Xuanhui Wang. Unbiased offline evaluation of contextual-bandit-based

news article recommendation algorithms. In Proceedings of the Fourth ACM International Conference on Web

Search and Data Mining, WSDM ’11, pages 297–306. ACM, 2011.

[121] Sarah Filippi, Olivier Cappe, Aurélien Garivier, and Csaba Szepesvári. Parametric bandits: The generalized

linear case. In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, editors, Advances

in Neural Information Processing Systems 23, pages 586–594. Curran Associates, Inc., 2010.

[122] Rossman. Rossmann Store sales data, 2015. https://www.kaggle.com/c/rossmann-store-sales/data.

[123] Carl Edward Rasmussen. Gaussian processes in machine learning. In Advanced Lectures on Machine Learning,

pages 63–71. Springer, 2004.

[124] Wei Chu, Seung-Taek Park, Todd Beaupre, Nitin Motgi, Amit Phadke, Seinjuti Chakraborty, and Joe Zachariah.

A case study of behavior-driven conjoint analysis on yahoo!: Front page today module. In Proceedings of the

15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’09, pages

1097–1104, 2009.

[125] Christoph Dann, Lihong Li, Wei Wei, and Emma Brunskill. Policy certificates: Towards accountable reinforce-

ment learning. In International Conference on Machine Learning, pages 1507–1516, 2019.

[126] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley &

Sons, Inc., New York, NY, USA, 1st edition, 1994.

[127] Mohammad Ghavamzadeh, Alessandro Lazaric, and Matteo Pirotta. Exploration in reinforcement learning,

2020.

[128] Alexander L Strehl and Michael L Littman. An analysis of model-based interval estimation for markov decision

processes. Journal of Computer and System Sciences, 74(8):1309–1331, 2008.

[129] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks: Visualising

image classification models and saliency maps. 2014.

[130] Rahul Iyer, Yuezhang Li, Huao Li, Michael Lewis, Ramitha Sundar, and Katia Sycara. Transparency and

explanation in deep reinforcement learning neural networks. In Proceedings of the 2018 AAAI/ACM Conference

on AI, Ethics, and Society, pages 144–150, 2018.

[131] Alex Mott, Daniel Zoran, Mike Chrzanowski, Daan Wierstra, and Danilo J Rezende. Towards interpretable

reinforcement learning using attention augmented agents. arXiv preprint arXiv:1906.02500, 2019.

[132] J. Pearl. Causality. Causality: Models, Reasoning, and Inference. Cambridge University Press, Cambridge,

2009.

187

https://www.kaggle.com/c/rossmann-store-sales/data

[133] Ruth MJ Byrne. Counterfactuals in explainable artificial intelligence (xai): Evidence from human reasoning. In

IJCAI, pages 6276–6282, 2019.

[134] Tim Miller. Explanation in artificial intelligence: Insights from the social sciences. Artificial intelligence, 267:1–

38, 2019.

[135] Denis Hilton. Causal explanation: From social perception to knowledge-based causal attribution. 2007.

[136] Peter Spirtes, Clark N Glymour, and Richard Scheines. Causation, prediction, and search. MIT Press, 2000.

[137] Shohei Shimizu, Patrik O Hoyer, Aapo Hyvärinen, and Antti Kerminen. A linear non-Gaussian acyclic model

for causal discovery. Journal of Machine Learning Research, 7(Oct):2003–2030, 2006.

[138] Patrik Hoyer, Dominik Janzing, Joris M Mooij, Jonas Peters, and Bernhard Schölkopf. Nonlinear causal dis-

covery with additive noise models. Advances in neural information processing systems, 21:689–696, 2008.

[139] Jonas Peters, Joris M Mooij, Dominik Janzing, and Bernhard Schölkopf. Causal discovery with continuous

additive noise models. 2014.

[140] JR Williams, CA Jones, JR Kiniry, and Deborah A Spanel. The epic crop growth model. Transactions of the

ASAE, 32(2):497–0511, 1989.

[141] Arthur Earl Bryson. Applied optimal control: optimization, estimation and control. CRC Press, Boca Raton,

1975.

[142] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech

Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[143] Madelyn Glymour, Judea Pearl, and Nicholas P Jewell. Causal inference in statistics: A primer. John Wiley

& Sons, Hoboken, 2016.

[144] Ayush Jaiswal, Wael AbdAlmageed, Yue Wu, and Premkumar Natarajan. Bidirectional conditional generative

adversarial networks. In Asian Conference on Computer Vision, pages 216–232. Springer, 2018.

[145] Diviyan Kalainathan and Olivier Goudet. Causal discovery toolbox: Uncover causal relationships in python.

arXiv preprint arXiv:1903.02278, 2019.

[146] Keli Zhang, Shengyu Zhu, Marcus Kalander, Ignavier Ng, Junjian Ye, Zhitang Chen, and Lujia Pan. gcastle:

A python toolbox for causal discovery. arXiv preprint arXiv:2111.15155, 2021.

[147] David Lopez-Paz, Robert Nishihara, Soumith Chintala, Bernhard Scholkopf, and Léon Bottou. Discovering

causal signals in images. In Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 6979–6987, 2017.

[148] Mengyue Yang, Furui Liu, Zhitang Chen, Xinwei Shen, Jianye Hao, and Jun Wang. Causalvae: Disentangled

representation learning via neural structural causal models. In Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, pages 9593–9602, 2021.

