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Detecting model misconducts in decentralized healthcare 
federated learning

Tsung-Ting Kuo*,1,
Anh Pham

UCSD Health Department of Biomedical Informatics, University of California San Diego, La Jolla, 
CA, USA

Abstract

Background: To accelerate healthcare/genomic medicine research and facilitate quality 

improvement, researchers have started cross-institutional collaborations to use artificial 

intelligence on clinical/genomic data. However, there are real-world risks of incorrect models 

being submitted to the learning process, due to either unforeseen accidents or malicious intent. 

This may reduce the incentives for institutions to participate in the federated modeling consortium. 

Existing methods to deal with this “model misconduct” issue mainly focus on modifying the 

learning methods, and therefore are more specifically tied with the algorithm.

Basic Procedures: In this paper, we aim at solving the problem in an algorithm-agnostic 

way by (1) designing a simulator to generate various types of model misconduct, (2) developing 

a framework to detect the model misconducts, and (3) providing a generalizable approach to 

identify model misconducts for federated learning. We considered the following three categories: 

Plagiarism, Fabrication, and Falsification, and then developed a detection framework with three 

components: Auditing, Coefficient, and Performance detectors, with greedy parameter tuning.

Main Findings: We generated 10 types of misconducts from models learned on three datasets to 

evaluate our detection method. Our experiments showed high recall with low added computational 

cost. Our proposed detection method can best identify the misconduct on specific sites from any 

learning iteration, whereas it is more challenging to precisely detect misconducts for a specific site 

and at a specific iteration.

Principal Conclusions: We anticipate our study can support the enhancement of the integrity 

and reliability of federated machine learning on genomic/healthcare data.
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1. Background and significance

1.1. Introduction

To accelerate genomic medicine research and facilitate quality improvement, researchers 

have started cross-institutional collaborations for better uses of Machine Learning (ML) 

on genomic and healthcare data [1–2], especially for diseases/conditions with relatively 

rare samples. While health systems and hospitals may exchange patient-level records 

to increase sample size in a collaborative learning process, potential concerns such as 

the risk of re-identification can still be a burden for direct data sharing [3]. To protect 

privacy of patients, federated learning methods (or “data-private” collaborative learning 

[4]), were developed to only exchange aggregated ML models among institutions without 

disseminating patient-level data [5–6]. However, the central server which orchestrates the 

federated learning process may still pose a security risk of single-point-of-failure. To 

mitigate this problem, several decentralized methods have been proposed [7–13] based 

on blockchain technology [14–17]. Decentralized approaches adopt semi-honesty as the 

underlying adversary assumption. That is, each site would only submit correct models, 

and will not accidentally or intentionally make mistakes to submit incorrect models. 

Nevertheless, this assumption may be too optimistic in the real world. For example, a site 

may accidentally submit old models due to network latency, or worse, may be intruded 

or controlled by malicious users who submit fake models on purpose [18–19]. Such 

incidents whether “negligent” or “hacked” can lead to bioethical concerns, and thus reduce 

the incentives for institutions to participate in the federated modeling consortium. This 

exhibited precaution affirms the need for a proactive approach when it comes to data privacy 

protection, which asks for ML researchers to detect and patch vulnerabilities before such 

possible weaknesses are exploited [20].

1.2. Data misconduct

Given the current climate of cyber doubts and suspicions [21], it is prudent to propose 

defenses against possible dissemination of unauthentic information, whether at the level of 

data (“data misconduct”) or model (“model misconduct”). Data misconduct (i.e., input data 

tampering) [20,22–27] refers to the manipulation of training and/or testing data features, 

or training data labels [28–29] to alter classification efficacy, assuming the process of 

model construction itself is honest. Researchers have investigated data misconduct such as 

adversarial machine learning [22–23], where the attackers try to impact the model through 

“poisoning attacks” during the re-training process by providing malicious training data [26–

27], or through “evasion attacks” on testing data that lead to misclassification [20]. In the 

particular field of federated ML, a related research topic is about the “backdoor attack” of 

transfer learning [24–25]. Suppose there are two sites S1 and S2, and the transfer learning 

algorithm learns a model using data from S1 and then transfers the model to S2 (i.e., the 
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model of S1 is open/accessible while the model of S2 is not). An attacker can try to create 

malicious test data as the input of the model of S2 based on the understanding of the 

model of S1, aiming at obtaining misclassification results. Since the misconduct happens 

by manipulating the testing data, this attack also belongs to data misconduct. In short, with 

data misconduct the adversary can impact the model through indirect means of data injection 

(i.e., an attacker cannot update model parameters directly).

1.3. Model misconduct

On the other hand, model misconduct focuses on unauthentic rendering of model parameters 

from honest data, when the process of model construction is not guaranteed to be honest. 

That is, each participating learner has the direct capability to provide wrong models during 

the learning process. Based on the sheer size difference between data and models, the effort 

needed to influence model parameters directly is also substantially less than what would 

be required to infect input data. Therefore, model misconduct is an important issue that 

needs to be considered in the federated learning process. For centralized federated learning 

(i.e., data are stored locally but the exchanged models are handled by a central server), 

recent studies examined the “targeted” attacks (i.e., misclassification of one particular label) 

with the threat assumption of having one single malicious agent at a given time [30–31]. 

In case the attacker controls several data-contributing agents, the objective of the attack 

itself remains to be targeted, whether in single-shot or repeated attacks [32–33]. Existing 

literature also investigated “untargeted” attacks (i.e., not specifically aiming at influencing 

certain label) [34–35] such as impacting the global consensus modeling process to stop 

convergence, to increase error rate, and/or to degrade model performance, including a 

threat model with multiple bad-faith agents [36]. Within fully-decentralized approaches 

(i.e., without a trusted server), prior related studies centered on singular machine learning 

algorithms (e.g., Stochastic Gradient Descent [7–8]) and therefore are more specifically tied 

with the algorithm. When algorithms are allowed to vary, past approaches turn to either the 

underlying blockchain framework [37–38], the consensus protocol [39], relying on simple 

statistics [40] and/or node-specific performance [41–42] to detect anomalies, or providing 

incentives to increase trust [43].

2. Objective

To investigate the issue of model misconduct in decentralized modeling, we aim at (1) 

designing a simulator to generate various types of model misconduct, (2) developing a 

framework to detect the model misconducts without modifying the blockchain setting 

or the consensus protocol, and (3) providing a generalizable approach to identify model 

misconducts concerns for decentralized federated learning in an algorithm-agnostic way. 

Our novel framework aims to inherit the advantage of protecting patient privacy from 

known privacy-preserving federated learning designs [5–6], as well as the ability to resist 

single-point-of-failure thanks to the decentralized approach on a blockchain platform [14–

17,44–46].
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3. Materials and methods

3.1. Misconduct threat models and adversarial goals

We considered the following three categories inspired by “academic misconducts” of 

plagiarism, fabrication, and falsification, of which a site may try to hide their information, 

inspect information from other sites, or disturb the learning process. These misconduct 

categories are common yet only partially investigated in existing studies [7,8,41,42,47], 

while we summarized and explored all of them in our study: (a) Model plagiarism: a site 

becomes a free-rider and just submits a copy of a model in a previous learning iteration, 

trying to hide their own information while inspecting models from other sites. (b) Model 
fabrication: a site submits a mock-up model (e.g., assigning random values or just sending 

empty models with all zeroes), trying to hide information and disturb the ML process, 

making the model converge incorrectly or even never converge. (c) Model falsification: a site 

submits a model tweaked from their actual result, trying to influence the learning process. 

Under these three categories, we summarized 10 types of threat models and their adversarial 

goals (Table 1).

3.2. Data

We chose three datasets for their varied sample sizes and ratios of positive/control, and a 

relatively reasonable number of covariates. In the context of decision support in healthcare, 

a modest-sized model might be beneficial for human interpretation by physicians and 

researchers. The three datasets are as follows (all predicting binary outcomes): (1) Edinburg 

Myocardial Infarction (“Edin”) [48], a publicly-available dataset with 9 covariates and 1,253 

samples, to predict the presence of disease (21.9% positive); (2) Cancer Biomarker (“CA”) 

[49], a public dataset with 2 covariates and 141 patients, to predict the presence of cancer 

(63.8% positive); (3) Clostridium Difficile Infection (“C-Diff”) [50], a dataset collected from 

the UCSD Health System with 25 covariates and 157,493 patients, to predict the presence 

of infection (1% positive). The Institutional Review Board (IRB) at UCSD approved this 

study (190385X) on August 14, 2020, with the informed consent requirement exempted. We 

simulated four participating sites by randomly splitting each dataset into four parts (25% 

of patient-level data), and randomly sampled 50% records (containing at least one positive 

and one negative sample) for model training. In addition, we performed all experiments in 

accordance with relevant guidelines and regulations.