188

[149] Jakob Gawlikowski, Cedrique Rovile Njieutcheu Tassi, Mohsin Ali, Jongseok Lee, Matthias Humt, Jianxiang

Feng, Anna Kruspe, Rudolph Triebel, Peter Jung, Ribana Roscher, et al. A survey of uncertainty in deep neural

networks. arXiv preprint arXiv:2107.03342, 2021.

[150] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-learning. In

Proceedings of the AAAI Conference on Artificial Intelligence, volume 30, 2016.

[151] Reuben M Baron and David A Kenny. The moderator–mediator variable distinction in social psychological

research: Conceptual, strategic, and statistical considerations. Journal of personality and social psychology,

51(6):1173, 1986.

[152] Karen Sachs, Omar Perez, Dana Pe’er, Douglas A Lauffenburger, and Garry P Nolan. Causal protein-signaling

networks derived from multiparameter single-cell data. Science, 308(5721):523–529, 2005.

[153] James H Stock and Mark W Watson. Identification and estimation of dynamic causal effects in macroeconomics

using external instruments. The Economic Journal, 128(610):917–948, 2018.

[154] Silvia Chiappa. Path-specific counterfactual fairness. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 33, pages 7801–7808, 2019.

[155] Yongkai Wu, Lu Zhang, Xintao Wu, and Hanghang Tong. Pc-fairness: A unified framework for measuring

causality-based fairness. Advances in Neural Information Processing Systems, 32, 2019.

[156] Yoichi Chikahara, Shinsaku Sakaue, Akinori Fujino, and Hisashi Kashima. Learning individually fair classifier

with path-specific causal-effect constraint. In International Conference on Artificial Intelligence and Statistics,

pages 145–153. PMLR, 2021.

[157] Hongkai Li, Zhi Geng, Xiaoru Sun, Yuanyuan Yu, and Fuzhong Xue. A novel path-specific effect statistic for

identifying the differential specific paths in systems epidemiology. BMC genetics, 21(1):1–12, 2020.

[158] Chen Avin, Ilya Shpitser, and Judea Pearl. Identifiability of path-specific effects. 2005.

[159] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to algorithms. MIT

press, 2022.

[160] Dieter Jungnickel and D Jungnickel. Graphs, networks and algorithms, volume 3. Springer, 2005.

[161] Steve HC Yen, David Hung-Chang Du, and Subbarao Ghanta. Efficient algorithms for extracting the k most

critical paths in timing analysis. In 26th ACM/IEEE Design Automation Conference, pages 649–654. IEEE,

1989.

[162] Emelia J Benjamin, Daniel Levy, Sonya M Vaziri, Ralph B D’Agostino, Albert J Belanger, and Philip A Wolf.

Independent risk factors for atrial fibrillation in a population-based cohort: the framingham heart study. Jama,

271(11):840–844, 1994.

[163] Sheng-Hsuan Lin and Tyler VanderWeele. Interventional approach for path-specific effects. Journal of Causal

Inference, 5(1), 2017.

[164] R.G. Bartle. The Elements of Integration and Lebesgue Measure. Wiley Classics Library. Wiley, 1995.

189

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Chapter 1. Introduction
	1.1. Contributions
	1.2. Related Work

	Chapter 2. Multi-Agent Learning-Based Joint Optimization: A Cellular Network Configuration Application
	2.1. Introduction
	2.2. Related Work
	2.3. System Model and Problem Formulation
	2.4. Learning Utility Function
	2.5. Online-Learning-Based Joint Optimization
	2.6. Numerical Results
	2.7. Conclusion
	2.8. Appendix

	Chapter 3. Kernel-Based Multi-Task Contextual Bandits
	3.1. Introduction
	3.2. Related Work
	3.3. System Model and Problem Formulation
	3.4. Methodology
	3.5. Theoretical Analysis
	3.6. Evaluation
	3.7. Conclusion

	Chapter 4. Opportunistic Learning for Contextual Bandits
	4.1. Introduction
	4.2. Related Work
	4.3. System Model
	4.4. Adaptive LinUCB
	4.5. Performance Analysis
	4.6. Numerical Results
	4.7. Conclusions
	4.8. Appendix

	Chapter 5. Opportunistic Learning for Episodic Reinforcement Learning
	5.1. Introduction
	5.2. Related Work
	5.3. Problem Formulation
	5.4. Opportunistic Reinforcement Learning Algorithm
	5.5. Regret Analysis for OppUCRL2
	5.6. Experimental Evaluation
	5.7. Discussion
	5.8. Conclusion

	Chapter 6. Causal Explanation for Reinforcement Learning: State and Temporal Importance
	6.1. Introduction
	6.2. Related Work
	6.3. Preliminaries
	6.4. Problem Formulation
	6.5. Explanation
	6.6. Evaluation
	6.7. Discussions
	6.8. Conclusion
	6.9. Appendix

	 7. Causal Path-Specific Importance in SCM
	7.1. Introduction
	7.2. Preliminaries
	7.3. Causal Effect along Different Pathways
	7.4. Properties of Path-Specific Counterfactual Importance Score
	7.5. Efficient Algorithm for the Most Important Path
	7.6. Evaluation
	7.7. Related Works
	7.8. Discussions
	7.9. Conclusion
	7.10. Appendix

	 8. Conclusion and Future Work
	8.1. Conclusion
	8.2. Future Work and Limitations

	Bibliography