3.3. Model and adversary Knowledge/Capability assumptions

We adopted GloreChain [10], a blockchain-based batch decentralized Logistic Regression 

algorithm, with the following hyper-parameters [11]: 1 s as the polling time period, 5 

s as the waiting time period, 100 as the maximum per-level iteration, and 10−6 as the 

precision of the convergence criterion. We repeated the above training process for 30 trials 

and collected the partially-trained “local” models (including the gradient vector and the 

variance–covariance matrix) and the combined “global” models (the coefficient vector) for 

each learning iteration. The number of iterations including the initialization one for the three 

datasets are Edin = 246, CA = 238, and C-Diff = 885.
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We considered the following assumptions about adversary knowledge/capability: each site 

can access (a) its own “local” patient-level data, (b) the global models (246, 238, and 885 

models, for Edin, CA, and C-Diff datasets, respectively), and (c) the local models from all 4 

sites (984, 952, and 3540 models, for Edin, CA, and C-Diff datasets, respectively). Each site 

can manipulate its own local models, as well as the global models updated by that site, and 

then share these tampered models with the other sites. On the other hand, each site cannot 

access the patient-level data on other sites, nor can they manipulate the local models or the 

learning process of other sites.

3.4. Misconduct generation

We generated the models on the datasets using a GloreChain. The GloreChain models 

disseminated among sites included both “local” ones (i.e., the partially-trained gradient 

vectors and the variance–covariance matrices) and the “global” ones (i.e., the combined 

coefficient vectors). To simulate the generation of misconducts, we only focused on the 

partially-trained local models, because manipulation of the global models can be easily 

detected by each site (simply combine the local models to compare with the received global 

one). We simulated 11 misconduct scenarios (10 types of misconduct plus one for “all 10 

types”). To generate misconducts on the partially-trained models, we iterated through each 

of the models from each site (e.g., 3540 models for the C-Diff dataset), and applied the 

misconducts with a pre-defined probability (0.25 in our experiment). For the 10 scenarios 

with only one misconduct type each, we applied the specific one directly. For the scenario 

with all 10 types of misconducts, we randomly selected 1 out of the 10 types. The details of 

the misconducts are described in Appendix A.

3.5. Misconduct detection

To detect model misconducts from a site K at learning iteration T on a federated learning 

consortium with N participants, we developed a framework consisting of three detector 

components Auditing, Coefficient, and Performance, as shown in Fig. 1. The input for K 
includes its local patient-level data DK, as well as the global models (G1, G2, …, GT) and 

all local models (M1_1, M1_2, …, MN_T) from N sites in current and previous iterations 

(Fig. 1(a)). Each site cannot access the patient-level data from other sites to protect privacy, 

while all aggregated global/local models are shared and accessible for each site on the 

underlying blockchain ledger [9–13]. The output is a binary decision of whether MS_T, a 

local model disseminated by another site S at iteration T, is considered as a misconducted 

model or not (Fig. 1(f)). MS_T is considered a non-misconducted model if none of the 

detectors identifies potential misconducts; otherwise, it is considered “misconducted”. The 

three detector components, Auditing, Coefficient, and Performance, as well as the parameter 

tuning step, are described in Appendix B.

3.6. Experiment settings

To evaluate the effectiveness of the detection, we adopted 3 evaluation schemes: Iteration-
Site, Iteration-Aggregated, and Site-Aggregated, as shown in the example in Fig. 2. These 

three schemes correspond to different granularities of evaluation. For the Iteration-Site 

scheme (Fig. 2(a)), the misconducts needed to be detected exactly for a site in an iteration. 

Next, for Iteration-Aggregated (Fig. 2(b)), we focused on identifying the misconduct 
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learning iteration, regardless of the site on which the misconduct happens. Finally, for Site-

Aggregated (Fig. 2(c)), the main consideration was to recognize the misconduct on certain 

sites from any learning iteration. For all these three schemes, we calculated the precision, 

recall, and F1-score as our evaluation metrics. To validate the detection correctness of our 

detection method, we adopted a pertrial 10-fold cross-validation (CV). The details of CV 

and our implementation are described in Appendix C.

4. Results

4.1. Detection correctness

The correctness results of misconduct detection are illustrated in Fig. 3. In general, the recall 

is high (between 0.87 and 1.00) across different datasets, evaluation schemes, and types of 

misconducts. For the Iteration-Site evaluation scheme, the precision values are between 0.20 

and 0.30, resulting in F1-scores around 0.40. For Iteration-Aggregated, the precisions fall 

between 0.62 and 0.75 and the F1-scores are between 0.73 and 0.84. For Site-Aggregated, 

the precision values are between 0.74 and 0.90 (resulting in F1-scores from 0.81 to 0.94) for 

the Edin and CA datasets, and nearly perfect (i.e., all 1.00 for precision and F1-scores) for 

the C-Diff dataset.

4.2. Ablation study

To understand which detection component contributed the most to the efficacy of our 

framework, we further conducted an ablation study to remove one component from the 

system at a time. We used the most challenging evaluation schemes, Iteration-Site, in this 

ablation test. The results for our three datasets (i.e., Edin, CA, and C-Diff) are depicted in 

Fig. 4. In general, all three components contributed to the detection correctness, as removing 

any component would cause decreased precision, recall and F1-score. For Edin and CA, the 

Auditing component contributed the most (i.e., the detection correctness metrics dropped 

the most without the Auditing component). On the other hand, for C-Diff the Coefficient 

component provides the highest contribution to the detection correctness.

4.3. Tuned parameters

As shown in Table 2, the β and the γ parameters with the highest Iteration-Site F1-score 

for the Edin and CA datasets are close, while the ones for the C-Diff dataset are larger. The 

ranges of the Iteration-Site F1-Score for the Edin, CA and C-Diff datasets are [0.311, 0.423], 

[0.301, 0.439], and [0.360, 0.421], respectively.

4.4. Execution time

The detection time results are shown in Fig. 5. The overall time (Fig. 5(a)) is less than 

one second, and the time required for C-Diff is larger than the other two datasets. The 

per-iteration time (Fig. 5(b)) demonstrates a similar pattern, and in general the detection can 

be completed within one millisecond for each learning iteration (the total learning iterations 

for the Edin, CA, and C-Diff datasets are 246, 238, and 885, respectively).
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5. Discussion

5.1. Findings

In general, our proposed detection method demonstrated good recall (>0.87), which is 

preferred because the cost of false negatives in the model misconduct scenarios is relatively 

high. Meanwhile, the precision (>0.74) of the Site-Aggregated scenario shows that our 

method can also identify misconduct sites with low false positive cases. Identification of 

misconducts per iteration is harder (the precisions under the Iteration-Aggregated scenario 

are between 0.62 and 0.75). To precisely detect misconducts for a specific site and at a 

specific iteration is even more challenging (the precisions under the Iteration-Site scenario 

fall only in [0.20, 0.30]), because of efforts required to identify both the “location” 

and “time” of the incidence simultaneously. For smaller datasets such as Edin and CA, 

the Auditing component contributed the most, while for the larger C-Diff dataset, the 

Coefficient component is more important. Parameter tuning can impact the results (causing 

at most 0.14 of F1- score change), while the added computational cost is low (<1 ms per 

iteration).

5.2. Limitations

As a proof-of-concept study, the limitations of our work are as follows. (1) Data. Although 

we evaluated our method on three datasets, the evaluation on a dataset with many covariates 

(e.g., 100 or more) is yet to be conducted. Besides, we are yet to evaluate our method 

using non-Independent and Identically Distributed (non-IID) settings with different data 

distributions across sites, with which the detection task could be more challenging. (2) 

Model. The Auditing, Coefficient and Performance components of the framework are 

readily adoptable; however, the tuning of specific parameters may require additional 

consideration for generalizability, as well as to bolster the detection success rate in the 

Iteration-Site scenario. We have yet to investigate the efficacy of the misconduct detection 

framework on complex machine learning models such as deep neural networks, where some 

of our assumptions (e.g., the tendency of model coefficients moving towards the same 

direction) may change. We have also yet to study more complicated prediction tasks such 

as multi-class or multi-label classifications. (3) Misconducts. Our study only considers the 

situation of applying single misconduct per-iteration-per-site. More exploration needs to 

be done for multiple misconducts per-iteration-per-site (e.g., applying both Gaussian and 

random noises to the model), or even with more different misconduct types. Besides, the 

pre-defined misconduct probability values other than the one we used in our experiment 

(i.e., 0.25) is yet to be evaluated. (4) Detection. We tuned the hyper-parameters using 

simulated model misconduct data, and the tuning process using real-world modeling data 

warrants investigation. Also, the improvements of precision to reduce false positive rates, as 

well as the steps after detecting misconducts are yet to be studied.

6. Conclusion

We summarized and simulated three categories (plagiarism, fabrication, and falsification) 

and 10 types of model misconducts under three scenarios (Iteration-Site, Iteration-

Aggregated, Site-Aggregated). Then, we developed a detector with three components 
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(Auditing, Coefficient, and Performance) to detect these model misconducts on three 

datasets (Edin, CA, C-Diff). The results demonstrate desirable high recall, and our detector 

framework is flexible and extensible to include more detector components to improve 

its detection capability, and to inform the decision to halt or continue the federated 

learning process. With the low detection cost of one millisecond per learning iteration, 

our model misconduct detector framework can enhance the integrity and reliability of 

federated machine learning on genomic and healthcare data, which in turn contributes to 

the construction of threat-proof cyber-infrastructure in the medical informatics community.

Although we only conducted experiments on disease-classification machine learning tasks, 

the misconduct types and detection methods are generalizable. They may be applied to other 

medical informatics applications such as patient hospitalization [53] and mortality [54]. 

Moreover, they might also be adopted in a variety of other healthcare-related Information 

Technology (IT) applications such as insurance [55] and industrial engineering [56], as well 

as mobile technology [37].

Summary Table

What was already 
known on the topic

Cross-institutional collaborations to use artificial intelligence on clinical/genomic data can 
accelerate healthcare/genomic medicine research and facilitate quality improvement Real-
world risks of incorrect models being submitted to the learning process may reduce the 
incentives for institutions to participate in the federated modeling consortium

What this study 
added to our 
knowledge

• We summarized and simulated three categories and 10 types of model misconducts under 
three scenarios, and developed a detector framework with three components to detect model 
misconducts constructed from three datasets

• The results showed that our method can support the integrity and reliability of federated 
machine learning on genomic and healthcare data
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
The model misconduct detection framework. In this example, suppose there are four 

participating sites in total, the current learning iteration is 9, and a site S1 would like to 

determine whether a newly received partially-trained model M2_9 commits misconduct. (a) 
The input includes S1′ s local patient-level data D1, as well as the global models (G1, G2, 

…, G9) and all local models (M1_1, M1_2, …, M4_9) in current and previous iterations. 

(b) The Auditing detector compares M2_9 with the historical local models and sees if it is 

copied from any of them and checks to see if M2_9 contains an empty gradient vector or 

variance–covariance matrix. (c) The Coefficient detector compares the updated model U2_9 

(computed by updating G8, the global model of the previous iteration, using only M2_9) with 

the updated models in the previous iterations, to recognize any significant direction change 

(for example, the previous updated model has been increasing from U2_7 to U2_8, while 

the values drop suddenly from U2_8 to U2_9). (d) The Performance detector compares the 

evaluation result (e.g., computed using full Area Under the receiver operating characteristic 

Curve, or AUC [51,52], on D1) of the current updated model U2_9 with the average results 

of all previous ones (AUC of U2_1 to U2_8), and identifies any significant difference. (e) 
The tuning step finds the best the parameters β and γ using greedy search. (f) The output 
is a binary decision of whether M2_9 is misconducted. If none of the detectors pinpoint a 

misconduct, M2_9 is considered a non-misconducted model, otherwise a misconduct one.

Kuo and Pham Page 12

Int J Med Inform. Author manuscript; available in PMC 2023 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
An example of the evaluation schemes of model misconduct detection. The misconducts, 

detections, confusion matrices, and metrics are shown in this 4-site, 3-learning-iteration 

example. A “T” indicates misconduct, and a “F” means no misconduct. The corrected 

detected results are in blue text, while the incorrect ones are in red and bold text. We adopted 

3 different evaluation schemes to compute the metrics (i.e., precision, recall, and F1-score). 

(a) Iteration-Site. This scheme directly takes all 3 (learning iterations) * 4 (participating 

sites) = 12 ground truths and predicted results to compute the prediction, recall, and 

F1-score. (b) Iteration-Aggregated. This scheme first aggregates the results by learning 

iterations (rows) using “OR” operation (i.e., if in a learning iteration there is one misconduct 

on any site, it is considered as a misconduct learning iteration). Then, the aggregated values 

(i.e., the ground truths and predicted results for the three learning iterations) are used to 

compute the metrics. (c) Site-Aggregated. Just like Iteration-Aggregate, this scheme first 

aggregates the results by sites (columns) using “OR” operation, and then the aggregated 

values for four sites are used to calculate the metrics. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. 
Detection correctness results for three datasets Edin, CA, C-Diff under three evaluation 

schemes Iteration-Site, Iteration-Aggregated, and Site-Aggregated. X-axes are the 11 

misconduct types (10 single-type + 1 all-type), and Y-axes are the metrics of prediction, 

recall, and F1-score.
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Fig. 4. 
Ablation study results for three datasets Edin, CA, C-Diff under the Iteration-Site evaluation 

scheme. X-axes are the combinations of the three detector components, and Y-axes are the 

metrics of prediction, recall, and F1-score.
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Fig. 5. 
Detection time. (a) Overall time computed using all data in the three datasets Edin, CA, 

and C-Diff under the “all 10 misconduct types” scenario. (b) Per-Iteration time, which is the 

overall time divided by the total number of learning iterations for each dataset.

Kuo and Pham Page 16

Int J Med Inform. Author manuscript; available in PMC 2023 June 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kuo and Pham Page 17

Table 1

Model misconduct threat models and adversarial goals. Each type of misconduct can be grouped into one 

of the three categories: plagiarism (copied model), fabrication (mocked model), and falsification (tampered 

model), with three possible intentions of hiding information, inspecting information, and disturbing learning.

Threat Models Adversarial Goals

Category Type Number Hide Info Inspect Info Disturb Learning

Plagiarism Self-Plagiarism #1 Maybe Yes Maybe

Others-Plagiarism #2 Yes Yes Maybe

Fabrication Empty-Fabrication #3 Yes Yes Yes

Random-Fabrication [7] #4 Yes Maybe Yes

Gaussian-Fabrication [841] #5 Yes Maybe Yes

Falsification Opposite-Falsification [7] #6 Yes Maybe Yes

Cosine-Falsification [8] #7 No No Yes

Random-Falsification
[42]

#8 No No Yes

Gaussian-Falsification
[47]

#9 No No Yes

Rounded-Falsification #10 No No Yes

Int J Med Inform. Author manuscript; available in PMC 2023 June 09.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kuo and Pham Page 18

Ta
b

le
 2

Fi
na

l p
ar

am
et

er
s 

tu
ne

d 
us

in
g 

al
l d

at
a 

in
 th

re
e 

da
ta

se
ts

 u
nd

er
 th

e 
“a

ll 
ty

pe
s”

 m
is

co
nd

uc
t s

ce
na

ri
o.

 T
he

 r
es

ul
ts

 o
f 

th
e 

m
et

ri
cs

 f
or

 e
ac

h 
ev

al
ua

tio
n 

sc
he

m
e 

ar
e 

al
so

 in
cl

ud
ed

.

D
at

as
et

P
ar

am
et

er
It

er
at

io
n-

Si
te

It
er

at
io

n-
A

gg
re

ga
te

Si
te

-A
gg

re
ga

te

M
od

el
C

ha
ng

e 
R

at
io

 (
β)

A
U

C
 D

if
fe

re
nc

e 
T

hr
es

ho
ld

 (
γ)

P
re

ci
si

on
R

ec
al

l
F

1-
Sc

or
e

P
re

ci
si

on
R

ec
al

l
F

1-
Sc

or
e

P
re

ci
si

on
R

ec
al

l
F

1-
Sc

or
e

E
di

n
0.

4
0.

15
0.

27
3

0.
97

4
0.

42
2

0.
72

8
1.

00
0

0.
83

3
0.

87
5

1.
00

0
0.

92
1

C
A

0.
3

0.
15

0.
29

6
0.

94
4

0.
43

8
0.

73
1

0.
99

6
0.

82
7

0.
84

7
0.

99
2

0.
88

7

C
-D

if
f

0.
9

0.
45

0.
26

9
0.

98
3

0.
42

1
0.

71
2

0.
99

8
0.

82
9

1.
00

0
1.

00
0

1.
00

0

Int J Med Inform. Author manuscript; available in PMC 2023 June 09.


	Abstract
	Background and significance
	Introduction
	Data misconduct
	Model misconduct

	Objective
	Materials and methods
	Misconduct threat models and adversarial goals
	Data
	Model and adversary Knowledge/Capability assumptions
	Misconduct generation
	Misconduct detection
	Experiment settings

	Results
	Detection correctness
	Ablation study
	Tuned parameters
	Execution time

	Discussion
	Findings
	Limitations

	Conclusion
	Table T1
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Table 1
	Table 2



